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Abstract
Trip destination prediction is an area of increasing importance in many applications such 
as trip planning, autonomous driving and electric vehicles. Even though this problem could 
be naturally addressed in an online learning paradigm where data is arriving in a sequential 
fashion, the majority of research has rather considered the offline setting. In this paper, 
we present a unified framework for trip destination prediction in an online setting, which 
is suitable for both online training and online prediction. For this purpose, we develop 
two clustering algorithms and integrate them within two online prediction models for this 
problem. We investigate the different configurations of clustering algorithms and predic-
tion models on a real-world dataset. We demonstrate that both the clustering and the entire 
framework yield consistent results compared to the offline setting. Finally, we propose a 
novel regret metric for evaluating the entire online framework in comparison to its offline 
counterpart. This metric makes it possible to relate the source of erroneous predictions to 
either the clustering or the prediction model. Using this metric, we show that the proposed 
methods converge to a probability distribution resembling the true underlying distribution 
with a lower regret than all of the baselines.
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1 Introduction

In today’s society almost all newly produced cars are equipped with some sort of built-in 
navigation system using GPS-based data. Consequently, new research areas have emerged 
in data analytics for transport systems due to the large amount of geospatial data being 
shared over cellular networks. One such area is future route and destination prediction, 
which has been considerably focused on in the last decade. Being able to accurately pre-
dict the future location and/or route of a vehicle has some obvious advantages for indi-
vidual vehicles, e.g., avoiding traffic congestion, estimating travel time and electric range, 
improved personalization and adaptation, etc. For the same reason, it can also be beneficial 
for the Traffic Management Centers (TMC) to better estimate future traffic situations.

Another potential application area for future route and destination prediction is in 
designing energy management systems for hybrid vehicles, i.e., to control the power split 
between the internal combustion engine and the electrical machine. Optimal control of 
hybrid vehicles is a non-trivial task when a trip (or sequence of trips) is exceeding the 
all-electrical range. Several studies have been performed comparing the simple electric 
vehicle/charge sustaining (EV/CS) strategy with blended strategies, i.e., strategies that con-
tinuously blend the energy from the battery and the fuel in such a way that the battery 
is depleted at the very end of a trip. In comparison to EV/CS, such strategies have been 
shown to yield a significant reduction of the fuel consumption, e.g., up to 20% as reported 
in Kum et al. (2010). The main drawback of blended strategies is that they require a pri-
ori information about the trip in order to find the best possible strategy, e.g., destination, 
route, travel time, etc. However, such information is not necessarily available. The authors 
in Larsson et al. (2012) noted that if a trip or route is recognized from a driving history, 
then one can employ a blended strategy for that specific trip. If that is not possible for the 
specific trip, one can always revert to the simple EV/CS strategy. The model they presented 
was able to reduce the fuel consumption by 1.5%, without any a priori information in com-
parison to the EV/CS strategy. In Zeng and Wang (2019), the authors use driving histories 
in order to optimize the EMS and learn a look-up table for the controller parameters based 
on frequently traversed routes. The result is an EMS that consumes only 2.5% more energy 
than the corresponding posterior global optimal result.

Thereby, in this paper, we study prediction of trip destination in different settings. We 
denote the full trip history of an individual user by Xu . An individual trip will be referred 
to as xu(i) , for i = 1,… ,Nu , where Nu is the length of the trip history, i.e. the number of 
trips available for that user. Each trip consists of GPS-coordinates, i.e. the latitude and lon-
gitude pair of the source and destination. Let Xu(i) = {xs

u
(i), xd

u
(i)} , where xs

u
(i) and xd

u
(i) 

represent the source and the destination of trip xu(i) . One can also form Xs
u
 and Xd

u
 , which 

are the concatenation of all sources and destination in the entire trip history of user u. In its 
simplest form, the task can then be specified to predict xd

u
(i) from xs

u
(i) for future trips xu(i).

Trip destination prediction can be considered in an online or an offline setting, which 
are the two very different ways of approaching the task. In the offline setting, one would 
train a model on the full trip history Xs

u
 and Xd

u
 in order to predict all future trips. However, 

in the online setting one does not assume to have access to the full trip history, and instead 
considers the trips arriving in a sequential or incremental fashion. In other words, the pre-
diction of xd

u
(i) from xs

u
(i) is made after having observed all trips Xu(i

�) for i′ < i and once 
the actual trip Xu(i) is observed the model is immediately updated. The problem in this 
setting then becomes to perform as good as possible in comparison to the offline model 
trained on the full trip history.
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As will be discussed in Sect. 2, several previous works study trip destination problem 
from different aspects. However, those studies separate the prediction model from the for-
mation of the prediction space, i.e., the clustering of candidate locations. In particular, the 
clustering is not considered in the evaluation of the final model. In addition, almost all of 
the previous works assume an offline setting where they investigate the model after it has 
been trained on a full dataset.

In this paper, we develop and investigate a unified framework fully suitable for online 
training and prediction. For this purpose, two novel online clustering algorithms are used 
with two different online prediction models, which enable the entire framework to be inves-
tigated in an online setting. The two clustering algorithms are adaptations of an incremen-
tal variant of the DBSCAN clustering algorithm (Ester et al., 1996). Instead of storing all 
previously seen points, the two proposed algorithms store centroids belonging to the differ-
ent clusters as well as the outlier points. The first prediction model is a probabilistic Bayes-
ian model, using sequential updates for its parameters. The second prediction model is an 
adaptation of an expert model, where the set of available experts is dynamic. Both models 
yield a distribution over the possible destinations, which can be compared to the true distri-
bution obtained by the offline model.

The different configurations of clustering algorithm and prediction model are investi-
gated on a real-world dataset. At first, the clustering algorithms are evaluated using super-
vised clustering metrics, where the offline DBSCAN is considered the true clustering. 
Secondly, the entire framework is evaluated using accuracy, which is traditionally used for 
trip destination prediction. It is shown that these configurations yield consistent results to 
the offline model on unseen data. Furthermore, the online framework is evaluated using a 
novel metric based on the Hellinger distance, such that it is possible to relate the source of 
erroneous predictions to either the clustering or the prediction model. From this, one can 
observe that the learning improves as more trips are added.

