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Abstract

Composites with 3D-woven reinforcement have been slowly making their way into
different industrial applications. The interlacement of yarns, not only in-plane but also
through-thickness, means that in many applications 3D-woven composites can outperform
their laminated counterparts. In particular, this includes increased out-of-plane stiffness
and strength, damage tolerance and specific energy absorption properties. The widespread
adoption of 3D-woven composites in industry however, requires the development of
accurate and efficient computational models that can capture the material behaviour.

In terms of computational efficiency, the most promising choice is to treat the material
as a homogeneous and anisotropic solid. This is referred to as a macroscale model.
Developing a macroscale model, which can predict how 3D-woven composites deform and
eventually fail, is the main focus of this work. Particular attention is given to predicting
the relevant non-linear behaviours that lead to energy absorption.

A framework for modelling the mechanical response of 3D-woven composites on the
macroscale is presented. The proposed framework decomposes the stress and strain
tensors into two main parts motivated by the material architecture. This allows for a
convenient separation of the modelling of the shear behaviour from the modelling of the
behaviour along each of the reinforcement directions. In particular, this division allows
for a straightforward addition and modification of various non-linear phenomena observed
in 3D-woven composites. As a next step, material modelling approaches are considered
and added to the framework in order to capture these non-linear phenomena. This
includes the use of a viscoelastic model as well as a combined elasto-plastic and continuum
damage model to capture the development of permanent deformations and stiffness
reduction mechanisms. Finally, an anisotropic phase-field model extension is developed
in order to induce local softening and failure in a way which does not induce spurious
mesh-dependencies in finite element analyses. The model predictions are compared to
experimental tests and show good agreement.

The aim has been to develop a model that allows the constitutive relations to be
identified directly from uniaxial cyclic stress-strain tests without the need for complex
calibration schemes. However, characterising the out-of-plane behaviour is not trivial.
Therefore, the current work also explores the use of high-fidelity mesoscale models as an
additional source of data for model calibration and validation.

Keywords: 3D-woven composites, Anisotropy, Inelasticity, Damage, Phase-field, Failure
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Part I

Extended Summary

1 Introduction

Composite preforms with three-dimensional (3D) reinforcements first started appearing
in the 1970s. As discussed by Tong et al. [1], their development was driven by a need for
reduced fabrication costs, increased through-thickness mechanical properties and improved
impact damage tolerance. Currently, the reported benefits of 3D-woven composites are
broad and encompass aspects relating to not only improved material integrity, but also
benefits in manufacturing and in design flexibility.

When it comes to the material’s integrity, Stig and Hallström [2] have shown that
the inherent nature of the through-thickness reinforcements suppresses delamination.
This in turn increases out-of-plane strength and stiffness properties when compared
to traditional laminated composites. Composites with 3D-woven reinforcements have
also shown increased fracture toughness and damage tolerance, see Bogdanovich [3].
Furthermore, both Khokar et al. [4] and Kazemahvazi et al. [5] have demonstrated
promising energy absorption capabilities. Khokar et al. in particular, compared a 3D-
woven carbon fibre reinforced polymer (CFRP) I-beam against a steel I-beam with the
same geometry under four-point bending. The results, illustrated in Figure 1.1, show that
the specific energy absorption (i.e. energy per unit mass) of the CFRP I-beam was up to
three times higher than its steel counterpart. It also shows that the through-thickness
reinforcements allowed for a stable and progressive damage growth in a quasi-ductile
manner.

Along with improved material performance over traditional laminated composites,
there are additional benefits to the use of 3D-woven composites. One important advantage
is that complex woven preforms can be produced in a near net-shape. As discussed by
Mouritz et al. [6], this can reduce material waste, the need for joining and machining and

0 10 20 30

Displacement [mm]

0

15

30

L
o
a
d
/
m
a
ss

[k
N
/
k
g
]

3D CFRP

Steel

Figure 1.1: Specific load - displacement curves of a 3D-CFRP and Steel I-Beam with the
same dimensions under four point bending. From Khokar et al. [4].
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the amount of material handling during lay-up. The flexibility of the weaving process
also creates an impressive design space. According to Whitney and Chou [7] many weave
parameters can be changed, which affects the overall behaviour of the material. This
includes among other things: the fibre type, the yarn size, the tension in the yarns, the
tightness of the yarns and the number of warp and weft yarns per unit width and length.
Further, it is possible to produce preforms with various cross-sectional shapes whose weave
patterns changes from one part of the structure to the next. When done strategically, it
is possible to truly optimise a component to its desired use.

With all of their potential benefits, 3D-woven composites are slowly making their
appearance across multiple industries. Within the aerospace industry for example, 3D-
woven composites are used as fan blades in engines and in the landing gear braces for the
Boeing 787, cf. DeLuycker et al. [8] and Nathan [9]. Their use has also been reported by
Tong et al. [1] within marine, civil infrastructure and medical applications. The potential
for further applications within the automotive industry also exist, one possibility being
in intrusion protection systems. However, in order to further drive the use of 3D-woven
composites in industry, efficient modelling techniques are required. The goal of this work
is to therefore develop a macroscale phenomenologically based model to predict how
3D-woven composites behave and eventually fail under mechanical loads. This overall
goal will lead to the five research objectives identified in Section 1.2.

1.1 Classification of 3D-Woven Composites and Con-
sidered Materials

Many different types of fibre-reinforced composites exist, each having their own benefits
and drawbacks. This includes among others, composites with unidirectional (UD) fibre-
reinforcements, non-crimp fabrics, 2D-woven textiles and 3D fibre-reinforcements. In
the most broad sense, 3D fibre-reinforced composites are characterised by the use of
through-thickness reinforcements that improve out-of-plane properties. According to Tong
et al. [1], 3D fibre-reinforced composites can be classified into six main groups, based
on the manufacturing of their preforms. These six preform groups are: braided, knit,
stitched, z-pinned, non-woven and, finally, woven. As the title of this thesis suggests,
3D-woven composites are the main focus of the present study.

Generally speaking, 3D-woven composites are characterised by the intertwining of
reinforcement yarns in 3D-space. In particular, this means that unlike their UD and 2D-
woven counterparts, 3D-woven composites have reinforcement yarns that run through the
thickness of the material. The way in which the through-thickness yarns are interlaced in
the woven substructure can however vary. This variation means that 3D-woven composites
are usually further subdivided into different groups. As discussed by Gereke and Cherif [10],
one strategy is to classify them as layer-to-layer angle interlocks, through-the-thickness
angle interlocks and orthogonal weaves. These groups are illustrated in Figure 1.2.

Different terminology is used to refer to each yarn group. Warp yarns (illustrated in
blue in Figure 1.2) indicate the main weaving direction of the material. Layer-to-layer
angle interlocks shown in Figure 1.2a are classified by warp yarns being woven through
multiple layers of what are referred to as weft yarns (shown in red). The weft yarns
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(a) Layer-to-layer angle
interlock

(b) Through-the-thickness
angle interlock

(c) Orthogonal weave

Figure 1.2: Illustration of 3D-woven preform types.

generally run perpendicularly to the nominal direction of the warp yarns. In through-the-
thickness angle interlocks, illustrated in Figure 1.2b, a third reinforcement direction is
introduced. What are usually referred to as binder yarns (illustrated in green) are woven
in a V-shape through multiple layers of warp and weft yarns. Finally, orthogonal weaves
(Figure 1.2c) once again have a third yarn direction running vertically through layers of
warp and weft yarns. This third yarn direction is referred to as binder, and in some cases,
vertical weft yarns.

Note that from this point forward the reinforcement directions will be indicated using
a 123-coordinate system. As shown in Figure 1.2, the nominal orientation of the warp
yarns, horizontal weft yarns and vertical weft yarns (or through thickness direction in the
layer-to-layer or angle interlock) are denoted using 1,2 and 3, respectively.

Three different 3D-woven composite materials will be introduced and discussed through-
out this work. They are:

1. FiberDuk: An orthogonal 3D-woven glass fibre reinforced epoxy composite. The
FiberDuk material is an orthogonal woven composite manufactured by Biteam AB.
It should be highlighted, that Biteam’s preforms are truly woven in three-dimensions.
As shown in Figure 1.3a, warp, horizontal weft and vertical weft yarns all interlace
one another in a grid like pattern. A number of images of the test coupons are
also shown in Figure 1.3a. This is a highly unbalanced weave, meaning that the
properties in the warp and weft directions vary drastically. Further, the size of
the representative unit cell is also given in Figure 1.3a. This 3D-woven composite
was manufactured as part of the FiberDuk (Ductile fibre reinforced composites)
project funded by the Swedish Energy Agency. The main project aim was to gain
a better understanding of the failure mechanisms of 3D-woven composites and to
develop an efficient and industrially applicable computational model to describe
how they deform and eventually fail. All experimental testing was carried out by
project partners at KTH Royal Institute of Technology, while model development
took place at Chalmers University of Technology. The FiberDuk material is the
primary 3D-woven composite that is analysed in Paper B, Paper C and Paper
D.

2. CERFAC: An orthogonal 3D-woven carbon fibre reinforced epoxy composite. This
weave was also manufactured by Biteam AB using an orthogonal weaving pattern.
This material was woven and tested as part of the CERFAC (Cost Effective Re-
inforcement of Fastener Areas in Composites) project funded by the European

3



Commission. More information can be found in Stig [11]. As part of the CERFAC
project, they developed a methodology to generate mesoscale models of the weave
architecture to predict (among other things) the elastic properties of 3D-woven
materials. A mesoscale model of this plane weave is used in Paper A. It has the
same weave pattern as the FiberDuk material, however is woven using carbon fibre
yarns instead of glass fibre.

3. BAM: A layer-to-layer 3D-woven carbon fibre composite. The BAM layer-to-layer
material is relatively balanced, meaning that the warp and weft directions show
comparatively similar material properties. Again, the size of the representative
unit cell along with an image of tensile specimens are given in Figure 1.3b. This
weave was first developed as part of the BAM (Breakthrough Aerospace Materials)
project. The BAM project was funded by InnovateUK. It sought to enhance
many aspects related to 3D-woven composites, from design to manufacturing. This
resulted in the development of a high fidelity mesoscale model which considers the
impregnated yarns, the matrix pockets that surround them as well as the inelastic
and stiffness degrading phenomena they both exhibit. More recently, this material
and its mesoscale model have been used in a project given the name VIRTEST-
3D (VIRtual TESTing of 3D-Woven Composites: From Weaving Architecture to
Component Performance). The project is primarily funded by the Chalmers Area
of Advance in Materials Science. VIRTEST-3D involved project partners from both
the Bristol Composites Institute as well as Chalmers University of Technology. The
BAM layer-o-layer material was analysed in Paper E.

(a) FiberDuk. (b) BAM.

Figure 1.3: Weave architecture and tensile test coupons from different from different
material systems.
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1.2 Research Scope

The substructure of 3D-woven composites creates a material which is hierarchical in
nature. Typically, for these materials, three different length scales can be distinguished.
They are illustrated in Figure 1.4. The finest scale relevant for a continuum model, the
microscale, describes the impregnated yarns in terms of single fibre filaments embedded in
a matrix material. The mesoscale on the other hand, describes the woven architecture of
the yarns and the matrix pockets that surround them. Finally, the macroscale describes
the material on a structural level as a homogeneous (but anisotropic) solid.

Explicitly considering the micro and/or mesoscale allows for the careful consideration
of important subscale behaviours. This has one main drawback - computational cost.
Modelling large structural components with so much detail is simply not computationally
feasible for the time being. Due to their computational efficiency and industrial applica-
bility, this research work will take on a macroscale view of 3D-woven composites. The
overall research objectives are summarised as follows:

1. Develop a phenomenologically based macroscale model to predict how
3D-woven composites deform and eventually fail under mechanical load-
ing.

2. Determine appropriate material modelling techniques such that the
macroscale model can predict the inelastic processes that lead to energy
absorption.

3. Propose calibration schemes of the models with clear guidelines, that
link material parameters to distinct experimental test.

4. Implement the proposed model in a commercial finite element (FE) soft-
ware in order to facilitate knowledge transfer to industry.

5. Validate the model against experimental results.

The term phenomenological here gives an important indication to how the macroscale
model has been developed. McMullin [12] gives a thorough discussion and differentiates

Figure 1.4: Illustration of the micro, meso and macroscales.
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between empirical, phenomenological and physically-based modelling theories. Paraphras-
ing his discussion, phenomenological models aim to capture the phenomena leading to
certain behaviours. In their purest form phenomenological models, give no description or
regard to what subscale, physical mechanisms are behind each phenomenon.

The development of the considered phenomenological macroscale model has taken
place in steps for three main regions. These regions can be motivated and visualised by
an idealised force-displacement curve for a component test shown in Figure 1.5. This
figure introduces the terminology that will be referred to from this point forward. It
is also important to distinguish between the behaviour shown at a local material point
(stress-strain) vs. the global structure (force-displacement).

The first region is characterised by linear (but possibly anisotropic) elastic behaviour.
Following this, in region II, the force-displacement curve begins to show a non-linear
response. Experimental results show that this non-linear behaviour is due to a combination
of stiffness degrading as well as permanent deformation developing mechanisms. This
means that for model development damage and inelasticity must be considered. Finally, at
some point locally in the structure, failure will initiate1. This is the start of region III. It
is however important to consider that for 3D-woven composites, this does not necessarily
mean that the component has failed. On the material point level, it is therefore also
important to develop a model which can show a complete degradation of the material
properties. This eventually leads to softening (i.e. a load drop) of the global component
behaviour and final failure of the component.

Figure 1.5: The characteristic regions of a force-displacement curve used to guide the
macroscale model development.

1.3 Thesis Layout

The chapters which follow are dedicated, in turn, to each of the three regions described
in Figure 1.5. Details regarding model development will be explained along with how
each region is connected to the appended papers and research objectives. Further, test
methods to characterise the required material properties experimentally will be discussed

1This point is referred to in Paper A as damage initiation. It is highlighted that this is simply a case
of learning as you go, and should actually be referred to as failure initiation.
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along with limitations and assumptions that exist in the model. Finally in terms of each
region, places for improvement and recommendations for future work will be given. A few
key limitations, valid for all regions that were considered during the development of the
macroscale model are:

• It has been assumed that for all regions, the material behaviour can be described
using an orthotropic stiffness tensor.

• Only the tensile and shear behaviours of the materials have been considered. The
model in its current state has not been developed to handle compressive loading.

• The experimental tests that the models are based on were carried out at strain rates
between 1%/min - 10%/min. Therefore the restriction to quasi-static loading has
been made.

• Only small strain theory has been considered, i.e. geometrical non-linearities have
not been accounted for.

2 Region I: Orthotropic Elasticity

For materials like steel, that can be considered isotropic in standard applications, only two
properties are required to characterise the elastic behaviour; a Young’s modulus E = 210
GPa and a Poisson’s ratio ν = 0.3. When a material is isotropic, it means that it gives
the same behavioural response regardless of how the material is oriented with respect to
the loading direction.

While polymers can generally be considered isotropic, the addition of reinforcement
fibres creates a material with a strong directional preference. In unidirectional composites,
the fibre direction is significantly stiffer and stronger than its counterparts. At the ply
level however, as shown in Figure 2.1, there is one plane that is typically considered
as isotropic. Materials that possess a single plane of isotropy are referred to as being
transversely isotropic, and require five properties to describe their elastic behaviour. It is
here that the local (material) reference frame can be introduced. Consider a transversely
isotropic material, where the preferred material direction (in this case the fibre direction)
is defined by the 1-axis. This is illustrated in Figure 2.1. The required stiffness properties
are then the Young’s modulus in the fibre direction E1, the Young’s modulus transverse to
the fibre direction E2 = E3 and the shear modulus in the non-isotropic planes G12 = G13.
The final two properties are the Poisson’s ratios ν23 and ν12 = ν13.

