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a b s t r a c t

In this paper LQG control over unreliable communication links is derived. That is to say, the
communication channels between the controller and the actuators and between the sensors and
the controller are unreliable. This is of growing importance as networked control systems and use
of wireless communication in control are becoming increasingly common. The problem of how to
optimize LQG control in this case is examined in the situation where communication between the
components is done with acknowledgments. Previous solutions to finite horizon discrete time hold-
input LQG control for this case do not fully utilize the available information. Here a new solution is
presented which resolves this limitation. The solution is linear and covers communication channels
subject to both packet losses and delays. The new control scheme is compared with previous solutions
for LQG control in simulations, which demonstrates that a significant improvement in the cost can be
achieved by fully utilizing the available information.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The use of wireless communication between sensors, actuators
nd controllers can create large savings by avoiding costly wiring
nd hardware. Depending on locations and external conditions,
owever, it can be difficult to ensure reliable communication. This
aises numerous issues for control and estimation, as discussed
n Hespanha, Naghshtabrizi, and Xu (2007).

LQG control (optimized state feedback control for linear sys-
ems with Gaussian disturbance and quadratic cost) generally
sed in conjunction with Kalman filters, is a well established
ethod applicable to MIMO systems (Kwakernaak & Sivan, 1972).

t was introduced already in the sixties and remains one of
he most implemented type of controllers. Consequently, it is
mportant to examine how to determine an LQG controller when
ommunication channels are unreliable.
When dealing with LQ control over unreliable links there are

everal different aspects to consider (see Table 1), each implying
ifferent solutions.
First of all there are two basic ways a channel can be unre-

iable, one being packet drops and the other packet delays. LQG
ontrol in the case of packet losses has been examined in Hadji-
ostis and Touri (2002), Imer, Yüksel, and Basar (2006), Moayedi,

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Bert
Tanner under the direction of Editor Christos G. Cassandras.
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Table 1
LQG control over unreliable links — problem formulations (cases covered here
in white).

Type Packet loss Packet delays

Control Finite horizon Infinite horizon
Strategy Zero-input Hold input
Signal No acknowledgments (UDP) Acknowledgments (TCP)

Foo, and Soh (2010) and Schenato, Sinopoli, Franceschetti, Poolla,
and Sastry (2007). Then the cost can be over a finite or infi-
nite time horizon. Infinite horizon LQG control for the delayed
case has been examined in Lincoln and Bernhardsson (2000)
and Shousong and Qixin (2003), where it is shown that the
optimal solution will not only depend on the states but also on
the previous control signals. In Lincoln and Bernhardsson (2000)
and Wang et al. (2018) infinite horizon control for the case of
a system with both random time delays and packet dropouts is
investigated. However, no explicit way to derive the solution is
presented. In Liang, Xu, and Zhang (2016) and Ma, Qi, and Zhang
(2017) finite horizon LQ control is examined for the case of packet
losses and constant delays.

When there is an unreliable channel between the controller
and the actuator this means that the latest signal sent might
not yet have arrived when the actuator needs to execute a new
control action. When this occurs there are two basic strategies
the actuator can adopt (Schenato, 2009; Yu & Fu, 2013). One is
to apply the last input received until a more recent one arrives,
which is known as hold-input. In the other one, the input is set
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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o zero if the latest control signal sent is delayed or lost, which
s known as zero-input. Zero-input treats delayed and lost signals
he same way and optimizing control for such systems has been
erived in Imer et al. (2006). A third alternative is to at each time
nstant send a series of signals together with a specification when
hey should be applied, assuming no later signal has arrived (Fis-
her, Hekler, Dolgov, & Hanebeck, 2013; Moayedi, Foo, & Soh,
011). Although this has obvious potential advantages it implies
ncreased communication with a consequent risk of additional
elays.
Finally, there are two basic types of unreliable communication

inks. In one the sender does not know if the sent packet has
rrived, which is known as the UDP-like case. In the other one
here is a system of acknowledgment that ensures that the sender
nows if the sent packet has arrived. This is referred to as the TCP-
ike case. As indicated in Table 1, we will focus on the TCP-like
ase, designing a hold-input control strategy for a system subject
o a random unbounded delay and to packet losses. Furthermore,
e will assume the acknowledgments arrive without losses or
elays. This may seem contradictory, but uplink and downlink
ommunication are often handled differently and at different
ates.

Most previous works have focused on infinite horizon control,
hough without presenting an explicit solution, see Lincoln and
ernhardsson (2000) and Wang et al. (2018). Finite horizon and
variant of zero-input has been examined in a recent work
roposing a solution where the channels are modeled as Markov
hains (Xu, Gu, Tang, & Qian, 2022). As a consequence, though,
he complexity grows exponentially with the number of delays,
hus requiring a bound on the delays. To be optimal the method is
lso non-causal in the sense that the controller must at each time
now the delay on beforehand. We will also focus on finite hori-
on control, but for hold-input, and present an explicit solution
ully utilizing all available information and taking into account
ll interdependencies. A similar case was examined in Bengtsson,
assibi, and Wik (2016), but only for a specific probability func-
ion for the delay. Moreover, the knowledge whether the sent
acket has arrived or not was then only used to facilitate the
stimation of the states. Here, this knowledge is also used to op-
imize the control scheme, yielding a truly optimal solution. This
ptimality, though, comes at the price of increased complexity of
he solution and increased computational cost.

Finally, to derive the explicit optimal control we assume the
robability functions of the delays and packet losses are known.
or cases when the probability functions are unknown most con-
entional methods cannot be used, though Q-learning can then
e a way to derive solutions as discussed in Xu, Jagannathan, and
ewis (2012).
The structure of this article is as follows: First the problem

s presented in Section 2, and then the solution is presented in
ection 3. In Section 4 the optimal state estimation to use for
eedback is presented. How to best implement the solution to
ower the computational burden is discussed in Section 5, and
n Section 6 the method is evaluated in simulations. A summary
f the solution is included in Appendix, written for ease of
mplementation.

