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Constrained Wrapped Least Squares: A Tool for
High-Accuracy GNSS Attitude Determination

Xing Liu , Tarig Ballal , Member, IEEE, Hui Chen , Member, IEEE,

and Tareq Y. Al-Naffouri , Senior Member, IEEE

Abstract— Attitude determination is a popular application of
global navigation satellite systems (GNSS). Many methods have
been developed to solve the attitude determination problem
with different performance offerings. We develop a constrained
wrapped least-squares (C-WLS) method for high-accuracy atti-
tude determination. This approach is built on an optimization
model that leverages prior information related to the antenna
array and the integer nature of the carrier-phase ambiguities
in an innovative way. The proposed approach adopts an efficient
search strategy to estimate the vehicle’s attitude parameters using
ambiguous carrier-phase observations directly, without requiring
prior carrier-phase ambiguity fixing. The performance of the
proposed method is evaluated via simulations and experimen-
tally utilizing data collected using multiple GNSS receivers. The
simulation and experimental results demonstrate excellent perfor-
mance, with the proposed method outperforming the ambiguity
function method (AFM), the constrained least-squares ambiguity
Decorrelation (LAMBDA) method, and multivariate constrained
LAMBDA methods, three prominent attitude determination algo-
rithms.

Index Terms— Attitude determination, global navigation satel-
lite systems (GNSS), integer ambiguity resolution, phase obser-
vations, wrapped least squares.

I. INTRODUCTION

PLATFORM attitude, crucial information in navigation and
vehicle control, is defined as the orientation of a given

body frame relative to a reference coordinate [1]. Many atti-
tude determination methods have been discussed in [2]–[6].
Attitude determination via multiple global navigation satellite
systems (GNSS) antennas mounted on a moving vehicle is
an important research field with a wide variety of applica-
tions [2], [5], [7]–[9]. Recent developments and interest in
autonomous systems have drawn even more attention to this
research area [10]–[13].

GNSS attitude determination makes use of simultane-
ous pseudo-range and carrier-phase observations at multiple
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antennas from one or more GNSS frequencies [14]. It is well
known that carrier-phase observations are some orders of mag-
nitude more precise than pseudo-range data [15]. The latter
cannot satisfy the needs of high-quality attitude estimation
and localization applications. On the other hand, carrier-phase
measurements are ambiguous by unknown integer numbers
of cycles or wavelengths. Consequently, carrier-phase integer
ambiguity resolution is a key and prime difficulty in precise
attitude determination. Several ambiguity resolution methods
have been proposed over the years, which can be catego-
rized into motion-based methods [16]–[19] and search-based
methods [2], [20]–[27]. Motion-based methods have no capac-
ity for real-time solutions due to the requirement of motion
information. In contrast, search-based methods can provide
instantaneous attitude estimation using the observations from
a single time point (or epoch) [22].

Two classes of search-based attitude determination methods
can be identified. In the first category, the search is conducted
in the (float) attitude domain. Among these methods, the ambi-
guity function method (AFM) [28]–[30] is the most popular.
AFM-based algorithms generally minimize an objective func-
tion over a grid of possible attitude angles [22]. A considerable
number of grid points in the search domain are required to
obtain the global optimal, which results in high computational
complexity [31].

The second category of search-based method applies the
search in the ambiguity domain over the space of all poten-
tial integer combinations. The most prominent approaches
of this class are the least-squares ambiguity Decorrela-
tion (LAMBDA) method [20] and its various modified ver-
sions [24], [32]–[35]. The LAMBDA method searches for
the optimal carrier-phase integer ambiguities based on the
integer least-squares (ILS) principle with high efficiency.
However, it does not consider the prior knowledge of the
antenna array configuration. This prior information is bene-
ficial for both enhancing the success rate of ambiguity res-
olution and the accuracy of attitude estimation [36]–[38].
Integer ambiguity resolution under the antenna-geometry con-
straints is a complex nonconvex problem that is very difficult
to solve, especially in real-time. The constraint LAMBDA
(C-LAMBDA) method has been developed for single-baseline
attitude determination, which integrates the baseline length
into the optimization model [35]. In the same spirit, the
multivariate C-LAMBDA (MC-LAMBDA) method was pro-
posed to improve 3-D attitude determination by incorporat-
ing information from multiple baselines [39], [40]. These
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two approaches can significantly enhance the performance of
ambiguity resolution at the cost of requiring a more sophis-
ticated search algorithm to meet the nonlinear constraints on
the antenna array geometry [15], [41]. Despite the resounding
success of these LAMBDA variants, their computational effi-
ciency might be inadequate in challenging environments with
significant multipath effects or an adverse view of satellites,
such as in urban canyon scenarios.

The main contribution of this article lies in developing
a novel GNSS attitude determination method based on a
proposed constrained wrapped least-squares (C-WLS) opti-
mization criterion. This is an extended version of our pre-
vious work [42]. The designed approach incorporates the
antenna array information, the ambiguity integer character-
istics, and residual phase constraints into the optimization
model. The proposed approach belongs to the search-based
category. The method considers the attitude parameters as
the only unknown variables and rigorously assimilates all the
available constraints. Compared with existing algorithms in
the float domain [28]–[30], the computational complexity of
the proposed method is kept low by reducing the search space
to a subset that most likely contains the correct solution. This
is done without sacrificing any prior information or constraints.
Instead of performing integer ambiguity resolution and attitude
estimation in two separate steps, as is done in most traditional
approaches [43], [44], we use the ambiguous carrier-phase
measurements directly to estimate the attitude information.
We demonstrate the effectiveness of our approach in differ-
ent scenarios. As shown by our simulation and experimental
results, the main benefit of the proposed method is improving
the success rate and computational complexity, especially in
challenging situations with a limited number of satellites or
large measurement noise.