As fibre reinforcement architectures become more complex, as with 3D-woven compos-
ites, transverse isotropy is no longer a valid assumption. Another more general option,
is the adoption of an orthotropic description of the elastic material behaviour. One of
the main assumptions in this paper is that the considered 3D-woven composites can, in a
homogenised sense, be described as an orthotropic material. By definition, orthotropic ma-
terials have three preferred directions, each with unique material properties. Orthotropic
materials therefore require nine elastic properties. As shown in Figure 2.1, once again, the
local material frame is introduced. The nominal warp, horizontal weft and vertical weft
direction for an orthogonal weave are denoted by 1, 2 and 3 respectively. The nine elastic

7



Figure 2.1: An illustration of isotropy, transverse isotropy and orthotropy.

properties are then three Young’s moduli for the reinforcement directions E1, E2, E3,
three stiffness moduli in shear G12, G23, G13 and three Poisson’s ratios ν12, ν23 and ν13.

2.1 Orthotropic Stiffness and Structural Tensors

From the nine elastic properties, the elastic constitutive stiffness relationship in the local
material frame, can be expressed in Voigt form as

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ23

σ13

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E1 (1−ν32ν23)
Δ

E1 (ν21+ν31ν23)
Δ

E1 (ν31+ν21ν32)
Δ 0 0 0

E2 (ν12+ν13ν32)
Δ

E2 (1−ν31ν13)
Δ

E2 (ν32+ν31ν12)
Δ 0 0 0

E3 (ν13+ν12ν23)
Δ

E3 (ν23+ν13ν21)
Δ

E3 (1−ν12ν21)
Δ 0 0 0

0 0 0 G12 0 0
0 0 0 0 G23 0
0 0 0 0 0 G13

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
γ12
γ23
γ13

⎤
⎥⎥⎥⎥⎥⎥⎦
(2.1)

where

Δ = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν12ν23ν31. (2.2)

Describing the elastic behaviour of 3D-woven composites using the constitutive re-
lationship in Equation (2.1) works perfectly, as long as the local material frame stays
aligned with the global coordinate axis. The global coordinate system will be denoted by
an xyz−system from this point forward. One of the main benefits of 3D-woven composites
however, is that an entire component can be woven in near net-shape. This means
that the local reinforcement directions can generally vary over a 3D-woven composite
component. In order to deal with the varying material orientation, two main options
are available to express the stiffness tensor in a global xyz-system. The first option is
point-wise coordinate transformations using transformation matrices for 3D space. This
requires the definition of three angles, cf. Bunge angles [13]. The second option, and
the one considered here, is the use of structural tensors. The orientation of the material
is then defined based on the three vectors describing the nominal orientation of each
reinforcement direction.
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Before the structural tensor based formulation of the orthotropic stiffness tensor can
be fully introduced, a slight modification to the way the elastic properties are expressed is
required. Nine new elastic properties must be introduced. Specifically, they are denoted
by φIJ and ϕI for I = 1, 2, 3 and J = 1, 2, 3. These parameters once again represent the
elastic behaviour of the material in the local 123-frame of reference. The stiffness tensor
in Equation (2.1) can then alternatively be expressed as

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

φ11 + ϕ1 φ12 φ13 0 0 0
φ12 φ22 + ϕ2 φ23 0 0 0
φ13 φ23 φ33 + ϕ3 0 0 0
0 0 0 1/4 (ϕ1 + ϕ2) 0 0
0 0 0 0 1/4 (ϕ2 + ϕ3) 0
0 0 0 0 0 1/4 (ϕ3 + ϕ1)

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(2.3)

In a practical application, the values of φIJ and ϕI can be found from values of E1, E2,
E3, G12, G23, G13, ν12, ν23 and ν13 by simply comparing Equations (2.3) and (2.1).

The next step towards the structural tensor based representation of orthotropy is
the introduction of three vectors a1, a2 and a3. These are unit length vectors and are
assumed to be orthogonal to each other. The vector a1 is chosen to describe the nominal
orientation of the warp yarns. Similarly a2 should describe the nominal direction of the
horizontal weft yarns. In the case of an orthogonal weave, the vector a3 describes the
direction of the vertical weft yarns. Otherwise, for a layer-to-layer interlock weave, a3

should simply describe the out-of-plane direction. From this point forward, the model
formulations will largely speaking be carried out in tensor notation.

From the three vectors describing the reinforcement orientation, three corresponding
second order structural tensors can be expressed. They are

A1 = a1 ⊗ a1, A2 = a2 ⊗ a2 and A3 = a3 ⊗ a3. (2.4)

Further, from the second order tensors, three fourth order tensors can be introduced
where

AI =
1

2

(
AI⊗̄I + I⊗̄AI

)
, for I = 1, 2, 3 (2.5)

and I is the second order identity tensor. Note that the non-standard ⊗̄ operator expresses
the operation (A⊗̄B)ijkl = AikBjl in index notation. These second and fourth order
structural tensors have a number of properties which will come in handy during future
tensor manipulations:

• A1 +A2 +A3 = I.

• AI : AJ = δIJ , i.e. the Kronecker delta where δIJ =

{
1 if I = J

0 if I �= J

• AI ·AJ = δIJAI .
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(a) a1 = [1 0 0]T , a2 = [0 1 0]T ,
a3 = [0 0 1]T .

(b) a1 = [0 1 0]T , a2 = [1 0 0]T ,
a3 = [0 0 1]T .

(c) a1 =
[√

2/2
√
2/2 0

]T
,

a2 =
[−√

2/2
√
2/2 0

]T
,

a3 = [0 0 1]T .

Figure 2.2: A schematic illustrating different orientations of the reinforcement aligned
coordinate system.

• AI : AJ = δIJAI .

Finally, using structural tensors, the orthotropic elastic stiffness in the global xyz−system
is given by

E =
3∑

I=1

ϕIA
I +

3∑
I=1

3∑
J=1

φIJA
I ⊗AJ . (2.6)

For clarity, if the reinforcement directions are aligned with the global coordinate axes as
shown in Figure 2.2a (i.e. a1 = [1 0 0]

T
, a2 = [0 1 0]

T
and a3 = [0 0 1]

T
) then Equation

(2.6) gives Equation (2.3) in Voigt form. On the other hand if the reinforcements are

rotated in the manner shown in Figure 2.2b (i.e. a1 = [0 1 0]
T
, a2 = [1 0 0]

T
and

a3 = [0 0 1]
T
) then in Voigt form Equation (2.6) is expressed as

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

φ22 + ϕ2 φ12 φ23 0 0 0
φ12 φ11 + ϕ1 φ13 0 0 0
φ23 φ13 φ33 + ϕ3 0 0 0
0 0 0 1/4 (ϕ1 + ϕ2) 0 0
0 0 0 0 1/4 (ϕ1 + ϕ3) 0
0 0 0 0 0 1/4 (ϕ2 + ϕ1)

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(2.7)

2.2 A Constitutive Framework for 3D-Woven Com-
posites

In the 1980s, Spencer [14] suggested that for UD composites, the constitutive stress-strain
relationship can be divided into different parts. This included one term describing the
reinforcement direction, one term containing a contribution of volumetric nature and a
term with the remaining components. This is discussed in more detail in Paper B. A
large benefit to such an approach, is that it provides a way to organise your thoughts in a
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modular fashion. This helps determine which material constituents govern what material
behaviours and in turn what impact they have on each stress and strain component
based on loading direction. A number of authors including Nedjar [15], Vogler et al. [16],
Camanho et al. [17] all built off of Spencer’s constitutive framework. One major focus of
Paper B, was proposing an equivalent framework for 3D-woven composites.

In the proposed framework, the stress σ is separated into four terms. The first contains
the stress component in shear and is denoted s. The remaining three contain the stress
component in the reinforcement direction. Then

σ = s+

3∑
I=1

(σ : AI)AI . (2.8)

Again, 1,2,3 represents the warp direction, horizontal weft direction and vertical weft (or

out-of-plane) direction respectively. In matrix form, when a1 = [1 0 0]
T
, a2 = [0 1 0]

T
and

a3 = [0 0 1]
T
this is equivalent to

σ =

⎡
⎣ 0 σxy σxz

σxy 0 σyz

σxz σyz 0

⎤
⎦

︸ ︷︷ ︸
s

+

⎡
⎣σxx 0 0

0 0 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
(σ:A1)A1

+

⎡
⎣0 0 0
0 σyy 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
(σ:A2)A2

+

⎡
⎣0 0 0
0 0 0
0 0 σzz

⎤
⎦

︸ ︷︷ ︸
(σ:A3)A3

. (2.9)

It is here, where the notation T I = σ : AI is introduced. Conceptually, this means that
that T I denotes the normal stress component along each reinforcement direction I. This
means that the stress s does not contribute to the normal stresses along the reinforcement
directions, i.e. s : AI = 0. To further help with understanding, consider the case where
the reinforcement yarns in the 12-plane are oriented at 45◦ to the xy-system illustrated
in Figure 2.2c. Then

T 1A1 =

(
σxx + σyy

2
+ σxy

)⎡⎣0.5 0.5 0
0.5 0.5 0
0 0 0

⎤
⎦ (2.10)

T 2A2 =

(
σxx + σyy

2
− σxy

)⎡⎣ 0.5 −0.5 0
−0.5 0.5 0
0 0 0

⎤
⎦ (2.11)

T 3A3 = σzz

⎡
⎣0 0 0
0 0 0
0 0 1

⎤
⎦ . (2.12)

The strain can be split in a similar manner, where

ε = e+
3∑

I=1

(ε : AI)AI . (2.13)

In this case e denotes the shear components of the strain tensor, whereas term ε : AI

gives the magnitude of the normal strain component along each reinforcement direction.
Again, this means that e : AI = 0.
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A fourth order tensor that will come in handy in the future is Q. This tensor allows s
and e to be directly isolated from the full stress and strain tensors by the operation

s = Q : σ and e = Q : ε, (2.14)

where

Q = I−
3∑

I=1

AI ⊗AI (2.15)

and I is the fourth order identity tensor. It follows (from some manipulations) that the
tensor Q has the properties Q : AI = 0 and Q : AI = AI .

The final step in developing the proposed constitutive framework for 3D-woven com-
posites is the combination of the stress decomposition in Equation (2.8), the strain
decomposition in Equation (2.13) and the expression for the orthotropic stiffness tensor
in Equation (2.6). Beginning with the definition of s, it is possible to expresses

s = Q : σ

= Q : E : ε

=

3∑
I=1

ϕI (A
I −AI ⊗AI) : ε

=
3∑

I=1

ϕIA
I : e. (2.16)

It can be highlighted here, that a main feature of this decomposition is that s can be
obtained directly from e. Continuing with the reinforcement related terms, it can be
found that

T IAI =
(
σ : AI

)
AI

=
(
E : ε : AI

)
AI

=

(
ϕI (ε : AI) +

3∑
J=1

φIJ (ε : AJ)

)
AI

= ϕIA
I ⊗AI : ε+

1

2

3∑
J=1

φIJ

(
AI ⊗AJ +AJ ⊗AI

)
: ε. (2.17)

In summary, the proposed constitutive framework can therefore be expressed as

σ = Em : e︸ ︷︷ ︸
shear

+Ef1 : ε︸ ︷︷ ︸
warp

+Ef2 : ε︸ ︷︷ ︸
h. weft

+Ef3 : ε︸ ︷︷ ︸
v. weft

, (2.18)

where

Em =

3∑
I=1

ϕIA
I , and EfI = ϕIA

I ⊗AI +
1

2

3∑
J=1

φIJ

(
AI ⊗AJ +AJ ⊗AI

)
. (2.19)
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Again, each term will govern the constitutive behaviour of either a reinforcement direction

or in shear. In Voigt form, when a1 =
[
1 0 0

]T
, a2 =

[
0 1 0

]T
and a3 =

[
0 0 1

]T
,

Equation (2.18) is given by⎡
⎢⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σxy

σyz

σxz

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕ1 0 0 0 0 0
0 ϕ2 0 0 0 0
0 0 ϕ3 0 0 0
0 0 0 ϕ1+ϕ2

4 0 0
0 0 0 0 ϕ2+ϕ3

4 0
0 0 0 0 0 ϕ1+ϕ3

4

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
γxy
γyz
γxz

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

φ11 + ϕ1
φ12

2
φ13

2 0 0 0
φ12

2 0 0 0 0 0
φ13

2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx
εyy
εzz
γxy
γyz
γxz

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 φ12

2 0 0 0 0
φ12

2 φ22 + ϕ2
φ23

2 0 0 0

0 φ23

2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx
εyy
εzz
γxy
γyz
γxz

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 φ13

2 0 0 0

0 0 φ23

2 0 0 0
φ13

2
φ23

2 φ33 + ϕ3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx
εyy
εzz
γxy
γyz
γxz

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(2.20)

2.3 Required Experimental Tests and Model Results

Characterising the complete elastic behaviour of an orthotropic material goes back to
determining a combination of nine independent parameters, often in terms of the set: E1,
E2, E3, G12, G23, G13, ν12, ν23 and ν13. In fact, some of the earliest modelling approaches
for 3D-woven composites focused on predicting these elastic material properties using
analytic methods. Whitney and Chou [7] for example, presented a model to predict
in-plane elastic properties by creating a geometric unit cell that they then divided into
smaller microcells to form an inclined laminate. Yushanov and Bogdanovich [18] on
the other hand developed an analytic approach to predict elastic stiffness in all three
directions. Their method, known as the Generalised Modified Matrix Method, is based
on local spatial averaging of the reinforcement paths.

Experimentally, some of these properties, i.e. E1, E2, ν12, can be determined with
relative ease using standardised test methods. For example, ASTM D3039 [19], ISO 527-4
[20] as well as AITM 1-0007 [21] all lay out guidelines for determining the in-plane tensile
properties of fibre-reinforced polymer matrix composites. In each test standard, the
general premise is the same: from an infused plate, cut out tensile specimens with either
the warp or weft yarns running in the loading direction. The test specimens should be
dimensioned such that multiple representative unit cells fit across the gauge region. From
the force reading of the tensile test machine and the cross section area of the test sample,
a global axial stress measure can be computed. Similarly, using either an extensometer
or digital image correlation (DIC) software a global axial strain measure can be found.
Depending on the capability of the available DIC software, it can even be possible to
track the out-of-plane contraction of the test specimen and compute ν23 and ν13.

Figures 2.3a and 2.3b show the approximate dimensions of tensile test specimens for the
FiberDuk material along with the experimental spread of obtained stress-strain curves.
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(b) Tensile horizontal weft loading.
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(c) In-plane shear loading.
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(d) Compressive out-of-plane loading.

Figure 2.3: Experimental results for monotonic loading of the FiberDuk material. The
spread of experimental results is shown in grey, while the elastic stiffness is illustrated in
black.

The computed elastic stiffness moduli are also illustrated in Figure 2.3 and summarised
in Table 2.1. As previously discussed, the FiberDuk material is highly unbalanced. As
a consequence, the elastic stiffness in the warp direction is close to double the elastic
stiffness in the weft direction. For comparison, the same data for the BAM material is
given by Figures 2.4a, 2.4b and Table 2.1. The BAM material shows a far more balanced
behaviour. The variation between E1 and E2 is minimal in comparison to the FiberDuk
material system. Further, as would be expected, the use of carbon-fibre reinforcement
yarns creates a material which is far stiffer than its glass fibre reinforced counterpart.

