
Thesis for The Degree of Licentiate of Engineering

Migrations to Microservices-Based Architectures - a
Tale of Technical and Organizational Change

Hamdy Michael Ayas

Division of Interaction Design and Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology | University of Gothenburg
Gothenburg, Sweden, 2022

Migrations to Microservices-Based Architectures - a Tale of Techni-
cal and Organizational Change

Hamdy Michael Ayas

Copyright ©2022 Hamdy Michael Ayas
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Division of Interaction Design and Software Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2022.

ii

To my grandparents Vasiliki and Kyriakos, that their humble beginnings of
working in olive trees, coper mines, (bee) herds and barley fields sparkled a

limitless inspiration and support to my education

iv

Abstract

Background: As software systems evolve and scale faster than the foundations
on which they are structured on, software architecture migrations to modern,
cutting edge paradigms of development are becoming common. An example of
such a paradigm is Microservices-based Architectures (MSAs). With MSAs,
organizations can manage the complexity of their software and deploy indi-
vidual pieces autonomously and independently. However, migrating towards
microservices entails a lot of complexity. The evolution of the structures that
a migration predisposes is multifaceted, with a socio-technical nature.

Objective: Therefore, this thesis aims to first of all understand the process
in which decisions are made by engineers to migrate their software architecture
towards microservices. In addition, this thesis targets to aggregate the migration
journey of organizations that change their software architecture to microservices.
Finally, it is demonstrated how an organization’s operations implement different
processes for software architecture migrations and development methodologies.

Method: The methodologies used in this thesis are mainly qualitative
methods. Grounded Theory and Grounded Theory-based analysis is used on
interview data as well as textual data that engineers share in Q&A websites
(i.e., StackOverflow). Moreover, a case study is also included to understand
how engineers adopt certain agile practices and guidelines via observations, a
survey and interviews.

Results: The main findings of this thesis are regarding the comprehensive
perspective on microservices migrations that take place in multiple dimen-
sions (business, technical, organizational), in multiple levels of abstraction
(architecture and system) and in multiple modes of change (technical and
systemic migrations). In addition, 22 decisions and 53 solution outcomes are
identified in detail. This work does not only approach migrations as a technical
endeavor, but also as an endeavor with a strong social and business aspect to
it, covering the basic elements of socio-technical systems as defined in litera-
ture. Furthermore, as the outcomes from analyzing microservices migrations
resulted to processes and taxonomies, the thesis demonstrates a reflective view
of developers percpectives in adopting processes and guidelines.

Conclusion: Microservice migration projects entail an inherent complexity
due to the different dimensions that the change takes place on, as well as
the distributed nature of microservices. This work helps to decompose this
complexity and carry a detailed understanding of microservices migrations to
future attempts. Also, this work paves the way for studying further migrations
to scalable cloud-based architectures and viewing them as comprehensively as
possible.

Keywords

Microservices, Microservices migrations, Software architecture migrations,
Grounded Theory, StackOverflow Mining

Acknowledgment

First and foremost, I would like to thank my supervisor Regina Hebig and
co-supervisor Philipp Leitner. Your input and insights have been invaluable,
in shaping the research of this thesis. Even more importantly, your coaching
helped to develop my research acumen and I will be forever grateful for that.
Looking forward to continuing our research journey.

Next, I would like to thank my examiner Prof. Miroslaw Staron, for
the constructive feedback. I would also like to express my appreciation to
the discussion leader of this licentiate, Prof. Davide Taibi for accepting the
invitation to discuss about my research.

It is a priviledge to have university ordinances that ensure a supportive
environment. Thus, I would like to express my gratitude to Agnetta, Wolfgang,
Nir, Clara and everyone contributing to the PhD school. Also, thank you
Richard, Robert, Palle, Eric and Philipp for the trust and leadership.

Special appreciation goes to my early line manager, Ivica Crnkovic for the
kindness, inspiration and interesting discussions. You will be remembered.

Next, I would like to thank Francisco and Mohammad for the joyfull
collaborations. Special thanks go to current and past office mates and friends,
Joel, Linda, Razan, Georgios, Peter and Mazen, for the friedly and colorful
working atmosphere. I also thank Richard B. S., Ricardo, Habib, Cristy, Jan-
Philipp, Sjoerd, Yuchong and all collegues in the IDSE division for the nice
time.

I am gratefull to Manos, Giannis, Vasiliki, Christina, Dimitris P., Penelope,
Maria, Iosif, Eva and Dimitris T. for making Gothenburg feel like a home. You
are all special and the best companions one could wish for. Additionally, I
would like to thank Thomas and Christos for the inspiring pragmatism and our
unique interactions. Santiago and Eirini, thank you for all the shared color,
flavours, music and experiences. It is only the beginning of our journeys. A
special place in my heart will always be occupied from my childhood friends,
Kyriakos Pel., Kyriakos Pap., Dimitris, Paris, George, Andreas and the rest of
the gang back in Cyprus. Thank you for all the fun summers and winters.

Most importantly I thank my parents - Mohammad and Eleni, my beloved
siblings - Sandy and Malek as well as my beloved niece and nephew - Maria
and Ali. You are my roots, my wings and my light.

Last but not least, I would like to thank my lovely partner Georgia, for
always rooting for me. I am grateful that you are by my side when powering
through all kinds of waves, slopes, hills, mountains and cities in all kinds of
sunshine, rain, snow, winds and icy cold. I am forever gratefull to life for your
incredible and endless love, support, patience and positive energy.

vii

List of Publications

Appended publications

This thesis is based on the following publications:

[A] H. Michael Ayas, P. Leitner, R. Hebig “Facing the Giant: a Grounded
Theory Study of Decision-Making in Microservices Migrations”
International Conference on Empirical Software Engineering and Mea-
surement (ESEM2021), 2021.

[B] H. Michael Ayas, P. Leitner, R. Hebig “The Migration Journey Towards
Microservices”
International Conference on Product-Focused Software Process Improve-
ment (PROFES2021) 20(35), 2021.

[C] H. Michael Ayas, P. Leitner, R. Hebig “An Empirical Study of the
Systemic and Technical Migration Towards Microservices”
In submission.

[D] M. Mortada, H. Michael Ayas, R. Hebig “Why do software teams deviate
from scrum? reasons and implications”
International Conference on Software and Systems Processes (ICSSP2020),
2020.

ix

x

Other publications

The following publications were published during my Licentiate studies, or
are currently in submission/under revision. However, they are not appended
to this thesis, due to contents overlapping that of appended publications or
contents not related to the thesis.

[a] H. Michael Ayas, H. Fischer, P. Leitner, F.G. de Oliveira Neto “An
Empirical Analysis of Microservices Systems Using Consumer-Driven
Contract Testing”
48th Euromicro Conference Series on Software Engineering and Advanced
Applications (SEAA), 2022

Research Contribution

I (Hamdy Michael Ayas) was the main driver and contributor of Papers A,
B and C. In addition, I had major contributions in Paper D. A summary
of the contributions is presented in Table 1, based on the Contributor Roles
Taxonomy (CreditT) 1, as presented by Brand et al., 2015 [1].

For Papers A, B and C, I was the main contributor in most categories of the
taxonomy, as shown in Table 1. Specifically, I significantly contributed in the
Conceptualization, Data curation, Formal Analysis, Investigation, Methodology,
Software, Validation, Visualization and Writing of the original draft. I also
facilitated the ways that co-authors (main and co-supervisor) contributed in
the Formal Analysis (e.g., via data analysis guides), to ensure enough rigour
in the chosen (qualitative) research methodologies. In addition, I facilitated
the inclusion of co-authors’ expertise in the Conceptualization of the topics
discussed in this thesis.

For Paper D, I contributed with the Formal Analysis, Investigation, Vali-
dation, Visualization, Writing of the original draft and Writing through review
and editing. The work of Paper D is based on a master thesis that I collabo-
rated with, in which a re-analysis of the existing data gathered and a complete
re-writing of the publication took place.

Role Paper A Paper B Paper C Paper D
Conceptualization X X X
Data curation X X X
Formal Analysis X X X X
Funding acquisition
Investigation X X X X
Methodology X X X
Project administration
Resources
Software X
Supervision
Validation X X X X
Visualization X X X X
Writing - original draft X X X X
Writing - review & editing X

Table 1: The individual contributions of this thesis’ author to the appended
papers.