This article is organized as follows. Section II-A formu-
lates the fundamental GNSS attitude determination problem
using the double-difference observation model. Section II-B
discusses the standard optimization model to solve the atti-
tude determination problem. Section III presents the proposed
C-WLS method and theoretically analyzes various aspects
of the proposed approach. Section IV describes the adopted
search strategy to find the attitude solution. In Section V,
simulation and experimental results are presented, demonstrat-
ing the feasibility of the proposed approach. In Section VI,
we draw the conclusion of this work.

II. BACKGROUND

A. Observation Model

For a platform with A + 1 GNSS antennas tracking
S + 1 satellites, the original observations collected at the ath
antenna (a = 0, 1, 2, . . . ,A) from the sth satellite’s signal
(s = 0, 1, 2, . . . ,S) can be modeled as

ρs
a = Ps

a + I s
a + T s

a + c

λ
(δta − δt s)+ εs

a

ψs
a = Ps

a + Ns
a − I s

a + T s
a + c

λ
(δta − δt s)+ ηs

a (1)

with

Ps
a = 1

λ

∥∥Ls − la
∥∥

2. (2)

Fig. 1. GNSS antennas in the body frame.

The variables in (1) and (2) are defined as follows: ρs
a and

ψs
a are the pseudo-range and carrier-phase observables, respec-

tively, Ps
a denotes the distance between the sth satellite and the

ath antenna, I s
a is the ionospheric delay, T s

a is the tropospheric
delay, Ns

a is the carrier-phase ambiguity, λ represents the wave-
length for the given frequency, c is the speed of light, δt s and
δta denote the satellite and receiver clock biases, respectively,
Ls is the satellite location, la is the antenna position, and εs

a
and ηs

a account for unmodeled errors and noise.
For a configuration with multiple antennas, as shown in

Fig. 1, let us denote the baseline vector between antenna 0 and
antenna a represented in the reference coordinate by xa ∈ R3.
To mitigate the atmospheric effect and satellite clock biases,
we calculate the difference between observations at antenna
a and the reference antenna, say, antenna 0. This operation
is usually denoted as single difference, and it results in the
observation model

ρs
a0 = ρs

a − ρs
0 = Ps

a0 + c

λ
δta0 + εs

a0

ψs
a0 = ψs

a − ψs
0 = Ps

a0 + Ns
a0 + c

λ
δta0 + ηs

a0. (3)

In the attitude determination problem, the baseline length is
usually quite short (meter-level or shorter) [45]. This makes
the atmospheric delays for two antennas highly correlated and
can almost be eliminated by the single-difference operation.
Since the baseline length is far smaller than the distance from
the satellite to the antennas, Ps

a0 can be represented as [46]

Ps
a0 = Ps

a −Ps
0 = 1

λ

(
hs
)T

xa (4)

where hs ∈ R3 is the unit line-of-sight vector between the
receiver and satellite s, and T denotes the matrix transpose.

Another difference operation is carried out on the
single-difference observations over pairs of satellites to cancel
out the receiver clock bias. By designating satellite 0 as a ref-
erence, the difference process results in the so-called double-
difference model, which is given by

ρs0
a0 = ρs

a0 − ρ0
a0 = 1

λ

(
hs − h0

)T
xa + εs0

a0

ψs0
a0 = ψs

a0 − ψ0
a0 = 1

λ

(
hs − h0

)T
xa + Ns0

a0 + ηs0
a0. (5)

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on August 25,2022 at 07:32:39 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: C-WLS: A TOOL FOR HIGH-ACCURACY GNSS ATTITUDE DETERMINATION 8005315

The double-difference operation eliminates most of the com-
mon errors such as atmospheric delay, ephemeris errors, and
clock errors.

For ath baseline (the baseline between antenna 0 and
antenna a), we can arrange the double-difference observations
from various satellites in the vectors

ρa = [ ρ10
a0 · · · ρS0

a0

]T
, ψa = [ψ10

a0 · · · ψS0
a0

]T
. (6)

By arranging the other parameters in (5) in a vector or a matrix
to match (6), the standard double-difference model is given by
the following linear observation equations:

ρa = Hxa + εa

ψa = Hxa + Na + ηa (7)

where εa, ηa ∈ RS are the unmodeled error and noise vec-
tors, Na ∈ ZS is the unknown integer ambiguity vector, and
H ∈ R

S×3 is a design (nonsingular) matrix with the form

H = 1

λ

⎡
⎢⎢⎣
(
h1 − h0

)T
...(

hS − h0
)T
⎤
⎥⎥⎦ =

⎡
⎢⎣

h̃1
...

h̃S

⎤
⎥⎦. (8)

The process of estimating xa based on (7) is referred to
as single-baseline attitude determination. The baseline orien-
tation given by the vector xa only partly characterizes the
platform’s attitude. To fully describe the platform’s attitude,
two or more noncollinear baselines are required. By combining
the measurement vectors for multiple baselines in a matrix, the
3-D GNSS attitude observation model is given by

P = HX +�

� = HX + N +� (9)

with

P = [ ρ
1

· · · ρA

]
, � = [ψ

1
· · · ψA

]
, X = [ x1 · · · xA

]
where N, �, and � are the corresponding matrix forms of
the integer ambiguities and error variables. Note that the
pseudo-range and carrier phase are assumed to be uncorrelated,
whose covariance matrices are given by

QP = cov[vec(P)] = E
[
vec(P − E(P))[vec(P − E(P))]T

]
Q� = cov[vec(�)] = E

[
vec(� − E(�))[vec(� − E(�))]T

]
Q = cov

([
vec(�)
vec(P)

])
=
[

Q� O
O QP

]
where vec(·) is the vectorization operation, E(·) denotes the
expectation operator, and O is a zero matrix of dimension
(AS)× (AS).