In terms of increased complexity, what follows next is determining the in-plane shear
elastic stiffness, G12, of 3D-woven composites. Three main test standards are generally
used in the literature: the Iosipescu test (ASTM D5379 [22]), the V-Notched Rail test
(ASTM D7078 [23]) and the 45◦ off-axis tensile test. The Iosipescu test has been widely
used since the 1980’s and was standardised by ASTM in 1993. The Iosipescu test standard
was used in the FiberDuk project. An image of the test sample is shown in Figure 2.3c
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(c) In-plane shear loading.

Figure 2.4: Experimental results for monotonic loading of the BAM material. The spread
of experimental results is shown in grey, while the elastic stiffness is illustrated in black.

along with specimen dimensions and the experimental spread of the stress-strain curves.
In a testing rig, the edges of the test sample are clamped and the right hand side side
is moved downwards. This creates a narrow band of uniform shear strain in the gauge
region.

Another important, but challenging question with this test is related to how the shear
strain should be measured. One possibility is to use DIC software to average the shear
strain over a certain region. Determining this region, however, is a delicate task and can
lead to diverse results. In the FiberDuk project, a strain measure was instead computed
by tracking the relative vertical displacement of two points located on the edges of the
gauge region. These are illustrated with red dots in Figure 2.3c along with the angle
between them γ̄. Then, assuming linear elasticity and that the shear force in each cross
section is the same, it can be shown that theoretically, that the shear strain in the gauge
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region is

γ =
2γ̄

1 + hm

hl

. (2.21)

The shear stress on the other hand is computed based on the vertical force measured by
the testing rig and the cross-section area at the narrowest part of the gauge region. The
obtained shear stiffness is given in Table 2.1. It can be seen in Figure 2.3c that the elastic
region of the stress-strain curve is fairly consistent between the test samples.

The in-plane shear stiffness of the BAM material was originally characterised using
a V-Notched Rail test. The principal features of the V-Notched Rail and Iosipescu
test specimen are the same. The most noticeable difference is the test fixture which
clamps the specimen faces instead of the edges. An image of a test sample clamped in
the rig is shown in Figure 2.4c along with the obtained stress-strain curve. The shear
stiffness is summarised in Table 2.1. More recently, the decision was made that under
the VIRTEST-3D project, the relatively balanced nature of the BAM material would be
exploited. To this end, 45◦ off-axis tensile specimens will be considered. The shear stress
and strain in the local system can be extracted as

σ12 =
1

2
σxx and γ12 = εyy − εxx. (2.22)

The strains εx and εy can be computed using DIC software to average the strains over
the gauge region. It is important to note that this method is only applicable for balanced
weaves. Otherwise, the tensile specimen will deform in an ’s’ shape. This means that the
strain and stress fields can no longer be considered uniform and Equation (2.22) becomes
invalid. Otherwise, as discussed by Tarnopol’skii and Kincis [24], a different angle can be
chosen such that the ratio of shear to normal deformation is optimised and modifications
to the grips can be made to avoid this ’s’ shaped deformation mode.

The remaining elastic properties, E3, G23 and G13 are the most challenging to charac-
terise. There’s a certain amount of irony in this fact. One of the main selling features
of 3D-woven composites is their out-of-plane properties, which are the most difficult
to determine. Manufacturing a tensile test sample to compute E3 with sufficient di-
mension is not a trivial task, and is commonly overcome by adding adhesively joined
load introduction tabs. This is further complicated given that the out-of-plane strength
of a 3D-woven composite is substantially higher than the strength of adhesives. The
FiberDuk project elected to estimate E3 using an out-of-plane compression test, the
results of which are shown in Figure 2.3d and Table 2.1. Further, while test methods
for determining out-of-plane shear stiffness do exist, c.f. Pettersson et al. [25], the size
of the unit cell again introduces complexities. Ensuring that a representative number
of unit cells exist in the gauge region is not possible using a standard test rig. For the
FiberDuk material, it was simply assumed that the out-of-plane shear stiffness values
were equivalent to the in-plane value.

A promising method to circumvent the challenges associated with characterising the
out-of-plane behaviour of 3D-woven composites is explored in Paper E. The main
research question of this work is whether high-fidelity mesoscale models can be used to
generate virtual calibration data for macroscale models. A schematic of the voxelised
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Figure 2.5: Illustration of the mesoscale RVE of the BAM material.

mesoscale finite element model developed by Topalidis et al. [26] at the Bristol Composites
Institute, is shown in Figure 2.5. Two distinct user-defined material subroutines have
been developed, one for each material constituent, i.e. impregnated yarn and matrix. By
loading this RVE is six unique deformation modes and computing the homogenising stress
and strain fields, it is possible to determine the full orthotropic material stiffness tensor.
From this stiffness tensor, the 9 elastic material properties can be found. They are also
summarised in Table 2.1 and show good agreement to in-plane properties determined
experimentally.

Table 2.1: Elastic parameters for the FiberDuk and BAM material.

FiberDuk Stiffness E1 25 [GPa] E2 13 [GPa] E3 9 [GPa]
Shear stiffness G12 1.8 [GPa] G13 1.8 [GPa] G23 1.8 [GPa]
Poisson’s ratio ν12 0.21 [-] ν13 0.30 [-] ν23 0.30 [-]

BAM Stiffness E1 64 [GPa] E2 63 [GPa]
Experimental Shear stiffness G12 4.0 [GPa]

BAM Stiffness E1 76 [GPa] E2 62 [GPa] E3 10 [GPa]
RVE analysis Shear stiffness G12 3.9 [GPa] G13 3.2 [GPa] G23 3.7 [GPa]

Poisson’s ratio ν12 0.06 [-] ν13 0.38 [-] ν23 0.46 [-]

2.4 Limitations and Future Work

The headline of this section ”Orthotropic Elasticity” highlights one of the earliest assump-
tions that was made at the start of this research project. For the developed macroscale
model to be applicable to a given 3D-woven composite, it must be possible to describe the
composite’s behaviour using an orthotropic stiffness tensor. Evaluating and verifying all
possible terms in a fully anisotropic stiffness tensor experimentally would not be a trivial
task. In particular it would require the characterisation of complex couplings between
in-plane, out-of-plane, normal and shear behaviours. The use of mesoscale models again,
opens up for the possibility to quickly evaluate the overall anisotropy produced by a
reinforcement architecture.
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The symmetrised 1 elastic stiffness tensor (in the local material frame) produced by
the mesoscale model of the BAM material is

EBAM =

⎡
⎢⎢⎢⎢⎢⎢⎣

77.5 6.37 4.18 0.008 −0.001 0.003
6.37 67.8 4.91 −0.0003 −0.009 −0.019
4.18 4.91 10.2 −0.001 −0.002 −0.0004
0.008 −0.0003 −0.001 3.92 −0.001 −0.001
−0.001 −0.009 −0.002 −0.001 3.17 −0.001
0.003 −0.019 −0.0004 −0.001 −0.001 3.71

⎤
⎥⎥⎥⎥⎥⎥⎦ [GPa], (2.23)

in Voigt form. The upper right quadrant and lower left quadrant of the stiffness tensor
are not exactly zero. The overall magnitude in comparison to the remaining values is
however minimal. Similarly, analysing an internal unit cell of the CERFAC material
gives

ECERFAC =

⎡
⎢⎢⎢⎢⎢⎢⎣

72.4 6.67 6.64 −0.012 0.003 0.008
6.67 13.3 4.50 −0.006 0.006 −0.016
6.64 4.50 13.4 −0.003 0.002 −0.022

−0.012 −0.006 −0.003 3.84 −0.004 0.006
0.003 0.006 0.002 −0.004 3.87 −0.002
0.008 −0.016 −0.022 0.006 −0.002 1.98

⎤
⎥⎥⎥⎥⎥⎥⎦ [GPa]. (2.24)

In both cases, assuming orthotropic elasticity is reasonable, but one should be cautious
when approaching new material systems. Further, there is an indication for both material
systems that assuming a constant shear stiffness in all planes is not ideal.

It should be noted that while the CERFAC and FiberDuk material have the same
weave architecture, they use different yarn types which will have an impact on their
overall behaviour. In the future a similar analysis should be carried out for a dedicated
mesoscale model of the FiberDuk material.

3 Region II: Inelasticity and Progressive Dam-

age

Following a region of relative linearity, 3D-woven composites begin to show non-linear
behaviours. These non-linearities can be due to a number of different mechanisms at
different scales. For example, microscale cracks can form within the yarns, in the matrix
pockets and/or the interfaces between them. As the matrix properties deteriorate, yarns
can also straighten and deform within the composite. Another source of non-linearity can
be the material constituents themselves. Many common polymer matrices show prominent
non-linear behaviours on their own cf. Woo et al. [27], Saseendran et al. [28] or Bardella
[29].

As previously discussed, a phenomenological model aims to simply mimic the non-linear
phenomena that these subscale behaviours cause. Figure 3.1 shows the stress-strain curve

1The raw stiffness tensor showed minor asymmetry, however was symmetrised given Esym = 1
2

(
E+ ET

)
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Figure 3.1: Illustration of the stiffness reduction and permanent strain development of the
FiberDuk material loaded cyclically in the horizontal weft direction.

results for a tensile test in the horizontal weft direction of the FiberDuk material. More
importantly, the material sample is loaded and unloaded cyclically throughout the test.
This brings us to the main punch-line of the entire section. By extending the unloading
curves (shown with a dotted line) to the horizontal-axis it is apparent that the material is
showing a progressive loss of stiffness and development of permanent strain. These are
the phenomena that the macroscale model must predict using traditional constitutive
material modelling techniques.

3.1 Characterising Constitutive Models

Choosing a constitutive model, or combination of constitutive models for a given material,
can be a challenging task. On one hand, the choice of constitutive model(s) should be
tied to objective observations made during a testing campaign. On the other hand, there
is a certain level of personal subjectivity that can relate to the desired level of complexity
in a material model and in the available experimental results. When choosing constitutive
models for region II, the distinction can be made between two main groups. Continuum
damage models allow for the reduction in material stiffness while inelasticity models allow
for the progressive development of permanent (i.e. inelastic) strain.

Material models for inelasticity can be further subdivided into different categories.
According to Haupt [30], material behaviours (excluding damage) and their corresponding
constitutive models can be classified by four main categories: elasticity, plasticity, viscoelas-
ticity and viscoplasticity. They are illustrated in Figure 3.2 along with one-dimensional
rheological models that help describe the physical significance of each individual theory.
They are classified as follows:

• Elasticity: rate-independent material behaviour without hysteresis. Elasticity is
the simplest of constitutive models. It restricts itself to the idea that a material
element will revert to its initial configuration once any external loads are removed.
Further, it will load and unload along the same path, meaning that no energy is
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dissipated. Elasticity, which was the main focus of Section 2, can be represented
rheologically by a spring with stiffness E. In the case of linear elasticity, the spring
stiffness is constant, and the constitutive stress-strain relationship is given by

σ = Eε. (3.1)

• Viscoelasticity: rate-dependent material behaviour without equilibrium hysteresis.
As the name suggests, viscoelasticity involves the combination of both elastic and
viscous properties. A viscoelastic material loads and unloads along different paths
and gives permanent deformation. Viscoelastic materials show rate-dependence,
meaning that their constitutive behaviour varies depending on how quickly or slowly
loading takes place, i.e. the higher the strain rate, the stiffer the response. These
materials also show what is known as relaxation and creep. When a viscoelastic
material is loaded to a certain strain and held at that strain level, the stress in the
material will slowly decrease. This is relaxation. Creep on the other hand describes
a phenomenon where if a material sample is loaded under a constant stress, the
strain will slowly increase.

Viscous behaviours can be described rheologically through the addition of a damper
with viscosity μ which resists motion through viscous friction proportional to the
loading velocity. Figure 3.2b shows what is commonly referred to as the Zener
model. This combination of two springs and a damper organised both in series and
in parallel is one of the simplest rheological models that can mimic both creep and
relaxation. The 1D constitutive stress-strain relationship for the Zener model is
given by

σ = E0ε+ E1(ε− εi), (3.2)

where εi denotes the inelastic strain over the damper. What should be highlighted
here is that a defining feature of viscoelasticity is its equilibrium relation. If loading
takes place sufficiently slowly, the stress-strain curve will show an elastic response.
Conceptually speaking, in the case of the Zener model, the elastic behaviour is
governed by the upper spring with stiffness E0.

• Plasticity: rate-independent material behaviour with hysteresis. Continuum plas-
ticity theories have their background in experiments carried out on metals. In the
1860’s for example, Tresca [31] observed that once a threshold shear stress is reached,
a metal will begin to ”flow” and develop permanent deformations. The classical
theory of plasticity expands from the idea that after a region of linear elasticity, a
stress limit is reached and the material enters a region of plastic flow. The stress
limit is commonly referred to as the yield limit and will be denoted by σy. From a
rheological perspective, plasticity requires the introduction of a Coulomb friction
element, which only shows deformation once the yield stress is reached. Further,
the stress in the friction device can not be higher in absolute value than σy. Figure
3.2c shows a rheological model for plasticity with hardening. The constitutive
relationship can then be expressed generically as

σ = E (ε− εp) . (3.3)
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(a) Elasticity. (b) Viscoelasticity.

(c) Plasticity. (d) Viscoplasticity.

Figure 3.2: The four material classifications according to Haupt [30].

A traditional plasticity model also requires the introduction of additional information.
Firstly, a yield surface, φp is needed where φp < 0 represents an elastic response
and φp = 0 a plastic response. Further, flow rules which govern the development of
the plastic strain and any internal hardening variables must also be introduced.

• Viscoplasticity: rate-dependent material behaviour with equilibrium hysteresis.
Viscoplasticity is the most inclusive. It embraces all of the previously mentioned
material theories: elastic, plastic and viscous behaviours. The rheological model
shown in Figure 3.2d combines both elastic springs, a Coulomb friction element
and a viscous dampers. The main feature that allows for the differentiation of
viscoelasticity and viscoplasticity relates to the equilibrium relation. When a
viscoplastic material model is loaded sufficiently slowly, the constitutive behaviour
continues to show hysteresis. Viscoplasticity will not be discussed or used further in
this work.

While inelastic models (plasticity, viscoelasticity, viscoplasticity) allow for predicting
non-linear behaviours due to permanent strain development, their unloading behaviour
is related to the elastic stiffness. Again, it is clear from Figure 3.1, that 3D-woven
composites show a progressive degradation in stiffness. The most straightforward way to
model stiffness reduction and the non-linearity it causes, is through the use of continuum
damage theories, the basis of which was introduced by Kachanov [32] and Rabotnov [33].
Once again, their work was carried out on metallic materials. The foundational idea of
continuum damage theory is that diffuse cracking reduces the effective load carrying area
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Figure 3.3: Illustration of unloading behaviour for a standard continuum damage model.

within a material. This in turn causes a reduction in stiffness. The stiffness reduction
is typically represented with a damage variable d. The most standard representation of
elastic damage in 1D is

σ = (1− d)Eε. (3.4)

In this respect when d = 0, the material is completely intact. On the other hand d = 1
signifies that the material has been completely degraded and has no remaining stiffness.
Similarly, a damage variable of, for example, d = 0.1 would mean that the material has
lost 10% of its initial stiffness.

An illustrative example of a stress-strain curve for the constitutive relationship given
by Equation (3.4) is shown in Figure 3.3. The relationship is only illustrated in the
positive stress-strain quadrant as the behaviour of damage models in compression is
not necessarily straightforward. Some materials show what is known as the unilateral
character of damage. When loaded in compression, the microcracks close and the material
recaptures the initial elastic stiffness. Note, unlike those in Figure 3.2, the non-linearity
is due to a progressive loss in stiffness. As no permanent strains develop, the stress-strain
curve will always pass through the origin.