. Problem formulation

The plant considered is assumed to be an LTI system,

k+1 = Axk + Buk + wk, (1)

here x ∈ Rn is the state vector, w ∈ Rn is white Gaussian noise,
nd uk ∈ Rm is the control signal applied by the actuator at time
(for hold-input control this will be the latest control signal that
as arrived). As the noise is white, and the LQG cost criterion is
2

with respect to expectation, the noise will not impact the optimal
control scheme and therefore we will disregard it from now on.
For now the state xk is assumed to be known at time k, though in
Section 6 it is shown how xk can be replaced by its estimate.

The communication between the controller and the actuator is
subject to a random delay, assumed to follow a known probability
function p(d), where d is the number of samples the packet is
delayed. Note that there are no requirements on p(d); it can be
of both finite or infinite length, and it can be used to describe
systems with both delays and packet losses. In the latter case
{p(d)}∞d=0 will simply sum up to less than one.

The delays between consecutive steps are assumed to be in-
dependent. From this assumption the probability that the latest
control signal that has arrived is the signal sent i time units before
can be derived as

pd(i) = P(i)
i−1∏
j=0

P̄(j), (2)

where P(i) =
∑i

k=0 p(k) denotes the cumulative probability and
¯ (i) denotes the complementary probability to P(i), i.e. P̄(i) =

−P(i), which is the probability that none of the latest i signals
ave arrived.
Another way to express pd(i) is

d(i) = P(i)P̄d(i − 1), (3)

here P̄d(i − 1) is the complementary probability of the cumula-
ive probability Pd(i − 1) =

∑i−1
k=0 pd(k).

Now, the goal is to design a controller that determines the
ontrol signals v, sent from the controller, which minimizes the
uadratic criterion

N = E

[
N∑
i=0

xTi Qxi +
N∑
i=0

uT
i Rui + xTN+1SN+1xN+1

]
, (4)

where R is a positive definite symmetric matrix and Q and SN+1
re positive semi-definite symmetric matrices.
As previously mentioned, we will examine the TCP-like case,

here the controller knows if a signal has reached the actuator
r not. To handle this we use a variable size controller state ζk
olding xk+1 and all issued control signals vi since the last one
cknowledged, i.e.

k =
[
vT
k · · · vT

τk
xTk+1

]T
where τk, is the time the latest control signal arrived was sent,
i.e. uk = vτk . The update ζk+1 of the state ζk follows from the
update of τk, i.e.

τk+1 =

⎧⎨⎩
τ , if vτ , τ > τk, is the most recently

acknowledged signal
τk, if no, more recent, v is acknowledged

(5)

Note that in the update of τk, obsolete acknowledgments are
always discarded.

3. Optimal LQG control

In this section we will present the solution and describe how it
is derived. Unfortunately, the derivations are lengthy and there-
fore the full detailed derivations are presented in Bengtsson and
Wik (2021). Similar to the derivation of the standard LQG solution
we will use dynamic programming. This means that we will
start by finding the last optimal control signal vN that minimizes
the cost function (4), expressed in terms of states and previous
control signals available at that time, i.e. ζN−1. For the remaining
cost we will then find the control signal v that minimizes this
N−1
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ost expressed in signals available at that time, ζN−2. After this,
N−2 is found to minimize the now remaining cost. Repeating
his once more reveals a pattern of induction such that all the
emaining vk can be calculated.

We start by noting that

[
uT
i Rui

]
=

i∑
j=0

pd(i − j)vjRvj. (6)

From this and from the fact that the probability that uk is
pplied by the actuator at time k is unaffected by the delays of
arlier control signals, the second term in (4) can be expressed as[

N∑
i=0

uT
i Rui

]
=E

⎡⎣ N∑
i=0

i∑
j=0

pd(i − j)vT
j Rvj

⎤⎦
=E

⎡⎣ N∑
i=0

N−i∑
j=0

pd(j)vT
i Rvi

⎤⎦
=E

[
N∑
i=0

Pd(N − i)vT
i Rvi

]

=E

[
N∑
i=0

vT
i Rivi

]
, (7)

where Ri ≜ Pd(N − i)R.
The term xTN+1SN+1xN+1 we wish to express in terms of signals

available at time N . Using (1) and disregarding the noise, since it
is independent of uN and xN and thus does not affect the optimal
solution, we have

E
[
xTN+1SN+1xN+1

]
=E

[
uT
NB

T SN+1BuN + 2uT
NB

T SN+1AxN
+xTNA

T SN+1AxN
]
, (8)

where

E
[
uT
NB

T SN+1BuN
]

=

N∑
i=0

pd(N − i)vT
i B

T SN+1Bvi

E
[
uT
NB

T SN+1AxN
]

=E
[
pd(0)vT

NB
T SN+1AxN

+P̄d(0)uT
N|uN ̸=vN

BT SN+1AxN
]

and E
[
uN|uN ̸=vN

]
is the expected value of the actuated control

signal at time N given that the control signal that was sent at
time N has not yet arrived. Thus

E
[
xTN+1SN+1xN+1

]
=E

[
N∑
i=0

pd(N − i)vT
i B

T SN+1Bvi

+ 2pd(0)vT
NB

T SN+1AxN
+ 2P̄d(0)uT

N|uN ̸=vN
BT SN+1AxN

+ xTNA
T SN+1AxN

]
. (9)