B. Constrained ILS Solution

In this section, we summarize the standard technique for
solving the attitude determination problem based on the
observation model (9). In the setup under consideration,
the antennas are firmly fixed on a rigid platform such that
their coordinates in the body frame can be precisely mea-
sured. Hence, the baseline coordinate matrix expressed in the
body-frame coordinate system, Xb, is known. The matrix Xb

represents the translation of the matrix X in (9) from the
chosen reference coordinate system to the body frame. For
both X and Xb, all the nonlinear geometrical constraints of
the baseline lengths and the baseline relative orientations are
satisfied. A rotation matrix links these two baseline matrices
and maintains the geometrical constraints intact, that is,

X = RXb (10)

where R ∈ O3×q is an orthogonal matrix, RTR = Iq , Iq is
an identity matrix of dimension q , and q = min(3,A). The
essence of the 3-D attitude determination is to estimate the
rotation matrix R, which represents the orientation of the body
frame relative to the reference frame.

Depending on the value of A and q , we identify three
different cases. First, for A = 1, q = 1, R is a column vector
that contains only two independent entries (the third entry is
determined by the unit-norm requirement). In this case, Xb

degenerates to a scalar value

Xb = x11 . (11)

For A = 2, q = 2, the baseline coordinates in the body frame
can be defined as

Xb =
[
x11 x21

0 x22

]
. (12)

Finally, for A ≥ 3, q = 3, the baseline coordinates in the
body frame take the form

Xb =
⎡
⎣ x11 x21 x31 · · · xA1

0 x22 x32 · · · xA2

0 0 x33 · · · xA3

⎤
⎦. (13)

The estimation of the unknown integer ambiguities and the
rotation matrix can be formulated as the constrained least-
squares (C-LS) optimization [35]

min
R∈O3×q ,N∈ZS×A

‖vec(Y − ARXb − BN)‖2
Q−1

Y
(14)

where

Y �
[
�

P

]
, A �

[
H
H

]
, B �

[
IS
O

]
.

The design matrices A and B link the observation vector to the
unknown parameters, QY is the variance–covariance matrix of
vec(Y), and ‖(·)‖2

Q−1
Y

= (·)TQ−1
Y (·).

The optimization in (14) is known as the constrained
(mixed) ILS (C-ILS) problem. The C-ILS model handles two
types of constraints: the integer constraints of the carrier-
phase ambiguities, and the orthogonality constraints of the
rotation matrix. This is a nonconvex optimization due to
the integer property of the carrier-phase ambiguities and the
orthogonality constraints. A renowned approach to solve (14)
is the MC-LAMBDA method, which makes use of the C-ILS
theory along with a search-and-shrink or search-and-expand
strategy [35]. The MC-LAMBDA method seeks the optimal
carrier-phase ambiguities in the integer domain, which may
lead to high complexity in some scenarios.
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III. PROPOSED C-WLS METHOD

To avoid the complex process of resolving the carrier-phase
integer ambiguities, we propose a novel optimization model
to estimate the rotation matrix directly and recover the unam-
biguous phase as a byproduct. This model leads to a very
efficient approach to solve the attitude determination problem.
We will start by introducing the proposed model using only
carrier-phase observations. Subsequently, we extend the model
to include pseudo-range measurements.

To strengthen the model (14), additional constraints (prior
information) will be exploited. Given carrier-phase observa-
tions, the unknown matrices R and N can be estimated by
applying the C-ILS optimization

min
R∈O3×q ,N∈ZS×A

∥∥vec
[
ξ (R,N)

]∥∥2
Q−1
�

(15)

where ξ (R,N) is the residual phase error defined as

ξ (R,N) � � − HRXb − N. (16)

Let Ni j and ξi j (R, Ni j ) be the entries in the i th row and
j th column of N and ξ (R,N), respectively. Considering the
observation error distribution, we can apply an upper-bound
to restrict the residual phase, that is,∣∣ξi j (R, Ni j )

∣∣ � δ, i = 1, 2, . . . ,S; j = 1, 2, . . . ,A (17)

where |·| denotes the absolute value, and δ is an upper bound
that can be related to the noise level. In what follows, we will
state our main assumption concerning this upper bound. This
assumption significantly simplifies the process of estimating
the rotation matrix, as will be shown subsequently.

Assumption 1: Double-difference carrier-phase observation
noise is confined to an interval bounded by minus and plus a
half wavelength. That is,∣∣ηs0

a0

∣∣ � 1

2
, s = 1, 2, . . . ,S; a = 1, 2, . . . ,A. (18)

This assumption is essential to the development of the
proposed attitude determination method. Therefore, we exam-
ine the validity of this assumption before proceeding further.
We analyze the assumption from two points of view, as fol-
lows.

1) Measurement noise level: To analyze the
double-difference observation noise level, we apply
the Gaussian model to the original carrier-phase
measurement noise, that is, we assume the noise of
the undifferenced phase follows a Gaussian distribution
N (0, σ 2

0 ). By the rules of error propagation, the noise
of the double-difference phase also follows a Gaussian
distribution N (0, σ 2) with σ = 2σ0. The possibility
that the double-difference carrier phase noise exceeds
half of a cycle is

P1
2

= 2Q
(

1

2

)
(19)

where Q(·) is the Q-function. As reported in [1],
the carrier-phase observations can be measured to bet-
ter than 0.01 wavelength. By setting σ0 = 0.01 and
σ = 0.02, we find out that P1

2
≈ 0. Thus, it is generally

reasonable to regard P1/2 as small enough to be ignored.

