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Abstract—Error vector magnitude (EVM) is a metric for as-
sessing the quality of m-ary quadrature amplitude modulation
(mQAM) signals. Recently proposed deep learning techniques, e.g.,
feedforward neural networks (FFNNs) -based EVM estimation
scheme leverage fast signal quality monitoring in coherent opti-
cal communication systems. Such a scheme estimates EVM from
amplitude histograms (AHs) of short signal sequences captured
before carrier phase recovery (CPR). In this work, we explore fur-
ther complexity reduction by proposing a simple linear regression
(LR) -based EVM monitoring method. We systematically compare
the performance of the proposed method with the FFNN-based
scheme and demonstrate its capability to infer EVM from an AH
when the modulation format information is known in advance. We
perform both simulation and experiment to show that the LR-based
EVM estimation method achieves a comparable accuracy as the
FFNN-based scheme. The technique can be embedded with mod-
ulation format identification modules to provide comprehensive
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signal information. Therefore, this work paves the way to design a
fast-learning scheme with parsimony as a future intelligent OPM
enabler.

Index Terms—Deep learning, error vector magnitude, machine
learning, optical fiber communication, optical performance
monitoring.

I. INTRODUCTION

THE introduction of bandwidth-consuming services, such as
cloud computing, 5G networks, and virtual reality (VR),

bring the continuously increasing demands for data. Optical
networks as the backbone infrastructure of carrying these ap-
plications are pressured to become more heterogeneous and
dynamic to support the exponential growth of data traffic. Coher-
ent transceiver technologies along with high order modulation
formats are widely employed for transmission links beyond 100
Gbit/s data rate per wavelength [1]. Moreover, the reconfigurable
dynamic networks, such as elastic optical networks (EONs),
are a means to improve network capacity and scalability [2].
It can dynamically adjust network configurations e.g., modu-
lation formats, data rate, spectrum planning, according to dif-
ferent channel conditions to increase the utilization efficiency
of bandwidth resources [3]. However, these enhanced features
will lead to the increased complexity of manipulating available
resources for heterogeneous vendors and technical domains [4].
Consequently, it is necessary to implement a comprehensive
and intelligent optical performance monitoring (OPM) system
to ensure effective network management and diagnose faults
[3]–[6]. There are generally two types of OPM that gained
considerable attention in research: OPM at intermediate network
nodes and OPM at end nodes [7]–[10]. At the intermediate
nodes, reconfigurable optical add/drop multiplexers (ROADMs)
are often employed to amplify and switch the incoming optical
signals, where inline OPM modules can be placed to monitor
the optical signal quality of the channels. Commonly monitored
metrics are signal power, chromatic dispersion (CD), and op-
tical signal to noise ratio (OSNR). At the end nodes, the data
information will be recovered, and the monitoring functionality
normally is a configured by the digital signal processing (DSP)
algorithms in the digital coherent optical (DCO) transceivers.
In both cases, accurate telemetry of key performance indicators
such as bit error rate (BER) can extend monitoring functionality
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and are prerequisites for signal quality assessment [11], [12].
Error vector magnitude (EVM) is an alternative signal quality
characterization metric in the case of complex modulation for-
mats, such as m-ary quadrature amplitude modulation (mQAM)
[13], [14]. Traditionally, the EVM calculation requires the col-
lection and processing of millions of received symbols using the
full stack of DSP routines. This accumulative process is quite
time-consuming and not suitable for monitoring dynamic optical
networks.