1https://casrai.org/credit/

xii

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Research Scope . 3
1.4 Related Work . 5

1.4.1 Benefits of microservices 5
1.4.2 Microservices migrations 6
1.4.3 Decision-making in software engineering 7

1.5 Research Methodologies . 8
1.5.1 Interviews . 8
1.5.2 StackOverflow discussions 8
1.5.3 Case study . 9

1.6 Summary of Contributions . 9
1.6.1 Contribution 1: Decision-making process 10
1.6.2 Contribution 2: Migration journey towards microservices 11
1.6.3 Contribution 3: The constituent elements of the migra-

tions journey . 12
1.6.4 Contribution 4: The organizational aspect in software

engineering . 13
1.7 Discussion . 13

1.7.1 Software architecture perspective 14
1.7.2 Breaking down the complexity of MSA migrations . . . 15
1.7.3 The decision-making part of MSA migrations 16
1.7.4 The implications of the developed theories on software

engineering teams that migrate to microservices. 16
1.7.5 Adopting processes and guidelines 18

1.8 Conclusion . 18
1.9 Future Work . 19

Bibliography 21

xiii

xiv CONTENTS

Chapter 1

Introduction

Software is dominating at a large scale the ways in which the world operates.
Milions of lines of code are present in the heart of our work, leisure, transport,
economies, and democracies. As Marc Andreessen famously wrote on 2011,
“In short, software is eating the world”1. Software that evolves in large scale
and increasing complexity, forcing its underlying foundations to evolve as well
and potentially drift from the intended structure [2]. Additionally, software
systems need to have the capacity of changing fast with the development of
new applications, updating of existing applications and combining/aggregating
applications or digital services [3]. Consequently, as software systems evolve and
scale faster than their foundational structures, software architecture migrations
to modern, cutting edge paradigms of development are becoming more and
more common [4,5].

An example of a modern, cutting edge paradigm of structuring systems
and their development is Microservices-based Architectures (MSAs). Hence,
organizations in many industries are increasingly adopting microservices tech-
nologies to structure their software [6]. By adopting such a service oriented
architecture like microservices, organizations can manage the complexity of
their software and their systems can deploy individual pieces autonomously and
independently [7,8]. Therefore, organizations adopt a software architecture that
complements the Agile methodologies of software development and facilitates
organizational agility [9].

1.1 Background

Microservices are a way of structuring systems into loosely coupled pieces
that are developed and operated independently, each with its own individual
domains and resources. These individual pieces communicate with each other
to compose a complete system through decentralized continuous delivery [10].
A system based on microservices is therefore composed as a set of small services,
individually running in their own process, and communicating with lightweight
mechanisms [11]. Hence, microservices have fine-grained interfaces (e.g., API
endpoints) of independently deployable services [10,12].

1https://www.wsj.com/articles/SB10001424053111903480904576512250915629460

1

2 CHAPTER 1. INTRODUCTION

MSAs have certain characteristics. In principle, microservices are often
small individual pieces of functionality and therefore they are often deployed in
containers or even as functions-as-a-service [13]. Furthermore, business-driven
development practices are critical to accompany agile practices that are often
adopted by software development teams [9,11]. In addition, microservices follow
cloud-native application design principles [10]. Such principles allow them to be
technology independent and thus, have a polyglot nature (i.e., each microservice
can be written in its own programming language). Another characteristic of
microservices is their persistence strategies, especially in managing their own
state [11] and having (in principle) their own database [14].

Often MSAs are described as an incarnation of Service Oriented Architec-
tures (SOA) that aim to address the need for more flexible, loosely coupled
compositions of services [12]. The differences of microservices with SOA is not
on their architectural style but rather on the implementation of the architecture.
Specifically, microservices embrace, leverage and add on principles and patterns
from SOA (loose coupling, service contracts etc.) [9].

In microservices, Domain Driven Decomposition/Design (DDD) is key [11].
DDD is the business-centric or feature-centric design and development of
software. In addition, microservices are about separating functionality based
on different criteria rather than just functional concerns (horizontal splitting
of backend, frontend and data layers). For example, microservices can be
structured in a system based on the number of features that are provided to
the end users, the number of developers and the number of users that use parts
of a software system (vertical splitting) [13]. This way a MSA can facilitate
organizations to achieve improved scalability, maintainability and reduced time
to market [11,15]. Finally, MSAs are used in new software systems, but very
often, an existing system needs to be migrated to a MSA [10] and there is plenty
that we do not know about migrations to microservices specifically. Hence,
there is a need to study the process of migrating towards such a software
architecture [16].

1.2 Problem Statement

Migrating towards microservices entails a lot of complexity [17]. Specifically, the
evolution of the structures that a migration predisposes is of a socio-technical
nature, comprising a technical, an organizational and a social aspect [18].
Furthermore, these socio-technical concerns in such migrations matter at all
levels of abstraction in a system (e.g., classes, modules, services etc.) and
influence each other. On the one hand, there are small, simple development
details that can influence grand design choices. On the other hand, there
are grand design choices that can influence development in small, simple
development details.

The value to move towards microservices is overall well reported [10], but
how to achieve a migration towards a MSA is not so straight forward. That is
because changing the software architecture to microservices is a highly complex
task that takes time [19]. Specifically, it is not always clear how aspects of
migrations connect to each other and how migration activities take place in
relation to one another [20]. Also, architectural migrations are heavy in decision-

1.3. RESEARCH SCOPE 3

making [21], either in an individual-level, team-level or organizational-level
(i.e., company wide) [3].

Furthermore, migration processes are often un-structured and take place
in ad-hoc manners (they are not systematic or methodical, but rather take
place on a trial and error basis). They are also not well known since they are
not always systematically recorded [10]. There is knowledge from practice and
academia on how to technically enact MSA migrations, but it is rare that many
migrations are aggregated to show engineers a more generic view of change
and thus, engineers often learn along the way.

Also, existing solutions (e.g., through program decomposition) are often
not addressing the decision-making of engineers in migrations and can lead to
ad-hoc, disconnected processes from the rest of the organization/system. For
example, applying automated software decomposition tools on source code [22],
does not mean that the system is migrated to a MSA. There are more aspects
than just the source code that change during a migration, such as integration
and deployment methods, testing and many more [23,24].

Migrations entail decisions for bigger changes than just a systems’ upgrades.
They are transformative on organizations as a whole [25], and we have a
lesser understanding on the non-technical aspects of migrations than the
technical aspects. Hence, there is a lack of approaches providing details on the
operational choices that software development teams and organizations make
in migrations [23].

Moreover, organizations do not only go through intended change in their
operations (e.g., MSA migrations), but also through unintended change [26].
Unavoidably, there are many practices that direct organizations on how to evolve
in new operational paradigms, with change that is explicitly prescribed [27],
but also change that is implicitly imposed during time [28]. Consequently,
there is a deviation between propsed guidelines and practical activities that
software engineering teams actually do. This deviation needs to be investigated,
both in times of change (i.e., a migration), but also in times of stability (i.e.,
methodology during software development).

For example, adoption of agile practices is not as straight forward as it
seems to be, even with frameworks like Scrum [29]. There is evidence that
37,5% developers report to intentionally deviate from defined processes [30].
Also, teams customize best practices to their particular needs [31]. It is not
always clear what are the reasons for deviating from agile practices and the
implications that deviating could cause.

1.3 Research Scope

To address the challenges described in the problem statement, this thesis has
a set of research objectives and research questions. An overview is presented
in Figure 1.1 of the research questions and how they relate to each other.
Figure 1.1 demonstrated also the input of each research question and to which
objective it contributes.

The following research objectives are covered in this thesis.

Research Objective 1: Understand the process in which decisions are
made by engineers to migrate their Software Architecture towards microservices.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Overview of Research questions, the products they use and their
outcomes

Research Objective 2: Aggregate the migration journey of organizations
that change their Software Architecture to microservices.

Research Objective 3: Demonstrate how an organization’s operations
implement different processes for Software Architecture migrations and software
development methodologies.

To achieve these objectives, a set of Research Questions (RQs) are presented
below.