2) Phase observation nature: In the context of atti-
tude determination, only the fractional part of the
double-difference phase data is meaningful. This par-
ticular property of phase measurements is due to the
presence of integer ambiguities. Based on (7), for two
different observed noise vectors ηa and ηa + 
Na ,

Na ∈ ZS , the double-difference phase observations ψa

will have identical fractional parts. This results in the
same estimations of the rotation matrix and the unam-
biguous double-difference carrier phase based on (14).
The integer 
Na will be absorbed in the integer ambigu-
ity estimation. Therefore, it is impossible to distinguish
whether the phase noise is ηa or ηa + 
Na. Given that
achieving the optimal attitude information is the real
goal, we can make an assumption about the integer part
of phase noise to restrict the possible solutions in a
way that is beneficial in improving the estimation of
the rotation matrix. Hence, we can select the integer
to minimize the absolute value of phase noise, which
will lead the phase noise to fall in [−1/2, 1/2], that
is, we consider only the estimations corresponding to
observations with the lowest possible noise. In other
words, double-difference carrier-phase observation noise
can be assumed to be no greater than a half wavelength.

Based on Assumption 1, we obtain the following constraint
on the residual phase:∣∣ξi j (R, Ni j )

∣∣ � 1

2
, i =1, 2, . . . ,S; j =1, 2, . . . ,A. (20)

Note that
∣∣ξi j(R, Ni j )

∣∣ = 1/2 will result in Ni j having multiple
solutions for the same R. To facilitate obtaining an interesting
form of the proposed method, we introduce a minor technical
trick to modify (20) by limiting the range of ξi j(R, Ni j ) to
(−1/2, 1/2], that is,

−1

2
<ξi j(R, Ni j )�

1

2
, i =1, 2, · · ·,S; j =1, 2, . . .,A. (21)

Combining (15) with (21), we obtain the following version of
the minimization problem for attitude determination:

min
R∈O3×q ,N∈ZS×A

∥∥vec
[
ξ(R,N)

]∥∥2
Q−1
�

(22a)

s.t. − 1

2
< ξi j (R, Ni j ) � 1

2
(22b)

i = 1, 2, . . . ,S; j = 1, 2, . . . ,A.
We can rewrite (22a) in an alternative form as

min
R∈O3×q

(
min

N∈ZS×A

∥∥vec
[
ξ(R,N)

]∥∥2
Q−1
�

)
. (23)

Given any value of R, the corresponding value of N is

Ñ(R) = round(� − HRXb) (24)

with round(·) being a special rounding function that works
exactly like a standard rounding function except that for
N ∈ Z, round(N + 0.5) = N . Using (24) and (23) can be
rewritten as a single optimization

min
R∈O3×q

∥∥vec
[
� − HRXb − Ñ(R)

]∥∥2

Q−1
�

. (25)
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Fig. 2. Illustration of the wrapped least-squares concept using complex values
on the unit circle.

Based on (25), a more compact form of the attitude determi-
nation problem formulated by (22a) and (22b) is given in the
following lemma.

Lemma 1: Based on Assumption 1, the rotation matrix R
can be estimated by solving the minimization

min
R∈O3×q

‖wrap[vec(� − HRXb)]‖2
Q−1
�

(26)

where wrap(·) is defined as

wrap(·) = (·)− round(·).
We refer to (26) as the C-WLS problem. Here, the rota-

tion matrix R is the only unknown. Once R is known, the
corresponding integer vector N can be determined from (24).

A geometric interpretation of the WLS concept is given
in Fig. 2. The absolute difference between a phase value φ1,
which is an unwrapped version of an element of � , and the
corresponding value in HRXb (φ2), can be represented by the
distance between two points e j2πφ1 and e j2πφ2 on the unit
circle. Since e j2πψi = e j2πφi , where ψi is the wrapped version
of φi , the absolute difference between φ1 and φ2 (on the unit
circle) can be measured as the distance between the complex
values e j2πψ1 and e j2πψ2 on the unit circle, that is,

|wrap(ψ1 − ψ2)| = |wrap(φ1 − φ2)|. (27)

The caveat here is that representing phase values on the
unit circle automatically removes the effect of their inte-
ger parts. The distance of interest is always measured over
the shorter (green) arc, which corresponds to respecting the
half-cycle residual constraint (21). Given that only the frac-
tional part of phase data is available, we can still measure the
distance (on the unit circle) between the computed phase and
the observed unwrapped phase (the observed wrapped phase
plus the true integer value) using the fraction parts of the two
phases, as emphasized by (27).

Based on the above discussion, estimating unknowns using
phase measurements can be achieved by matching the frac-
tional part of the phase observations and those of the corre-
sponding predictions. If we consider a scalar phase observation
ψ1 and the prediction ψ2 = ψ(x) for an unknown parameter x ,
the estimation of x can be carried out using

min
x

|wrap(ψ1 − ψ2)|. (28)

Extending the results to the vector/matrix case while consider-
ing the available set of constraints yields the proposed C-WLS
optimization in (26).

As compared with the C-ILS method, the C-WLS model
maintains the integer constraint on the carrier-phase ambigui-
ties (implicitly) and adds an additional constraint to limit the
range of residual phase errors. Note that the C-WLS model
keeps only the integer ambiguities satisfying the residual con-
straint, instead of the entire integer space. The effect of the
residual restriction on the rotation matrix estimations can be
demonstrated by comparing the solutions of (15) and (26),
which is the subject of the following lemma.

Lemma 2: A sufficient and necessary condition for (15)
and (26) to have the same global optimum regarding R is that
the residual phase errors corresponding to the global minimum
of (15) satisfy

∣∣∣ξi j

(
R̂, N̂i j

)∣∣∣� 1

2
, i =1, 2, . . . ,S; j =1, 2, . . . ,A (29)

where R̂ and N̂ are the globally optimal solutions of (15), and
N̂i j is the entry in the i th row and j th column of N̂.