By combining inelastic and continuum damage models, a wide range of behaviours
related to experimentally observed phenomena of 3D-woven composites can be predicted.
The choice of material models, their combination and what phenomena are important can
be challenging to make. Careful consideration should be given to the type of experimental
tests that are available, what non-linear behaviours are seen and how they can be
represented by different constitutive models.

3.2 Viscoelasticity and 3D-Woven Composites

Traditionally, viscoelasticity is introduced in its simplest form using a 1D rheological
model known as the Maxwell model. Shown in Figure 3.4, this involves a serial coupling
of a viscous damper and elastic spring. Figure 3.4 shows the stress-strain and relaxation
behaviour of such a model with a spring with an elastic stiffness E = 1 N/m2 and a
damper with a viscosity μ = 103 Ns/m2. The model is loaded to 1% strain in one
second and then held constant. The relaxation behaviour is plotted in both a linear and
logarithmic time scale. Maxwell models are said to show a characteristic relaxation time

22



τ = μ/E. From the peak stress σ0, it can be shown that the initial rate of change will
be σ̇ = σ0E/μ. If the stress was to continue to decrease at this rate, it would reach a
zero-stress state at time τ = μ/E. This is shown with a dashed line in Figure 3.4. The
characteristic relaxation time in this case is τ = 103 which is clear in the logarithmic time
scale plot. Conceptually speaking, the characteristic relaxation time is a good measure of
when the majority of the stress has relaxed from the system.

The simple nature of the Maxwell model does have its drawbacks. As a linear
viscoelastic model with one viscous property μ, the range of possible behaviours that it
can capture is limited. Most notably, the model is unable to show creep in a realistic way
or show complex relaxation behaviours. Further, it will always relax to zero stress. These
challenges can be overcome by considering increasingly complex combinations of spring
and damper elements. For example, a Kelvin-Voigt model which has a spring and damper
in parallel shows a more realistic creep behaviour. The Zener model is obtained by adding
a spring in parallel to a Maxwell element, as shown in Figure 3.5. It gives both realistic
creep and relaxation behaviour. Further, due to the added spring the model will never
relax completely to zero stress. The total stress in the model will be a combination of the
stress in the spring element and Maxwell element. In this case the results are shown for a
given parameter set defined by E0 = 2 Nm2, E1 = 1 Nm2 and μ = 103.

It is also possible to chain multiple Maxwell elements together in parallel to allow for
more complex relaxation behaviour, see Figure 3.6. In this case, two Maxwell elements
are chained together in parallel. The first element has parameters given by E1 = 1.5 Nm2

and μ1 = 102 while the second element is defined by E2 = 1 Nm2 and μ2 = 103. Again
the total stress is the combination of both.

This is all to say that it is possible to design quite complex viscoelastic material
behaviours by conceptually considering combinations of rheological elements each with
their own relaxation behaviour. Fitting these models and their relaxation behaviour can
be done with relative ease, cf. Emri and Tschoegl [34]. Combining multiple rheological
elements is an approach taken by for example Nedjar [15] for capturing creep behaviour
of fibre-reinforced composites with viscoelastic matrices. However, for materials with long
relaxation times, many Maxwell elements in parallel are required. This can lead to quite
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complex systems of differential equations to resolve. Further, these systems can require
the identification of a large number of parameters. They can also be challenging to work
with when considering multiaxial loading scenarios and anisotropic materials, which show
different viscous behaviours depending on loading mode.

One alternative is then to use Spectral formulations, see for example Maire [35] who
developed a model to describe viscous behaviour of UD fibre-reinforced composites. In a
spectral model a series of Maxwell or Kelvin-Voigt elements are generalised by associating
their viscous parameters to a continuous spectrum. This reduces the number of parameters
and also allows the model to describe creep and relaxation in a realistic way. For continuity,
it can also be pointed out that other viscoelastic modelling strategies do exist, see for
example integral formulations proposed by Schapery [36] and fractional theories described
well by Müller et al. [37] and Enelund et al. [38].

When it comes to viscoelastic modelling of 3D-woven composites, a number of examples
(at different scales) can be found in the literature. In these examples it is assumed that a
region of pure elasticity does not exist, and the material shows a viscoelastic response
from the very beginning. Both Conejos et al. [39] and Hirsekorn et al. [40] use a
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two scale homogenisation technique to predict the viscoelastic behaviour of 3D-woven
composites. On the microscale they assume that within the yarns the individual fibres
are surrounded by an isotropic viscoelastic matrix. This is homogenised to predict the
behaviour of the consolidated yarns. It is then assumed once more that these yarns are
themselves surrounded by isotropic viscoelastic matrix pockets. In Hirsekorn et al. [40],
the viscoelasticity of the matrix pockets is described using what amounts to a generalised
Maxwell model with multiple elements. Their model in particular, was able to predict
the relaxation behaviour of the composite as well as the temperature dependence of the
mechanical behaviour of the composite.

Moving up the scales The Onera Damage Model for Polymer Matrix Composites [41]
considers anisotropic viscoelastic material behaviour on the macroscale. They adopt a
spectral approach to describe the development of viscoelastic strain. The model is able to
predict the non-linear behaviour of 3D-woven composites due to viscous effects. Their
results show good agreement to experiments carried out on elementary test coupons as
well as more complex structures.

3.2.1 A 1D Non-Linear Viscoelastic Model

One of the main contributions of Paper B is the development of a viscoelastic extension
to the framework introduced in Section 2.2. Again, it was assumed that a region of linear
elasticity does not exist and that all non-linearity is due to viscoelastic behaviour of the
matrix. A Norton power-law model [42] was adopted in order to describe the development
of viscoelastic strain. It will first be described in one dimension, before the extension to
three dimensions is introduced.

For the one-dimensional case the Norton model is essentially a Maxwell element with
a non-linear viscous damper. The constitutive one-dimensional equation is then

σ = E (ε− εi) , (3.5)

where the viscous strain development is defined by

ε̇i =
1

t∗

( |σ|
κ

)n

sgn (σ) . (3.6)

In a Maxwell element, the viscoelastic strain in the damper develops as ε̇i = σ/μ, i.e.
there is a linear relationship with the stress. In a Norton model, this relationship is
now non-linear. The range of possible behaviours expands by introducing additional
parameters (i.e. t∗, κn, n) that can be tuned to give the desired response.

3.2.2 Extending to 3D

In order to incorporate viscoelasticity in an anisotropic manner, Paper B proposes
that a division can be made between shear and reinforcement related behaviours. Then,
assuming an additive split of the strain into an elastic and viscoelastic part, the constitutive
framework from Equation (2.18) can be extended such that

σ = Em : (e− ei) + (Ef1 + Ef2 + Ef3) :
(
ε− εv1A

1 − εv2A
2 − εv3A

3
)

(3.7)
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Figure 3.7: Illustration of the three slip planes defined by the reinforcement architecture,
and the projected shear stress tIs.

Here ei describes the viscoelastic strain in shear, and εvIA
I the viscoelastic strain in each

reinforcement direction I = 1, 2, 3. By construction, the total viscoelastic strain is then

εi = ei + εv1A
1 + εv2A

2 + εv3A
3 (3.8)

As the FiberDuk material only shows prominent non-linearity in shear and under
tensile loading in the horizontal weft direction (cf. Figure 2.3) focus is given to determining
ei and εv2A

2. That is, it is assumed that εv1 = εv3 = 0. However, the presented framework
is general and allows for the addition of viscous phenomena in a modular fashion based on
loading direction. In the event that a material shows prominent non-linearity in multiple
reinforcement directions, a similar process can be followed.

Turning to the Norton model, the evolution of inelastic strain in the horizontal weft
reinforcement direction can be expressed as

ε̇v2A
2 =

1

tr∗

(∣∣σ : A2
∣∣

κr

)nr

sgn
(
σ : A2

)
A2. (3.9)

Note that here, this means that εv2 gives the magnitude of the inelastic strain while A2

gives the direction.
In order to describe the viscoelastic strain development in shear, a crystal plasticity

inspired approach was considered. It allows for modelling localised slip behaviour in
planes defined by the reinforcement architecture. This is illustrated in Figure 3.7. The
shear behaviour in these planes can then be assumed to be driven by the total projected
shear stress tIs = σ · aI − (σ : AI)aI which is also illustrated in Figure 3.7.

Note in this case I indicates one of the three slip planes shown in Figure 3.7. Using a
Norton style model for the development of viscoelastic strain in shear then gives that

ėi =

3∑
I=1

1

tI∗

(∣∣tIs∣∣
κI

)nI

︸ ︷︷ ︸
Magnitude

mI︸︷︷︸
Direction

, (3.10)

where the norm of the shear traction can (after some manipulations) be expressed as∣∣tIs∣∣ = √
s : AI : s. (3.11)
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Once again, it is possible to differentiate the magnitude and direction of the viscoelastic
strain development. Finally, the direction of viscoelastic strain development is chosen to
be of associate type, where

mI =
∂
∣∣tIs∣∣
∂s

=
AI : s√
s : AI : s

. (3.12)

Note that it is only the shear stress s that drives the inelasticity in shear.
As previously discussed, in Paper B it was assumed that only loading in the horizontal

weft reinforcement direction as well as in shear show viscous behaviour. Further, it was
assumed, due to a lack of experimental results, that the material behaviour in all three
shear slip planes can be described by the same viscous properties. It should be highlighted
however, that one benefit of this model is its modularity. The model can be modified to
allow different viscous behaviours in each reinforcement direction and in each shear plane.
Further, the required parameters can be fit independently from experimental tests for
each loading mode.

Identifying the parameters for each loading mode requires an identification routine.
In Paper B this was realised using MATLAB’s fminsearch which uses the Nelder Mead
optimisation method [43]. Within fminsearch’s objective function, the commercial finite
element program Abaqus is used. A user material UMAT file containing the implemented
viscoelastic material model is opened and the viscous parameters are changed in each
optimisation iteration. The UMAT as well as an input file containing the tensile or
shear specimen geometry is submitted. Once the job is completed, the resulting force-
displacement data is extracted and compared to the experimental results. Finally, the
error between the simulation results and experimental results can be computed.

3.2.3 Required Experimental Tests and Model Results

This 3D viscoelastic model was developed under the assumption that all initial non-
linearity is due to the viscous behaviour of the matrix. To fully calibrate the proposed
model, monotonic tensile tests are required in each reinforcement direction and shear test
are required in each shear plane. This leads to a very similar discussion as that presented
in Section 2.3, for characterising the elastic behaviour of 3D-woven composites. Well
established test standards exist for characterising the in plane behaviour ([19], [20], [21],
[22], [23]), i.e. the warp, horizontal weft and in-plane shear directions. The out-of-plane
tensile and shear behaviour is more challenging to characterise. Once again, a mesoscale
model of a representative unit cell which accounts for rate-dependent behaviour could be
very promising. Unfortunately a unit cell model of this nature was not available during
the course of this research work.

As previously discussed it is assumed in Paper B that the only viscous behaviour
shown by the FiberDuk material is related to loading in the horizontal weft direction and
in in-plane shear. This means that a total of six viscous properties must be determined.
Note however, that it is not possible to uniquely determine tr∗ and (κr)n

r

and tI∗ and

(κI)n
I

. As such it is convenient to prescribe κr = 1 MPa and κI = 1 MPa to maintain a
dimensionless quantity within the brackets. The calibrated viscoelastic parameters are
summarised in Table 3.1 The obtained force-displacement curve fits are shown in Figures
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Figure 3.8: Experimental and simulated force-displacement curves using the calibrated
parameters summarised in Table 3.1 as well schematics of the FE models used in the
calibration routine.

3.8a and 3.8b along with schematics illustrating the dimensions and boundary conditions
applied to the FE models in the calibration routine. The non-linear behaviour of the
Iosipescu shear test was fit until the first experimentally observed load drop.

Following the approach in Paper B should be done with some caution. The model’s
limitations and places for improvement are discussed further in Section 3.4. It is however
noted once more, that one of the largest assumptions that must be made is that the
material’s non-linearity is strictly due to the viscous effects of the polymer matrix. To
truly quantify the viscous behaviour of a material, creep and/or relaxation tests and/or
monotonic loading at different strain rates should be used. What follows in the next section
is a different approach to predicting the non-linear behaviour of 3D-woven composites, in
which the assumption of rate-dependence is abandoned.

Table 3.1: Viscous parameters for the FiberDuk material.

Horizontal Weft tr∗ 3.75·107 [s] nr 1.72 [-] κr 1 [MPa]

Shear plane I = 2 t2∗ 6.46·105 [s] n2 1.54 [-] κ2 1 [MPa]

3.3 Damage, Plasticity and 3D-Woven Composites

If material rate-dependence is not a concern, a promising choice is then to combine
plasticity and continuum damage models. In a simple one-dimensional case, it is assumed
that the strain can be additively decomposed into an elastic and plastic part, i.e. ε = εp+εel.
The constitutive behaviour of a model combining damage and plasticity theory will then

28



take the form

σ = (1− d)E (ε− εp) . (3.13)

Even in the 1D case, a string of modelling choices are required. For a plasticity model on
its own, a yield surface must be defined based on the type of hardening that is desired.
Internal hardening variables are also required, the number and type depending on the
hardening laws. Either associative or non-associative flow rules must also be introduced
in order to describe the development of the plastic strain and hardening variables. For a
1D continuum damage model, the damage variable d is typically defined as a function
of a strain measure. In the case of brittle damage models, this is generally the elastic
strain. For ductile damage models on the other hand the plastic strain can also be used.
Regardless of strain measure, a damage initiation threshold should be introduced, and
a relationship to describe how the damage develops is needed. Finally, the interaction
between the development of plastic strain and damage must be considered. As discussed
by Grassl and Jirásek [44] for example, the plastic part of the model can be expressed in
terms of the damaged stress or undamaged stress.

There are a number of cases of continuum damage mechanics being used to model
the non-linear behaviour of 3D-woven composites. The majority of the examples take a
mesoscale view of the problem. As discussed by Lomov et al. [45], most authors then
initiate damage based on multiple failure criteria for the matrix and yarns. The latter is
commonly described by criteria for UD composites. Subsequently, the constituent stiffness
properties (matrix and yarn respectively) are progressively degraded according to the
prevailing damage modes through multiple damage evolution laws.

Green et al. [46] use a continuum damage approach to account for all non-linearity in
their mesoscale model. This includes damage to both the matrix and yarns. They use
their model to highlight how important it is to develop a realistic representation of the
mesoscale 3D-weave architecture. An idealised version of the weave architecture produced
results which were overly stiff and strong, when compared to tensile experimental tests
along the reinforcement directions. A mesoscale model with a more realistic representation
of the weave structure showed better agreement to experimental results.

Both Topalidis et al. [26] and El Said et al. [47] add an additional source of non-linearity
to their mesoscale models. Along with continuum damage, they use a pseudo-plasticity
model to capture the non-linear shear behaviour of the yarns and matrix. This is done
using an empirical formula relating shear stress and strain. In particular, El Said et al.
combine both a macroscale and mesoscale approach by subdividing a test geometry into
different subdomains. In order to minimise the computational cost, part of the structure
is modelled on the macroscale assuming anisotropic linear elasticity, where each material
point is assigned unique elastic properties. These properties are based on a Voronoi
tessellation of the subscale architecture and takes into account material directions and
fibre density. The highly loaded regions however, are modelled on the mesoscale, using
the combined pseudo-plasticity and continuum damage approach as outlined above.