The rest of the paper is organized as follows. In Sect. 2, we review the related works 
and position our contribution w.r.t. them. In Sect. 3, we introduce and formalize an offline 
methodology to serve as the baseline for the proposed online models. It consists of clus-
tering candidate locations and estimating transition probabilities between the discovered 
locations. Section 4 extends and adapts both the clustering and the prediction model in the 
offline methodology to an online setting, i.e., the case where data arrives sequentially over 
time. In addition, we introduce an evaluation metric to measure the performance of the 
entire pipeline. In Sect. 5, we conduct the experiments and evaluate our proposed models 
on real-world datasets. Finally, in Sect.  6, we conclude the paper and discuss the future 
directions.

2  Related work

To the best of our knowledge, Ashbrook and Starner (2003) is one of the first works on 
the topic of predicting user destination from historical GPS-data. This model can be split 
into two parts: (1) clustering the raw GPS-points into candidate destination, and (2) using 
a Markov model with the candidate locations as states to predict the next destination. This 
methodology, wherein the candidate locations are first found from historical GPS-logs and 
later used in a graphical model (some variants of Markov models) has since been adopted 
by a number of subsequent works (Alvarez-Garcia et al., 2010; Simmons et al., 2006; Pan-
ahandeh, 2017; Zong et al., 2019.
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In Simmons et  al. (2006), a Hidden Markov Model (HMM) is built using the links 
obtained by mapping GPS positions to a map database. For an on-going trip, this model 
can be used to find both the next road link and the next sequence of road links that are most 
likely. In other words, it can be used to predict the most likely future route/destination of 
an on-going trip. In order to make the model independent of a map database, the authors 
in Alvarez-Garcia et al. (2010) suggested to consider support points along traversed routes, 
e.g., intersections that could differentiate between possible destinations. Using the sup-
port points as observable states and the candidate locations as hidden states, an HMM is 
built and used to predict the destination of trips. Other approaches that have been investi-
gated include similarity matching between the current trip and previously stored trips. In 
Laasonen (2005), the authors suggest to predict the route by applying string matching tech-
niques to a database of stored routes. The authors in Froehlich and Krumm (2008) present 
a similarity algorithm to cluster similar trips using hierarchical clustering and then predict 
the most likely route/destination.

A more recent work is Panahandeh (2017), wherein a probabilistic Bayesian model con-
ditioned on the origin and current road link is used to predict the future destination. In 
Epperlein et al. (2018) the authors develop a Bayesian framework to model route patterns, 
and present a model based on Markov chains to probabilistically predict the route/destina-
tion of an ongoing trip. Perhaps the closest related work is Filev et al. (2011), wherein a 
k-nearest neighbors (kNN) model is used to find the most important destinations and a 
Markov chain model is employed for predictions. Both the available destinations and the 
Markov chain transitions are updated in an online setting. However, they are not consider-
ing the clustering method as part of their online framework. Subsequently, their model is 
only evaluated using accuracy on repeat trips, i.e., trips that are never repeated are removed 
in a preproccesing step. They do not use an explicit destination clustering method, their 
online model is simply based on counting, and in their evaluations they use only accuracy.

There are also a significant number of works using slightly different types of data. In 
Davami and Sukthankar (2012), the authors look at two online learning algorithms applied 
to a Bayes net model to predict destinations of users. However, the data that they con-
sider is based on voluntary check-ins from social networking websites. There has also been 
extensive work on public transport and taxi data, e.g., in 2015 the method (Brébisson et al. 
2015) won the ECML/PKDD 15: Taxi Trajectory Prediction on Kaggle. The proposed 
model consists of a clustering model to find candidate locations, followed by a recurrent 
neural network (since it was trained on initial trajectories of trips). The destinations were 
predicted using a weighted average of the softmax output of the different cluster centroids. 
Taxi services have also been phrased as a reinforcement problem, see for example (Gao 
et al. 2018), where the authors use the total profit of a taxi driver as the reward function, 
the location and status of the taxi as the state space, and the choices of operating the taxi 
as the action space. Finally, the authors in Chen and Chehreghani (2018) propose an offline 
trip destination model for public transport based on trip histories in an evaluation set and 
the neighboring user trips.

We also note that there are problem formulations that are similar, or closely related, to 
trip destination prediction. One such example is trip purpose prediction, see, e.g. Ermagun 
et al. (2017), Chen et al. (2010), Xiao et al. (2016), where one tries to predict the purpose 
of a trip, for instance shopping, restaurant, education, etc. Another example is when trip 
destination prediction is used as a sub-problem, e.g., the authors in Vahedian et al. (2017) 
use trip destination prediction of taxi data in order to forecast gathering events. We also 
note that destination prediction in general can be employed by trip planning methods, e.g., 
the methods described in Åkerblom et  al. (2020, 2021) for navigation and in Åkerblom 
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et al. (2021) for bottleneck identification, which propose effective plans for given sources 
and destinations.

All of these works assume that the prediction model is separated from clustering candi-
date locations which represent the prediction space. Thus, they consider the clustering as 
a preprocessing step, and then narrow down the trips that are being considered to only the 
frequent trips. Even in the few cases where the clustering has been mentioned and explored 
explicitly, it has not been reflected in the evaluation of the final model. Furthermore, almost 
all of the previous works assume an offline setting for their model, fully investigating their 
model after it has been trained on a full dataset. In this paper, we develop a unified online 
learning framework that (1) takes into account the creation and evolution of clusters in a 
consistent way, and (2) learns the model and the parameters in an online fashion. For this 
purpose, we propose two novel online clustering algorithms to be used with two different 
online prediction models, and investigate the entire framework in a fully online setting.

3  Offline trip prediction

In this section, we introduce an offline mode for prediction of trip destinations. The offline 
model will serve as the baseline, to which the proposed online model will be compared. 
Our model is adopted from the methodology proposed by Ashbrook and Starner (2003), 
which suggests to first use clustering to find candidate locations and then estimate the tran-
sition probabilities between each of the found locations.