Proof: Suppose that R̂ and N̂ minimize (15), and
they satisfy (29). We can calculate the integer matrix based
on R̂ using

Ñ(R̂) = round(� − HR̂Xb). (30)

When the residual phase errors satisfy

∣∣∣ξi j

(
R̂, N̂i j

)∣∣∣< 1

2
, i =1, 2, . . . ,S; j =1, 2, . . . ,A (31)

we obtain N̂ = Ñ(R̂). If there is some residual error
|ξi j(R̂, N̂i j )| = 1/2, N̂ will have multiple possible values,
and Ñ(R̂) is one of the solutions. Anyway, R̂ and Ñ(R̂) will
minimize (15). Hence, R̂ will be the global optimum of (25),
which is equivalent to (26).

In contrast, we assume that R̂ and N̂ minimize (15), and R̂
minimizes (26). Given the fact that (25) and (26) are equiva-
lent, R̂ will also minimize (25). Then, we have N̂ = Ñ(R̂) or
Ñ(R̂) is one of the possible values of N̂. Otherwise, R̂ cannot
minimize (15) anymore. Therefore, R̂ and N̂ will satisfy (29).

The structure of the weight matrix Q� is related to
whether (29) holds or not. Likewise, the relationship
between (15) and (26) might differ for a various weight
matrix Q� . For double-difference observations, Q� is not
diagonal. With common clock technology, multiple antennas
can use a synchronized clock such that the single-difference
model is applicable in attitude determination. In that case, Q�

is a diagonal matrix. We obtain Lemma 3 as a special case to
establish (29).

Lemma 3: A sufficient condition for (29) to hold, and hence
for (15) and (26) to have the same global optimum for R,
is that Q� is a diagonal matrix.

Proof: In (15), for ∀R ∈ O3×q , we can figure out the
optimal integer ambiguities by minimizing

F = min
N∈ZS×A

∥∥vec
[
ξ (R,N)

]∥∥2
Q−1
�

. (32)
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The diagonal matrix Q� results in the following expression:

F = min
N11∈Z,...,NSA∈Z

⎛
⎝ S∑

i=1

A∑
j=1

[ξi j(R, Ni j )]2

σ 2
�,kk

⎞
⎠

=
S∑

i=1

A∑
j=1

(
min
Ni j ∈Z

[ξi j
(
R, Ni j

)]2

σ 2
�,kk

)
, k = ( j − 1)A + i

(33)

where σ�,kk is the kth diagonal entry of Q� .
Since the sum entries are uncorrelated, we obtain the opti-

mal by minimizing each entry independently. It is apparent
that Ni j ∈ Z satisfying |ξi j (R, Ni j )| � 1/2 will minimize
[ξi j(R, Ni j )]2. Therefore, R̂ and N̂, the global optimums
of (15), always satisfy (29) when Q� is a diagonal matrix.
According to Lemma 2, we conclude that (15) and (26) have
the same global optimum for R.

To precisely explain the effect of the residual constraint,
the results based on the unambiguous phase can be used
as a benchmark to appreciate the difference between (15)
and (26). Assuming 
 is the unambiguous double-different
phase, we define S, S1, and S2 as

S = O
3×q

S1 = {R|R ∈ O
3×q, ξ = 
− HRXb,

∣∣ξi j

∣∣ � 1

2
i = 1, . . . ,S; j = 1, . . . ,A}

S2 = S − S1.

An oracle estimator (that has access to the correct integer
ambiguities) can be formulated as

Ror = arg min
R∈S1

‖vec(
− HRXb)‖2
Q−1
�

. (34)

Contrast this with the C-WLS estimator

RCWLS = arg min
R∈S

‖wrap[vec(� − HRXb)]‖2
Q−1
�

(35)

and the C-ILS estimator

RCILS,NCILS = arg min
R∈S,N∈ZS×A

‖vec(�−HRXb−N)‖2
Q−1
�

. (36)

Corollaries 1–3 summarize the relationships between these
three estimators.

Corollary 1: If the C-ILS estimator (36) and the oracle esti-
mator (34) have the same global optimum for R, the C-WLS
estimator (35) will also have the identical global optimum as
the oracle estimator (34), i.e.,

RCILS = Ror ⇒ RCWLS = Ror .
Proof: We can readily see that

min
R∈S1

‖wrap[vec(� − HRXb)]‖2
Q−1
�

= min
R∈S1

‖ vec(
− HRXb)‖2
Q−1
�

(37)

and

min
R∈S2

‖wrap[vec(� − HRXb)]‖2
Q−1
�

� min
R∈S2,N∈ZS×A

‖vec(� − HRXb − N)‖2
Q−1
�

. (38)

If (36) converges to the oracle estimator, that is, RCILS ∈ S1

and RCILS = Ror , we obtain

min
R∈S1,N∈ZS×A

‖vec(� − HRXb − N)‖2
Q−1
�

< min
R∈S2,N∈ZS×A

‖vec(� − HRXb − N)‖2
Q−1
�

(39)

and

min
R∈S1,N∈ZS×A

‖vec(� − HRXb − N)‖2
Q−1
�

= min
R∈S1

‖ vec(
− HRXb)‖2
Q−1
�

. (40)

From (37) to (40), it follows that

min
R∈S1

‖wrap[vec(�−HRXb)]‖2
Q−1
�

< min
R∈S2

‖wrap[vec(�−HRXb)]‖2
Q−1
�

. (41)

Note that

arg min
R∈S1

‖ vec(
− HRXb)‖2
Q−1
�

= arg min
R∈S1

‖wrap[vec(� − HRXb)]‖2
Q−1
�

(42)

then (35) will also have the same global optimum as (34), that
is, RCWLS ∈ S1 and RCWLS = RCILS = Ror . Hence, RCILS = Ror ⇒
RCWLS = Ror , but not vice versa.