The existing methods rely on statistical analysis, for instance,
on the fourth-order moments or cumulative distribution function
of the received signal for OPM [15], [16]. At the same time, deep
learning has regained popularity in the optical communication
community, where classical deep learning applications include
OPM, equalization, quality of transmission estimation, etc [3],
[17], [18], which shows promising and versatile performance.
Recently, we proposed deep learning-based EVM estimation
schemes from a short signal sequence for fast signal quality mon-
itoring in coherent optical systems [19]–[21]. We have demon-
strated accurate and effective EVM estimators by constructing
deep learning-based regressor from constellation diagrams [19]
and amplitude histograms (AHs) [20]. In [19], we proposed a
CNN based EVM estimator to extract features from the image
dataset of the constellation diagram. Later, an FFNN powered
EVM estimation scheme was implemented for AHs before the
carrier phase recovery (CPR) module [20]. Thanks to the direct
operation on the AH vectors, the FFNN can further reduce the
model complexity used for EVM estimation. Compared with
the CNN scheme, FFNN relaxes not only DSP requirements
but also energy consumption in the EVM estimation process
itself. Moreover, the robustness of the FFNN-based EVM esti-
mator for systems with laser phase noise was demonstrated in
[21]. Although the deep learning-based regressors have shown
promising capability of estimating EVM, one may still argue
that a parsimonious model might be also competent for this work
under certain circumstances. One typical example is the linear
regression (LR), which is the fundamental component of the
deep learning-based regressor, and can be viewed as an FFNN
model without hidden layers and nonlinear activation functions
[22]. In [23], we have reported that the LR can be implemented
for EVM estimation in certain cases.

In this paper, we thoroughly investigate the LR-based
EVM estimator performance in coherent optical systems. The
LR-based estimator is implemented on AHs obtained from short
mQAM sequences captured before the CPR module in coherent
transceivers. In addition, we include the FFNN-based EVM
estimation scheme as a benchmark [20]. Unfortunately, the LR
algorithm has limited capability to partition data in hyperspace
unlike deep learning models using hidden layers and nonlinear
activation functions to be the universal function approximators
[24]. We firstly benchmark the performance of the LR-based
EVM estimator with the optical back-to-back (OB2B)
configuration. In this scenario, we collect datasets of quadrature
phase-shift keying (QPSK), 16QAM, 64QAM signals across
wide OSNR ranges. The LR model is implemented for each
modulation format separately. Secondly, we collect datasets with
a long-haul transmission simulation setup containing QPSK,
16QAM, 64QAM signals transmitted over 2000-, 1500-,

Fig. 1. Schematic diagram of the proposed EVM estimation scheme and long-
haul transmission setup. EDFA, erbium-doped fiber amplifier; SSMF, standard
single-mode fiber; OBPF, optical bandpass filter; DSP, digital signal processing;
CD, chromatic dispersion; CPR, carrier phase recovery.

1000-km fiber links, respectively. Using these datasets, we test
the generalization capability of the LR scheme, i.e., training
a different number of modulation formats in one LR model.
Lastly, the generalization of the LR scheme is investigated on a
wavelength-division multiplexed (WDM) transmission system.
Besides, experimental validation is conducted by a 28 Gbaud
setup with square 64QAM (sq-64QAM) and circular 64QAM
(c-64QAM) signals. The results show that the LR-based
estimator achieves comparable performance with the FFNN
scheme when we train each modulation format separately. This
indicates that a simple LR-based regressor can enable the EVM
estimation functionality for an intelligent OPM module, by
combining it with the modulation formats identification (MFI)
function of OPM. One should note that this work focuses on
constellations of uniformly distributed symbols. Owing to their
specific properties, estimating EVM and quantifying the link
between EVM and BER for the probabilistic-shaped modulation
formats should be covered with a dedicated separate study.

II. PRINCIPLES

A. Simulation Dataset Collection

To collect the AH datasets, we build a 32 Gbaud coherent
transmission setup in VPItransmissionMaker [25] as shown
in Fig. 1. At the coherent transmitter’s side, the generated
pseudorandom bit sequence of 215-1 word-length (PRBS15) is
firstly repeated and only then mapped into mQAM symbols. The
Nyquist pulse filter shapes the mQAM symbols to bandwidth-
limited electrical signals, where the root-raised cosine filter has
a 0.15 roll-off factor. Then, a Mach–Zehnder-based in-phase and
quadrature modulator (IQM) is applied to convert the electrical
signals to optical signals at a laser central wavelength of 1550
nm. The optical signals are amplified by an erbium-doped fiber
amplifier (EDFA) and transmitted through the multiple fiber
spans long-haul transmission link. Each span contains a 100 km
long standard single-mode fiber (SSMF) and an inline EDFA.
We configure the SSMF parameters with a 16e-6 s/m2 chromatic
dispersion (CD) coefficient, a 0.2 dB/km attenuation coefficient,
and a 2.6e-20 m2/W nonlinear refractive index. The launch
power is optimized to ensure the transmission system is operated
in the linear region. We set 45 dB initial OSNR before the
transmission and measure the OSNR at 0.1 nm resolution after a
set of transmission spans by using an optical spectrum analyzer.
The maximum transmission distance is 2000 km, 1500 km, and
1000 km for QPSK, 16QAM, and 64QAM, respectively. The
received signals are coherently detected and saved for offline
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Fig. 2. The FFNN-based estimator performance versus different number of
bins on the 6400-symbol dataset.