Now, define

T (0, b) ≜
N+1−b∑
i=0

vT
i Rivi +

N+1−b∑
i=0

pd(N − i)vT
i B

T SN+1Bvi

+ xTNA
T SN+1AxN , (10)

where b is a counter. Increasing it by one removes the latest
control signal from the expression. The first argument (0), is used
in conjunction with b to specify which is the latest control signal

contained in the expression. For example, in this case the latest

3

control signal T (0, b) contains is at N + 1 − b − 0. The criterion
(4) can then be written as

JN =E

[
N∑
i=0

xTi Qxi + T (0, 1) + 2pd(0)vT
NB

T SN+1AxN

+ 2P̄d(0)uT
N|uN ̸=vN

BT SN+1AxN
]
. (11)

To extract the parts of the cost that depend on the latest control
signal we introduce

Tc(0, b) ≜ RN+1−b + pd(b − 1)BT SN+1B, (12)

such that

T (0, b) = T (0, b + 1) + vT
N+1−bTc(0, b)vN+1−b. (13)

The cost (11) can then be expressed as

JN =E

[
N∑
i=0

xTi Qxi + vT
NA11(N)vN + 2vT

NA12(N)xN

+ 2P̄d(0)uT
N|uN ̸=vN

BT SN+1AxN + T (0, 2)
]

(14)

A11(N) = Tc(0, 1) (15)

A12(N) = pd(0)BT SN+1A. (16)

Only two terms in (14) depend on vN and as A11 is positive
definite the optimal vN that minimizes (14) is

vN = −A−1
11 (N)A12(N)xN , (17)

which results in a minimum cost

J∗N =E

[
N∑
i=0

xTi Qxi − xTN (A
T
12(N)A−1

11 (N)A12(N))xN

+2P̄d(0)uT
N|uN ̸=vN

BT SN+1AxN + T (0, 2)
]
. (18)

The next step is to find the control signal vN−1 that minimizes
(18). Now taking into consideration (10), (18) is similar to (4) and
can be handled in a similar way, except for the term
E
[
2P̄d(0)uT

N|uN ̸=vN
BT SN+1AxN

]
. The main difficulty then is that xN

depends on uN−1 and because we are using hold input there is a
co-dependency between uT

N|uN ̸=vN
and uN−1. We have

E
[
P̄d(0)uT

N|uN ̸=vN
BT SN+1AxN

]
=E

[
P̄d(0)uT

N|uN ̸=vN
BT SN+1A(AxN−1 + BuN−1)

]
=E

[
P̄d(0)uT

N|uN ̸=vN
BT SN+1ABuN−1 + P̄d(0)uT

N|uN ̸=vN
BT SN+1A2xN−1

]
(19)

Now p(uN|uN ̸=vN = uN−1) is simply the probability that vN−1
has arrived at time N , i.e. P(1), and thus the expression can be
expressed as

=E
[
P̄d(0)uT

N|uN ̸=vN
BT SN+1ABuN−1 + P(1)P̄d(0)vT

N−1B
T SN+1A2xN−1

+P̄(1)P̄d(0)uT
N|uN ̸=vN ,vN−1

BT SN+1A2xN−1

]
=E

[
P̄d(0)uT

N|uN ̸=vN
BT SN+1ABuN−1 + pd(1)vT

N−1B
T SN+1A2xN−1

+P̄d(1)uT
N|uN ̸=vN ,vN−1

BT SN+1A2xN−1

]
. (20)

Now to evaluate E
[
P̄d(0)uT

N|uN ̸=vN
BT SN+1ABuN−1

]
we need to

take into account that the sample time of the actuator signal
applied at time N−2 (referred to as τN−2) is known. In Bengtsson
and Wik (2021) it is shown that it can be expressed as

E
[
P̄ (0)P(0)v BT S ABv + p(1)v BT S AB
d N−1 N+1 N−1 N−1 N+1
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F
b

J

×

⎛⎝N−τN−2−2∑
i=1

p(i)vT
N−i−1 + P̄(N − τN−2 − 2)vT

τN−2

⎞⎠
+P̄d(1)uT

N|uN ̸=vN ,vN−1
BT SN+1ABuN−1|uN−1 ̸=vN−1

]
. (21)

rom this and with calculations similar to those in (9)–(10), it can
e shown that (18) can be expressed as (Bengtsson & Wik, 2021)

N−1 =E

[
N−1∑
i=0

xTi Qxi + vT
N−1A11(N − 1)vN−1.

+ 2vT
N−1A12(N − 1, τN−2)ζN−2 + T (1, 2)

+ 2P̄d(0)uT
N−1|uN−1 ̸=vN−1

BT SNAxTN−1

+ 2P̄d(1)uT
N|uN ̸=vN ,vN−1

BT SN+1A2xN−1

+2P̄d(1)uT
N|uN ̸=vN ,vN−1

BT SN+1ABuN−1|uN−1 ̸=vN−1

]
, (22)

where

A11(N − 1) =2P̄d(0)P(0)BT SN+1AB + Tc(1, 1) (23)
A12(N − 1, τN−2)ζN−2 =M(N − 1)xN−1

+ p(1)BT SN+1AB

⎛⎝N−τN−2−2∑
i=1

p(i)vT
N−i−1

+P̄(N − τN−2 − 2)vT
τN−2

)
(24)

ζN−2 =
[
vT
N−2 vT

N−3 · · · vT
τN−2

xTN−1
]T

M(N − k) =

N∑
i=N−k

pd(i − (N − k))BT Si+1(A)i−(N−k)+1

Once more, the sought control signal (vN−1) only contributes to
two terms of the cost expressed in control signals and delays
known at time N − 1. The cost (22) can therefore be minimized
by

vN−1 = −A−1
11 (N − 1)A12(N − 1, τN−2)ζN−2, (25)

which gives the optimal cost

J∗N−1 =E

[
− ζ T

N−2A
T
12(N − 1, τN−2)A−1

11 (N − 1)