RQ1: What is the decision-making process of organizations during a
migration towards microservices? In this research question, it is intended to
empirically derive the decisions that organizations make during a migration
towards microservices and when these decisions are made. In addition, with
this research direction it is intended to showcase the typical options that
organizations can choose in such decisions.

RQ2: What is the migration journey that companies go through when
transitioning towards microservices? This research question aims to address
the gap on empirical understanding of migrations from the engineers’ point of
view. It is intended to investigate on what different levels can the migration
journey take place and how these different levels are structured.

RQ3: What are the constituent elements of migration journeys that com-
panies go through when transitioning towards microservices (from high level
patterns to detailed solutions)? This research question attempts to pinpoint
the different activities that take place in different levels of abstraction accross
the organization. Specifically, activities and common solutions are identified
on the technical and systemic level of a migration.

RQ4: What are the deviations that exist in adopting processes and guide-

1.4. RELATED WORK 5

lines for Agile practices (why teams deviate and what are the consequences)?
Finally, this thesis aims at understanding how engineers adopt agile practices
and specifically Scrum. In addition, the thesis aims to provide an understanding
on what makes engineering teams to deviate from proposed guidelines and
practices, as well as on the consequences that such deviations can have. Hence,
this research question aims to find typical deviations from the Scrum framework
and pinpoint their reasons and implications.

To answer the RQs of this thesis, four papers are appended - paper A, paper
B, paper C and paper D. All four papers use empirical inductive approaches to
address the selected RQs. The combination of the four papers cover the basic
aspects of a socio-technical approach to change, using concepts from established
literature on socio-technical systems engineering [18], as shown in Figure 1.2.
Paper A describes the sensitisation and awareness aspect of socio-technical
systems engineering. Paper B describes the change process, as described in the
context of a socio-technical system, in order to achieve a migration towards
microservices. Paper C covers the systems engineering process, that has to do
with the specifics of the technology through detailed solutions. Finally, paper
D touches upon the constructive engagement of engineers with guidelines and
processes.

Figure 1.2: Overview of socio-technical systems engineering aspects coverage

1.4 Related Work

This section discusses related work on the topics that this thesis is developed on.
Related work on microservices migrations is followed by summarizing seminal
work on decision-making in software engineering.

1.4.1 Benefits of microservices

Often, software systems grow so large that it becomes challenging to maintain
them and make new releases of features on them. Thus, technical dept gets

6 CHAPTER 1. INTRODUCTION

accumulated that binds organizations to design choices that have points of
no return and digital services that cannot be modernized easily or fast [32].
This difficulty of modernizing digital services is a challenge of organizational
agility [9] and can also lead to obsolescence in products that are offered
by organizations [33]. Hence, software systems need to be structured more
meticulously and MSAs is a way to do so [15].

Microservices have many advantages. First, microservices are about focusing
on one thing and doing it well [15]. Also, microservices enable faster releases of
functionality and independent scaling and maintenance [10,32]. The polyglot
nature of MSAs enables technology diversity and faster adoption of different
technologies, depending on the requirements at hand [9]. Additionally, a
MSA enables separation of parts with high security requirements design and
allows multiple points of failure to achieve resilience [34]. Some of the effects of
microservices are response to business change, enable different workloads for cost
improvements, higher value delivery, organisational agility, and decentralised
governance [24].

1.4.2 Microservices migrations

As software systems grow large, both in size and complexity, it becomes difficult
to update them and thus, they need to be re-structured [35]. That is because
Software Systems often need to change fast with the development of new
features, updating of existing ones and combining/aggregating applications or
digital services [16]. Such a re-structuring includes the evolution of monoliths
to Service-Oriented-Architectures (SOA) and even further to microservices [9].
Monolithic software systems are tightly coupled pieces of software that have
challenges in maintaining them effectively and updating them fast. SOA are
a step towards organizing software with separation of concerns, functional
and non-functional requirements and providing information as services [36].
MSAs go a step further and they are a way of structuring systems into loosely
coupled pieces that are developed and operated independently, each with its own
individual domains and resources [9]. These individual pieces communicate with
each other to compose a complete system [11]. Existing research investigates
how to use business logic, domain and potential existing solutions [20, 24], but
there is further room for relating —requirements engineering— specifically
about microservices migrations.

—restructure the paragraph and combine with last— Empirical evidence
on migration projects can bring light to such practices as well as prepare
practitioners for the expected migration journey and what activities such a
journey entails [37]. Hence, studying and understanding how companies make
their transitions towards MSAs can also provide a detailed theoretical basis
to researchers on the different aspects of migrations [34]. Also, there is a
need in empirically investigating the details of migrations comprehensively
from different points of view [35]. Migration projects are not simple, since
migrating a system towards microservices (e.g., from a monolithic architecture)
is a long endeavour with many things to consider and an inherent complex-
ity [24]. Existing formal models can give guidance on how to track and split
technical artifacts of the system [21,38]. However, there are not many empirical
investigations on the process of designing microservices-based architectures.

1.4. RELATED WORK 7

Figure 1.3: Categorization of microservices decomposition approaches

Research and best practices stemming from industry provide some ap-
proaches on migrations, covering many aspects [14, 24]. There are different
ways for splitting the software to transform a system to microservices technically.
Figure 1.3 showcases the landscape on which such approaches exist. Specifically,
there are on the one hand manual approaches that deal with isolating through
manual code analysis specific parts of the software to deconstruct services [24].
Such approaches have high awareness of context and include extensive human
input. On the other hand, there are automated approaches that take the source
code and indicate potential splits. Specifically, there is static code analysis
which is splitting by analyzing source code like class dependencies [39]. Another
way is meta-data aided, which is analyzing more abstract input data like UML,
Use Cases, interfaces, commits etc. [40]. Also, microservices can be split using
workload-data aided approaches [41]. Such approaches analyze measurements
of operational data on module on function level to define granularity. Fur-
thermore, there are Dynamic Microservices Decomposition approaches. They
are permanently changing services based on workload for example or other
dimensions to re-calculate the best-fitting decomposition.

1.4.3 Decision-making in software engineering

Currently, decisions for architectural designs are highly intuitive and based on
previous experiences of engineers [42]. Software engineers have certain biases
and limitations during cognitively demanding tasks [43]. Also, decision-making
is especially challenging when it takens place in groups, since it is not common to
have structured decision-making in groups [44]. Moreover, without having these
humane particularities in the core of software engineering, it is more challenging
to enable the full utilization of the engineers’ creative and mental capacity [45].
These limitations along with their implications are extensively studied in many
other fields but moderately studied in software engineering [46]. Also, existing
decision-making processes do not comprehensively cover entire processes of
software engineers and solutions are rather individual of a technology or a very
specific problem.

8 CHAPTER 1. INTRODUCTION

1.5 Research Methodologies

In the research of this thesis mainly qualitative methodologies have been used.
The methodologies used are mainly grounded theory (GT) or using techniques
from GT as described in literature of using GT in software engineering [47].
Specifically, in paper A a GT study with interviews was conducted. During the
interviews, the aim was to also capture descriptions and contextual information
about the overall journey of the interviewees’ microservices migration journey.
Hence, it was possible to conduct another thematic analysis in paper B and
derive empirically the migration journey towards microservices. Additionally,
in paper C a methodology used was applying techniques from GT to analyze
textual information that engineers share in Q&A websites and specifically, in
StackOverflow. Moreover, in paper D we analyzed a case study to understand
with rigour how engineers adopt certain agile practices and guidelines.

1.5.1 Interviews

The step of interview conducting and analysis is predominantly based on GT [47].
Specifically, the constructivist variance of GT is used. The starting point was an
initial research question that evolved throughout the development of paper A,
as suggested in literature for conducting studies based on constructivist GT [48].
The initial research question was further specified and broken down into what
could be addressed based on the data analysis of paper A. A semistructured
interview guide was used to conduct the interviews, which we constructed based
on the initial research questions. However, participants were given significant
freedom in describing their migration experiences. The data collection included
interviews with 19 participants, from 16 organizations operating in different
industries. Furthermore, an additional qulitative analysis took place on the
same interview-based dataset. The additional analysis step lead to the results
of paper B and to the input/starting point of paper C.