Once again, moving to a fully macroscale approach, the Onera Damage Model for
Polymer Matrix Composites [41] also employs a continuum damage model. As previously
discussed, they assume that the initial non-linear behaviour is due to the viscous behaviour
of the matrix. At a later stage it is then assumed that damage begins to play a role in
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the non-linear behaviour of the 3D-woven composite. As such multiple damage variables
are then used to degrade pertinent components in the stiffness tensor.

3.3.1 A 1D Elasto-Plastic Damage Model

One of the main focuses of Paper C, was to develop an elasto-plasticity and continuum
damage model with a clear calibration scheme. Further, the intention was to ensure that
the model is only as complex as the available experimental results show is necessary. For
this reason, an approach more closely related to Ladeveze and LeDantec [48] has been
considered. It is then possible to associate all stiffness reducing mechanisms with the
damage model, while the development of permanent strain is strictly handled by the
plasticity model. The overall approach will first be described in 1D, before the extension
to a 3D model is introduced.

The first concept that must be introduced, is the idea of effective stress, which will
be denoted σ̃ from this point foreword. Consider the bar illustrated in Figure 3.9. The
microcracks cause a reduction in load carrying area of the material. While the material
globally is subjected to a stress σ, the undamaged material surrounding the cracks will
feel a higher effective stress σ̃. The relationship between the two is described using a
damage variable d where

σ = (1− d) σ̃. (3.14)

It is further assumed, that plasticity solely acts on the undamaged material. This in
turn means that the yield surface can be constructed as a function of the effective stress.
As the restriction has been made to only consider the positive stress-strain quadrant,
isotropic hardening is assumed to be sufficient. In 1D, this means that the plastic yield
surface takes the form

φp = |σ̃| − σy − κ (k) ≤ 0. (3.15)

The yield stress σy as well as the isotropic hardening stress κ1 can be determined from
experimental testing. This will be discussed in more detail later in this section. From
Equation (3.15) it is seen that κ is expressed as a function of what is referred to as an
internal hardening variable k. It is a strain like quantity that monitors the evolution of
the internal mechanism that leads to hardening.

Typically, the evolution of the plastic strain and internal hardening variables are
defined using flow rules. These state that εp and k will develop in a direction normal to
the yield surface. In this case it is convenient to define their development as

ε̇p = λ̇
∂φp

∂σ̃
= λ̇ sgn (σ̃) (3.16)

k̇ = λ̇
∂φp

∂κ
= −λ̇. (3.17)

1Note that this κ and the parameters κr and κI introduced in Section 3.2.2 are not related to one
another. They do however represent similar mechanisms, i.e. the resistance to the development of inelastic
strain.
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Figure 3.9: An illustration of the stress and effective stress.

Generally, λ̇ is referred to as the plastic multiplier and λ signifies the magnitude of
accumulated, equivalent plastic strain. Equations (3.16) and (3.17) then mean that the
internal hardening variable and the plastic strain will grow proportionally to one another.
Finally, the loading conditions for the plasticity model are

λ̇ ≥ 0, φp ≤ 0, λ̇φp = 0. (3.18)

In words, Equation (3.18) describes two possible model behaviours. The model can
show an elastic response, where the material is not yielding and the plastic strain is not
developing (φp < 0 and λ̇ = 0). Otherwise the material is yielding and plastic strain is

developing (φp = 0 and λ̇ ≥ 0).
It is now possible to define the damage model. Here an approach using a damage

surface is adopted. In a similar vein to a yield surface, it dictates if damage is developing
(φd = 0) or if it is not (φd < 0). As previously discussed, damage growth is typically
linked to a strain measure. In this case an energy measure often referred to as the damage
driving force is considered and denoted Y . The damage driving force is formulated based
on thermodynamic argumentation, which is described in more detail in Paper C. For
the 1D constitutive expression in Equation (3.13) the damage driving force is given by
the effective elastic strain energy

Y =
1

2
Eε2el. (3.19)

The damage surface is then expressed as

φd = Y − η(d) ≤ 0. (3.20)

The development of the damage is controlled by η, which can be determined experimentally.
This will be discussed in more detail below. Finally, as with the plasticity model, a set of
loading conditions can be defined where

ḋ ≥ 0, φd ≤ 0, ḋφd = 0. (3.21)

The loading conditions also enforce damage irreversibility, i.e. they ensure the material
can not heal.

What remains is to determine σy and propose expressions for κ(k) and η(d) based
on experimental data. Due to the formulation of the damage and plasticity models, this
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can be done with relative ease. Consider the 1D illustrative tensile stress-strain curve
with unloading cycles in Figure 3.10, which also shows the proposed calibration routine.
Calibrating the plasticity and damage models therefore requires the following steps:

1. Determine where damage and plasticity should initiate, which can be at different
locations. This is a somewhat delicate choice. The simplest option is to choose this
point visually as the location where the curve begins to show non-linearity. From
this point it is then possible to determine the yield stress σy as well as compute
the initial elastic stiffness E(0) and the damage driving force at damage onset Y(0).
Note here that the subscripts indicate unloading cycle number.

2. At the first unloading cycle, extrapolate the unloading curve to the strain axis.
Compute the stiffness E(1) and the remaining permanent strain εp(1).

3. From the plastic strain, compute the elastic strain εel(1) = ε(1) − εp(1). Compute
the damage driving force at the first unloading cycle Y(1) = 1/2E(0)ε

2
el(1). Then

compute the damage d(1) = 1−E(1)/E(0) and plot the damage and damage driving
force at the first unloading cycle.

4. Compute the effective stress at the first unloading cycle σ̃(1) = σ(1)/(1−d(1)). From
the effective stress, compute the isotropic hardening stress κ(1) = σ̃(1) − σy. Plot
the isotropic hardening stress against the plastic strain

5. Repeat for all subsequent unloading cycles. Based on the damage vs driving force
curve and hardening stress vs plastic strain curve, propose a function to describe
each 1D relationship.

Following the completion of steps 1 through 5, a clear understanding of how the
damage develops in the experiment with respect to the damage driving force is known.
The same thing can be said about the development of the isotropic hardening stress
with respect to the plastic strain. The convenience of the formulation of the flow rules
given by Equations (3.16) and (3.17) can now be made more clear. As |εp| = −k, the
required expression for κ(k) is equivalent to the proposed expression for κ(εp). Some
helpful expressions that will be considered in the following sections are:

• Linear hardening: κ (k) = −Hpk. The parameter Hp is then the slope of the κ− εp
curve.

• Exponential hardening with saturation: κ (k) = κsat

(
1− eck

)
. The saturation value

of the curve is then defined by κsat and c is a parameter which controls how steeply
the curve approaches the saturation value.

Note that when choosing a function to represent the κ− εp curve, it must always pass
through the origin.

Similarly, the required expression for η(d) can also be determined with relative ease.
Given the function describing the development of the damage d(Y ), η(d) is found by
inverting the expression. Again some helpful expressions are:
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• Linear damage growth: d(Y ) = Hd (Y − Y0). The Y -axis intercept of the curve is
then Y0 which signifies at what driving force value the damage initiates. Again,
Hd is the slope of the line. In this case, inverting the damage function gives
η(d) = d/Hd + Y0.

• Exponential damage with saturation: d(Y ) = dsat
(
1− e−b(Y−Y0)

)
, where b controls

how steeply the damage curve approaches the saturation value dsat. The damage
onset value is given by Y0. Inverting the damage function gives η(d) = Y −(

−ln(1−d/dsat)
b + Y0

)
.

Figure 3.10: A flow chart of the proposed parameter identification routine for the elasto-
plasticity and damage model.
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3.3.2 Extending to 3D

Developing a full, orthotropic, elasto-plastic and progressive damage model in three
dimensional space is not a trivial task. A full coupling of all potential phenomena and
orthotropic directions is possible from a theoretical point of view. This however would
require not only numerous material parameters, but also a complex in-depth testing
campaign and calibration procedure. With this in mind Paper C prioritises capturing
the non-linear behaviour of 3D-woven composites when loaded in the reinforcement
directions and in shear.

Paper C combines the constitutive framework from Equation (2.18) with the 1D
elasto-plastic damage model outlined in Section 3.3.1. Each term in the constitutive
framework largely governs the behaviour in one of the reinforcement directions or in shear.
The problem can therefore be conceptualised as four independent elasto-plastic damage
models. This means that four damage variables can be introduced, each with their own
damage surface. They are denoted ds in shear as well as d1, d2 and d3 in the warp,
horizontal weft and vertical weft directions respectively. Further, four yield surfaces can
be considered, which control plastic strain development in each reinforcement direction
and shear. Then, the constitutive framework becomes

σ = (1− ds)Em : (e− ep) +
3∑

I=1

(1− dI)EfI : (ε− εp) . (3.22)

The four damage surfaces, and their loading conditions are defined by

φds = Ys − ηs(ds) ≤ 0 (3.23)

φdI = YI − ηI(dI) ≤ 0 for I = 1, 2, 3 (3.24)

and

ḋs ≥ 0, φds ≤ 0, ḋsφds = 0 (3.25)

ḋI ≥ 0, φdI ≤ 0, ḋIφdI = 0 for I = 1, 2, 3. (3.26)

The subscripts s, 1, 2 and 3 again denote the damage surfaces and loading conditions
in the shear, warp, horizontal weft and vertical weft directions respectively. The strain
measures controlling damage growth are the damage driving forces. Their thermodynamic
motivation is described in more detail in Paper C, but here it is simply stated that

Ys =
1

2
eel : Em : eel and YI =

1

2
εel : EfI : εel for I = 1, 2, 3. (3.27)

The four yield surfaces are once again defined with effective stress measures. In shear,
the magnitude of the effective shear stress s̃ is used, i.e.

1√
2
|s̃| = 1√

2

√
s̃ : s̃. (3.28)

In the reinforcement directions, the magnitude of the effective normal stress in each
reinforcement direction is used. This is denoted and computed as

|T̃ I | = |σ̃ : AI |. (3.29)
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The four yield surfaces along with their respective hardening variables and flow rules can
then be expressed as

φps =
1√
2
|s̃| − τy − κs(ks) ≤ 0 (3.30)

φpI = |T̃ I | − σyI − κI(kI) ≤ 0 for I = 1, 2, 3, (3.31)

ėp = λ̇s
∂φps

∂σ̃
= λ̇s

s̃√
2|s̃|

(3.32)

ε̇pI = λ̇I
∂φp,I

∂σ̃
= λ̇Isgn(T̃

I)AI for I = 1, 2, 3 (3.33)

k̇s = λ̇s
∂φp,s

∂κs
= −λ̇s (3.34)

k̇I = λ̇I
∂φp,I

∂κI
= −λ̇I for I = 1, 2, 3. (3.35)

Note also, that since AI : AJ = 0 and AI : e = 0, the total plastic strain is then

εp = ep +
3∑

I=1

εp,I . (3.36)

Finally, the loading conditions are

λ̇s ≥ 0, φp,s ≤ 0, λ̇sφp,s = 0 (3.37)

λ̇I ≥ 0, φp,I ≤ 0, λ̇Iφp,I = 0 for I = 1, 2, 3. (3.38)

To fully calibrate this model, the yield stresses in shear τy and in each reinforcement
direction σyI must be determined. Functions which define the development of the isotropic
hardening stresses κs(ks) and κI(kI) are also needed along with expressions for ηs(ds)
and ηI(dI). These can be determined from experimental tests with the same process
outlined in Section 3.3.1 independently for each loading mode.

3.3.3 Required Experimental Tests and Model Results

The elasto-plastic and continuum damage model developed in Paper C and presented in
Section 3.3.2 can be calibrated based on uniaxial tests with unloading cycles. Specifically,
a tensile test with unloading is required in each of the reinforcement directions along with
a test with unloading cycles in shear. Once again, parameter identification is possible with
relative ease for the in-plane properties. Figures 3.11, 3.12 and 3.13 show experimentally
obtained stress-strain curves for the FiberDuk material. Due to limitations in the test
campaign, only one cyclic test was performed for each case. The parameter identification
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routine outlined in Figure 3.10 has been carried out, where the obtained results are also
shown in the same figures.

Under tensile loading in the warp direction, it is clear in Figure 3.11 that there is no
detectable loss of stiffness as the test progresses. In fact, the stiffness increases slightly.
Tracking the inelastic strain shows that it is necessary to account for plasticity. However,
the test also indicates that in the warp direction, linear isotropic hardening is sufficient.
The numerical values of the hardening modulus H1 and yield stress σy1 are given in Table
3.3.

Following the calibration procedure in the horizontal weft direction gives the results
in Figure 3.12. The material shows a noticeable degradation in stiffness which is well
described by an exponential curve with saturation. Consider the DIC images obtained
during this test, shown in Figure 3.14. Each image is taken at the start of an unloading
cycle. Damage and cracking begin to appear inside the yarns running horizontally. This
spreads further to multiple yarns until there is a saturation of the damage before final
failure takes place. In Figure 3.12 there is also a clear development of permanent strain.
Again, linear hardening is sufficient. The identified parameters for the damage model and
plasticity model are given in Tables 3.2 and 3.3 respectively.

Finally, an Iosipescu shear test with unloading cycles is shown in Figure 3.13. Once
again, the material shows a progressive degradation in stiffness that can be described by
an exponential damage evolution with softening. The development of permanent strain in
this case however also needs to be described using an exponential hardening curve with
saturation. This is summarised in Tables 3.2 and 3.3.

The model has been implemented with the identified parameters in an Abaqus user
material routine (UMAT). The model fit considering each uniaxial loading mode is shown
in Figure 3.15. For in-plane loading in the warp, horizontal weft and shear directions,
good agreement is found between the model and experimental results. However, as in the
previous sections, identifying out-of-plane material parameters using standardised testing
techniques is not straightforward. The use of mesoscale models to overcome this challenge
is explored further in Paper E.
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Figure 3.11: Parameter identification routine carried out on uniaxial test in the warp
direction.
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Figure 3.12: Parameter identification routine carried out on uniaxial test in the horizontal
weft direction.
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Figure 3.13: Parameter identification routine carried out on uniaxial test in the in-plane
shear direction.

Figure 3.14: DIC images of the cyclic tensile test in the horizontal weft direction. The
images are taken at the beginning of each unloading cycle. The colour bar indicates the
axial strain.
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(c) In-plane shear loading.

Figure 3.15: Comparison of the model predictions and experimental test results.

Table 3.2: The damage parameters.

Direction Damage variable Parameters

Warp d1 = 0 -

Horizontal weft d2 = dsat,2
(
1− e−b2(Y2−Y0,2)

) Y0,2 = 0.20 [MPa]
b2 = 2.20 [1/MPa]
dsat,2 = 0.29 [-]

Shear ds = dsat,s
(
1− e−bs(Ys−Y0,s)

) Y0,s = 0.03 [MPa]
bs = 3.63 [1/MPa]
dsat,s = 0.12 [-]
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Table 3.3: The plasticity parameters.

Direction Hardening law Parameters

Warp κ1 = −H1k1
H1 = 81.8 [GPa]
σy,1 = 161 [MPa]

Horizontal weft κ2 = −H2k2
H2 = 37.8 [GPa]
σy,2 = 59.9 [MPa]

Shear κs = κsat,s

(
1− ecsks

) κsat,s = 48.6 [MPa]
τy = 45.4 [MPa], cs = 33.8 [-]

3.4 Limitations and Future Work

There are limitations that exist, and should be dealt with cautiously for both the
viscoelastic and combined elasto-plastic damage approaches. A number of these limitations
are shared by both models. To begin with, the use of the constitutive framework developed
in Section 2.2, provides a convenient basis to conceptualise the anisotropy of 3D-woven
composites. The governing behaviours in each reinforcement direction and in shear
can be considered and characterised separately. This, however, means that the shear
behaviour is completely decoupled from the reinforcement behaviour. It has been shown
in UD laminated composites, the apparent shear stiffness and strength increase under
hydrostatic loads. See for example Shin and Pae [49]. Whether or not the shear response
of the FiberDuk or BAM material is coupled to hydrostatic pressure, and the impact
of multiple reinforcement directions, has not been quantified. Therefore for validation
purposes, the testing campaign of the FiberDuk material also involved cyclic off-axis
tensile testing at 10◦ to the horizontal weft direction. Both the viscoelastic and combined
elasto-plastic damage modelling approaches showed good agreement to the experimental
off-axis results, cf. Figure 3.16. The figure also indicates the boundary conditions and
specimen size used in the considered finite element model. This hints toward the fact that
under moderate combined normal and shear loading, the models perform well.