× A12(N − 1, τN−2)ζN−2 + 2P̄d(0)uT
N−1|uN−1 ̸=vN−1

BT SNAxTN−1

+ 2P̄d(1)uT
N|uN ̸=vN ,vN−1

BT SN+1A2xN−1

+ 2P̄d(1)uT
N|uN ̸=vN ,vN−1

BT SN+1ABuN−1|̸=vN−1

+T (1, 2) +

N−1∑
i=0

xTi Qxi

]
. (26)

The next step is to express this cost in terms available at time
N − 2. To resolve this for the first term we start by splitting the
expression into parts that depend on the states and parts that
depend on the control signal:

E
[
ζ T
N−2A

T
12(N − 1, τN−2)A−1

11 (N − 1)A12(N − 1, τN−2)ζN−2
]

=

E
[
K T

η (1, τN−2, 1)A−1
11 (N − 1)Kη(1, τN−2, 1)

+ xTN−1M
T (N − 1)A−1

11 (N − 1)M(N − 1)xN−1

+2Kθ (1, τN−2, 1)xN−1] , (27)
4

where we have introduced

Kη(1, τN−2, 1) =p(1)BT SN+1AB

⎛⎝N−τN−2−2∑
i=1

p(i)vT
N−i−1

+ P̄(N − τN−2 − 2)vT
τN−2

)
Kθ (1, τN−2, b) =K T

η (1, τN−2, b)A−1
11 (N − 1)M(N − 1).

Note that this expression depends on the information of what
signal was applied at time N − 2, i.e. τN−2. However, this is
not known when calculating vN−2 and therefore we need to use
the probabilities of the possible values of τN−2. Doing this, using
xN−1 = AxN−2+BuN−2 and then splitting the expression into parts
which contain vN−2 and parts which do not give the following
expression (for full proof see Bengtsson and Wik (2021))

E
[
ζ T
N−2A

T
12(N − 1, τN−2)A−1

11 (N − 1)A12(N − 1, τN−2)ζN−2
]

=

E
[
xTN−1M

T (N − 1)A−1
11 (N − 1)M(N − 1)xN−1

+ 2Kux(2, τN−3, 1)xN−2 + 2Kuu(2, τN−3, 1)
+ 2vT

N−2Kgx(2, 1)xN−2 + 2vT
N−2Kgu(2, τN−3, 1, 1)

+ Kα(2, τN−3, 1) + vT
N−2Kgg (2)vN−2

+2p(0)vT
N−2KθRL(1, 1)BvN−2

]
. (28)

The functions K(·) and M are defined in Appendix.
The remaining terms in (26) can be resolved in the same ways

as shown previously, with calculations similar to those shown in
(20) and (9)–(14), to yield

JN−2 = E

[
− vT

N−2Kgg (2)vN−2 − 2p(0)vT
N−2KθRL(1, 1)B

+ 2vN−2Tc(2, 1)vN−2 + 2vT
N−2Ke(2)vN−2

+ 2Kζ (2, τN−3, 1)vN−2 + 2vT
N−2M(N − 2)xN−2

− 2vT
N−2Kgx(2, 1)xN−2 − 2vT

N−2Kgu(2, τN−3, 1, 1)
− 2Kux(2, τN−3, 1)xN−2 − 2Kuu(2, τN−3, 1)
− Kα(2, τN−3, 1) + 2F (N − 2) + T (2, 2) + 2Ka(2)

+

N−2∑
i=0

xTi Qxi

]
. (29)

The functions K(·), Tc and M , are all presented in Appendix (F (N)
is an intermediary function not part of the final solution). None
of the functions depend on vN−2 and, therefore, this cost is
minimized by

vN−2 = −A−1
11 (N − 2)A12(N − 2, τN−3)ζN−3, (30)

where

A11(N − 2) = −Kgg (2) − 2p(0)KθRL(1, 1)B

+ Tc(2, 1) + 2Ke(2) (31)
A12(N − 2, τN−3)ζN−3 = Kζ (2, τN−3, 1) − Kgx(2, 1)xN−2

+M(N − 2)xN−2

− Kgu(2, τN−3, 1, 1). (32)

Now, denote the cost corresponding to the optimal cost J∗N−j+1
by JN−j, which is minimized by vN−j. Using similar calculations as
before (see Bengtsson and Wik (2021)) it can be shown that

JN−j = E

[
vT
N−jA11(N − j)vN−j + 2vT

N−jA12(N − j, τN−j−1)ζN−j−1

− 2Kux(j, τN−j−1, 1, 1)xN−j − 2Kuu(j, τN−j−1, 1)

− Kr (j, τj−1, 1) + 2F (N − j) + T (j, 2) + 2Ka(j)
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A

w
x
b

+E
N−j∑
i=0

xTi Qxi

]
, (33)

here expressions for the functions K(·) can be found in Appendix
and

A11(N − j) = −Kgg (j) − 2p(0)KθRL(j − 1, 1)B + Tc(j, 1) + 2Ke(j)
(34)

12(N − j, τN−j−1)ζN−j−1 =Kζ (j, τN−j−1, 1) − Kgx(j, 1)xN−j

+ M(N − j)xN−j − Kgu(j, τN−j−1, 1, 1),
(35)

which are on exactly the same form as (31) and (32). By induction
we have thus proven that the optimal control is given by

vN = A−1
11 (N)A12(N)xN

vN−k = A−1
11 (N − k)A12(N − k, τN−k−1)ζN−k−1, k ≥ 1.

where A11 is given by (15), (23), (31) and (34), A12(N) is given by
(16), and A12(N − j, τN−j−1)ζN−j−1 is given by (24), (32), and (35).