1.5.2 StackOverflow discussions

This part of the methodology is a purely manual analysis of posts mined from
StackOverflow, again using techniques from GT, as described in literature [47,
48]. StackOverflow is often the place that software engineers turn towards
when they face challenges in their work [49]. Therefore, discussions arise in
this Q&A forum that contain a lot of details regarding engineers’ concerns.
Developers use posts from such websites to gather information, get ideas
of solutions and discuss their design decisions to validate them [50]. More
importantly, software engineers share issues and challenges they face [51], along
with potential solutions of their particular technical issues. The content that
is shared among developers often includes information on the ways that they
work, think and tackle different issues [52].

This thesis, derives from (sometimes lengthy) discussions of software en-
gineers in StackOverflow detailed solutions in migration activities towards
microservices. The data collection includes the querying of StackExchange to
gather questions that engineers posted as well as answers to those questions.
The analysis of the 215 gathered posts is qualitative and based on GT tech-
niques. The purpose of this analysis is twofold. On the one hand, to evaluate

1.6. SUMMARY OF CONTRIBUTIONS 9

the already developed theory from paper B and on the other hand, to extend
the theory with detailed solutions as presented in paper C.

1.5.3 Case study

This thesis also includes a case study, in order to understand how software
engineering teams adopt agile practices, why they deviate and what are the
implications of deviations from guidelines. The data collection of this case study
used three methods. Specifically, observations were used to gather what exactly
the software engineering teams were doing. Initially, the gathered observations
were compared with the official guidelines of scrum and deviations started to
be identified. Furthermore, the identified deviations were validated through
a survey. Finally, a set of interviews were conducted in order to qualitatively
derive indications on what caused the deviations and what was the implications
of these deviations.

1.6 Summary of Contributions

The contributions of this thesis are threefold: 1) understanding the organi-
zational decision-making of migrations towards MSA, 2) empirically infering
how change takes place during microservices migrations and 3) describe how
engineers adopt or deviate from guidelines of their used methodology. Figure 1.4
gives an overview on how the different outcomes contribute in asking each of
the research questions of this thesis.

Figure 1.4: Overview of contributions per research question

10 CHAPTER 1. INTRODUCTION

1.6.1 Contribution 1: Decision-making process

The first contribution of this thesis is the proposed decision-making process that
covers comprehensively the multidimentionality of microservices migrations.
This contribution is mainly covered by paper A, which reports a study of
decision-making in microservice migrations by organizing aspects that describe
past migrations. The research methodology of the study is GT-based interview
analysis. Special emphasis is given on the human aspects of migration.

After analyzing the first 5 interviews, it became evident that similar tasks
were perceived and executed in different ways across different cases and different
engineers. In addition, interviewees mentioned that they had to think, deliberate
and make choices, at times, that later on were influential for their migration.
Therefore, it became apparent that not only the migration process was central,
but also the decision-making process in migrations. Therefore, it started
becoming interesting to investigate in detail whether interviewees considered
other options as well, how they made their choices and why.

Consequently, a mechanism was devised in paper A to uncover implicit
decisions that software engineers make. There were three predominant ways
in identifying decisions in our interview material. First, when interviewees
mentioned that they had to make a decision from different alternatives. The
second way was when interviewees seemed unsure about a choice the had made
and discussed the rationale behind it or choose two options simultaneously.
The third way was when we identified different courses of actions taken from
different interviewees for the same task at hand. Decisions in all different
dimensions were influential for the overall course of the migration. Therefore,
there are evidence of decisions influencing decisions of other dimensions.

In paper A, the decision-making processes that happens on all levels of a
microservices migration project is charted holistically including 22 decision
points. This helps us understand the architectural design decisions in microser-
vices migrations and how they tackle surfacing challenges (business, technical
and organizational). Also, it enables us to aggregate the migration journey
and provide a framework for navigating this changing journey. Furthermore,
this contribution helps in understanding the impact of microservices on or-
ganizational aspects (structure, processes, VPs etc.) and demonstrate the
eventual nature of migrations in organizations. A strong emphasis is given on
the multidimensional nature of migrations towards microservices, considering
the business and organizational side, as well as the technical side. In paper
A’s theory, we present 3 main dimensions, being the business, technical and
organizational dimension.

In the business dimension, the developed theory reports the need to first
create engagement across the organization for migrating to a MSA. Specifically,
engineers that know the need for migrating have to propagate this knowledge
to other key stakeholders and engage them. It is not possible to just pull the
plug and change the system at once. The identified decisions were first, on
how to assess feasibility and explore potential opportunities. These decisions
are feeding information into the development of a business case that drives the
development of a new architecture.

The second dimension is about decisions on technical aspects. Specifically,
in this dimensions we chart different choices that engineers have to make

1.6. SUMMARY OF CONTRIBUTIONS 11

when migrating. On the one hand, some of those choices are about grand
design decisions of the migration like what splitting strategy to use or at what
granularity should splitting stop. On the other hand, choices made in this
dimention are very specific technical details like how to reuse and how to expose
code.

Finally, a decision-making process is reported on the organizational dimen-
sion. In the third dimension, engineers were often involved in decisions that are
regarding the organization and structures of the company. One theme on this
dimension is decisions on the way the organization’s operations change. An-
other theme is regarding rethinking the structure of the software development
organization. Finally, some engineers had to work on deciding how knowledge
is shared across teams.

1.6.2 Contribution 2: Migration journey towards microser-
vices

The second contribution of this thesis is an iterative process for microservices
migrations, presented in paper B and paper C. The contribution of these papers’
results is that they show that migration projects are continuous improvement
initiatives instead of one-of projects. Both paper B and C organize different
aspects that describe past migrations and present them in a continuous endeav-
our that takes place in iterations. Understanding the progress of migration
projects in the aggregated process can help engineers in having awareness of
the progress of different modes of change. Also, both paper B and paper C
showcase the different pace in different levels of the migration.

For example, paper B presents two main modes of the work during a
migration that demonstrate different modes of change. The first mode is on
changes in the software architecture and thus, it is about long-term changes
and architectural design decisions - this mode is mapped to the systemic
migration of paper C. The second mode is about specific system updates
that are more operational, taking place in smaller sprints (software system-
level migration) - this mode is mapped to the technical migration of paper
C. In these modes of change that we identified, there are re-occurring phases.
The phase of making design decisions is about the design activities that take
place at the start of a migration sprint (architectural or system-level). Then,
the phase of altering the system is about the implementation activities that
actively modify the software application, on the different modes of change.
Finally, the phase of implementing additional technical artifacts is about the
development or modification of software or other artifacts that are needed
along with microservices.

Paper C builds on that work and with the analysis of an additional dataset
confirms the initial theory and modifies it accordingly. Specifically, the ag-
gregated migration journeys of 16 organizations is complemented through the
analysis of 215 posts from StackOverflow, that discuss microservices migrations.
Paper C uses the StackExchange data explorer 2 to collect what developers
discuss when transitioning to microservices. The two modes of change are up-
dated into the systemic migration on the one hand and the technical migration
on the other hand. In addition, the additional dataset directed to a different

2https://data.stackexchange.com/

12 CHAPTER 1. INTRODUCTION

distinction between the phases, resulting to merging two of them. In paper C,
a more general Planning phase of each migration iteration is followed by an
Execution phase that is followed by a phase for Setting up supporting artifacts.
The phase of setting up supporting artifacts is a stage in the migration that
the development and operations are configured in order to support effectively
the new paradigm that microservices bring.

1.6.3 Contribution 3: The constituent elements of the
migrations journey

In the third contribution of this thesis, paper C further develops and extends the
theory on how migration journeys take place and describes the parallel modes
of change in more detail. The two parallel migrations intend to demonstrate
the way in which organizations execute overall systemic changes and specific
technical changes. These modes of change are explaining in detail specific
activities that take place during migration iterations. Moreover, paper C
defines the constituent elements of the migration process, across different levels
of abstraction. Specifically, 14 activities are identified in total that all together
have 53 different solution outcomes.

The systemic migration is on a broad and slow-paced scope, taking place on
the global software architecture transition that is required when an organization
commits to a MSA migration. The long-term vision of the systemic migration
concerns mostly structural, organizational and business aspects. For example,
an activity in the planning phase is about clarifying drivers for migrating, which
requires business-oriented input. Another example is that in the execution
phase, the activity of designing a service cut is concerning a structural change
and the activity of setting up continuous extraction is about organizational
change to facilitate the decomposition of the system.