While the shear and reinforcement related behaviours are completely decoupled, the
reinforcement related non-linear behaviour are coupled. It is not inconceivable that
damage and/or permanent strain growth in one reinforcement direction will impact
the characteristics of another reinforcement direction. The non-linear behaviour of the
FiberDuk material in each reinforcement direction can be characterised with relative
certainty from standardised experimental tests. How the material behaves under complex
multiaxial loading scenarios however, is not so straightforward to consider.

One of the main goals of the VIRTEST-3D project was in fact to help answer
these questions. The project is still underway, however multiple off-axis tensile tests
will be carried out at different orientations. This will induce different combinations
of tensile normal and shear loading to gain a deeper understanding of how different
non-linear phenomena are coupled to one another. The 3D-woven mesoscale model of the
BAM material will also be loaded multiaxially to help understand the couplings between
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different non-linear mechanisms. Finally, the mesoscale model will also be used to address
the limited out-of-plane shear behaviour. As it stands now, both the viscoelastic and
elasto-plastic damage model assume that the non-linear shear behaviour of the 3D-woven
composites is equivalent in each shear plane.

The lack of out-of-plane shear data is not the only challenge or limitation related
to characterising the non-linear shear behaviour of 3D-woven composites. Consider the
stress-strain curve of the in-plane Iosipescu test in Figure 2.3c. While the initial behaviour
is consistent, once damage and inelastic phenomena begin to develop, a strong variation
in test results is apparent. One of the main challenges with this test relates to the size
of the representative unit cell, which is notably large given the size of the gauge region
and region of uniform shear strain. This means that the placement of the yarns within
this gauge region can impact how and where different non-linear phenomena localise and
develop.

Further, in a homogeneous, small strain setting, it is assumed that the shear behaviour
is symmetric in each shear plane. This means that the 12-shear and 21-shear behaviour
should be equivalent. From Figure 3.17 it is clear that is not the case. The woven
mesostructure creates a material with a strong directional preference for strain localisation
oriented by the warp yarns. When the warp yarns are oriented vertically however, the
material shows a clear vertical shear strain localisation in the gauge region. For this
reason, the shear behaviour in both the viscoelastic and elasto-plastic damage approach
was calibrated using an Iosipescu test with vertically oriented warp yarns. In a traditional
continuum mechanics framework, accounting for such behaviour is not possible. It requires
the consideration of for example, micropolar theories, cf. Hasanyan [50].

The nature of a macroscale model also means that it is not possible to capture strain
localisation. See for example Figure 3.14, which shows a selection of DIC images of the
cyclic tensile test in the horizontal weft direction for the FiberDuk material. The colour
index represents the resulting axial strain field of the experiment and simulation. When
simulating a tensile test, the model will simply predict a constant strain distribution. It
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Figure 3.16: Comparison of the experimental and simulation results for a 10◦ off-axis
tensile test. Both the predicted behaviour of the viscoelastic as well as the elasto-plastic
and damage approach are shown. The considered boundary conditions of the finite element
model are also shown along with the specimen dimensions.
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can be noted that while macroscale models can provide a good fit of the global response
can be obtained, an equally exact comparison of the axial and shear strain distributions
is more challenging.

Turning to the limitations of the viscoelasticity model on its own, it should once again
be pointed out, that the Norton model is essentially a Maxwell model with a non-linear
viscous damper. This means that given enough time, it will relax to a state of zero
stress. To further improve the model, additional testing should be done to characterise
the relaxation and creep behaviour of the material. Rheologically speaking, it would then
be possible to, add additional springs to prevent complete relaxation in the reinforcement
directions. As it stands now, the model is calibrated using monotonic tensile and shear
tests. This has produced a model which shows a strong strain rate dependence, likely
more so than what is reasonable for a 3D-woven composites. This model is therefore
limited to being used to predict tests carried out in a very narrow band of applicable
loading rates.

The elasto-plasticity and damage model has its own challenges and limitations. First,
consider the Voigt form of the damaged stiffness tensor from Equation (3.22). When the
local reinforcement directions are oriented along the global coordinate axes,

E =

⎡
⎢⎢⎢⎢⎢⎣

(1 − d1)C11 (1 − d1)(1 − d2)C12 (1 − d1)(1 − d3)C13 0 0 0
(1 − d1)(1 − d2)C12 (1 − d2)C22 (1 − d2)(1 − d3)C13 0 0 0
(1 − d1)(1 − d3)C13 (1 − d2)(1 − d3)C23 (1 − d3)C33 0 0 0

0 0 0 (1 − ds)C44 0 0
0 0 0 0 (1 − ds)C55 0
0 0 0 0 0 (1 − ds)C66

⎤
⎥⎥⎥⎥⎥⎦
.

(3.39)

The elastic components of the stiffness tensor, i.e. those shown in Equation (2.1) are
denoted as Cij for simplicity. One limitation that becomes apparent, is that even as
damage develops, the orthotropy of the stiffness tensor is maintained. Further, as the
damage variables grow, the 3D stress-strain constitutive relationship diverges from the
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Figure 3.17: Comparing the shear behaviour of an Iosipescu test with different rein-
forcement orientations. Horizontally oriented warp yarns corresponds to σ21. Vertically
oriented warp yarns corresponds to σ12.
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idealised 1D problems used to calibrate the model. In the event that damage saturates
at higher values than what is shown in Section 3.3.3, modifications to the 1D calibrate
routine should be considered.

A relatively straightforward place for improvement within the model calibration is the
use of either acoustic emissions or accelerometer data. The onset of damage and plasticity
as it stand now, is selected based on when the stress-strain curves show visible non-linear
behaviour. Future experimental campaigns should consider using such techniques to help
pinpoint damage onset. A far more challenging but crucial path for model development,
is the consideration of compressive material behaviour. This must involve not only
understanding the effects of crack closures under compressive loads, but also how inelastic
and damage mechanisms develop in compression.

Paper B and Paper C take two separate approaches to predicting the non-linear
behaviour of 3D-woven composites. In Paper B it is assumed that all non-linearity is due
to viscous effects. Paper C on the other hand assumes that it is due to a combination of
plasticity and damage. In reality, it is possible that the non-linear behaviour of 3D-woven
composites is due to all three mechanisms. Developing a viscoplastic model of this nature
however, would require characterising and differentiating between both rate dependent
and rate independent properties. One interesting test to consider for future campaigns is
that introduced by Zscheyge et al. [51]. They use a so called stepwise loading-unloading
test with relaxation and retardation periods. The test routine is illustrated in Figure 3.18a.
It involves:

1. A displacement controlled loading period to a certain strain limit.

2. A stress relaxation period at this strain level.

3. A force controlled unloading period to an external force of zero.

4. A strain retardation period at zero force.

5. Repeating steps 1 through 4 at higher strain levels.

Figure 3.18b shows an illustrative 1D stress-strain curve produced by such a testing method.
The non-linearity due to rate-independent inelasticity, rate-dependent inelasticity and
damage can be quantified directly through this single test.

4 Region III: Failure Initiation, Softening and

Final Failure

In a tensile test along one of the reinforcement directions, 3D-woven composites often
show a region in which both inelastic and damage mechanism develop in a progressive
and controlled manner. Eventually, the reinforcement yarns will snap, which leads to
an aggressive and abrupt final failure of the tensile specimen. However, as discussed by
Laurin et al. [52], on the structural scale, especially for test samples containing geometric
singularities, this is not the case. Although failure may initiate in one location of the
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(a) Strain-time plot. (b) Stress-strain plot.

Figure 3.18: Illustration of the stepwise loading-unloading test with relaxation and retar-
dation periods. The stress-strain plot shows both a schematic of a resulting curve from an
experiment as well as how to obtain the equilibrium relation which is used to understand
how the rate-independent part of a model can be developed.

component, this does not necessarily mean that the component itself has failed. More
importantly, it is then necessary to predict both local failure initiation and describe the
softening behaviour at the locations where failure has initiated. Otherwise it is likely that
the overall stiffness of the component will be overestimated.

4.1 Non-Local Damage Models

Standard continuum damage models, as introduced in Section 3.1, are referred to as
local damage models. The damage variables are strictly dependent on the local strain
field history at each material point. The main advantage of local damage models is their
simplicity. They are relatively straightforward to conceptualise, calibrate and implement.
Local damage models, however, have one major downfall. They should not be used in a
rate independent form to soften the constitutive material model, i.e. there should not be
a decrease in stress.

To illustrate why this is a problem, consider the bar shown in Figure 4.1a, which is
discussed by Jirásek and Bažant [53]. It is exhibiting a displacement u on the right hand
boundary. The material is assumed to show linear elasticity up to a peak stress σmax,
followed by linear softening. This is illustrated in Figure 4.1b. Equilibrium relationships
require that the axial force and therefore stress remain uniform along the bar. Upon
loading, as long as the stress remains below σmax, everything is perfectly fine. Once the
maximum stress is reached, the challenges start. For a given stress σ̄, there are now two
possible strain values, illustrated in Figure 4.1b, which satisfy the constitutive equations.
Conceptually, this is reasonable. A cross section of the bar will either be undamaged and
unload along the elastic path or be damaged and unload along the softening branch of
the constitutive stress-strain curve.

The main issue here is the fact that no information is given to quantify the length of
the damaged cross section. When the stress is completely relaxed, the force-displacement
behaviour has an infinite number of possible solutions, cf. Figure 4.1c. The post-peak
branches are bound by the limit cases of a fully damaged bar on the right, or a bar with
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(a) Illustration of a bar
experiencing uniaxial tension.

(b) Stress-strain diagram with
linear softening.

(c) Illustration of possible
post-peak branches.

Figure 4.1: Schematic illustrating the challenges associated with the use of a local damage
model to cause softening.

an infinitely small damaged zone on the left. All cases in between describe varying sizes
of the damaged zone.

Mathematically, this problematic feature is described as a loss of ellipticity of the
governing equations, cf. [54]. The boundary value problem becomes ill-posed and as
such, there is no longer a unique solution. Numerically, in a finite-element problem this
manifests itself as a pathological mesh dependence. The strain softening, i.e. damage,
will localise in a single row of elements (in simple examples where the crack path is well
defined). As the mesh is refined, the damaged region decreases. The post-peak branch of
the force-displacement curve will approach the elastic solution with an abrupt failure and
the amount of dissipated energy will progressively decrease.

One straightforward method to circumvent some of these challenges is to add viscous
regularisation to the damage variables, see for example Ladevèze [55]. While this is
relatively easy to implement, there is a trade-off. The viscous effects cause a delay in the
onset and development of damage while also adding an additional dissipative mechanism.
A compromise must then be made between adding enough viscous damping to minimise
the pathological mesh dependence but not so much such that the artificial dissipation
becomes unphysical.

Another option is to regularise the problem using the crack band method introduced
by Bažant and Oh [56]. The crack band method introduces a length parameter (typically
the characteristic length of the finite element) to achieve a constant energy release per
unit crack area regardless of element dimension. It should in fact be noted that in their
mesoscale model for 3D-woven composites, El Said et al. [47] as well as Topalidis et al.
[26] employ such an energy regularisation to mitigate mesh dependencies. The crack band
method is not foolproof. In circumstances where the localisation aligns with the finite
element discretisation it does allow for the correct energy dissipating and mesh convergent
force-displacement results. However, the width and orientation of the numerically resolved
localised damage zone as well as the dissipated energy, is still dependent on the size and
orientation of the finite element mesh. See for example Mukhopadhyay and Hallett [57],
Leong et al. [58] or Främby and Fagerström [59].

To truly resolve these issues related to mesh dependence and strain softening, non-local
damage theories are needed. As the name suggests, non-local theories abandon the idea
that the stress at a certain point is only dependent on the strain and state variables at
that point. One of the earlier examples of such a model was proposed by Pijaudier-Cabot
and Bažant [60]. Sometimes referred to as an integral-type non-local model, they propose
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that the strain measure controlling damage growth be replaced with its weighted spatial
average over a representative volume. On the plus side, these models are fairly easy
to conceptualise. Kinematic and equilibrium relations remain the same, and the stress
and strain keep their standard meaning. In a commercial FE code however, they are
more challenging to implement as you need to be able to access information stored in
neighbouring integration points.

A close relative to the integral-type non-local models are the gradient enhanced
approaches, see e.g. Peerlings et al. [61]. As the name suggests, these approaches account
for non-local effects by adding a gradient enhancement to the strain measure used to drive
damage development. While traditional gradient enhanced models have their foundations
in damage mechanics, another method known as the phase-field approach begins from
a discontinuous description of the damage field. See for example [62] or [63]. Within
the phase-field framework, a discrete crack is approximated using a scalar continuous
field variable that localises into a band of defined width. As discussed by de Borst and
Verhoosel [64] gradient enhanced and phase-field approaches come from different points
of departure. However, they are almost identical in terms of their mathematical structure.
Both can be implemented in commercial FE software as user-defined elements.

Non-local damage approaches have been applied to 3D-woven composite materials on
the macroscale. Marcin [65] for example combined a gradient enhanced model with viscous
regularisation. They considered an open hole plate under tensile loading, manufactured
using a 3D-woven ceramic matrix composite. When only considering a gradient enhanced
approach, they found that the force-displacement behaviour showed snap-back after
reaching the peak load. The presence of snap-back required the use of the more advanced
arc-length solution method to resolve the problem. Strictly using a viscous regularisation
on the other hand leads to a far more progressive material softening, with much higher
energy dissipation and a strong dependence on the local loading rate. Combining both
methods minimised the inconveniences of both approaches, while producing a more realistic
post peak behaviour. More recently, Médeau [66] and Laurin et al. [52] evaluated and
compared various regularised and non-local damage models. This included a phase-field
modelling approach for damage and strength predictions of 3D-woven polymer matrix
composites. Their model was able to successfully simulate and reproduce the observed
failure behaviours of compact tension as well as single-edge notched beam specimens.

A phase-field approach is also proposed in Paper D to predict local softening and final
failure of 3D-woven composites. It is largely an extension of the elasto-plastic damage
model presented in Section 3.3. In particular, the phase-field is formulated such that it can
evolve in an anisotropic manner, and accommodate a fracture toughness that depends on
the final mode of failure. This will be discussed in Section 4.3.2. First however, phase-field
models will be briefly introduced for isotropic materials that show brittle fracture.

4.2 Isotropic Phase-Field Modelling of Brittle
Fracture

The point of departure for phase-field models is Griffith’s fracture theory, cf. Zehnder
[67] for example. It considers fracture as an interaction between the elastic energy stored
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in the bulk material and the amount of energy required to generate a new crack surface.
The internal potential energy of a solid body can then be described with contributions
from the strain energy of the bulk material E and the fracture energy W , where

Πint = E +W. (4.1)

Consider first the fracture energy. For a discrete crack with a surface described by Γ,
illustrated in Figure 4.2a, inside a domain with volume Ω, this is described as

W =

∫
Γ

gc dΓ. (4.2)

The property gc is referred to as the critical energy release rate or fracture toughness.
It represents the amount of energy associated with the formation of one unit of new crack
surface. As previously stated however, this represents a discrete description of the damage.
The material is either completely intact or completely damaged. In order to go from a
discrete description of fracture to one which describes a smooth transition between a fully
intact material, a phase-field d̄ is introduced. As with the continuum damage models,
it is assumed that d̄ = 1 signifies that the material is completely damaged while d̄ = 0
signifies that the material is intact.