4. Optimal estimation

In the previous section we have assumed that the state at
all times is known. However, in many cases the states are not
available and we must rely on a measured output

yk = Cxk + ek,

where we assume e is white Gaussian noise. In addition, there
may be communication delays also between the sensor and the
controller. We will here discuss how the states can be estimated,
and show that the separation principle holds such that the op-
timal control solution is the same but with estimated states
replacing the true states. As acknowledgments ensure that it
is known which inputs are applied at each time instance, the
states can be estimated optimally using a traditional Kalman
filter (Lincoln & Bernhardsson, 2000), i.e.

x̂k|k = Ax̂k−1|k−1 + Buk−1 + KkCAx̃k−1|k−1 + KkCwk + Kkek, (36)

where x̃k−1|k−1 = xk−1 − x̂k−1|k−1 is the estimation error and Kk
is the Kalman gain, set to zero for measurements yk that are not
available because of delays or losses. We can express this as

x̂k|k = Ax̂k−1|k−1 + Buk−1 + w∗

k , (37)

here w∗

k = KkCAx̃k−1|k−1 + KkCwk + K̄kek is white noise as
˜k−1|k−1, wk and ek are all independent white noises. Furthermore,
y substituting xi = x̂i|i + x̃i|i in the criterion (4) and using that

x̂i|i and x̃i|i are uncorrelated (shown for x̂i+1|i and x̃i+1|i in Åström
(1970), which can trivially be expanded for x̂i|i and x̃i|i), we get

JN = min
u

E
N∑
i=0

x̂Ti Q x̂i +
N∑
i=0

uT
i Rui + x̂TN+1SN+1x̂N+1

+

N∑
i=0

x̃Ti Q x̃i + x̃TN+1SN+1x̃N+1, (38)

where x̂i denotes x̂i|i and x̃i = x̃i|i. Since x̃i is white (Åström,
1970),

∑N
i=0 x̃

T
NQ x̃N + x̃TN+1SN+1x̃N+1 does not influence the choice

of control signal. As (37) is also on the same form as (1) the
optimal control problem for estimated states must be the same as
for known states. Therefore the solution will be the same as for
the full information case and thus the separation principle holds.
5

5. Computational implementation

The optimal solution as derived here is computationally de-
manding as it requires a great deal of function evaluations. How-
ever, the same functions are evaluated many times with the same
inputs, so by saving the result of each function evaluation and
reusing the result whenever the function is called with the same
inputs the computational burden can be reduced considerably.
Doing so is nearly a necessity for implementing the solution, as
otherwise horizons longer than N = 10 become so computa-
tionally demanding that real time implementation is unrealistic
today.

Another computational issue is that parts of the expression for
A12 depend on the current delay and hence should in principle
be calculated online. However, if the delay is bounded, A12 can
be calculated for all possible delays offline, which significantly
reduces the amount of online computations required.

6. Results and evaluation

To evaluate our results we first use the fact that the solution
can be used to generate an expected value of the cost, namely
xT0S0x0, where x0 is the initial value. From simulation of different
systems and with different probabilities of delays and packet loss
we could confirm that the mean cost of the simulations indeed
converges to this value.

Most other similar methods are designed for infinite horizon
control and optimized for short delays which makes direct com-
parisons difficult. In previous work (Bengtsson et al., 2016) we
have presented the solution for optimal LQG control when the
knowledge of whether the packet has arrived or not is only used
for the state estimation, which we will henceforth refer to as the
simplified solution. This solution is computationally easier but
should of course be inferior to the one derived here. To illustrate
we compare it with the solution proposed here, using the specific
delay probability function assumed in Bengtsson et al. (2016), i.e.,

p(d) = (1 − α)αd.

Two systems were tested, a simple system on the form of

x(t + 1) = ax(t) + u(t) (39)

and a more complex second order system

x(t + 1) =

[
a − 0.95 1
0.95a 0

]
x(t) +

[
1

−2

]
u(t) +

[
1
1

]
ω(t)

y(t) =
[
1 0

]
x(t) (40)

where ω(t) is white Gaussian of variance 0.01. This system has
poles in a and −0.95, and a zero in 2.

The comparison was made by comparing the simulated total
costs (as given by (4)) for different values of a and α. The other
settings were R = Q = SN+1 = I , and N = 100. To see the
advantage of considering the uncertainty at all we also simulated
a standard LQG control of the systems. For each set of parameters
the simulation was repeated 500 times with different random
seed to achieve reliable mean costs.

In Figs. 1 and 2 we show both the average and average nor-
malized costs of the different methods on the systems. As can be
seen the new method yields considerably better results than the
simplified TCP method, especially in cases where the system is
highly unstable (large a) and/or the probability of delay is high
(large α). It can also be noted that the standard LQG solution
without any modifications, due to the delays, performed very
poorly on the delayed systems, in many cases exhibiting unstable
behavior.
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Fig. 1. A comparison between the solution proposed here (yellow) and the
solution described in Bengtsson et al. (2016) (green) for different a and α for
the first order system (39). Note that the upper diagram is in logarithmic scale.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. A comparison between the solution proposed here (yellow) and the
solution described in Bengtsson et al. (2016) (green) for different a and α for
the second order system (40). Note that the upper diagram is in logarithmic
scale. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

7. Conclusion and further work

We have examined LQG control in the case when the channels
between the controller and the actuator and the sensor and
the controller are unreliable, being subject to packet delays and
packet losses. For this case, with the assumption that a system
of acknowledgments informs the controller when a signal has
reached the actuator, an optimal hold-input LQG controller was
derived, yielding a control output which is a linear combination
of not only the states but also the previous control signals. This
solution was compared to a solution which did not utilize the
knowledge of which control signal that has reached the actuator
other than for estimation, and it was found that considerable
improvements can be achieved.