The scope of technical migration is narrow and fast-paced, focusing on the
technical realization of a migration towards MSA. Specifically, the short-term
scoped technical migration concerns technical design decisions that are critical
for the migration, but are very specific and far from the broader picture of
the architecture. For example, splitting up the data is an activity that could
be deemed irrelevant for the grand scheme of things, but it is still crucial in
mirating the software to a new architecture. Another example is the activity of
setting up monitoring, logging and authentication, which is not crucial for the
value adding changes of the system, but the absence of such solutions might be
highly costly.

The analysis in paper C of the 16 migration cases results in a pragmatic view
of migrations towards microservices. The migration journey is what the software
development organization and the engineers go through in order to achieve
a relatively mature state of their microservices architecture. The suggested
process iterates until the architecture, system and work of engineers reach a
final, stable state. During this journey, software development organizations
came across several activities, tasks and solutions that are identified, categorized
and listed. Existing research provides patterns that direct organizations on how
to migrate towards MSAs, but the results of paper C shows how activities of
migrations connect to each other and how they materialize to solution outcomes.
Such findings contribute to forming abstract patterns into actionable practical

1.7. DISCUSSION 13

activities with concrete solution outcomes.

1.6.4 Contribution 4: The organizational aspect in soft-
ware engineering

Finally, this thesis contributes with a detailed view on organizational aspects
in software engineering. Specifically, through investigating the adoption of
practices as well as the organizational implications of software architecture
change. Paper A and C include suggested changes on the software development
methodology of migrating teams. However, before investigating such changes,
it is critical to understand how software engineers react to given guidelines
(e.g., Scrum). Specifically, development methodologies can be altered with time
and deviations from guidelines can arise.

Paper D empirically evaluates how software engineering teams adopt Scrum
in their software development process. Therefore, paper D presents how
teams deviate from best practice, why these deviations happen and what the
consequences or implications of these deviations are. The identified reasons
that the thirteen listed deviations showed are grouped into human factors,
organizational structures and complexity of the teams’ work. Furthermore,
the identified implications are on the product development process and on the
teamwork of the teams deviating. An important contribution of paper D is the
attempt to understanding rather than judging deviations from guidelines.

This understanding, can be transitioned into how we expect organizations
to migrate towards a MSA. Hence, we can start observing the organizational
aspects in microservices migrations, especially when they are not entirely
aligned with technical aspects. Paper A demonstrates how organizational
change is a key accompanying dimension to all the changes that happen during
a technical migration. Specifically, a substantial part of the decision-making
is regarding organizational aspects of software engineering and the analyzed
interviews revealed how important these aspects are. Finally, both paper B and
paper C touch upon the necessary preparations of the organization to accept
the change that such migrations entail.

Moreover, deviations can indicate the need for process tailoring and this
can be considered when applying processes for decomposing systems to mi-
croservices. Instead of unintentionally deviating from an operating model, it is
worth considering to intentionally structure the operating model on the team
and deliver good software by design rather by coincidence.

1.7 Discussion

This thesis gives a strong emphasis in microservices migrations as a socio-
technical endeavor. Paper A, paper B and paper C do not only approach
migrations as a technical endeavor, but also as an endeavor with a strong
social and business aspect to it, covering the basic elements of socio-technical
systems as defined in literature [18]. Furthermore, as the outcomes from
analyzing microservices migrations resulted in processes and taxonomies, the
thesis demonstrates a high consideration of developers perspectives in adopting
processes and guidelines through paper D.

14 CHAPTER 1. INTRODUCTION

1.7.1 Software architecture perspective

Software architectures entail different meanings for different stake-
holders at different points in time. A substantial part of this thesis
ultimately describes how organizations migrate towards a MSA. Both practice
and academia provide varied directions on what a software architecture is
exactly and thus, it is natural to end up with such a diverse set of aspects
that describe the change and migration of software architectures. Seminal
literature in the topic, indicated from early on how software architecture is
different for different people, with the different potential views of a system’s
architecture [53]. The evident multidimensionality of this work strengthens
this view on the topic of migrations to MSAs as well.

To complicate the scoping of the topic even further, software architectures
have different utilities at different points in time, as software evolves. This is
present in paper C, and there is related literature that supports these findings
as well [54]. Paper C, can indicate to practitioners what software architecture
is in different phases across time. At the start of development an architecture
can be described as an imaginary design, helping to form a plan. During the
development it can be viewed as a framework to share a common picture of
how the system is and execute the migration on the system. After development
is a navigation map to direct engineers on where each part of the supporting
structure is.

In terms of theory, software architecture was initially perceived as the
formal structures that act as foundations of software systems. Hence, software
architectures started to be perceived as a representation of a software system at
a current state. However, the static nature of such an explanation came quickly
in conflict with the iterative nature of engineering software [55]. Therefore,
current and future research needs to establish more dynamic ways of explaining
software architecture, that showcases the evolution that systems go through.

MSA migrations entail decisions and communication from engineers
all the way up to executives. Software architecture is the representation
of systems in different levels of abstraction, but also the actual implementation.
Architectural representations of a system are the designs or the shared formal
understanding between stakeholders. Such representations can be used to
navigate systems in detail, but also have an overview of the big picture [53].
Papers B and C build on these ideas and draw empirical results along the lines
of propagating the change on different levels of detail and at the same time
link narrow technical details with broad organizational structures.

Paper C goes even further on these ideas of existing literature and demon-
strates the different activities of the development of the architecture when
migrating. Software architectures are produced by a disciplined approach to
designing and architecting parts of a system. Coding and programming entails
most of the designing part in software development. Therefore, one can argue
that software development is also architecture development [54]. There are
arguments that software architecture is design on a diffferent, bigger scale.
However, paper C showcases that there are things that matter at all levels of
detail and levels of abstractions. There are small details that influence large,
systemic design choices and vice versa - grand design choices that influence

1.7. DISCUSSION 15

small, technical details. Analyzing and altering the software architecture takes
place on all levels, from strategic to coding, as indicated also in paper A with
the business aspect of migrations.

1.7.2 Breaking down the complexity of MSA migrations

Researchers should put more focus on the non-technical aspects of
migrations. MSA migrations contain many clusters of sub-topics, ranging
from changing source code, to modifying the business service delivery mode.
Literature and practice discuss software architecture migrations with the per-
spectives of source code decompositions, testing, integration and deployment
approaches [10,20,23,24]. This diversity indicates the complexity that exists
when migrating towards a MSA, as do individual studies that investigate in-
stances of such migrations [17]. However, topics that do not have a technical
focus are not investigated extensively and yet, they are important. The results
of this thesis specify further the individual elements of MSA migrations and
break down the known complexity of such endeavours. Especially paper A,
B and C indicate the different aspects of MSA migrations and give details
on them. Researchers and practitioners can benefit from this research with
scoping migrations and linking them with the overall picture that the results
present.

Migration drivers, business and organizational needs, as well as hu-
man factors need to be considered when planning migration pro-
cesses. The business drivers cannot be ignored when migrating, since they
fuel the actual change at scale and across the organization. Migrations of
software systems and technologies can happen to align the software archi-
tecture with the overall service delivery strategy of organizations and thus,
help achieve business objectives [3]. Clarifying migration drivers complements
current research that describes the benefits of migrating towards microservices,
being technical or economic [37, 56], with details on how to align different
stakeholders.

Additionally, software architectures with modern, cutting edge technologies
can help establish socio-technical systems that contribute to the required orga-
nizational agility for being competitive in modern ever-changing economies [9].
The derived dimensions and modes of change in this thesis, provide a com-
prehensive view, adding to existing research ways to engineer a microservices
migration within the organization. Also, the findigs can help practitioners with
making choices that are not only driven by technical limitations, but also by
what the business/customers need, what the organization needs and what the
technology can facilitate.

The different aspects discussed in this thesis are in line with socio-technical
systems design and this connection is visible across this thesis in different
forms. The established process, the organizational structure and the technical
infrastructure, along with the inherited human-driven complexity in their
relations [18, 45] is taken into account in all appended studies. On the one
hand, software that evolves in large scale and complexity forces its underlying
technical structures to evolve as well and support it, as presented in paper A,
B and C. On the other hand, the development methodologies are also altered

16 CHAPTER 1. INTRODUCTION

with time and deviations from guidelines can arise, as presented in paper D.
Hence, this research consists of a critical view on when it is possible and useful
to migrate and until which level of migration completion.