3.1  Clustering

For clustering, we use DBSCAN Ester et al. (1996) which is a simple yet effective den-
sity based method. It does not require to fix the number of clusters in advance and is also 
robust to outliers. It has also been shown to work well on low dimensional data. Since the 
data being considered in this study is 2-dimensional with latitude and longitude features, 
DBSCAN is considered to be appropriate. Furthermore, this method also has the advantage 
of making the clusters easy to interpret in terms of the choice of parameter values. The 
algorithm takes two parameters, � which is the minimum distance between the points to be 
considered inside the same neighborhood, and m which is the minimum number of points 
required inside a neighborhood to form a cluster. Since the trip history Xu consists of GPS-
coordinates, a suitable distance metric is the Haversine distance. The Haversine distance 
(Robusto 1957) between two points, x and y, consisting of latitude and longitude features is 
defined as

Here we have used the short-hand notation:

Ideally, it should not matter whether one chooses to cluster the sources Xs
u
 or Xd

u
 , since 

the end of one trip corresponds to the beginning of another. However, one recurring prob-
lem when working with GPS-data is the initial time it takes for the GPS receiver to acquire 
the satellite signal. This delay is usually in the range between 10 to 60 seconds, but could 

distance(x, y) = 2 arcsin
(√

f1(xlat, ylat) + f2(xlong, ylong)
)

.

f1(x, y) = sin2
(x − y

2

)

, f2(x, y) = cos(x) cos(y) sin2
(x − y

2

)

.
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be as long as a couple of minutes, which makes the source of every trip more uncertain 
than the destination. Thus, it is reasonable to use Xd

u
 to form the clusters and find the can-

didate locations.
Clustering all destinations in Xd

u
 using DBSCAN returns the cluster labels Cd

u
 for the 

destinations, where cd
u
(i) for i = 1… ,Nu is used to denote the label of an individual trip 

destination. Further, let the set of all cluster labels be denoted by Mu = {0,… ,K − 1} , 
i.e. cd

u
(i) ∈ Mu ∪ {−1} , where cd

u
(i) = −1 corresponds to an outlier. One still needs to find 

the corresponding cluster labels of the source of each trip, i.e. Cs
u
 , even though they were 

not used in the clustering procedure. For the reasons already mentioned (robustness of the 
source), one cannot simply assign the source to a cluster if the distance to a dense neigh-
borhood is less than � . Instead, whenever there are two or more clusters, we compute Cs

u
 

according to Algorithm 1, which essentially assigns a cluster label to cs
u
(i) if the closest 

cluster is � times closer than the second closest cluster, and otherwise it is considered an 
outlier.

3.2  Bayesian prediction model

After the clustering procedure, the entire trip history can be represented with the cluster 
labels Cs

u
 and Cd

u
 for the sources and destinations respectively. All the transitions made by 

the user u are cs
u
(i) → cd

u
(i) for i = 1,… ,Nu , where cs

u
(i), cd

u
(i) ∈ Mu ∪ {−1}.

First of all, consider the user-specific distribution of the destination p(cd
u
) , where 

p(cd
u
) = k represents the probability of the destination being k ∈ Mu ∪ {−1} . Next, con-

sider the distributions when the destination is conditioned on the source, i.e. p(cd
u
|cs

u
) . Now, 

p(cd
u
= k|cs

u
= j) with j, k ∈ Mu ∪ {−1} , represents the probability of the destination being 

k given that the trip starts at j.
We assume that the distribution p(cd

u
) and all of the conditional distributions p(cd

u
|cs

u
) 

follow categorical distributions. That is, p(cd
u
) ∼ Cat(K + 1,�) with event probabili-

ties � = (�−1,�0,… ,�K−1) , and p(cd
u
|cs

u
= j) ∼ Cat(K, �j) with event probabilities 

�j = (�j,−1, �j,0,… , �j,K−1) . The event probabilities are interpreted as �k = p(cd
u
= k) 

for p(cd
u
) , as well as �jk = p(cd

u
= k|cs

u
= j) for p(cd

u
|cs

u
) . In the following subsection, we 

describe how to estimate the parameters of � and �j for j = −1, 0… ,K − 1.

3.2.1  Parameter estimation

We adopt a Bayesian approach to estimate the parameters. In this approach, we use a prior 
distribution over � and �j for all j = −1, 0,… ,K − 1 , after which Bayes’ rule can be used 
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to update the posterior distribution. Starting with � , assume that p(�|�) follows a Dirichlet 
distribution with some concentration parameters � = (�−1, �0,… , �K−1) . Using Bayes’ rule, 
the posterior p(�|Cd

u
, �) can then be computed as:

where � ’s are the hyperparameters. The two terms in the numerator, i.e. p(Cd
u
|�) and 

p(�|�) , are often referred to as the likelihood and the prior distribution respectively. On 
the other hand, the denominator p(Cd

u
|�) is the marginal likelihood, or evidence, which 

refers to the distribution once the parameter � has been marginalized out.
Using the fact that the Dirichlet distribution is the conjugate prior to the categorical 

distribution, it holds that p(�|Cd
u
, �) ∼ Dir(K + 1, n + �) , where n = (n−1, n0,… , nK−1) and 

nj is the number of trips ending in j. Essentially, the hyperparameters � can be treated as 
pseudocounts in the model. In other words, the event probabilities � are set to

for j = −1, 0,… ,K − 1.
Estimating �j for j = −1, 0… ,K − 1 follows a similar procedure as when estimating � . 

Given a single value of j, assume that p(�j|�j) follows a Dirichlet distribution with hyper-
parameters �j = (�j,0,… , �j,K−1) . According to Bayes’ rule, the posterior p(�j|C

{j}
u , �j) is 

determined by

where C{j}
u  is used to denote all trips starting in j. Using conjugacy, it holds that 

p(𝜆j|C
{j}
u , 𝛼j) ∼ Dir(K + 1, n̂j + 𝛼i) , where n̂j = (nj,−1, nj,0,… , nj,K−1) and njk is the number 

of trips going from j to k. Therefore, the event probabilities are

and once again �jk can be interpreted as pseudocounts.
We note that setting the hyperparameters to zero in a distribution will yield the maxi-

mum likelihood estimate of the corresponding event probabilities. However, this would 
imply that all the transitions not present in the dataset will have a zero probability of occur-
ring in the model, e.g. �jk = 0 and njk = 0 would result in �jk = p(cd

u
= k|cs

u
= j) = 0.

4  Online trip prediction

In this section, we extend the offline prediction model to an online setting. The trip history 
of a user, Xu , will now arrive sequentially, one trip at a time, which the offline model can-
not handle. The offline clustering requires the entire Xu ’s to find the candidate location, and 
the prediction model requires the cluster labels Cu to estimate the transition probabilities. 

p(�|Cd
u
, �) =

p(Cd
u
|�)p(�|�)

p(Cd
u
|�)

,

�j =
nj + �j

∑

j nj + �j

p(�j|C
{j}
u
, �j) =

p(C
{j}
u |�j)p(�j|�j)

p(C
{j}
u |�j)

,

�jk =
njk + �jk

∑

j njk + �jk
,
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Thus, to make the entire pipeline online, both the clustering and the prediction model have 
to be adapted appropriately.