Corollary 2: If the C-WLS estimator (35) and the oracle
estimator (34) have different global optimums, the global
optimum (with respect to R) of the C-ILS estimator (36) will
also differ from that of the oracle estimator (34). That is,

RCWLS �= Ror ⇒ RCILS �= Ror .
Proof: If RCWLS �= Ror , then RCWLS ∈ S2, and

min
R∈S1

‖wrap[vec(�−HRXb)]‖2
Q−1
�

> min
R∈S2

‖wrap[vec(�−HRXb)]‖2
Q−1
�

. (43)

According to (38) and (43), we have

min
R∈S,N∈ZS×A

‖vec(� − HRXb − N)‖2
Q−1
�

� min
R∈S2,N∈ZS×A

‖vec(� − HRXb − N)‖2
Q−1
�

� min
R∈S2

‖wrap[vec(� − HRXb)]‖2
Q−1
�

<
∥∥∥wrap

[
vec
(
� − HR̂or

)]∥∥∥2

Q−1
�

= ∥∥vec
(
� − Hx̂or − Nor

)∥∥2
Q−1
�

(44)

with

Nor = � −
 (45)

then RCILS �= Ror and NCILS �= Nor . As a result, RCWLS �= Ror ⇒
RCILS �= Ror .

Using the results of Corollaries 1 and 2, the following
corollary holds.

Corollary 3: Compared with the C-ILS estimator (36), the
C-WLS estimator (35) is more likely to have the equivalent
global optimum for R as the oracle estimator (34), that is,

P(RCWLS = Ror) � P(RCILS = Ror)

where P(·) denotes the probability.
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Proof: Since

RCILS = Ror ⇒ RCWLS = Ror

RCWLS �= Ror ⇒ RCILS �= Ror

it can be readily seen that P(RCWLS=Ror)�P(RCILS=Ror).
When only carrier-phase measurements are utilized to

jointly estimate the ambiguities and attitude, there are more
unknowns than the number of equations. Corollary 3 illumi-
nates the advantage of the C-WLS approach compared to the
C-ILS method. However, pseudo-range observations are still
required to improve the solutions.

Lemma 4: Including both pseudo-range and carrier-phase
data, the proposed C-WLS method can be formulated as

min
R∈S

∥∥∥∥
[
wrap[vec(� − HRXb)]

vec(P − HRXb)

]∥∥∥∥
2

Q−1

. (46)
It is readily seen that (46) will achieve the same global mini-
mum and optimal solution of R as

min
R∈S,N∈ZS×A

‖vec(Y − ARXb − BN)‖2
Q−1

Y
(47a)

s.t. − 1

2
< ξi j (R, Ni j ) � 1

2
, (47b)

i = 1, 2, . . . ,S; j = 1, 2, . . . ,A.

To compare (46) with (14), we assume that

R̃or = arg min
R∈S1

∥∥∥∥vec

([



P

]
−
[

H
H

]
RXb

)∥∥∥∥
2

Q−1

(48)

R̃CWLS = arg min
R∈S

∥∥∥∥
[

wrap[vec(� − HRXb)]
vec(P − HRXb)

]∥∥∥∥
2

Q−1

(49)

R̃CILS, ÑCILS = arg min
R∈S,N∈ZS×A

‖vec(Y − ARXb − BN)‖2
Q−1

Y
. (50)

Given the structure of Q, we have

R̃or = arg min
R∈S1

{
‖vec(
−HRXb)‖2

Q−1
�

+‖vec(P−HRXb)‖2
Q−1

P

}
(51)

R̃CWLS = arg min
R∈S

{
‖wrap[vec(�−HRXb)]‖2

Q−1
�

+‖vec(P−HRXb)‖2
Q−1

P

}
(52)

R̃CILS, ÑCILS= arg min
R∈S,N∈ZS×A

{
‖vec(�−HRXb−N)‖2

Q−1
�

+‖vec(P−HRXb)‖2
Q−1

P

}
. (53)

Incorporating pseudo-range observations will introduce the
same terms (‖vec(P − HRXb)‖2

Q−1
P

) to (51)–(53). So, all the
results in Corollaries 1–3 are still true. As a consequence,
we establish the following corollary.

Corollary 4: For the estimators in (51)–(53), the global
optimums with respect to R satisfy the following relationships:

R̃CILS = R̃or ⇒ R̃CWLS = R̃or

R̃CWLS �= R̃or ⇒ R̃CILS �= R̃or

P
(
R̃CWLS = R̃or

)
� P(R̃CILS = R̃or).

Corollary 4 demonstrates the advantage of the C-WLS model.
The proposed method imposes a constraint on the residual
errors, which shrinks the solution space and removes spurious
solutions. This results in an improvement over the C-ILS
method. To give insights into all the results discussed in this
section, we summarize the significance of various lemmas and
corollaries in Remark 1.

Remark 1: The significance of various lemmas and corol-
laries is as follows.

Lemmas 1 and 4 formulate the proposed C-WLS optimiza-
tion model.

1) Lemma 1 based on only carrier phase data.
2) Lemma 4 based on pseudo-range and carrier

phase data.
Lemmas 2 and 3 discuss the conditions for the C-WLS and
the C-ILS optimization to have equivalent global optimum for
R when using only carrier phase observations.

1) Lemma 2 provides a sufficient and necessary condition.
2) Lemma 3 proves a diagonal Q� as a sufficient condition.

Corollaries 1–4 indicate the advantage of the C-WLS model
compared with the C-ILS model, namely, the C-WLS estima-
tor is more likely to have the same global optimum for R as
the oracle estimator.

1) Corollaries 1–3 based on only carrier phase data.
2) Corollary 4 based on pseudo-range and carrier phase

data.