1.7.3 The decision-making part of MSA migrations

Future work should investigate individual and group decision-making
processes. It is well known that changing the software architecture is substan-
tial and can involve many decisions [54]. A decision-making process is therefore
important as also indicated by other studies [21] and paper A investigates
decision-making from many different organizations. Decision-making of soft-
ware engineers takes place in an individual level [42], in groups/teams or small
software organizations [44] and in large organizations that develop software [57].
Paper A takes a perspective of organizational decision-making, showcasing a
multidimensional approach that involved the perspective of business change, the
perspective of technical change and the perspective or structural change on the
organization. The results of paper A complements the existing state-of-the-art,
since according to Hassan et al. [20], existing research investigates migrations
as a technical endeavor that needs a technical solution, and paper A gives a
decision-making perspective. However, so far there is few studies investigating
individual or group decision-making in MSA migrations [21].

Decision-making processes are often implicit and can be extracted
from engineers descriptions of their work. Moreover, the derived decision-
making process in paper A showcases how future work can derive engineers’
decisions from qualitative data. On the one hand, all interviewees when asked
to describe their migration journeys, started by describing their course of action
(i.e., ”we first did ’a’ and then ’b’ and afterwards modified our approach...”
and so on). This provided evidence of a sequence that each case followed in
order to achieve the migration. On the other hand, more experienced engineers
described some prerequisites that needed to be in place on a company-wide
level, to facilitate the migration. In the same way, they also described other
things that change when a migration matures. Deriving the decision-making
processes of migration initiatives in software development organizations can
help to better understand such transitions and help achieve their realization
by design rather by coincidence.

1.7.4 The implications of the developed theories on soft-
ware engineering teams that migrate to microser-
vices.

Practitioners should take into account the diverse skillset required in
MSA migrations, when preparing to commit on a migration project.
The different modes of change presented as well as the different dimensions of
decision-making indicate the diverse skillset that is required by teams, especially
since microservices predispose designing the business and the software at the
same time [11]. Paper A showcases that the business aspect is critical in order
to fund a migration and usually the justification for migrating is not technical,
but business-driven. Additionally, both papers A and C touch upon the

1.7. DISCUSSION 17

overall changes that take place in the operational model of organizations that
migrate. Changes that require a strong understanding of how the organization
is structured and how it can potentially change. Therefore, it can be argued that
business-savvy software developers and programming-savvy business analysts
and system designers are needed in teams to accommodate all perspectives and
ways of thinking.

In MSAs, complexity is shifted from the software implementation
to the configuration and integration of services. On the one hand,
this is observed in paper B and C, where many additional technical tasks are
needed just for supporting microservices. Hence, a big proportion of migration
activities have to do with setting up the development process of microservices,
their deployment, testing and integration. On the other hand, since integration
of microservices plays such an important role for the development of the system,
the communication between microservices can contain sometimes more business
logic than the source code. An interesting result from this thesis is on the
perception that there is strong decoupling in microservices. The reality in
practice is that often a chain of microservices exists that brings coupling on
the configuration level rather than on the source code level.

Migrations to MSAs often take place in parallel with maintaining,
extending and growing the system under migration. Furthermore,
this work indicated how many of the investigated software development teams
that migrate do not consider the change of the system as their main value-
adding project. Rather, they view the migration project as a necessary sideline
activity and they focus on developing new features and value adding artifacts
at the same time. Hence, migrations take place in parallel with other activities
and thus, there is sometimes a pause and revisiting to the project, explaining
partly their often iterative nature. Even in cases where dedicated personnel or
teams take responsibility of the migration, there is a sense of parallelization
with further development of the system. This can indicate to practitioners how
broad the change can be in the organization. Specifically, the nature of the
change touches many different parts of the organization that needs a broad
synergy to make progress.

There is further need for future research to specify the scope of
the investigated change. We distinguish decomposition of services into
developing a shell API (similar to existing patterns [19,24]), designing service
cuts (relating to services designs [39,58]) and continuously re-extracting services
(relating to designing MSAs [21]). The developed process frames them into the
appropriate scope to investigate such topics in different stages of the migration.
Current research touches upon designing MSAs, and this work combines parts
of this knowledge in the systemic journey, putting the different activities in an
accumulated perspective. In this accumulation, researchers and practitioners
can obtain perspective about the proportion of these (seemingly important)
activities in the overall migration and investigate the design decisions that take
place. Related literature does not specify the scope of the investigated change
in relation to the overall change that takes place and the theories developed in
this thesis enables this.

18 CHAPTER 1. INTRODUCTION

1.7.5 Adopting processes and guidelines

Process designers, in both research and practice, need to reflect on
adoption and deviations when creating or maintaining a migration
process. In this thesis, it is investigated how development practices of soft-
ware engineers evolve over time, in order to keep in careful consideration the
reaction of engineers towards processes and guidelines. The objective of this
work is to indicate how process guidelines for MSA migrations and software
development methodologies are propagated into activities of engineers. To
achieve this, paper A approaches change on one hand from the perspective
of intended deviations on the operational model of an organization, through
explicit decision-making. On the other hand, paper D approaches change from
the perspective of unintended deviations from existing guidelines that were
supposed to be followed. Specifically, the empirical research conducted in paper
D derives inductively from engineers’ experiences the adoption and deviations
of the scrum framework and what are the reasons and implications of deviating
from the guidelines.

Therefore, based on the findings of paper D we can derive that process
designers cannot assume that developers are going to follow a process by the
guide. It is rather more accurate to assume that developers will deviate and
this is aligned with existing research [26,29]. Hence, the design approach of the
process can be changed accordingly and deviations can indicate the need for
process tailoring [31]. In paper D an approach is described on how to deviate
by design and this approach can be used potentially also on the migration
processes presented in papers A, B and C.

Moreover, process improvement and process design from both, research and
practice should take into account both intentional and unintentional change. As
software evolves, there can be a difference between the representation of a system
and the actual implementation. Hence, it can be argued that the architecture
is essentially what is actually implemented (even though it deviates from the
software representation). This thesis discusses intended, planned change as
well as unintended, coincidential change of processes. Specifically, paper A and
paper D present an opposing critical view on change, with paper A discussing
intended change and paper D discussing unintended change. There are many
factors that can lead to change, being a migration or a methodology change [28].
Hence, the findings of this thesis reflect on the needed consideration of different
aspects for tailoring processes to the requirements of engineers [31]. It is
beneficial to consider the unintentional deviations from an operating model
when requiring to intentionally re-structuring the operating model on the team.
Also, it is beneficial during process execution to be aware of unintentional
changes that engineers might make on the process for different reasons.

1.8 Conclusion

As software systems grow large, both in size and complexity, it becomes difficult
to update them. While modernizing a large or growing software system, it is
becoming popular to aim on implementing a MSA. However, such migration
projects entail an inherent complexity due to the different dimensions that the
change takes place in, as well as the distributed nature of microservices. In

1.9. FUTURE WORK 19

addition, migrations to MSAs are often investigated with a focus on the technical
change. This thesis sees migrations in the light of multiple dimensions (business,
technical, organizational), on multiple levels of abstraction (architecture and
system) and in multiple modes of change (technical and systemic migrations).
The results can help in understanding microservices migrations and carrying
this understanding over to future migration attempts.

Migrations of software systems and technologies (e.g., towards microservices)
happen on a multitude of dimensions, due to the inherent complexity and the
socio-technical nature of organizations. First of all, microservices migrations
have a technical side that is extensively investigated. However, there is also
an organizational side that is very important, especially since change across
multiple parts of the organization is involved. The organizational side can
involve structural aspects as well as operational/process aspects. Importantly,
migrations also have a business and domain-specific side that needs to be con-
sidered. Since many critical decisions are taken in the business side, considering
human factors is also of great importance.