To describe this transition in more detail, it is convenient to once again return to
considering a bar problem illustrated in Figure 4.2b. The bar has a volume Ω with a
crack defined by the cross-sectional area Γ. A diffuse description of the crack can then
be represented with a number of functions. As discussed by Wu [68], some standard
examples found in the literature are:

• AT2: d̄(x) = e−|x|/lc . The abbreviation AT refers to Ambrosio-Tortorelli [69]. This
is one of the most widely adopted descriptions of the crack phase-field functions. It
has been used by for example Bourdin et al. [70], Kuhn et al. [71].

• AT1: d̄(x) =
(
1− |x|

2lc

)2
. The AT1 geometric crack function has been used by for

example Pham et al. [72] and Bourdin et al. [73].

• PFCZM: d̄(x) = 1 − sin
(

|x|
lc

)
. Here the abbreviation stands for Phase-Field

Regularised Cohesive Zone Model. It was presented and advocated for by Wu [74].

They are illustrated in Figure 4.3a. Note that they all involve the introduction of a length
scale parameter lc which defines the length over which the phase-field is diffused. One of
the largest advantages of adopting the AT2 geometric crack function relates to the fact
that it is automatically bound between zero and one. More specifically, the AT2 function
satisfies the boundary conditions

d̄(x) ∈ [0, 1] , d̄(±∞) = 0 and d̄(0) = 1. (4.3)

As the phase-field is now described as a non-discrete diffuse damage band, the integral
definition of the fracture energy W must be modified. This is done using what is referred
to as a crack density function γ. The aim is then to be able to express

W =

∫
Γ

gc dΓ =

∫
Ω

gcγ(d̄,∇d̄) dΩ. (4.4)
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(a) A cracked domain with volume Ω. (b) A cracked bar with volume Ω.

Figure 4.2: Illustration of the considered domains and their boundaries.

Since it is the most common option, consider again the 1D, AT2 description of the
phase-field geometry. The crack density function can be formulated by first considering
that in 1D, d̄(x) = e−|x|/lc is the solution for the homogeneous differential equation

d̄(x)− l2c d̄
′′(x) = 0 (4.5)

with the boundary conditions in Equation (4.3). Equation (4.5) however, represents the
strong form of the equation. In the variational approach to fracture, a functional is sought
after such that the minimisation condition gives the ordinary differential equation in
Equation (4.5). In this case, it is

I
(
d̄
)
=

1

2

∫
Ω

(
d̄2 + l2c d̄

′2) dΩ (4.6)

with the additional property that I
(
d = e−|x|/lc) = lcΓ.

Therefore

W =

∫
Γ

gc dΓ =

∫
Ω

gc
1

2lc

(
d̄2 + l2c d̄

′2) dΩ =

∫
Ω

gcγ
(
d̄, d̄′

)
dΩ. (4.7)

Generalising to multiple dimensions, the crack density function can then be expressed as

γ
(
d̄,∇d̄

)
=

1

2lc
d̄2 +

lc
2

∣∣∇d̄
∣∣2 . (4.8)

A similar argumentation strategy can be followed when considering either the AT1 or
PFCZM geometric phase-field expressions.

Turning to the strain energy, the next step takes inspiration from continuum damage
mechanics. It is assumed once again that as the phase-field grows, the material looses
stiffness. This loss of stiffness is expressed through some form of degradation function
g(d̄). Then

E =

∫
Ω

g(d̄)ΨdΩ. (4.9)

For a linear elastic material with a fourth order elastic stiffness tensor E,

Ψ =
1

2
ε : E : ε. (4.10)
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This corresponds to a constitutive stress-strain relationship given by

σ = g(d̄)E : ε. (4.11)

Unlike traditional local damage models, the degradation function must satisfy the
following conditions:

• g(0) = 1 signifying an intact state and g(1) = 0 signifying a completely damaged
state.

• g′(d̄) < 0 i.e. the degradation function must decrease monotonically.

• g′(1) = 0 which ensures that the phase-field driving force vanishes when d̄ = 1.
This is in fact one of the major differences to gradient enhanced damage models.
It ensures that the damage zone does not continue to broaden orthogonally in the
wake of the crack tip.

A few common examples include:

1. Quadratic polynomial: g(d̄) =
(
1− d̄

)2
. This degradation function is widely

used for brittle fracture. It was introduced by Bourdin et al. [75] and is plotted in
Figure 4.3b.

2. Cubic polynomial: g(d̄) = 3
(
1− d̄

)2 − 2
(
1− d̄

)3
. Karma et al. [76] introduced

this degradation function. It is plotted in Figure 4.3b. The use of a cubic polynomial
means that g(d̄) shows a less abrupt drop when the phase-field begins developing.
This means that the material will show a more defined initial elastic region.

3. Quartic polynomial: g(d̄) = 4
(
1− d̄

)3 − 3
(
1− d̄

)4
. Introduced by Kuhn et al.

[71], the quartic function again slows the onset of the stiffness degradation. This is
illustrated in Figure 4.3b.

As it is the most common choice, the quadratic polynomial will be considered from this
point forward.

To prevent material healing, irreversibility of the phase-field during loading and
unloading must be ensured. One option introduced by Miehe et al. [77], and the approach
taken here, is to introduce a history variable where

HΨ = max
τ∈[0,t]

Ψ(εel). (4.12)

This represents the maximum total elastic energy obtained in the loading process. It allows
for the decoupling of the governing system of equations and the use of a staggered solution
scheme, which is considered computationally robust for phase-field models. Note, however,
that enforcing irreversibility with a history variable in this manner is not applicable for
the AT1 and PFCZM geometric crack functions.

As shown by Molnár and Gravouil [78], the functional used to solve for the phase-field
is then given by

Πint ≈ Πd̄ =

∫
Ω

[
gcγ(d̄,∇d̄) + g(d̄)HΨ

]
dΩ. (4.13)
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Figure 4.3: Illustration of common geometric crack functions and degradation functions
for phase-field models.

Assuming the external component of the potential energy can be formulated as

Πext =

∫
Ω

b · u dΩ +

∫
Γu∪Γt

t · u dΓ (4.14)

with body force b and boundary traction t, then for a fixed d̄ the displacement field can
be solved from

Πu =

∫
Ω

[
g(d̄)Ψ− b · u] dΩ−

∫
Γu∪Γt

t · u dΓ. (4.15)

The strong form of the governing equations can be found by taking the variation of
both energies, δΠd̄ and δΠu. Then

∇σ + b = 0 in Ω and σ · n = t̄ on Γt, u = ū on Γu (4.16)

and

gc
lc

(
d̄− l2cΔd̄

)
= 2

(
1− d̄

)HΨ and ∇d̄ · n = 0 on Γ, (4.17)

where the Laplacian operator Δ(•) = ∇ · ∇(•) and n is the outward facing normal. The
constitutive stress-strain relation is

σ = g(d̄)E : ε. (4.18)

Phase-field modelling approaches are continuously growing in popularity. For more
information on phase-field models, their development, uses and implementation Wu et al.
[68] is strongly recommended. Further, for information on how to implement such a model
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in commercial software see Molnár and Gravouil [78]. Phase-field models have a number
of important benefits. In their purest form, as they are based on energy minimisation,
they require no predefined assumptions on the crack location. Multiple cracks can initiate,
propagate, branch and coalesce automatically. Further, and importantly for 3D-woven
composites, this can be handled and implemented with relative ease in three dimensions
(although it is computationally expensive).

4.3 Extending to Anisotropic Ductile Fracture of 3D-
Woven Composites

A phase-field approach is proposed in Paper D to predict softening and final failure of
3D-woven composites. It builds on the anisotropic elasto-plastic damage model presented
in Section 3.3. In this work, focus is given to three key challenges related to phase-field
modelling of 3D-woven composites. They are:

1. Failure initiation: In the traditional approach outlined in Section 4.2, the phase-
field begins developing immediately. In the current model the aim is to trigger the
softening response, i.e. the phase-field, following a region of progressive damage and
inelasticity. For this reason, a failure criterion must be introduced.

2. Anisotropic failure: The phase-field should develop in such a way that the fracture
toughness can vary depending on the final mode of failure.

3. Ductile fracture: The energy functional is no longer strictly dependent on the
elastic strain. A number of modelling choices then need to be made to account
for the plasticity and continuum damage variables and their impact on phase-field
development.

Each of these aspects will be discussed in a dedicated subsection before the strong form
of the governing equations is stated.

4.3.1 Failure Initiation

Predicting failure initiation in fibre-reinforced composites is an ongoing research area.
The most straightforward option is to use maximum stress or strain criteria. These
however do not account for stress or strain interactions. Some of the earliest proposed
criteria for UD composites that could account for such interactions were Tsai-Hill [79] and
Tsai-Wu [80]. While different failure fractions are calculated according to the orthotropic
nature of the material, for Tsai-Hill and Tsai-Wu they all accumulate to a single failure
criterion. However, in UD composites, it has been proven to be quite important to
distinguish between failure modes (fibre tension, fibre compression, matrix tension and
matrix compression) using multiple criteria simultaneously. Further, the predicted failure
mode determined by the criterion taking the highest value, is used to determine which
stiffness components are degraded. Failure criteria for UD composites have continued to
grow in complexity and completeness. See for example Cuntze and Freund [81], Pinho et
al. [82] and Carrere [83]. Further, the criteria presented by Pinho et al. [82] commonly
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referred to as LaRC05 can for example, account for pressure dependence, non-linear shear
behaviour and in-situ effects.

In Paper A the application of LaRC05 to 3D-woven composites, is explored. The
LaRC05 criteria, and many of its counterparts, are stress based and require that the
criteria be computed in rotated frames of reference. It becomes apparent quite quickly,
that the lack of a clear plane of material isotropy dominated by the properties of the
matrix produces erroneous results. For this reason in Paper A, it is proposed that a set
of strain-based criteria are used instead, which produces qualitatively more reasonable
results.

As the research project progressed, it became increasingly apparent that the use of
multiple failure criteria, each controlling the stiffness degradation of different components
due to different failure modes, may be unnecessary. When failure initiates and propagates,
this represents a complete loss of material integrity. For this reason, a single strain-based
failure criterion is proposed in Paper D. Failure is therefore assumed to initiate when

FI =

(
ε : A1

ε1,max

)2

+

(
ε : A2

ε2,max

)2

+

(
ε : A3

ε3,max

)2

+

(
2|e|√
2γmax

)2

= 1. (4.19)

The maximum strain values are denoted as ε1,max, ε2,max, ε3,max and γmax for the warp,
horizontal weft, vertical weft and shear directions, respectively. When failure is initiated,
the corresponding energy density Ψinit is recorded and used as a threshold value to ensure
the phase-field will not develop until a certain energy density is overcome.

The specific energy density for this model formulation will be discussed in more detail
in Section 4.3.3. Using the threshold value, the history variable introduced in Equation
(4.12) can instead be expressed as

HΨ = max
τ∈[0,t]

〈Ψ−Ψinit〉 (4.20)

where 〈•〉 denotes a Macaulay bracket. Once again, the history variable enforces phase-
field irreversibly and allows for an algorithmic decoupling of the governing system of
equations.

4.3.2 Anisotropic Failure

Enforcing failure mode dependent critical energy release rates, can generally be done in
two ways. The first option is to consider multiple phase-fields each linked to their own
energy measure. This method is considered by for example Bleyer and Alessi [84] as
well as Dean et al. [85]. Another possibility is the use of a single phase-field, with an
anisotropic crack density function. This has been proposed by for example Teichtmeister
et al. [86] and is also the approach adopted in Paper D.

The anisotropy of the crack density function is enforced using a structural tensor Ad

where

γ
(
d̄,∇d̄

)
=

1

2lc
d̄2 +

lc
2
∇d̄ ·Ad · ∇d̄. (4.21)
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Figure 4.4: Schematic showing a crack propagating in the direction of the warp yarns for
a CT specimen.

The structural tensor Ad is defined using the structural tensors which indicate the three
reinforcement directions. Specifically

Ad = α1A
1 + α2A

2 + α3A
3, (4.22)

where the parameters α1, α2 and α3 allow for directional dependent variations in the
effective length scale parameter and critical energy release rate.

To demonstrate the influence that α1, α2 and α3 have on the effective fracture toughness
and length scale parameters, consider the case of a crack propagating in the warp direction
(aligned with the x-axis) shown in Figure 4.4. The structural tensor is then

Ad =

⎡
⎣α1 0 0
0 α2 0
0 0 α3

⎤
⎦ (4.23)

If the length scale of the phase-field is sufficiently small in comparison to the length of
the crack and a location sufficiently far away from the crack tip is considered, the crack
density function can be simplified. In this case

∂d̄

∂x
≈ ∂d̄

∂z
≈ 0. (4.24)

In turn, the crack density function can be expressed as

γ(d̄,∇d̄) =
1

2lc
d̄2 +

lcα2

2

(
∂d̄

∂y

)2

. (4.25)

Following the same steps in reverse from Equation (4.7) to the definition of the AT2
geometric crack function, means that Equation (4.25) corresponds to the phase-field value
along the y-axis

d̄ = d−|y|/√α2 lc . (4.26)

Loading in the horizontal weft direction will therefore give an effective length scale
lc,2 =

√
α2lc. Using similar argumentation, the dissipated energy per unit crack length in

this loading mode is

gc,2 =
gc
2lc

∫ ∞

−∞

(
d̄2 + α2l

2
c d̄

′2) dx. (4.27)
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Inserting Equation (4.26) and solving the integral gives

gc,2 = gc
√
α2. (4.28)

Analogously, the effective critical energy release rate and length scale for the warp and
vertical weft directions are lc,1 =

√
α1lc, gc,1 = gc

√
α1, lc,3 =

√
α3lc and gc,3 = gc

√
α3

respectively.

4.3.3 Ductile Failure and Strong Form

In brittle materials, it is assumed that the formation of a macroscale crack is the main
dissipative mechanism and source of non-linearity. Further, it is assumed that the use of a
scalar measure, e.g. a phase-field, can sufficiently describe this material degradation. This
is generally not a fair assumption for 3D-woven composites. They can show nucleation
and growth of subscale damage as well as extensive inelastic deformation prior to the
formation and propagation of a macroscale crack. This is known as ductile fracture.