IV. IMPLEMENTATION OF THE

PROPOSED C-WLS METHOD

In the C-WLS problem (46), the rotation matrix R is the
only unknown. For q = 3, R includes nine elements that
are uniquely determined by three independent variables. The
Euler angles are usually used to define R and represent the
orientation of the rigid body with respect to the three axes in
the reference coordinate system. The rotation matrix R can be
expressed in the following form, as shown at the bottom of the
page, where α, β, and γ are the yaw, pitch, and roll angles,
respectively. An optimal of (46) can be found by searching
over the range of the Euler angles. However, such a 3-D
search leads to high computational complexity. Given the prior
knowledge of the antenna-array configuration and the integer
characteristics of phase ambiguities, we can efficiently reduce
the search space to a few possible estimates of R (instead
of searching through the whole range of the Euler angles).
In this section, we will develop the search strategies for the
single-baseline and multibaseline cases separately.

R =
⎡
⎣ cosα cosβ cosα sin β sin γ − sin α cos γ cosα sin β cos γ + sin α sin γ

sin α cosβ sin α sin β sin γ + cosα cos γ sin α sin β cos γ − cosα sin γ
− sin β cosβ sin γ cosβ cos γ

⎤
⎦
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Fig. 3. Relationship between ra and h̃s .

A. Single-Baseline Attitude Determination

In a single-baseline setup, R ∈ R
3 is a unit column vector,

uniquely determined by yaw and pitch angles. To facilitate
the discussion of the multibaseline case (presented later),
we replace R with ra , which will later be used to indicate
the ath (single) baseline in a multibaseline configuration. The
vector ra represents the unit direction vector of a single base-
line. Based on (46), we can write

min
ra∈R3,‖ra‖2=1

∥∥∥∥
[

wrap(ψa − daHra)
ρa − daHra

]∥∥∥∥
2

Q−1
a

(54)

where da is the baseline length, and Qa is the covariance
matrix. The baseline vector in the reference frame is given
by

xa = dara. (55)

According to (5), (8), and (55), we have

ψs0
a0 − Ns0

a0 = da h̃sra + ηs0
a0. (56)

As shown in Fig. 3, we draw the vector ra and h̃s starting from
the origin. ra is the unknown unit vector which makes an angle
θs with h̃s . Hence, the candidate terminal points (coordinates)
for ra represent a circle on the sphere centered around the
radial line of h̃s . If we ignore phase noise, the angle θs satisfies

cos θs = ψs0
a0 − Ns0

a0

da‖h̃s‖2
. (57)

For the sth element of ψa , the possible integer ambiguities
should be confined to

−da‖h̃s‖2 � ψs0
a0 − Ns0

a0 � da‖h̃s‖2. (58)

Considering all the possible Ns0
a0 , the candidate terminal points

for ra will be on a set of parallel circles on the spherical
surface.

Fig. 4 shows an example of the distribution of pos-
sible candidate points for ra with four satellites under
consideration (circles of the same color corresponding to
one double-difference phase observation). The intersections
between the circles of different colors indicate possible esti-
mates of ra . The intersection points between two circles exist
if the following system of equations has a solution:{

ψs0
a0 − Ns0

a0 = dah̃sra

ψm0
a0 − Nm0

a0 = dah̃mra.
(59)

Fig. 4. Distribution of potential candidate points for ra .

In the noise-free case, there is one combination of the integers

Na = [ N10
a0 · · · NS0

a0

]T
(60)

whose corresponding circles have a joint intersection point,
that is, (60) satisfies⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ10
a0 − N10

a0 = da h̃1ra

ψ20
a0 − N20

a0 = da h̃2ra

...

ψS0
a0 − NS0

a0 = da h̃S ra .

(61)

Due to the measurement noise, we may have only pairwise
circle intersect, that is, a solution of (61) may not exist.
However, we can calculate the intersection points for all the
circle pairs of different observations. The baseline vector can
be determined by evaluating (54) (only) at these intersections.

Instead of solving the system of equations (59), we can
achieve the intersections by applying the geometry relation-
ships between two circles on the sphere. To calculate the inter-
section points, we need to define some intermediate vectors,
such as the normal vector v1 of the plane determined by h̃s

and h̃m , and the normal vector v2 of the plane on which v1

and h̃m lie. v1 and v2 are given by

v1 = h̃s × h̃m

‖h̃s × h̃m‖2
, v2 = v1 × h̃m

‖v1 × h̃m‖2
. (62)

In Fig. 5, the centers of the circle s and circle m are

cs = cos θs h̃s

‖h̃s‖2
, cm = cos θm h̃m

‖h̃m‖2
(63)

where the cosines can be computed based on (57).
To check whether the two circles intersect, we define the

peak points (the closest or farthest points from the other circle)
of circle m with respect to circle s as follows:

p1 = cm − sin θmv2, p2 = cm + sin θmv2. (64)

The directed distances (positive or negative) between the peak
points and circle s plane are given by


1 = (p1 − cs)
T h̃s

‖h̃s‖2
, 
2 = (p2 − cs)

T h̃s

‖h̃s‖2
. (65)
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Fig. 5. Illustration of the intersection points.