This thesis also has a strong focus on the human aspect of a migration,
through the engineers’ concerns and their tasks, being a part of the migration.
Specifically, we investigate how software engineers and companies go through
a migration towards microservice-based-architecture. We obtain an under-
standing on the different dynamics involved in their transformation. Finally,
both the journey and the decisions identified can help software development
organizations and engineering teams to anticipate what is up-coming in their
migrations. To achieve this goal, the empirical research conducted attempts to
derive inductively from engineers’ experiences the details of software architec-
ture migrations towards microservices. Also, the aim is to understand how the
adoption of Scrum evolves over time and what the reasons and implications of
deviating from such methodologies are.

The contribution of this thesis is threefold. Firstly, the thesis charts how
decision-making takes place in migrations towards microservices, via a compre-
hensive decision-making process. Secondly, the overall journey of migrating a
software architecture towards microservices is derived, including two modes
of change that have several phases, activities and solution outcomes. Thirdly,
this thesis investigates the organizational aspect of software development and
sheds light on how development practices of software engineers deviate from
the intended practices and guidelines.

1.9 Future Work

This work paves the way towards understanding microservices migrations and
their underlying decisions. The insights generated for migrating MSAs can
be transferred also to other types of software architecture migrations. For
example, to software-based systems that start as ad-hoc solutions and grow in
scale. Such systems eventually need a rigid software architecture to support
them and thus they are transitioned to new structures. Consequently, future
work includes the investigation of other types of software architecture change
due to scaling requirements. Specifically, we can study further the process
of transitioning other cutting edge technologies into scalable architectures.

20 CHAPTER 1. INTRODUCTION

For example, investigating how the wave of machine learning applications is
integrated and deployed to existing systems that operate on a large scale. In
addition, next steps include to investigate the evolution of specific elements
of the software architecture. For example, in future work it is intended to
investigate how testing and the testing architecture changes in MSAs.

Moreover, in the future there is a need to investigate in more detail decision-
making in designs for migrations and/or microservices architecture. While the
purpose of this work is to understand empirically the “as is” process, the results
could be seen as a first step towards providing decision support for software
architecture migrations, as done in other areas for software engineering (e.g.,
requirements engineering, COTS selection). For example, a migration towards
microservices can have many benefits to different stakeholders and future work
can aim to comprehensively present the value delivered to the organization
through all stakeholders.

Finally, more investigation is needed on the decision-making processes and
the approaches to resonate about alternative choices. Hence, the focus of future
work needs to not only provide knowledge about the outcome of decisions, but
also on identifying the reasoning behind those decisions. Future research can
also target the evaluation of such detailed decision-making processes. This
indicate towards further work that is needed on individual decision-making
and judgement.

Bibliography

[1] A. Brand, L. Allen, M. Altman, M. Hlava, and J. Scott, “Beyond au-
thorship: attribution, contribution, collaboration, and credit,” Learned
Publishing, vol. 28, no. 2, pp. 151–155, 2015.

[2] S. Ducasse and D. Pollet, “Software architecture reconstruction: A process-
oriented taxonomy,” IEEE Transactions on Software Engineering, vol. 35,
no. 4, pp. 573–591, 2009.

[3] J. Bosch, “Speed, data, and ecosystems: The future of software engineer-
ing,” IEEE Software, vol. 33, no. 1, pp. 82–88, 2016.

[4] M. F. Gholami, F. Daneshgar, G. Beydoun, and F. Rabhi, “Challenges in
migrating legacy software systems to the cloud — an empirical study,”
Information Systems, vol. 67, pp. 100–113, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306437917301564

[5] Z. Cai, L. Zhao, X. Wang, X. Yang, J. Qin, and K. Yin, “A pattern-based
code transformation approach for cloud application migration,” in 2015
IEEE 8th International Conference on Cloud Computing, 2015, pp. 33–40.

[6] J. Thönes, “Microservices,” IEEE software, vol. 32, no. 1, pp. 116–116,
2015.

[7] U. Zdun, E. Wittern, and P. Leitner, “Emerging Trends, Challenges, and
Experiences in DevOps and Microservice APIs,” IEEE Software, vol. 37,
no. 1, pp. 87–91, jan 2020.

[8] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L. Safina,
“Microservices: How to make your application scale,” in Perspectives of
System Informatics, A. K. Petrenko and A. Voronkov, Eds. Cham:
Springer International Publishing, 2018, pp. 95–104.

[9] O. Zimmermann, “Microservices tenets: Agile approach to service devel-
opment and deployment,” Computer Science - Research and Development,
vol. 32, no. 3-4, pp. 301–310, jul 2017.

[10] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with microser-
vices: A systematic mapping study,” Journal of Systems and Software,
vol. 150, pp. 77–97, 2019.

[11] S. Newman, Building microservices: designing fine-grained systems. ”
O’Reilly Media, Inc.”, 2015.

21

https://www.sciencedirect.com/science/article/pii/S0306437917301564

22 BIBLIOGRAPHY

[12] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, Microservices: Yesterday, Today, and Tomor-
row. Cham: Springer International Publishing, 2017, pp. 195–216.

[13] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, “Microservices
migration in industry: Intentions, strategies, and challenges,” in 2019
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2019, pp. 481–490.

[14] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture
enables devops: Migration to a cloud-native architecture,” IEEE Software,
vol. 33, no. 3, pp. 42–52, 2016.

[15] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and
gains of microservices: A systematic grey literature review,” Journal of
Systems and Software, vol. 146, pp. 215–232, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121218302139

[16] R. Khadka, A. Saeidi, S. Jansen, and J. Hage, “A structured legacy to
soa migration process and its evaluation in practice,” in 2013 IEEE 7th
International Symposium on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems, 2013, pp. 2–11.

[17] D. Taibi, V. Lenarduzzi, and C. Pahl, “Microservices Anti-patterns: A
Taxonomy,” in Microservices. Springer International Publishing, 2020,
pp. 111–128.

[18] G. Baxter and I. Sommerville, “Socio-technical systems: From design
methods to systems engineering,” Interacting with Computers, vol. 23,
no. 1, pp. 4–17, 2011.

[19] H. Knoche and W. Hasselbring, “Using microservices for legacy software
modernization,” IEEE Software, vol. 35, no. 3, pp. 44–49, 2018.

[20] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice transition and its
granularity problem: A systematic mapping study,” Software - Practice
and Experience, vol. 50, no. 9, pp. 1651–1681, 2020.

[21] M. Waseem, P. Liang, G. Márquez, M. Shahin, A. A. Khan, and A. Ah-
mad, “A decision model for selecting patterns and strategies to decompose
applications into microservices,” in Service-Oriented Computing, H. Hacid,
O. Kao, M. Mecella, N. Moha, and H.-y. Paik, Eds. Cham: Springer
International Publishing, 2021, pp. 850–858.

[22] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From monolith to
microservices: A classification of refactoring approaches,” in International
Workshop on Software Engineering Aspects of Continuous Development
and New Paradigms of Software Production and Deployment. Springer,
2018, pp. 128–141.

[23] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Márquez, “Design,
monitoring, and testing of microservices systems: The practitioners’
perspective,” Journal of Systems and Software, vol. 182, p. 111061, 2021.
[Online]. Available: https://doi.org/10.1016/j.jss.2021.111061

https://www.sciencedirect.com/science/article/pii/S0164121218302139
https://doi.org/10.1016/j.jss.2021.111061

BIBLIOGRAPHY 23

[24] S. Newman, Monolith to microservices: evolutionary patterns to transform
your monolith. O’Reilly Media, 2019.

[25] M. Waseem, P. Liang, and M. Shahin, “A Systematic Mapping
Study on Microservices Architecture in DevOps,” Journal of Systems
and Software, vol. 170, p. 110798, 2020. [Online]. Available:
https://doi.org/10.1016/j.jss.2020.110798

[26] P. Clarke and R. V. O’Connor, “The situational factors that affect
the software development process: Towards a comprehensive reference
framework,” Information and Software Technology, vol. 54, no. 5, pp.
433–447, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.infsof.
2011.12.003

[27] M. Unterkalmsteiner, T. Gorschek, A. K. Islam, C. K. Cheng, R. B.
Permadi, and R. Feldt, “Evaluation and measurement of software process
improvement-A systematic literature review,” pp. 398–424, 2012.

[28] M. R. Lazwanthi, A. Alsadoon, P. W. Prasad, S. Sager, and A. Elchouemi,
“Cultural impact on agile projects: Universal agile culture model (UACM),”
in 2016 7th International Conference on Information and Communication
Systems, ICICS 2016. Institute of Electrical and Electronics Engineers
Inc., may 2016, pp. 292–297.