The proposed online framework is shown in Fig. 1. For each new trip, we use the clus-
tering model to find the cluster of the source (starting point) of the trip. The output from 
the clustering is then used to predict the destination using the prediction model. Next, the 
actual destination is observed after the trip takes place and is used to update both the clus-
tering and the prediction model (and their parameters). Finally, the predicted destination 
is evaluated in comparison to the actual destination. Therefore, the framework consists of 
three main components: (i) prediction, (ii) learning, and (iii) evaluation. These steps are 
then repeated for every new trip that is observed.

4.1  Online clustering

Online variants of different clustering algorithms have already been proposed in the litera-
ture, e.g. an incremental variant of DBSCAN is proposed in Ester and Wittmann (1998). 
Inspired by this incremental adaptation of DBSCAN, we propose two different variants 
of a DBSCAN to cluster the points online. The main difference is that instead of storing 
the core points, these variants store core centroids and keep track of the number of points 
within a specified radius. Both variants take the same parameters as the original DBSCAN 
algorithm, i.e. m and � , representing the minimum number of points in a cluster and the 
minimum distance threshold respectively.

For every new point xd
u
(i) that arrives, the point is clustered and cd

u
(i) is obtained as a 

result of the clustering. In order to determine cs
u
(i) , we employ the same approach as in the 

offline setting. That is, in order to assign a label, the closest cluster has to be at least � times 
closer than the second closest one, and otherwise it is considered an outlier.

4.1.1  Online DBSCAN 1

The first variant presented in Algorithm 2 takes an additional parameter r, which is used 
to determine the radii of the centroids that are stored. When r → 0 , the centroids will natu-
rally become points, in which case the method will behave as the incremental adaptation of 

Fig. 1  An overview of the proposed online framework, which includes a clustering and a prediction model, 
both updated incrementally. It is organized in three components: (i) prediction, (ii) learning, and (iii) evalu-
ation
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DBSCAN in Ester and Wittmann (1998). The centroids are stored as (cq, nq, lq) , where the 
elements are the centroid itself, the number of points it contains, and the cluster label of the 
centroid respectively. All non-clustered points are stored as (xs, ns, ts) , where the elements 
are the point itself, the number of neighbors, and the timestamp of the point respectively.

Whenever a new point arrives, at first, we check for neighboring points and add the new 
point as a neighbor to the existing points (line 1-4). Now, if the closest centroid contains 
the point, then the new point is simply added to the existing centroid (line 5-7). Otherwise, 
the number of neighbors of the new point is computed, after which the new point is added 
to the non-clustered points (line 9–12).

Next, the function CheckForNewCentroids(Px ∪ {px}) looks at all non-clustered points 
in Px as well as the possible new point px and finds the points that should be upgraded to a 
centroid (line 14). This is the case for all points where ns ≥ m − 1 . Depending on whether 
the neighbors are part of an existing centroid or not, three different scenarios can occur: 

1. Only neighbors in P: Add the centroid to a new cluster.
2. Neighbors in a single cluster: Add the centroid to the existing cluster.
3. Neighbors in multiple clusters: Merge the existing clusters and add the centroid to the 

resultant cluster.

Finally, all the points that are too old according to the function DeleteOldPoints(t) are 
removed from P (line 15). This function is elaborated further in the experiments section.

4.1.2  Online DBSCAN 2

The second variant, shown in Algorithm 3, does not have any additional parameters and the 
stored elements are slightly different. All non-clustered points are still stored as (xs, ns, ts) . 
However, the centroids are now stored as (ck, nk, �k) , where the first two elements are still 
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the centroid and the number of points it contains, but the third element is now the centroid 
radius. In this variant, there will be only a single centroid for each cluster, but the cen-
troid will continuously grow when new points are encountered, i.e. the individual centroid 
radius will increase. In this way, this variant is rather similar to the K-means clustering.

Many of the steps of this algorithm are identical to Algorithm  2. The main differ-
ence is the individual radius of each centroid, �k , which makes a difference when com-
puting the closest cluster (line 5). The only additional change is that the function 
CheckForNewCentroids has been replaced by UpdateClusters (line 14). This function plays 
a similar role and looks at all non-clustered points in Px and finds the points that can be 
used to update the centroids, i.e. those with ns ≥ m − 1 . Once again, depending on whether 
the neighbors are part of an existing centroid or not, three different scenarios can occur: 

1. Only neighbors in P: Create a new cluster.
2. Neighbors in a single centroid: Update the existing centroid, i.e. the radius �k , to contain 

the point.
3. Neighbors in multiple centroids: Merge the existing centroids, i.e. update the centroid 

ck and radius �k to cover all of the previous centroids as well as the new point.

4.2  Bayesian model

We adapt the offline prediction model to the online setting. The difference is that the set 
of all cluster labels now can change with every new trip that is observed, i.e. Mu has to be 
replaced with Mu(i) . Here, Mu(i) represents the set of all cluster labels at timestep i, i.e. 
after trip xu(i) as well as all previous trips have been observed. This renders the distribu-
tions to be time dependent and dynamic.

Consider the distribution of the destination, pi(cdu) , where pi(cdu = k) represents 
the probability of the destination being k ∈ Mu(i) ∪ {−1} at timestep i. Assume it fol-
lows a categorical distribution, i.e. pi(cdu) ∼ Cat(K(i) + 1,�(i)) , where both the event 
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probabilities �(i) and the number of possible cluster labels K(i) depend on i in this set-
ting. These event probabilities are still interpreted as �k(i) = pi(c

d
u
= k).

Similarly, conditioning the destination on the source, pi(c
d
u
|cs

u
) , where 

pi(c
d
u
= k|cs

u
= j) with j, k ∈ Mu(i) ∪ {−1} represents the probability of the destination 

being k given that the trip starts at j at timestep i. Assume that this follows a categori-
cal distribution, i.e. pi(cdu|c

s
u
) ∼ Cat(K(i) + 1, �j(i)) , with the number of possible clusters 

K(i) and event probabilities �j(i) . The event probabilities are once again interpreted as 
�jk(i) = pi(c

d
u
= k|cs

u
= j).