digital signal processing (DSP) and generating AH datasets.
After a full DSP routine, we collect and measure EVM labels
by the mean-square (rms) value of the difference between ideal
(reference) transmitted symbols and the received symbols [13],
[14]. The reference transmitted symbols are obtained using the
K-means clustering method [19].

We choose the length of the signal sequence containing sym-
bols from 100 to 6400 to study the estimation performance,
where the 6400 is an acceptable number of symbols for 64QAM
reported in [20]. Besides, signal sequences are captured before a
CPR module in the DSP. An AH of a signal sequence is generated
by sorting magnitude elements of complex symbols into equally
spaced bins along the x-axis between maximum and minimum
values. A number of bins affects the estimation accuracy. Fig. 2
shows the performance of the FFNN-based EVM estimator for
different numbers of bins. The larger number of bins, the longer
signal sequence must be used to generate a good informative
AH, otherwise, it affects estimation accuracy. Besides, a larger
number of bins increases computational complexity of the EVM
estimator. Hence, there is a tradeoff between the performance
and accuracy. Considering the tradeoff, we set the number of
bins to 64. The amplitude of the histogram indicates number
of elements in the bin. Fig. 3 visualizes the collected 64-bin
vectorized AH dataset examples, which are generated by a 6400-
symbol long signal sequence. For each transmission scenario (6
transmission distance x 3 modulation formats), we collect 100
AHs and divide the dataset as 50%, 25%, 25% for training,
validation, and testing.

B. LR-Based EVM Estimator

Consider a set of n training AH vectors and corresponding
EVM labels, {xi, yi}, i = 1, 2, …, n, the goal of LR is to learn
a mapping function y = f(x). One AH sample x = [x1, x2, …,
x64] contains 64 explanatory variables. An LR model between
n rows of AH vectors X and EVM labels Y can be formulated as

Y = Xβ + ε, (1)

where β is the regression coefficient and ε is an error term. In our
implementation, we use shuffled random seed numbers for both
the bit sequence pattern and all the noise realizations in different
parts of the system. Consequently, as the independently and
identically distributed (i.i.d.) random symbols are experienced
in an additive white Gaussian noise-dominated channel, the con-
structed AH vectors are i.i.d. According to the Gauss-Markov
Theorem, we assume that errors of linear regression have a zero
mean, homoscedasticity and uncorrelation [26]. The learned
model is obtained by solving:

f (β) = argmin (Y −Xβ)T (Y −Xβ) . (2)

A classic FFNN model has linear connections and nonlinear
activation functions densely interconnected between input and
output layers. Compared with an FFNN model, the LR-based
EVM estimator has a more compact structure but limited estima-
tion capability. Therefore, we need to design the LR-based EVM
estimator in a hierarchical manner to eliminate some impacts of
certain factors, such as cooperating with the MFI module. The
MFI module can help to select a proper pre-trained LR model
monitoring EVM for the identified modulation format. In this
sense, better performance of LR is credited to the lightened task,
which trains a single model for each modulation format. Besides,
we also investigate a single LR model EVM estimation accuracy
for multiple modulation formats.