With ductile fracture, the energy functional no longer contains strictly an elastic
contribution. For the constitutive relationship given by Equation (3.22), the corresponding
energy density is

Ψ = (1− ds)Ψos +Ψps +

3∑
I=1

(1− dI)ΨoI +ΨpI . (4.29)

The elastic contributions are then

Ψos =
1

2
eel : Em : eel, (4.30)

ΨoI =
1

2
εel : Ef,I : εel, (4.31)

while the plastic hardening contributions are denoted ΨpI and Ψps in the reinforcement
directions and shear respectively. For the FiberDuk material, according to the calibrated
hardening responses in Table 3.3,

Ψps = −κsat,s

cs

(
csks − e(csks) + 1

)
, (4.32)

Ψp1 =
1

2
H1k

2
1, (4.33)

Ψp2 =
1

2
H2k

2
2. (4.34)

A review of phase-field modelling of ductile fracture can be found in Alessi et al. [87].
But it is highlighted here, that in terms of degrading the energy density, there are two
main options. The first, considered by for example Duda et al. [88] and Ambati et al.
[89], degrade only the elastic part. As a consequence, the energy functional would take
the form

E =

∫
Ω

(
g(d̄)Ψo +Ψp

)
dΩ. (4.35)
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Ambati et al. term this approach as brittle fracture in elasto-plastic solids. The yield
surface and hardening modulus remain unaffected by the phase-field development. This
in turn means that at some point the plastic strain saturate and the deformation becomes
dominated by recoverable elastic strain. The next choice, and the one adopted in Paper
D degrades the elastic and plastic contributions, see for example Miehe et al. [90] or
Borden et al. [91]. Therefore,

E =

∫
Ω

g(d̄)

[
(1− ds)Ψos +Ψps +

3∑
I=1

(1− dI)ΨoI +ΨpI

]
dΩ. (4.36)

In the case of brittle fracture, the governing equations are formulated based on the
minimisation of a potential energy. For ductile fracture however, Borden et al. [92]
propose instead a microforce derivation of the governing equations in terms of a general
energy potential. Following the later approach, the strong form of the governing equations
for the model proposed in Paper D are

∇σ + b = 0 in Ω and σ · n = t̄ on Γt, u = ū on Γu (4.37)

and

gc
lc

(
d̄− l2c

(∇⊗∇d̄
)
: Ad

)
= 2

(
1− d̄

)HΨ and n ·Ad · ∇d̄ = 0 on Γ. (4.38)

In these equations, the internal body force, outward normal, traction and displacement
field are denoted by b, n, t and u respectively. The constitutive stress strain relationship
is expressed by

σ = g(d̄)

(
(1− ds)Em : eel +

3∑
I=1

(1− dI)Ef,I : εel

)
. (4.39)

4.4 Required Experimental Tests and Model Results

Calibrating the phase-field model extension proposed in Paper D requires characterising
macroscale crack propagation in 3D-woven composites. More specifically, values must be
determined for gc, lc, α1, α2, α3 as well as the maximum strain values ε1,max, ε2,max, ε3,max

and γmax. Dedicated experimental test results describing the failure of the FiberDuk
or BAM material were not available over the course of the research project. However,
test results available in the literature will be discussed. The assumptions made to obtain
the material properties applied to the FiberDuk material in Paper D will also be
introduced. These properties are summarised in Table 4.1.

Identification standards for the propagation of macroscopic cracks do exist for various
materials. These materials include metals (ASTM E399 [93]) and plastics (ASTM
D5045 [94]). More recently a test standard has even been proposed to characterise the
translaminar fracture toughness of laminated composites (ASTM E1922 [95]). The test
standards generally use specimens which induce stress gradients such as the compact
tension (CT) and single-edge notched beam (SENB) test sample with the goal of identifying
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the critical energy release rate gc. Extending such test standards to 3D-woven composites
is not straightforward, as the material is neither isotropic nor homogeneous.

A detailed experimental investigation and discussion concerning the estimation of
the critical energy release rate of 3D-woven composites has been carried out by Médeau
et al. [96]. Their experimental campaign tested CT specimens of various sizes on a
highly unbalanced weave. Focus was therefore given to characterising failure in the weft
direction, as this provides a clean and straight crack guided by the warp yarns running
horizontally. It is also the weaker material axis and therefore provides a conservative
measure of the critical energy release rate. The main highlight of the investigation carried
out by Médeau et al., is the proof of invalidity of Linear Elastic Fracture Mechanics
(LEFM) for 3D-woven composites. They noted that when the crack tip propagated a
significant region containing different non-linearities could be observed. This in turn led
to a size dependency on the measured gc value which diverged from the LEFM solution
as the specimen size was decreased.

The study carried out by Médeau et al. indicates that the traditional definition of gc as
a material parameter according to LEFM is not valid. In the present case, it is therefore
proposed to allow for the local damage-plasticity model to account for the plasticity and
initial (diffuse) damage development while letting the phase-field describe the localised
damage development and final crack formation. To demonstrate the capabilities of this
combination of damage models, a prototype value of gc = 15 kJ/m2 is selected for the
FiberDuk material. This estimation is based on the critical energy release rate reported
by Pinho et al. [97] for tensile fibre failure of a laminated composite, and scaled according
to the difference in stiffness. To determine α1, α2 and α3 it is once again assumed that the
critical energy release rate scales approximately with the stiffness in each reinforcement
direction, i.e. α1= 1 and α2 = α3 = 0.25.

Selecting an appropriate length scale parameter for a phase-field model is also a delicate
task. The profile and width of the phase-field is determined directly by lc. The argument
can then be made that the length scale is a material parameter and is tied to a physical
measure which relates to the phenomena controlling the failure of the composite. However,
it is also shown by Médeau [66], that as lc increases the apparent critical energy release
rate, shown by a simulation, will be less than the value introduced into the model. As
discussed by Bourdin et al. [75], this relates to Γ-convergence. For a sufficiently small lc,
the correct energy release rate will be displayed by the model. However, selecting a very
small length scale parameter to guarantee Γ-convergence, is not a solution. In order to
obtain mesh independent results, the discretisation must be fine enough to resolve the
phase-field. Molnár and Gravouil [78] for example, recommend that the characteristic
element length of the mesh h < lc/2. To account for the discrepancies in the apparent
gc, Bourdin et al. [62] have also argued that a correction can be made such that gc in
Equation 4.7 is replaced with

gc →
(
1 +

h

4lc

)
gc. (4.40)

Due to a lack of experimental data and again, as a starting point for the development of
the phase-field model in Paper D, the length scale parameter lc is chosen to represent
the approximate width of the horizontal weft yarns running transversely to the loading
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direction in a tensile specimen loaded in the warp direction, i.e. lc = 2.5 mm.

Finally, the maximum strain values used in the failure initiation criterion introduced in
Equation (4.19) are selected based on the in-plane tensile and shear experimental results
presented in Figure 2.3. In the case of tensile loading along the warp and horizontal
weft yarns, the strain at failure can be read directly from the stress-strain curves where
ε1,max = 1.6% and ε2,max = 2.0%. In shear, the maximum strain value is selected as the
point at which the stress-strain curve plateaus and large, visible shear cracks appear in
the experiment. This corresponds to γmax = 15%. A promising avenue for determining
an appropriate out-of-plane maximum strain ε3,max value is once again to use a mesoscale
analysis.

The phase-field model developed in Paper D has been implemented as a user element
in Abaqus. The results from the implementation show a number of promising features.
Figure 4.5 compares four different force displacement curves obtained for a model of the
CT specimen shown in Figure 4.5a. Solid lines show the resulting force displacement
behaviour using the anisotropic damage density function where either the warp (blue) or
weft (red) yarns are oriented vertically in the loading direction. The material’s higher
elastic stiffness in the warp direction is clearly apparent when comparing the initial region
of each curve before the load drop. Following the load drop, the effects of the anisotropic
phase-field density function are noticeable. The lower effective energy release rate in
the horizontal weft direction manifests itself as a steeper and more abrupt drop in load.
Figure 4.5b also shows the resulting behaviour when a traditional isotropic crack density
function is used. This is equivalent to setting Ad = I. In both cases the numerical values
of gc and lc have been selected such that they are equivalent to the theoretical anisotropic
properties.

It can be seen that, as the deformation progresses, the anisotropic density function
gives behaviours which correspond well to the theoretical response obtained with an
equivalent isotropic phase-field density function (for each separate load case). At the
respective initial load drops however, there are considerable differences. Most likely, these
differences are explained by the fact that the theoretical effective values produced by
the anisotropic density function (i.e. Equation (4.21)) require the assumption that only
the phase-field gradient running transversely to the crack growth direction is significant.
However, in the case of an initial notch, from which the phase-field initiates and grows,
this assumption is not valid.

Another noteworthy phenomenon that the model shows is the interaction of the
plasticity and local damage models in a zone in front of the localised phase-field. Figure
4.6 displays a number of contour plots taken at different displacement values. Before the
phase-field initiates at the notch tip, a process zone is apparent where both d2 and k2
show substantial growth. Further, this zone appears to advance ahead of the phase-field
crack tip.

4.5 Limitations and Future Work

The largest limitation related to the development of the phase-field model in Paper D
relates to the lack of experimental results. Dedicated tests to characterise macroscale crack
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Figure 4.5: Comparison of the force-displacement curves for a CT specimen with both
the anisotropic phase-field crack density function as well as an isotropic crack density
function. For the isotropic density function gc and lc are chosen as the theoretical effective
values gc,I = gc

√
αI and lc,I = lc

√
αI .

Figure 4.6: Contour plots showing the development of different parameters at different
displacement values for a compact tension specimen with the weft yarn running vertically
using the anisotropic density function.

Table 4.1: Parameters for the anisotropic phase-field model.

Phase-field gc 15 [kJ/m2] lc 2.5 [mm]
α11 1 [-] α2 0.25 [-] α3 0.25 [-]

Maximum strain ε1,max 1.6 [%] ε2,max 2.0 [%] γmax 15 [%]
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propagation in 3D-woven composites were not available. Nevertheless, the model shows
promising characteristics. It has the ability to accommodate critical energy release rates
that depend on the final mode of failure. The model also clearly shows the development
of a propagating, diffuse damage and plasticity zone ahead of the crack.

A relatively simple maximum failure criterion is suggested to trigger the onset of the
phase-field. Again, to propose improvements or modifications, further tests are required.
The off-axis tests that will be carried out in the VIRTEST-3D project will help provide
insight on how the interaction of tensile normal and shear loads affects the failure strain of
the material. It should also be noted, that the maximum shear strain for the FiberDuk
material in Paper D was estimated based on an Iosipescu shear test. This is not ideal,
as in this test final failure is caused by the rotation and eventual rupture of reinforcement
yarns. This type of phenomena can not be described in a small strain setting. A promising
future development of the macroscale model would be an extension to a finite strain
setting.

Even in the event that the theoretical value of gc is known through experimental
testing, it is challenging to implement an equivalent behaviour in a phase-field model.
Linse et al. [98] show that discrepancies in the dissipated energy also stem from the
consideration of test specimens with finite length, as well as the use of a history variable
to enforce irreversibility of the phase-field. Instead they recommend an approach where
the phase-field is simply fixed at a value close to one, once a threshold is reached.

Further, the model presented inPaper D has not been developed to handle compressive
loading. Bourdin et al. [75] have shown that for isotropic materials, without further
modifications, a phase-field model gives unrealistic crack patterns in compression. To
avoid such situations, and prevent interpenetration of cracks in compression, the energy
density is split and only the tensile component is used to drive the phase-field development.
See for example Miehe et al. [63] or Moës et al. [99].

Standard phase-field models, as described in Section 4.2, will behave in a way that is
representative of LEFM where the critical energy release rate can take on the traditional
definition of a material parameter. The apparent dissipated energy will remain constant
regardless of specimen size. The phase-field formulation presented in Paper D does
however show a process zone ahead of the phase-field crack tip where the local damage
and plasticity models evolve. A promising area for further development is determining
whether or not such a model can mimic the size effects shown by Médeau et al. [96] for
3D-woven composites.

5 Conclusions and Outlook

Composite materials with 3D-woven reinforcements have shown a number of promising
characteristics. In order to encourage their widespread adoption in industry however,
efficient modelling techniques are needed. In terms of computational efficiency, macroscale
models perform the best. They consider the material on a structural level as a homogeneous,
anisotropic solid. This work has developed a macroscale phenomenologically based model
to describe how 3D-woven composites deform and eventually fail under mechanical tensile
and shear loads. This fulfills research objective number one. The non-linear deformation
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behaviours of 3D-woven composites are due to a number of physical mechanisms. The
development of the model framework has focused on capturing the mechanisms that lead
to inelasticity and energy absorption. This took place in three main steps.

First, a modelling framework for 3D-woven composites was proposed and formulated
based on an orthotropic stiffness tensor described using structural tensors. This framework
divides the constitutive stress-strain relationship into four terms which govern either the
shear behaviour of the material or the behaviour in each reinforcement direction. Further,
the framework is thermodynamically consistent, general and flexible. It has also been
shown that the framework for allows for various non-linear behaviours to be added in a
modular fashion depending on loading direction.

As a second step, to determine an appropriate model formulation, the use of various
constitutive modelling techniques was explored within the proposed framework. This
included a viscoelastic approach (Paper B) as well as a combined elasto-plasticity and
continuum damage approach (Paper C). The use of a viscoelastic model does allow for
the prediction of rate-dependent material behaviour. However, to identify the required
model parameters, experimental testing at multiple strain rates and/or creep or relaxation
tests should be used. However, it can be concluded that given the cyclic experimental
results that became available later in the project, the use of the combined elasto-plasticity
and damage model shows the most promising results. In fact, using standard tensile
and shear tests with unloading cycles made it possible to track both the development
of permanent strain as well as stiffness reductions. The elasto-plasticity and damage
model in particular, was developed in such a way that the damage and plasticity laws can
be identified directly from the uniaxial cyclic stress–strain curves without the need for
complex calibration schemes.

The third and final step involved the introduction of a phase-field model to capture
failure initiation and softening of the constitutive response (Paper D). The model
provided a regularisation of the localised damage, thereby avoiding any spurious mesh-
dependence of the model. To activate the evolution of the phase-field, it was proposed that
a criterion based on macroscopic strains be used. A strain-based criterion was selected
based on the conclusion from Paper A that macroscopic strains are much more suitable
than macroscopic stresses to represent the loading on the individual material constituents
in a 3D-woven composite. Furthermore, the use of an anisotropic crack density function
gives the possibility to tune the fracture toughness depending on loading mode. In a
compact tension example the model also showed the development of a propagating, diffuse
damage and plasticity zone ahead of the phase-field crack.

In order to facilitate knowledge transfer to industry, the developed models have
been implemented in the commercial finite element software Abaqus. In the case of the
viscoelastic model as well as the combined elasto-plastic and continuum damage model,
this required the implementation of a user-material routine (UMAT). The phase-field
extension on the other hand required the implementation of an Abaqus user-element
(UEL).

A 10◦ off-axis tensile test was used to validate the model behaviour of both the
viscoelastic approach as well as elasto-plastic and damage approach. This off-axis test
induces a moderate combination of normal and shear loading on the specimen. In both
cases, the model prediction showed good agreement to the experimental results. However,
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to understand the applicability of the model to more complex multi-axial load cases,
further testing is required. This will be explored in a future test campaign that will be
carried out as part of the VIRTEST-3D project, where multiple off-axis angles will be
considered. As a complement to such physical tests, this work explored the possibility to
also include numerical results, obtained from mesoscale analyses, for the calibration and
validation of the macroscale damage model. Preliminary results from Paper E indicate
possibilities with such an approach, as demonstrated by the application to a 2D-woven
composite material.

There are a number of promising avenues for the further development of the considered
macroscale model. In order to predict the behaviour of large, structural components,
the macroscale model must be able to describe the compressive behaviour of 3D-woven
composites. This would require exploring the way permanent strains, stiffness reducing
mechanisms, rate dependent behaviours and failure take place under compressive loading.
Furthermore, although the current proposed model is considered to be sufficiently detailed
to capture the observed behaviours in the experimental results that are available, its
ability to predict damage and permanent strain growth under multiaxial loading scenarios
remains to be investigated more in detail. In addition, carrying out a test campaign
based on the so called stepwise loading-unloading test with relaxation and retardation
periods, could also provide valuable information to understand how both rate-dependent
and rate-independent constitutive models can be combined to describe the behaviour of
3D-woven composites. Initial testing has also shown that under some loading modes, e.g.
in the Iosipescu shear test, the reinforcement yarns rotate and re-orient themselves. In
the future a model extension to a finite strain setting could be considered to capture such
behaviours.
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