4.2.1  Parameter estimation

In this setting, we can still update the posterior distribution of �(i) and �j(i) using Bayes’ 
rule. However, here we employ sequential Bayesian updating, which works by letting the 
prior distribution in each timestep be the posterior distribution of the previous timestep. In 
detail, looking at �(i) , the update rule can be written as

where [i] is used to denote trip i and all previous trips, whereas (i) is used to denote the 
specific trip i.

There is one problem with this formulation, however, since �(i + 1) and �(i) do 
not necessarily have the same number of classes/clusters. This means that the prior 
p(�(i) | Cd

u
[i], �) needs to be changed to the following

where �̂�(i) should be computed from �(i) . This is feasible, since the clustering algorithms 
in Algorithm 2 and Algorithm 3 return the updates from the clustering when creating new 
centroids. This leads to the following scenarios for �̂�(i):

• New cluster label, k̂ : �̂�k(i) = 𝛬k(i) for all k ∈ Mu(i) ∪ {−1} and �̂�k̂(i) = 𝛽k̂ is initialized,
• Single cluster: �̂�k(i) = 𝛬k(i) for all k,
• Merged cluster labels, k̂ ∈ K̂ : �̂�k(i) = 𝛬k(i) for all k ∈ (Mu(i) ∪ {−1}) ⧵ K̂ and 

�̂�k̃(i) =
∑

k̂ 𝛬k̂(i) is initialized accordingly.

Thus, the final update is written as

Since the Dirichlet distribution is conjugate prior to the Categorical distribu-
tion, it holds that p(�(i + 1)|Cd

u
[i + 1], �) ∼ Dir(K(i + 1) + 1, n(i + 1) + �) , where 

n(i + 1) = (n−1(i + 1), n0(i + 1),… , nK(i+1)−1(i + 1)) and nj(i + 1) is the number of trips in 
Cd
u
[i + 1] ending in j up until timestep i + 1.
A similar approach can be performed for the conditional distributions with �j(i) . One 

will then end up with the update rule

p(�(i + 1) | Cd
u
[i + 1], �)

=
pi(c

d
u
(i + 1) | �(i), �,Cd

u
[i])p(�(i) | Cd

u
[i], �)

p(cd
u
(i + 1) | �,Cd

u
[i])

,

p̂(𝛬(i) | Cd
u
[i], 𝛽) ∼ Dir(K(i + 1) + 1, �̂�(i)),

p(𝛬(i + 1) | Cd
u
[i + 1], 𝛽)

=
pi(c

d
u
(i + 1) | 𝛬(i), 𝛽,Cd

u
[i])p̂(𝛬(i) | Cd

u
[i], 𝛽))

p(cd
u
(i + 1) | 𝛽,Cd

u
[i])

,
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where the notation C{j}
u  is once again used to denote all the trips starting in j. Again, it 

holds that p(𝜆j(i + 1)|C
{j}
u [i + 1], 𝛼j) ∼ Dir(K(i + 1) + 1, n̂j(t + 1) + 𝛼j) due to conjugacy, 

where n̂j(t + 1) = (nj,−1(i + 1), nj,0(i + 1),… , nj,K(i+1)−1(i + 1)) and njk(i + 1) is the number 
of transitions from j to k up until timestep i + 1 . Finally, setting �jk = 0 would result in the 
maximum likelihood estimate of the parameters.

4.3  Expert model

Another option for the prediction model in the online framework is to use an expert model, 
as presented in Cesa-Bianchi and Lugosi (2006). An expert model requires a set of experts 
and a reward function. In our case, the action set corresponds to the set of possible destina-
tions and the reward is 1 if an expert makes the correct prediction, and 0 otherwise. More 
precisely, expert models, or learning with expert advice, is an online learning approach 
where the rewards in each timestep are known for all available actions. In this section, we 
adapt this approach to our trip destination problem, where we address several issues such 
as a dynamic action set.

Kleinberg et al. (2010) present an algorithm called Follow the Awake Leader (FTAL), 
which considers the expert setting with a dynamic set of available actions at every timestep. 
It introduces the concept of sleeping experts, which means that the experts are allowed to 
sleep for some periods of time, i.e. they are not available at those specific time periods. 
With some modifications we adapt it to our setup. We consider the following assumptions: 

1. There is an infinite number of sleeping experts,
2. Once an expert wakes up, it will stay awake.
3. Experts can merge.

The modified algorithm is described in Algorithm  4, where the action set Ai would 
correspond to our cluster space Mu(i) ∪ {−1} and the different experts are the possible 
k ∈ Mu(i) ∪ {−1} options. For each new trip, the actions played previously are first put in 
a set A (line 3). If A is empty, then a random expert is played, and otherwise the expert 
with the highest average reward is selected (line 4-6). The rewards are obtained for all 
available actions, and the stored parameters are updated (line 9–11). Finally, the function 
UpdateActionSet(Ai−1) is used to update the set of available actions. However, since Ai 
would correspond to our state space Mu(i) , it is obtained as a result of the clustering.

p(𝜆j(i + 1) | C{j}
u
[i + 1], 𝛼j)

=
pi(C

{j}
u (i + 1) | 𝜆j(i), 𝛼j,C

{j}
u [i])p̂(𝜆j(i) | C

{j}
u [i], 𝛼j))

p(C
{j}
u (i + 1) | 𝛼j,C

{j}
u [i])

,
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In this setup, each expert suggests performing a single specific action all the time, i.e. 
expert k would always predict k.

Similar to the Bayesian model, there will be one expert model that considers all trips, 
as well as one expert model conditioned on each of the starting locations. In fact, the main 
difference between these prediction models is the way that a destination is selected. In 
the Bayesian approach, the average is taken over the total number of trips, whereas in the 
expert model it is instead taken over the number of trips for which the destination has been 
available. One advantage that this approach have over the Bayesian approach is one can 
experiment with the definition of the rewards without changing the model itself. It is also 
common for expert models to be accompanied with a regret bound, which is provided in 
Kleinberg et al. (2010) for FTAL. On the other hand, with the Bayesian approach it is pos-
sible to define priors if one has access to prior information. There is also an intuitive way to 
include uncertainty in the predictions.