III. SIMULATION RESULTS

A. Optical Back-to-Back Transmission

Before looking on the LR scheme performance with fiber
transmission, we perform a study on the LR scheme for a 32
GBaud optical back-to-back (OB2B) system. In this study, we
collect AH datasets of 30 transmission scenarios containing
QPSK, 16QAM, and 64QAM signals. Each AH is generated
by a 6400 long signal sequence captured before CPR. The
OSNR values are ranged from 12 to 30 dB, 20 to 38 dB,
26 to 44 dB for QPSK, 16QAM, and 64QAM, respectively.
The associated measured EVMs are 30.64 to 4.48%, 9.24 to
2.07%, 4.28 to 1.59%. These OSNR ranges ensure the BER
below the hard-decision forward error correction (HD-FEC)
threshold for QPSK signals, and below the soft-decision FEC
(SD-FEC) threshold for 16QAM and 64QAM signals. Due to
the limited estimation capability, we firstly test the estimation
performance when the LR model trained for each modulation
format separately. The EVM estimation results of the LR scheme
are shown in Fig. 4. Fig. 4(a) illustrates mean absolute errors
(MAEs) versus OSNRs for the considered modulation formats.
The MAE below 0.3%, 0.1%, and 0.1% are achieved for QPSK,
16QAM, and 64QAM, respectively. It is noticed that there are
MAE performance gaps between different modulation formats
at some OSNRs. This is due to different EVM true labels at
this OSNR point. When comparing the relative errors (aka
normalized MAEs), the LR-based estimator gives more or less
similar performance. Fig. 4(b) shows the distribution of EVM
estimation errors using violin plots, where wider parts of the
violin are attributed to a high probability and the skinnier parts
indicate a low probability. Besides, the maximum, median, and
minimum values are represented by its upper, middle, and lower



8643108 IEEE PHOTONICS JOURNAL, VOL. 14, NO. 4, AUGUST 2022

Fig. 3. The collected AH dataset examples.

Fig. 4. The EVM estimation performance of LR scheme for OB2B transmission on test dataset, (a) MAE versus OSNR, (b) Distribution of estimation error.

bars. In this figure, each violin shape represents the distribution
obtained from 250 test samples. The wider parts of violin shapes
for 16QAM and 64QAM are concentrated around the median
error, which shows a decent estimation performance. Although
the maximum EVM estimation error for QPSK is over 1%, these
outliers come from low quality of signals where the constellation
clusters start to cross each other, yet the most of test samples are
within 0.5%. If training each modulation format separately, the
LR scheme shows a good generalization when signals operating
at a wider OSNR range.

B. Long-Haul Transmission

First, we investigate the impact of a different number of sym-
bols and training schemes on the EVM estimation accuracy. In
the training phase, we include different training methods for LR
scheme to study the generalization capability: 1) LR1, training
a model for each modulation format; 2) LR2, training a model
with two modulation formats, here we consider 16QAM and
64QAM; 3) LR3, training a single model for three modulation

Fig. 5. Normalized mean absolute error (NMAE) of EVM estimation vs.
number of symbols for various schemes of training one model. LR1: One
modulation format; LR2: Two modulation formats; LR3: Three modulation
formats; FFNN: Three modulation formats.
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Fig. 6. Mean absolute error (MAE) of the estimated EVM values vs. different fiber transmission distances for the 6400-symbol dataset.

Fig. 7. Distribution of EVM estimation errors under different training scheme for 6400-symbol dataset.

formats. The employed FFNN model structure contains four
hidden layers (1000, 500, 500, 100 neurons) [20], which trains
a single model with all modulation formats as the reference
benchmark. Fig. 5 illustrates normalized mean absolute error
(NMAE) as a function of the number of symbols for different
training methods. We use NMAE to evaluate accuracy across
different models, which is defined as:

NMAE[%] =
1

n

n∑

i=1

|EVMti − EVMei|
EVMti

× 100, (3)

where n is the number of test samples in a model, EVMti
and EVMei denote ith test sample true EVM and estimated
EVM, respectively. The FFNN-based EVM estimator shows a
good generalization when we train all modulation formats in
one model. It can be observed that there is a performance gap
between curves of LR1, LR2, and LR3 models. This tendency
is expected to be enlarged when more modulation formats are
simultaneously included in the model. When we train an LR
model for each modulation format separately, the LR scheme
achieves performance as well as the FFNN scheme. For a 1000-
symbol and a 6400-symbol long signal sequence, the LR1 model
achieves NMAE below 3.5% and 1%, respectively.