The resulting controller can be computationally demanding,
although this can be alleviated by precomputations. For many
applications it would still be too demanding, but then, since
the solution is analytical, it can serve as a benchmark for other
approximate methods.
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Appendix. Implementation summary

The formulas needed to calculate the optimal control are here
summarized to facilitate an easy implementation. Note that the
6

only information not known prior to implementation are the
previous delays τ(·). Thus all calculations not including τ(·) can be
done on before hand.

T (0, b) =

N+1−b∑
i=0

vT
i Rivi + xTNA

T SN+1AxN

+

N+1−b∑
i=0

pd(N − i)vT
i B

T SN+1Bvi

Ri = Pd(N − i)R
T (k, b) = TnoX (k, b) + xTN−kTX (k)xN−k

T (k, b) = T (k, b + 1) + vT
N+1−bTc(k, b)vN+1−b

Tc(0, b) = RN+1−b + pd(b − 1)BT SN+1B

TnoX (0, b) =

N+1−b∑
i=0

vT
i Rivi +

N+1−b∑
i=0

pd(N − i)vT
i B

T SN+1Bvi

TX (0) = AT SN+1A

For k > 0:

T (k, b) = TnoX (k − 1, b + 1)

+

N−k+1−b∑
i=0

pd(N − k − i)vT
i B

T SN−k+1Bvi

+ xTN−kA
T SN−k+1AxN−k

Tc(k, b) = Tc(k − 1, b + 1) + pd(b − 1)BT SN−k+1B
TnoX (k, b) = TnoX (k − 1, b + 1)

+

N−k+1−b∑
i=0

pd(N − k − i)vT
i B

T SN−k+1Bvi

TX (k) = AT SN−k+1A

If k ≤ 1:

SN−k = TX (k) − M(N − k)TA−1
11 (N − k)M(N − k) + Q

If k > 1:

SN−k = −(M(N − k) − Kgx(k, τN−k−1))TA−1
11 (N − k)

× (M(N − k) − Kgx(k, τN−k−1)) + TX (k) + Q

(N − k) =

N∑
i=N−k

pd(i − (N − k))BT Si+1(A)i−(N−k)+1

Ke(k) =

N∑
i=N−k+1

i∑
j=N−k+1

P̄d(i − (N − k + 1))

× P(k + j − N − 1)BT Si+1Ai−j+1

For k < 3:

Kgg (k) =p(0)K T
ηRL(k − 1, 1)A−1

11 (N − k + 1)KηRL(k − 1, 1)

+ p̄(0)K T
ηC (k − 1, 1)A−1

11 (N − k + 1)KηC (k − 1, 1)
For k ≥ 3:

Kgg (k) =p(0)K T
ηRL(k − 1, 1)A−1

11 (N − k + 1)KηRL(k − 1, 1)

+ p̄(0)K T
ηC (k − 1, 1)A−1

11 (N − k + 1)KηC (k − 1, 1)
+ 2p̄(0)KuuCs(k − 1, 1) + p̄(0)KrCs(k − 1, 1)
+ p(0) (2KuuRL(k − 1, 1) + KrRL(k − 1, 1))
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α(k, τ , b) =

N−k−b∑
j=τ+1

p(N − k − j)K T
η (k − 1, j, b + 1)

× A−1
11 (N − k + 1)Kη(k − 1, j, b + 1)

+ P̄(N − k − 1 − τ )K T
η (k − 1, τ , b + 1)

× A−1
11 (N − k + 1)Kη(k − 1, τ , b + 1)

In the case when τ < N − k − b then

Kα(k, τ , b) =vT
N−k−bKαCs(k, b)vN−k−b + Kα(k, τ , b + 1)

+ K T
αCd(k, τ , b + 1, b)vN−k−b

+ vT
N−k−bKαCd(k, τ , b + 1, b).

The subfunctions above are given by

KαCs(k, b) =p(b)K T
ηRL(k − 1, b + 1)A−1

11 (N − k + 1)
× KηRL(k − 1, b + 1)

+ P̄(b)K T
ηC (k − 1, b + 1)A−1

11 (N − k + 1)
× KηC (k − 1, b + 1)

KαRL(k, b) =P̄(b − 1)K T
ηRL(k − 1, b + 1)

× A−1
11 (N − k + 1)KηRL(k − 1, b + 1)

KαCd(k, τ , b, h) =

N−k−b∑
j=τ+1

p(N − k − j)K T
ηC (k − 1, h + 1)

× A−1
11 (N − k + 1)Kη(k − 1, j, b + 1)

+ P̄(N − k − 1 − τ )K T
ηC (k − 1, h + 1)

× A−1
11 (N − k + 1)Kη(k − 1, τ , b + 1)

KαCdC (k, b, h) =P̄(b)K T
ηC (k − 1, h + 1)

× A−1
11 (N − k + 1)KηC (k − 1, b + 1)

+ p(b)K T
ηC (k − 1, h + 1)

× A−1
11 (N − k + 1)KηRL(k − 1, b + 1)

KαCdRL(k, b, h)=P̄(b − 1)K T
ηC (k − 1, h + 1)

× A−1
11 (N − k + 1)KηRL(k − 1, b + 1)

For τ < N − k − b:
KαCd(k, τ , b, h) =KαCd(k, τ , b + 1, h)

+ KαCdC (k, b, h)vN−k−b

Kβ (k, τ , b) =

⎛⎝N−k−b∑
j=τ+1

p(N − k − j)Kη(k − 1, j, b + 1)

+ P̄(N − k − 1 − τN−3)Kη(k − 1, τ , b + 1)

⎞⎠T

× A−1
11 (N − k + 1)KηC (k − 1, 1)

KβC (k, b) =
(
p(b)KηRL(k − 1, b + 1)