4.4  Regret analysis

A common way to investigate the performance of online learning methods is to look at the 
regret of the model as a function of the number of trips used for training. Here, we define 
the regret in comparison to the offline model being trained on the entire trip history, and 
then evaluated on the very same data. Let p∗ be the true discrete distribution conditioned 
on the source locations, and let pi be the corresponding predicted distribution at timestep i. 
The squared Hellinger distance Nikulin (2001) between the true and the predicted distribu-
tion can then be defined as

However, this formulation assumes that both distributions are defined on the same prob-
ability space X  , which does not necessarily hold in our case.

Let pi be defined on X
′
i
 and p∗ on X  and assume that there is a surjec-

tive function f ∶ X → X
�
i
 , i.e. ∀x� ∈ X

�
i
,∃x ∈ X  such that f (x) = x� . Further, let 

H2(p∗, pi) =
1

2

�

x∈X

�

√

p∗(x) −
√

pi(x)
�2

.
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f c(x) = |{x� ∈ X|f (x�) = f (x)}| denote the number of elements x� ∈ X  such that f (x�) = f (x) , 
i.e. the number of elements in X  that maps to f (x) ∈ X

�
i
 . Then, one way to define the squared 

Hellinger distance between p∗ and pi is:

where the probability pi(x�) is split equally amongst all p∗(x) where f (x) = x� . The first sum 
can be rewritten to yield the following formulation:

We consider this formulation from this point forward.
We split the metric into two sub-errors, H2

d
(p∗, pi) and H2

s
(p∗, pi) , representing the distribu-

tional error and state-space error respectively. First of all, let us define the distributional error:

which essentially implies that pi(x�) should be equal to the sum of p∗(x) for all x ∈ X  such 
that f (x) = x� . The state-space error can then be implicitly defined as

Note that this is only properly defined if H2(p∗, pi) ≥ H2
d
(p∗, pi) , which is not trivially true 

for the parts of the sum where f c(x) > 1 . However, the following theorem shows that this 
indeed holds.

Theorem 1 Given that 

1. p = [p1,… , pk] is the true distribution over a subset of k different states,
2. q = [q∕k,… , q∕k] is the predicted distribution over the same k states

then H2(p, q) ≥ H2
d
(p, q).

Proof The overall squared Hellinger distance for these states are:

H2(p∗, pi) ∶=
1

2

�

x ∈ X,

f c(x) > 0

⎛

⎜

⎜

⎝

√

p∗(x) −

�

pi(f (x))

f c(x)

⎞

⎟

⎟

⎠

2

+
1

2

�

x ∈ X,

f c(x) = 0

p∗(x),

H2(p∗, pi) ∶=
1

2

�

x�∈X�
i

�

x ∈ X,

f (x) = x�

⎛

⎜

⎜

⎝

√

p∗(x) −

�

pi(x
�)

f c(x)

⎞

⎟

⎟

⎠

2

+
1

2

�

x ∈ X,

f c(x) = 0

p∗(x).

H2
d
(p∗, pi) ∶=

1

2

�

x�∈X�
i

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�

�

�

�

�

�

�

x ∈ X,

f (x) = x�

p∗(x) −

�

pi(x
�)

f c(x)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

,

H2
s
(p∗, pi) ∶= H2(p∗, pi) − H2

d
(p∗, pi).
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The distribution error can be written as:

Now, we show from Eqs. 1 and 2 that H2(p, q) ≥ H2
d
(p, q) , i.e. after some simplifications 

we show that:

The left hand side of the last inequality can be rewritten as

and the right hand side can be written as

Looking only at the first terms in these expression, one notices that it is a scaled down form 
of the original problem. Thus, if we can show that

we have proven the claim. This inequality can be simplified accordingly:

(1)

H2(p, q) =
1

2

k
�

j=1

(
√

pj −
√

q∕k)2

=
1

2

k
�

j=1

�

pj +
q

k

�

−

k
�

j=1

�

pjq

k
.

(2)
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d
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2

⎛

⎜
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⎝

�

�

�

�

k
�
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√
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⎟

⎟

⎠

2

=
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−
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√
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∑
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where the last inequality is trivially true. Thus, we concluded that H2(p, q) ≥ H2
d
(p, q) .  

 ◻

Thus, the Hellinger regret can finally be defined as

i.e. the cumulative squared Hellinger distance.

5  Experiments

In this section, we investigate and evaluate the online trip prediction framework, i.e. both 
the clustering technique and the prediction model, on a real-world dataset of private vehi-
cle trip histories. The clustering is mainly evaluated using the well known cluster metrics, 
in order to understand how the clusters of the online clustering evolve as more trips are 
observed. The online prediction models, and the full online framework, are instead evalu-
ated in comparison to the offline pipeline using the accuracy on a held out test set. Further-
more, they are evaluated using a novel regret metric based on the Hellinger distance, which 
evaluates the similarity between the predicted and the true distribution of destinations.

5.1  Data

In this paper, we use the real-world data collected in Karlsson (2013). It consists of over 
700 GPS-tracked vehicles, or devices, registered either in the county of Västra Götaland 
or in Kungsbacka municipality. These are located in the south-western part of Sweden and 
include Gothenburg, which is the second largest city of the country.

A dataset consisting of trips for each of the vehicles is extracted from the original GPS-
logs. This was done by defining the end of a trip as the loss of GPS fixation, i.e., when the 
vehicle has been turned off. In addition, a vehicle speed of less than 0.1 km/h for 10 min 
was also used to signify the end of a trip. Finally, two consecutive trips have been merged 
if the time between them is less than 10 s.

In order to be somewhat consistent with the data processing performed in similar works 
Ashbrook and Starner (2003), Alvarez-Garcia et al. (2010), Zong et al. (2019), we perform 
additional filtering to the data provided in Karlsson (2013): 

pi +

k
�

j=1,j≠i

2
√

pipj ≤

k
�

j=1,j≠i

pj + kpi ⟺

k
�

j=1,j≠i

(pi + pj − 2
√

pipj) ≥ 0 ⟺

k
�

j=1,j≠i

(
√

pj −
√

pi)
2 ≥ 0

regret(i) ∶=
∑

i�≤i

H2(p∗, pi� )

=
∑

i�≤i

H2
d
(p∗, pi� ) + H2

s
(p∗, pi� ),
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1 Trips being shorter than 100 meters, or less than 4 min, are discarded.
2 Vehicles with a trip history shorter than 30 days, or with a frequency of less than 1 trip 

per day, are discarded (guarantees at least 30 distinct trips per user).