Next, we elaborate on detailed performance for each consid-
ered modulation format, including MAEs and error deviation
between true EVM labels and estimated EVM values. Here, we
use a relatively long signal sequence, e.g., 6400-symbol dataset,
as the test dataset. In Fig. 6 we illustrate estimated MAEs as a

Fig. 8. Schematic diagram of simulation setup for fiber nonlinearity dataset.
MUX: Multiplexer; DEMUX: Demultiplexer.

function of transmission distance. The top axis is the correspond-
ing measured OSNR. The MAEs of LR1 for QPSK, 16QAM,
64QAM are below 0.23%, 0.16%, 0.06% respectively. As the
number of modulation formats increases, the generalization
capability of the LR model decreases as expected. For instance,
the LR3 results (see green lines in Fig. 6) have considerable
fluctuations for different distances. Fig. 7 shows the distribution
of EVM estimation error using a violin plot, where each violin
shape represents 150 test samples. Compared with LR2, LR3
models, one can see that LR1 has a more concentrated estimation
error distribution around the median error, i.e., 0. Besides, a
similar estimation performance is observed between the LR1
and the FFNN models.

Table I shows the complexity of different EVM estima-
tion schemes in terms of computational complexity and time
consumption. We use floating-point operations (FLOPs) to
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Fig. 9. (a) The BER versus launch power per channel curves. The EVM estimation performance on the test dataset: (b) the MAE versus launch power per channel,
(c) the estimated EVM errors deviation.

Fig. 10. 28 Gbaud experimental setup: EA: Electrical amplifier; VOA: Vari-
able optical attenuator; DSO: Digital sampling oscilloscope.

TABLE I
THE COMPLEXITY OF DIFFERENT EVM ESTIMATION SCHEMES

ON A 64-BINS DATASET

aThe training time for a single modulation format.

measure the amount computation of the EVM model. For dif-
ferent devices, the time consumption may vary. This study uses
a device with a 2.4 GHz Intel Xeon E5-2630-v3 with 64 GB of
RAM and a GTX TITAN Black GPU. The FLOPs and test time
are evaluated on a single 64-bin AH vector. For the LR-based
scheme, we also provide a reference for the computational
complexity and time consumption of an MFI module. The MFI
is designed to identify the considered three modulation formats
from a 64-bin AH vector. The employed neural network is an
FFNN containing a 64-neuron input layer, a 5-neuron hidden
layer and a 3-neuron output layer. It can be observed that the
LR-based EVM estimation scheme has lower computational
complexity and time consumption when the MFI module is
also included. To benchmark, the computational complexity of
the conventional EVM scheme [13], [14] is 3n+3 additions
and 2n+5 multiplications, where n is the number of symbols.
Taking 6400 symbols as an example it needs 19203 additions
and 12805 multiplications, and the associated time of EVM
estimation takes 3.57e-2 s [19], which is over two orders of
magnitude longer than the LR approach as shown in Table I.

Besides, the conventional EVM calculation is implemented after
the CPR. Thus, the process of CPR is also contributed to a degree
of complexity. This part of complexity may vary for different
system implementations; and the detailed analyses are reported
in [27]–[29].

C. Wavelength-Division Multiplexed Transmission

After studying long-haul transmission scenarios, we further
investigate the generalization capability of the LR scheme for
WDM transmission. Such transmission links might be impacted
by intra- and inter-channel fiber nonlinearities. Fig. 8 shows a
32 GBaud 5-channel WDM system with 200-km long SSMF
transmission using the 50 GHz ITU grid. The center channel is
under test. We choose sq-64QAM and c-64QAM (as an example
of a geometrically shaped constellation) modulation formats for
this study. Fig. 9(a) shows the BER curves while we sweep
the launch power (per channel) from −4 dBm to +10 dBm;
note that the optical launch power for this configuration is 6
dBm per channel. It can be observed that both square and
circular 64QAM achieves the BER below the SD-FEC after
200 km transmission. Thus, the fiber nonlinearity effects can
be separately studied without features dominated by additive
noises. For the LR scheme, we train each modulation format
separately, whereas we mix them when training for the FFNN
scheme so that we can use it as a reference. Fig. 9(b) and (c)
show the EVM estimation performance on the test dataset. One
can observe that the estimated EVM MAE of both the FFNN
and the LR models are slightly affected by nonlinearities. This
indicates that the phase distortion of some cases in the nonlinear
noise-limited region is barely transferred to the AH. In this case,
the deviations between the estimated EVM values and the true
EVM values on the test samples are within 0.5%, which shows
a good EVM estimation capability.