+P̄(b)KηC (k − 1, b + 1)
)T

× A−1
11 (N − k + 1)KηC (k − 1, 1)

KβRL(k, b) =P̄(b − 1)K T
ηRL(k − 1, b + 1)

× A−1
11 (N − k + 1)KηC (k − 1, 1)

For τ < N − k − b:

Kβ (k, τ , b) =vT
N−k−bKβC (k, b) + Kβ (k, τ , b + 1)

K (2, τ , 1) =K (2, τ , 1)
r α

7

For k > 2:

Kr (k, τ , b) =

N−k−b∑
j=τ+1

p(N − k − j)Kr (k − 1, j, b + 1)

+ P̄(N − k − 1 − τ )Kr (k − 1, τ , b + 1)
+ Kα(k, τ , b)

or τ < N − k − b:

Kr (k, τ , b) =Kr (k, τ , b + 1) + vT
N−k−bKrCs(k, b)vN−k−b

+ 2vT
N−k−bKrCd(k, τ , b + 1, b)

Moreover,

KrCs(k, b) =P̄(b)KrCs(k − 1, b + 1) + KαCs(k, b)
+ p(b)KrRL(k − 1, b + 1)

KrRL(k, b) =P̄(b − 1)KrRL(k − 1, b + 1) + KαRL(k, b)

KrCd(k, τ , b, h) =

N−k−b∑
j=τ+1

p(N − k − j)

× KrCd(k − 1, j, b + 1, h + 1)

+ P̄(N − k − 1 − τN−4)
× KrCd(k − 1, τ , b + 1, h + 1)
+ KαCd(k, τ , b, h)

KrCdC (k, b, h) =P̄(b)KrCdC (k − 1, b + 1, h)
+ KαCdC (k, b, h)
+ p(b)KrCdRL(k − 1, b + 1, h)

KrCdRL(k, b, h) = P̄(b − 1)KrCdRL(k − 1, b + 1, h)
+ KαCdRL(k, b, h)

For τ < N − k − b:
KrCd(k, τ , b, h) = KrCd(k, τ , b + 1, h)

+ KrCdC (k, b, h)vN−k−b

Kη(1, τ , b) = Kζ (1, τ , b)
KηC (1, b) = KζC (1, b)
KηRL(1, b) = KζRL(1, b)

For k > 1:
Kη(k, τ , b) = Kζ (k, τ , b) − Kgu(k, τ , b, 1)
KηC (k, b) = KζC (k, b) − KguC (k, b)
KηRL(k, b) = KζRL(k, b) − KguRL(k, b)

For τ < N − k − b:
Kη(k, τ , b) = Kη(k, τ , b + 1) + KηC (k, b)vN−k−b

For k = 1:

Kθ (1, τ , b) = K T
η (1, τ , b)A−1

11 (N − 1)M(N − 1)

KθC (1, b) = K T
ηC (1, b)A

−1
11 (N − 1)M(N − 1)

KθRL(1, b) = K T
ηRL(1, b)A

−1
11 (N − 1)M(N − 1)

f τ < N − k − b:

Kθ (1, τ , b) = Kθ (1, τ , b + 1) + vT
N−k−bKθC (1, b)

For k > 1:

Kθ (k, τ , b) = K T
η (k, τ , b)A−1

11 (N − k)

×
(
−Kgx(k, 1) + M(N − k)

)
+ Kux(k, τ , b)

K (k, b) = K T (k, b)A−1(N − k)
θC ηC 11



F. Bengtsson and T. Wik Automatica 142 (2022) 110402

K

K

K

×
(
(−Kgx(k, 1) + M(N − k)

)
+ KuxC (k, b)

KθRL(k, b) = K T
ηRL(k, b)A

−1
11 (N − k)

×
(
(−Kgx(k, 1) + M(N − 2)

)
+ KuxRL(k, b)

If τ < N − k − b:

Kθ (k, τ , b) = Kθ (k, τ , b + 1) + vT
N−k−bKθC (k, b)

Kζ (k, τ , b) =

N∑
i=N−k+1

i∑
j=N−k+1

P̄d(i − (N − k + 1))BT Si+1

× Ai−j+1B(P(i − N + k) − P(k + j − N − 1))

×

(
N−k−1−τ∑

t=b

P(k + j − N − 1 + t) − P(t − 1)
P̄(t − 1)

×

t∏
h=2

(
P̄(k + j − N + h − 2)

P̄(h − 2)
)vN−k−t

+

N−k−1−τ∏
h=1

(
P̄(k + j − N + h − 1)

P̄(h − 1)
)vτ

)

KζC (k, b) =

N∑
i=N−k+1

i∑
j=N−k+1

P̄d(i − (N − k + 1))

× BT Si+1Ai−j+1B

× (P(i − N + k) − P(k + j − N − 1))

×

(
P(k + j − N − 1 + b) − P(b − 1)

P̄(b − 1)

×

b∏
h=2

(
P̄(k + j − N + h − 2)

P̄(h − 2)
)vN−k−b

)

KζRL(k, b) =

N∑
i=N−k+1

i∑
j=N−k+1

P̄d(i − (N − k + 1))

× BT Si+1Ai−j+1B

× (P(i − N + k) − P(k + j − N − 1))

×

b−1∏
h=1

(
P̄(k + j − N + h − 1)

P̄(h − 1)
)

If τ < N − k − b:

Kζ (k, τ , b) =Kζ (k, τ , b + 1) + KζC (k, b)vN−k−b

Kux(k, τ , b) =

N−k−b∑
j=τ+1

p(N − k − j)Kθ (k − 1, j, b + 1)A

+ P̄(N − k − 1 − τN−3)Kθ (k − 1, τ , b + 1)A

KuxC (k, b) =P̄(b)KθC (k − 1, b + 1)A

+ p(b)KθRL(k − 1, b + 1)A

KuxC (k, b) =P̄(b − 1)KθRL(k − 1, b + 1)A

If τ < N − k − b:

K (k, τ , b) =K (k, τ , b + 1) + vT K (k, b)
ux ux N−k−b uxC
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Kgx(k, b) =p̄(0)KθC (k − 1, b)A

+ p(0)KθRL(k − 1, b)A

Kuu(2, τ , b) =

N−2−b∑
j=τ+1

p(N − 2 − j)Kθ (1, j, b + 1)Bvj

+ P̄(N − 3 − τ )Kθ (1, τ , b + 1)Bvτ

KuuCs(2, τ , b) =p(b)KθRL(1, b + 1)B

KuuRL(2, b) =P̄(b − 1)KθRL(1, b + 1)B

KuuCd(2, τ , b, h) =

N−2−b∑
j=τ+1

p(N − 2 − j)KθC (1, h)Bvj

+ P̄(N − 3 − τ )KθC (1, h)Bvτ

uuCdC (2, τ , b, h) =p(b)KθC (1, h)B

KuuCdRL(2, b, h) =P̄(b − 1)KθC (1, h)B

If τ < N − k − b:

KuuCd(2, τ , b, h) =KuuCd(2, τ , b + 1, h)

+ KuuCdC (2, τ , b, h)vN−k−b

Kuu(2, τ , b) =Kuu(2, τ , b + 1)

+ vT
N−k−bKuuCd(2, τ , b + 1, b + 1)

+ vT
N−k−bKuuCs(2, b)vN−k−b

For k > 2:

Kuu(k, τ , b) =

N−k−b∑
j=τ+1

p(N − k − j)Kθ (k − 1, j, b + 1)Bvj

+ P̄(N − k − 1 − τ )Kθ (k − 1, τ , b + 1)Bvτ

+

N−k−b∑
j=τ+1

p(N − k − j)Kuu(k − 1, j, b + 1)

+ P̄(N − k − 1 − τ )Kuu(k − 1, τ , b + 1)

KuuRL(k, b) =P̄(b − 1)KθRL(k − 1, b + 1)B

+ P̄(b − 1)KuuRL(k − 1, b + 1)
KuuCs(k, b) =p(b)KθRL(k − 1, b + 1)B

+ p(b)KuuRL(k − 1, b + 1)

+ P̄(b)KuuCs(k − 1, b + 1)

uuCd(k, τ , b, h) =

N−k−b∑
j=τ+1

p(N − k − j)KθC (k − 1, h)Bvj

+ P̄(N − k − 1 − τ )KθC (k − 1, h)Bvτ

+

N−k−b∑
j=τ+1

p(N − k − j)

× KuuCd(k − 1, j, b + 1, b + 1)

+ P̄(N − k − 1 − τ )
× KuuCd(k − 1, τ , b + 1, b + 1)

uuCd(k, τ , b, h) =KuuCd(k, τ , b + 1, h)
+ K (k, τ , b, h)v
uuCdC N−k−b
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KuuCdRL(k, b, b) =P̄(b − 1)KθC (k − 1, h)B

+ P̄(b − 1)KuuCdRL(k − 1, b + 1, b + 1)

f τ < N − k − b:

Kuu(k, τ , b) =Kuu(k, τ , b + 1)

+ vT
N−k−bKuuCs(k, b)vN−k−b

+ vT
N−k−bKuuCd(k, τ , b + 1, b + 1)

KuuCdC (k, b, h) =p(b)KθC (k − 1, h)B

+ P̄(b)KuuCdC (k − 1, b + 1, b + 1)
+ p(b)KuuCdRL(k − 1, b + 1, b + 1)

Kgu(2, τ , b, h) =

N−2−b∑
j=τ+1

p(N − 2 − j)KθC (1, h)Bvj

+ P̄(N − 3 − τ )KθC (1, h)BvτN−3

+ Kβ (2, τ , b)
KguC (2, b, h) =p(b)KθC (1, h)B + KβC (2, b)

KguRL(2, b, h) =P̄(b − 1)KθC (1, h)B + KβRL(2, b)
If τ < N − k − b:
Kgu(2, τ , b, h) =KguC (2, b, h)vN−k−b + Kgu(2, τ , b + 1, h)

For k > 2:

Kgu(k, τ , b, h) =

N−k−b∑
j=τ+1

p(N − k − j)KθC (k − 1, h)Bvj

+ P̄(N − k − 1 − τ )KθC (k − 1, h)Bvτ

+ Kβ (k, τ , b)

+ P̄(N − k − 1 − τ )

× KuuCd(k − 1, τ , b + 1, h + 1)

+

N−k−b∑
j=τ+1

p(N − k − j)

× KuuCd(k − 1, j, b + 1, h + 1)

+

N−k−b∑
j=τ+1

p(N − k − j)KrCd(k − 1, j, b + 1)

+ P̄(N − k − 1 − τ )

× KrCd(k − 1, τ , b + 1, h)

KguC (k, b, h) =p(b)KθC (k − 1, h)B + KβC (k − 1, b)

+ P̄(b)KuuCdC (k − 1, b + 1, h + 1)

+ P̄(b)KrCdC (k − 1, b + 1, h + 1)

+ p(b)KuuCdRL(k − 1, b + 1)

+ p(b)KrCdRL(k − 1, b + 1)

KguRL(k, b) =P̄(b − 1)KθC (k − 1, h)B + KβRL(k, b)

+ P̄(b − 1)KuuCdRL(k − 1, b + 1)

+ P̄(b − 1)KrCdRL(k − 1, b + 1)

If τ < N − k − b:

Kgu(k, τ , b, h) =Kgu(k, τ , b + 1, h)

+ KguC (k, b, h)vN−k−b
9
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