After the preprocessing, about 55% out of the original trips and 66% out of the vehicles 
remain (74,453 out of 134,756, and 473 out of 716, respectively). The remaining trip desti-
nations can be seen in Fig. 2, which shows the power-law normalization of the values of a 
Gaussian kernel density estimation after they have been linearly mapped to the range [0, 1].

We observe that the majority of the trips end in the south-western part of Sweden, i.e., 
where the vehicles are also registered. Furthermore, in Fig.  3 the average distance and 
duration of the remaining trips are shown for each of the users. Across all users, the aver-
age length of a trip is 15.57 km and the average duration is 17.05 min. In this data, 413 
unique private vehicles are studied. Each of these vehicles corresponds to one separate case 
study, which means that we effectively study 413 different cases. For this type of data this 

Fig. 2  Gaussian kernel density (followed by a power-law normalization of its linear mapping to the 0–1 
range) of trip destinations for all vehicles in Karlsson (2013) after preprocessing
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is substantial, since most of the existing public datasets are not private vehicle driving his-
tories, but correspond to taxis, public transport, etc.

5.2  Clustering

By clustering the entire dataset with DBSCAN using the parameters � = 100 m and m = 2 , 
one can interpret each cluster as a location that the user has visited at least two times. 
Fig. 4 illustrates the number of clusters and the percentage of trips ending in a cluster for 
all the users in the dataset. On average, the number of found clusters, i.e. K, is 15.5 and 
75.4% of users trips end in this set of clusters.

The same experiment is performed using the two variants of the online clustering 
algorithm. Figures 5 and 6 show the results for variant 1 and variant 2 respectively. The 
parameters m and � are the same as for the offline clustering. The additional parameter r in 
variant 1 is set to 1/2, and the function DeleteOldPoints(t) is adjusted to remove the points 
older than 28 days in both variants. Other combinations of the additional parameters were 
tested, but the results are robust to the changes, and they are not affected much unless the 

Fig. 3  Average distance (left) and average duration (right) of the trips considered in the dataset

Fig. 4  Offline clustering: Number of clusters found (left) and the percentage of trips ending in a cluster 
(right) for the different users in the dataset
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parameters are modified drastically. The average number of clusters found and trips ending 
in the set of clusters is 13.6 and 64.1% for variant 1 and 13.2 and 64.7% for variant 2.

Looking at the difference between the offline and online clustering methods, we 
notice that the number of clusters as well as the percentage of trips ending in a cluster 
appear to have dropped, although this can be anticipated. The number of clusters are 
affected by the fact that non-clustered points are only kept for a given number of days. 
Furthermore, by storing the clusters as centroids, the possibility of merging two nearby 
clusters increases. The percentage of trips ending in a cluster is affected by the number 
of clusters, but perhaps even more by the fact that the assignment of labels is done in 
an online way. In other words, the first time a place is visited it cannot yet be labeled as 
a candidate location and will at that point in time be considered an outlier. This means 
that the first point to appear where a cluster is going to be formed will never be counted.

Another way that one can evaluate the online clustering algorithms is to look at the 
evolution of the rand score, mutual information, and v-measure score (Hubert and Ara-
bie 1985; Vinh et al. 2010; Rosenberg and Hirschberg  2007). All these metrics compare 
the predicted cluster labels of each trip with the true labels and yield a score that is 
upper limited by 1, where a score of 1 indicates a perfect match. The true labels in this 

Fig. 5  Online clustering—V1: Number of clusters found (left) and the percentage of trips ending in a clus-
ter (right) for the different users in the dataset

Fig. 6  Online clustering—V2: Number of clusters found (left) and the percentage of trips ending in a clus-
ter (right) for the different users in the dataset
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comparison are those obtained from the offline clustering algorithm, when run on the 
full dataset, i.e. on all available trips for each user.

In Figs. 7 and 8, one can see the performance using these metrics for the two variants 
of the online clustering algorithms. In general, we observe that the average of all metrics 
appears to increase as more trips are processed, as expected. Once again, it is important 
to emphasize that the cluster labels of the online clustering algorithms are produced in an 
online manner.

Another interesting aspect is the similarity between the true clusters and those found 
by the online clustering algorithms after considering the full trip history. This can be done 
by computing the labels of the online clustering algorithm after it has been trained on the 
full trip history. The histogram in Fig. 9 shows the difference between the two clustering 
variants. Using the same metrics, one can see that the clusters obtained from the first vari-
ant are more similar to the true ones, since the first variant consistently yields higherscores 
than the second variant.

On average, the first variant yields the scores [0.953, 0.947, 0.963] for the mutual infor-
mation, rand score and v-measure score, respectively. The second variant gives the aver-
age scores [0.931, 0.925, 0.945]. Thus, it seems that on average the clusters that are found 
by the first variant are more similar to the true clusters than the second variant, albeit only 
slightly. Interestingly, if one instead looks at the minimum values, i.e. the worst perfor-
mance amongst the different users, the first variant gives [0.835, 0.739, 0.869], whereas 
the second variant yields [0.631, 0.452, 0.687]. Thus, in the worst case scenario, the clus-
ters obtained from the first variant appears to be more stable as well. This could partly 

Fig. 7  Evolution of the mutual information, the rand score and the v-measure score using the first variant of 
the online clustering algorithm

Fig. 8  Evolution of the mutual information, the rand score and the v-measure score using the second variant 
of the online clustering algorithm
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be attributed to the fact that the first Variant has the possibility to shape the clusters as a 
union of centroids, i.e., they are not necessarily circular.

5.3  Evaluation of the entire framework

To investigate the full framework, the first 80% of each users’ trip history is used to cre-
ate a training set, leaving the rest for testing. A clustering algorithm is run to produce Cs

u
 

and Cd
u
 for the training set, and the transitions are used to estimate the parameters of the 

distributions.

5.3.1  Offline setting

If the starting location is an outlier, i.e. cs
u
= −1 , the distribution p(cd

u
) is used to predict the 

destination by k∗ = argmaxk∈Mu
p(cd

u
= k) . If cs

u
 is not an outlier, i.e. cs

u
= j where j ∈ Mu , 

the prediction is done as k∗ = argmaxk∈Mu
p(cd

u
= k | cs

u
= j) . In other words, the prediction 

always corresponds to the cluster with the highest probability, excluding the outliers.
By evaluating the accuracy of the predictions, we find that out of all trips, the pro-

posed model is able to predict the next destination in 36.15% of the cases on average. 
Looking only at the trips that end in one of the clusters, i.e. those that can actually be 
predicted, the accuracy increases to 56.22% on average. The distributions of the accu-
racy over the different users in both cases are displayed in Fig. 10.