[29] M. A. A. Da Silva, R. Bendraou, J. Robin, and X. Blanc, “Flexible
deviation handling during software process enactment,” in Proceedings -
IEEE International Enterprise Distributed Object Computing Workshop,
EDOC. Institute of Electrical and Electronics Engineers Inc., 2011, pp.
34–41.

[30] J. Klunder, R. Hebig, P. Tell, M. Kuhrmann, J. Nakatumba-Nabende,
R. Heldal, S. Krusche, M. Fazal-Baqaie, M. Felderer, M. F. Genero Bocco,
S. Kupper, S. A. Licorish, G. Lopez, F. McCaffery, O. Ozcan Top, C. R.
Prause, R. Prikladnicki, E. Tuzun, D. Pfahl, K. Schneider, and S. G.
MacDonell, “Catching up with Method and Process Practice: An Industry-
Informed Baseline for Researchers,” in Proceedings - 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering
in Practice, ICSE-SEIP 2019. Institute of Electrical and Electronics
Engineers Inc., may 2019, pp. 255–264.

[31] G. Kalus and M. Kuhrmann, “Criteria for software process tailoring: A
systematic review,” in ACM International Conference Proceeding Series,
2013, pp. 171–180.

[32] V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, “Does migrating
a monolithic system to microservices decrease the technical debt?” nov
2020.

[33] N. Venkatraman and V. Ramanujam, “Measurement of business
performance in strategy research: A comparison of approaches,” Academy
of Management Review, vol. 11, no. 4, pp. 801–814, 1986. [Online].
Available: https://doi.org/10.5465/amr.1986.4283976

https://doi.org/10.1016/j.jss.2020.110798
http://dx.doi.org/10.1016/j.infsof.2011.12.003
http://dx.doi.org/10.1016/j.infsof.2011.12.003
https://doi.org/10.5465/amr.1986.4283976

24 BIBLIOGRAPHY

[34] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Microser-
vices: The journey so far and challenges ahead,” IEEE Software, vol. 35,
no. 3, pp. 24–35, 2018.

[35] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating towards microser-
vice architectures: An industrial survey,” in 2018 IEEE International
Conference on Software Architecture (ICSA), 2018, pp. 29–2909.

[36] T. Cerny, M. J. Donahoo, and J. Pechanec, “Disambiguation and compar-
ison of SOA, microservices and self-contained systems,” Proceedings of
the 2017 Research in Adaptive and Convergent Systems, RACS 2017, vol.
2017-Janua, no. 4, pp. 228–235, 2017.

[37] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[38] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault Analy-
sis and Debugging of Microservice Systems: Industrial Survey, Benchmark
System, and Empirical Study,” IEEE Transactions on Software Engineer-
ing, vol. 47, no. 2, pp. 243–260, feb 2021.

[39] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service cutter:
A systematic approach to service decomposition,” in Service-Oriented and
Cloud Computing, M. Aiello, E. B. Johnsen, S. Dustdar, and I. Georgievski,
Eds. Cham: Springer International Publishing, 2016, pp. 185–200.

[40] G. Mazlami, J. Cito, and P. Leitner, “Extraction of Microservices from
Monolithic Software Architectures,” in Proceedings - 2017 IEEE 24th
International Conference on Web Services, ICWS 2017. Institute of
Electrical and Electronics Engineers Inc., sep 2017, pp. 524–531.

[41] M. Camilli and B. Russo, “Modeling performance of microservices systems
with growth theory,” Empirical Software Engineering, vol. 27, no. 2, pp.
1–44, 2022.

[42] H. van Vliet and A. Tang, “Decision making in software architecture,”
Journal of Systems and Software, vol. 117, pp. 638–644, 2016.

[43] C. Zannier, M. Chiasson, and F. Maurer, “A model of design decision
making based on empirical results of interviews with software designers,”
Information and Software Technology, vol. 49, no. 6, pp. 637–653, 2007.

[44] S. Rekha V and H. Muccini, “Group decision-making in software
architecture: A study on industrial practices,” Information and Software
Technology, vol. 101, pp. 51–63, sep 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/abs/pii/S0950584918300740

[45] P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software engineering:
A definition and systematic literature review,” Journal of Systems and
Software, vol. 107, pp. 15–37, 2015.

https://www.sciencedirect.com/science/article/abs/pii/S0950584918300740
https://www.sciencedirect.com/science/article/abs/pii/S0950584918300740

BIBLIOGRAPHY 25

[46] A. Tang, M. Razavian, B. Paech, and T.-M. Hesse, “Human aspects in
software architecture decision making: a literature review,” in 2017 IEEE
International Conference on Software Architecture (ICSA). IEEE, 2017,
pp. 107–116.

[47] K. J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: A critical review and guidelines,” Proceedings -
International Conference on Software Engineering, vol. 14-22-May-2016,
no. Aug 2015, pp. 120–131, 2016.

[48] K. Charmaz, Constructing grounded theory. sage, 2014.

[49] S. Baltes and S. Diehl, “Usage and attribution of stack overflow code
snippets in github projects,” Empirical Softw. Engg., vol. 24, no. 3,
p. 1259–1295, jun 2019. [Online]. Available: https://doi.org/10.1007/
s10664-018-9650-5

[50] A. Tahir, J. Dietrich, S. Counsell, S. Licorish, and A. Yamashita,
“A large scale study on how developers discuss code smells and
anti-pattern in stack exchange sites,” Information and Software
Technology, vol. 125, p. 106333, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584920300926

[51] A. Abdellatif, D. Costa, K. Badran, R. Abdalkareem, and E. Shihab,
“Challenges in Chatbot Development: A Study of Stack Overflow Posts,”
Proceedings - 2020 IEEE/ACM 17th International Conference on Mining
Software Repositories, MSR 2020, pp. 174–185, 2020.

[52] T. Lopez, T. Tun, A. Bandara, L. Mark, B. Nuseibeh, and H. Sharp, “An
anatomy of security conversations in stack overflow,” in 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engi-
neering in Society (ICSE-SEIS), 2019, pp. 31–40.

[53] P. Kruchten, “The 4+1 view model of architecture,” IEEE Software,
vol. 12, no. 6, pp. 42–50, 1995.

[54] J. Bosch, Design and use of software architectures: adopting and evolving
a product-line approach. Pearson Education, 2000.

[55] P. Kruchten, H. Obbink, and J. Stafford, “The past, present, and future
for software architecture,” IEEE Software, vol. 23, no. 2, pp. 22–30, 2006.

[56] A. Singleton, “The economics of microservices,” IEEE Cloud Computing,
vol. 3, no. 5, pp. 16–20, 2016.

[57] Z. Li, P. Liang, and P. Avgeriou, “Architectural Technical Debt Identifica-
tion Based on Architecture Decisions and Change Scenarios,” Proceedings
- 12th Working IEEE/IFIP Conference on Software Architecture, WICSA
2015, no. 895528, pp. 65–74, 2015.

[58] D. Taibi and V. Lenarduzzi, “On the Definition of Microservice Bad
Smells,” IEEE Software, vol. 35, no. 3, pp. 56–62, may 2018.

https://doi.org/10.1007/s10664-018-9650-5
https://doi.org/10.1007/s10664-018-9650-5
https://www.sciencedirect.com/science/article/pii/S0950584920300926
https://www.sciencedirect.com/science/article/pii/S0950584920300926

26 BIBLIOGRAPHY

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Background
	Problem Statement
	Research Scope
	Related Work
	Benefits of microservices
	Microservices migrations
	Decision-making in software engineering

	Research Methodologies
	Interviews
	StackOverflow discussions
	Case study

	Summary of Contributions
	Contribution 1: Decision-making process
	Contribution 2: Migration journey towards microservices
	Contribution 3: The constituent elements of the migrations journey
	Contribution 4: The organizational aspect in software engineering

	Discussion
	Software architecture perspective
	Breaking down the complexity of MSA migrations
	The decision-making part of MSA migrations
	The implications of the developed theories on software engineering teams that migrate to microservices.
	Adopting processes and guidelines

	Conclusion
	Future Work

	Bibliography