IV. EXPERIMENTAL VALIDATION AND RESULTS

We carry out an experimental validation for 28 Gbaud sq-
64QAM and c-64QAM signals, the setup is shown in Fig. 10. At
the transmitter side, a PRBS15 is generated, and Gray mapped
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Fig. 11. The EVM estimation performance on the test dataset: (a) MAE vs. OSNR (b) Estimated EVM errors deviation.

onto complex symbols corresponding to two modulation for-
mats, i.e., sq-64QAM and c-64QAM. Then, the 28 Gbaud sig-
nals are generated by filtering the complex symbols with the
Nyquist pulse shaper of 0.15 roll-off factor and resampled to
50 GSa/s, before being loaded to two synchronized arbi-
trary waveform generators (AWG, Tektronix AWG70001A,
50 GSa/s). After that, the in-phase and quadrature electrical
signals at the outputs of the AWGs are amplified by a pair of
linear electrical amplifiers (EAs, SHF 827). The IQM with a
3-dB bandwidth of 25 GHz modulates the incoming electrical
signals onto a continuous wave (CW) optical carrier launched
by an external cavity laser (ECL, 1550.2 nm, 10-dBm) of ∼100
kHz linewidth to obtain the modulated optical signals. A booster
EDFA is used to compensate the modulation loss of the IQM
and keep the transmitted signal power constantly at 5 dBm. The
OSNR adjusting module consists of a variable optical attenuator
(VOA) and an amplified spontaneous emission (ASE) noise
source. After the noise loading, the signal is received by a coher-
ent receiver. The receiver contains a balanced coherent receiver
front end, a 200 kHz local oscillator (LO) laser, and a real-time
digital storage oscilloscope (DSO, Keysight DSOX93304Q, 80
GSa/s, 33 GHz). We set 6 OSNR values ranging from 25 dB to
44 dB for each modulation format and save the corresponding
signal waveforms for further dataset accumulation. For each
transmission scenario, we collect 100 AHs before the CPR in
the offline digital signal processing (DSP). Each AH has 64
amplitude bins represented by 6400 symbols. The true EVM
label of each transmission scenario is calculated after the full
DSP routine. We use 50%, 25%, 25% of the dataset for training,
validation, and testing, respectively.

The EVM estimation results during the testing process
are shown in Fig. 11. As previously discussed, we train
the LR-based EVM estimator for each modulation format
separately. Whereas the reference FFNN-based model is trained
by all modulation formats together. The MAE as a function
of OSNR is shown in Fig. 11(a), the LR model achieves an
MAE below 0.2%. In addition, the estimated EVM deviations
for LR scheme are within 0.5% (Fig. 11(b)). Consistent with
previous simulation results, the separately trained LR-based
EVM estimation model can achieve comparable performance
as an FFNN model. This implies that a simple LR-based
EVM estimation model can be compensated for the lack of

nonlinearity functions by pre-classification of modulation
formats. It is noticed that in our simulation and experiment
we use signals in single-polarization to keep consistency.
However, since the approach/conclusions are general, they can
be extended to a dual-polarization configuration.

V. CONCLUSION

In this work, we investigate the application of a simple
LR-enabled EVM estimator for signal quality monitoring in
coherent optical systems. This scheme can estimate EVM from
the AH of a signal sequence captured before CPR. Since the
LR model is a simplified FFNN without hidden layers and
nonlinear activation functions, the estimation capability of the
LR model is limited. Thus, we train the LR model for each
modulation format separately to maximize inference capability.
Normally, the modulation format information can be obtained
by an MFI module of OPM. Then, a trained modulation-format-
wise EVM estimation model can be selected to perform fast and
robust signal quality monitoring. The simulation and experiment
have demonstrated feasibility and versatility of the LR-based
EVM estimator, which achieves comparable performance as
the FFNN-based model. We believe that the simple LR-based
EVM estimator has the potential to be applied in the OPM
module to extend the monitoring functionality and ensure robust
networking operation.
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