Fig. 9  Comparison of the clusters obtained from the two clustering variants after considering the full trip 
history

Fig. 10  Offline setting: Prediction accuracy of the different users if considering all trips (left) and only trips 
ending in candidate locations (right)
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5.3.2  Online setting

We evaluate the online setting, including both the clustering and the prediction model, on 
the same data as in the offline case, i.e. when testing on the last 20% of each users trip 
history. This yields similar results to the offline setting. For the Bayesian model the pre-
diction is always made as the cluster with the highest probability, excluding the outliers. 
The source, cs

u
(i) , is predicted using Algorithm 1 with � = 2 . If the source cs

u
(i) = −1 , i.e. 

it is an outlier, the distribution of pi(cdu) is used to predict k∗ = argmaxk∈Mu(i)
pi(c

d
u
= k) . 

Instead, if cs
u
(i) is not an outlier, i.e. cs

u
(i) = j with j ∈ Mu(i) , the prediction is made accord-

ing to k∗ = argmaxk∈Mu(i)
pi(c

d
u
= k | cs

u
= j) . Similarly, the expert model also excludes out-

liers in the prediction, by not considering the outliers in the set of available actions when 
selecting an expert. The expert model corresponding to pi(cdu) is used when cs

u
(i) = −1 , and 

the models conditioned on the starting locations are used otherwise.
In Fig. 11, the distribution of the accuracy is shown for both prediction models, as well 

as the two clustering variants. In general, upon visual inspection the different configura-
tions appear to perform equally well. Furthermore, the accuracy for all trips, as well as for 
the subset of trips ending in a candidate location, look similar to the histograms presented 
for the offline setting. The Bayesian model using the first clustering variant has an average 
accuracy of 37.51% and 56.05% for all trips and trips ending in candidate locations, respec-
tively. Instead, using the Bayesian model with the second clustering variant one obtains 
38.26% and 56.12% for the two cases. Finally, using the expert prediction model yields 
37.22% and 55.61% with the first clustering variant, and 38.05% and 55.84% with the sec-
ond clustering variant. Regardless of prediction configuration, these results are comparable 
to the offline version, with only minor deviations.

5.3.3  Regret

The regret for several clusters with a large number of trips is shown in Fig. 12 for both the 
Bayesian model and the Expert algorithm using the two clustering variants. The regret is 
split into the state-space error and the distribution error. For comparison, we consider three 
baselines:

• Baseline, where we only use the distribution of p(cd
u
) , i.e. never conditioning on the 

source of a trip.

Fig. 11  Online setting: prediction accuracy of the different users if considering all trips (left) and only trips 
ending in candidate locations (right) for the proposed online prediction models
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• ExpWeights, which is the exponential weights algorithm Cesa-Bianchi and Lugosi 
(2006).

• Greedy, that is a greedy variant of the Bayesian model, i.e. we select the most likely 
options with 100% confidence.

It is worth to emphasize that no established baseline exists for this specific problem set-
ting. The baselines that do exist for trip destination prediction do not consider online 
learning, or even the creation of the state space (clusters), in their model. Looking at 
these three examples, we observe that the Bayesian model and the expert algorithm out-
perform the alternative methods.

We also observe the impact of the online clustering variant on the performance. In 
the first example (device 298, cluster 2) the second clustering variant helps to decrease 
the distribution error, without increasing the state-space error. The reason is that this 
variant assigns most of the early trips to the different clusters, since the clusters gen-
erated by this variant cover a larger area. However, this could also be a disadvantage, 
which is the case for the last example (device 948, cluster 2). In this example, two clus-
ters are merged, which punishes the state-space error heavily. In general, most cases 

Fig. 12  Hellinger regret for the Bayesian method and the expert algorithm, compared to three baselines: 
Non-conditioned distribution, Exponential Weights algorithm, and a Greedy algorithm
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behave similar to the second example (device 685, cluster 1), where the two clustering 
variants yield a similar performance.

Lastly, in Fig. 12 we also observe a sub linear behaviour for the complete error in all the 
three examples, which indicates that learning improves over time. This is true for essen-
tially all examples of devices/clusters that have a sufficient trip history. As an example, in 
Fig. 13 one can see the Hellinger regret for the Bayesian model with the first clustering var-
iant for all devices/clusters with 41-100 trips. The sub linearity can clearly be observed for 
all examples. Such a behavior is usually expected from a proper online learning paradigm.

6  Conclusion

In this work, we developed a unified online framework for trip destination prediction con-
sisting of (1) clustering and (2) prediction model. The online prediction models are generic 
and can easily be adapted to other offline or online prediction models in the Bayesian set-
tings that has been studied, e.g., conditioned on additional attributes.

Firstly, we proposed two novel online clustering algorithms and two different online 
prediction models. The clustering algorithms are online adaptation of the offline DBSCAN 
method, where the clusters are stored as centroids. The first prediction models is an online 
adaptation of a Bayesian model conditioned on the starting position, whereas the second 
option is an adaption of an expert algorithm.

Secondly, we evaluated the online clustering algorithms and the full online framework 
on a real world trip dataset. The clustering methods were shown to find the most important 
clusters of the offline solution. We also demonstrated that the full framework yields con-
sistent results with the offline model on unseen data.

Finally, we introduced a new evaluation metric suitable for the online framework. This 
metric is able to distinguish between distributional error and state-space error, i.e., to dis-
tinguish between the clustering and prediction errors. With sufficient trip histories we were 
able to show that the proposed methods converge to a probability distribution resembling 
the true underlying distribution with a lower regret compared to the baselines.

Fig. 13  Hellinger regret for the Bayesian model with the first clustering variant
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Future work will consist of adding side information to the prediction models, such as 
time of day, month of year, weather, calendar information, etc. Perhaps the simplest way 
to accomplish this is to condition the models on the additional attributes. Another future 
extension is to investigate mixture of offline and online models and study how the per-
formance improves if we already have an initial set of trips and a model trained based 
on them. Finally, since the clusters represent the geographical locations, then it would be 
interesting to investigate a hierarchical variant of DBSCAN or other hierarchical clustering 
methods (Chehreghani, 2021; Chehreghani et al. 2008) in order ro take the cluster proximi-
ties into account.
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