If 
1
2 � 0, circle s will intersect with circle m. Otherwise,
there is no intersection. When
1 = 0, the two circles intersect
at p1. Similarly, if 
2 = 0, p2 is the intersection point. When

1
2 < 0, there are two intersection points between circle s
and circle m. A procedure to calculate these intersection points
is as follows. The directed distance between cm and circle s
plane is


3 = (cm − cs)
T h̃s

‖h̃s‖2
. (66)

The projected point of cm on circle s plane is expressed as

pcm = cm − 
3h̃s

‖h̃s‖2
. (67)

As shown in Fig. 5, h̃s intersects with the circle m plane at

pcs = cos θm

cos θsm

h̃s

‖h̃s‖2
(68)

where θsm is the angle between h̃s and h̃m . The directed
distance between pcs and circle s plane is given by


4 = (pcs − cs
)T h̃s

‖h̃s‖2
. (69)

Based on the basic proportionality theorem of similar triangles,
we have

pc − cs

pc − pcm

= 
4


3
(70)

where pc is the center point on the intersection line. Therefore,
we have

pc = 
3cs −
4pcm


3 −
4
. (71)

The two intersection points can be represented as

q1 = pc −
√

1 − ‖pc‖2
2v1, q2 = pc +

√
1 − ‖pc‖2

2v1. (72)

We consider all the intersection points as candidates for
being an estimate of ra . When there is no intersection, if 
1 or

2 is close to zero, some points around the corresponding
peak point should also be selected as the potential candidates
as the lack of intersection might be due to noise. We define a
threshold δ
 for 
1 and 
2. If |
1| < δ
, we can select

p1 as a candidate; if |
2| < δ
, we can choose p2 as a
candidate. We can create a pool (Sra ) of all candidate points
from the intersections of all possible circle pair combinations.
Algorithm 1 summarizes the procedure to determine Sra .
We keep the best K estimations of ra (coarse solutions) using

min
ra∈Sra

∥∥∥∥
[

wrap(ψa − daHra)
ρa − daHra

]∥∥∥∥
2

Q−1
a

. (73)

To achieve a high-quality solution, a refinement of the
coarse results is necessary. When the unambiguous phase φa

is available, we consider the following optimization:

min
ra∈R3,‖ra‖2=1

∥∥∥∥
[
φa − daHra

ρa − daHra

]∥∥∥∥
2

Q−1
a

(74)

which leads to a general constraint least-squares solution.
Many strategies, generally iterative schemes, can be utilized to
solve the nonlinear system in (74). We can directly utilize the
ambiguous carrier phase as long as we substitute the following
term in (74):

φa = ψa + round(daHra − ψa). (75)

We use the coarse results as the initial solutions and achieve
the final estimation based on (74) and (75). The entire proce-
dures are summarized in Algorithm 2.

Algorithm 1 Procedure to Search Baseline Vector Candidates
1: Sra = ∅

2: for all Circle pairs do
3: Compute p1, p2, 
1 and 
2 using (62)–(65).
4: if 
1
2 < 0 then
5: Compute q1 and q2 using (66)–(72).
6: Sra = Sra ∪ {q1,q2}.
7: else
8: When |
1| < δ
, Sra = Sra ∪ {p1}.
9: When |
2| < δ
, Sra = Sra ∪ {p2}.

10: end if
11: end for

Algorithm 2 C-WLS Single-Baseline Attitude Determination
1: Determine Sra based on Algorithm 1.
2: Select the best K estimations from Sra using (73).
3: Use the coarse results as the initial solutions.
4: Final results after refinement based on (74)–(75).

B. Multibaseline Attitude Determination

For multibaseline configurations, we can estimate the rota-
tion matrix by refining single-baseline solutions to avoid high
complexity, rather than searching for the solution directly.
Single-baseline attitude determination applies only to the base-
line length constraint. To fully integrate the geometry con-
straints, we need to consider the relative direction of different
baselines. This can be realized by checking the angle between
estimations of baseline vectors.
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For each baseline, we keep the best K estimations of the
direction vector based on the intersection points and poten-
tial candidates. For the ath and kth baseline, we choose the
estimations that satisfy∣∣arccos

(
rT

a rk
)−�ak

∣∣ < δ� (76)

where �ak is the angle between two baselines, and δ� is the
threshold of angle difference. The selected baseline vectors
constitute the possible baseline matrix in the reference coor-
dinate, that is,

�

X = [d1r1 · · · dArA
]
. (77)

For A = 2, we can add a column to X̃ and Xb, that is,

X̃ =
[

d1r1 d2r2
r1 × r2

‖r1 × r2‖2

]
, Xb =

[
x1

b x2
b

x1
b × x2

b∥∥x1
b × x2

b

∥∥
2

]
.

(78)

According to the relationship between the baseline matrix in
the body frame and the reference frame, the coarse solution
of the rotation matrix can be calculated using

R̃ = X̃XT
b

(
XbXT

b

)−1
. (79)

Algorithm 3 C-WLS Multibaseline Attitude Determination
1: Find the best K estimations for each baseline using steps

1–2 of Algorithm 2.
2: Keep the estimations that satisfy the angle criteria (76) for

every baseline pair.
3: Combine pointing vectors to create the baseline matrix

using (77).
4: Convert the baseline matrix to a rotation matrix using (79).
5: Initialize the orthogonal rotation matrix using Wahba’s

problem as in (80).
6: Final results after refinement via (83)–(84).

To satisfy the antenna array constraints, we have to trans-
form the rotation matrix to an orthogonal matrix, that is,
to solve the following optimization problem:

�

R = arg min
R∈O3×3

∥∥R − R̃
∥∥

2. (80)

This is Wahba’s problem for which an analytical solution
exists [47], [48]. The solution goes as follows. First, apply
singular-value decomposition to the coarse rotation matrix

R̃ = Ũ�̃ṼT (81)

where �̃ is a diagonal matrix in which the diagonal entries
are the singular values of R̃, and the columns of Ũ and Ṽ are
the left and right singular vectors of R̃, respectively. Then a
solution to (80) can be obtained as

�

R = Ũ

⎡
⎣ 1 0 0

0 1 0
0 0 det(Ũ) det(Ṽ)

⎤
⎦ṼT. (82)

It can be readily seen that
�

R is an orthogonal matrix, that is,
it satisfies all the required constraints. However, this is only a

suboptimal estimate of the rotation matrix, hence a refinement
is required.

Similar to the single-baseline setup, if the unambiguous
phase
 is known, we can consider the following optimization:

min
R∈O3×q

∥∥∥∥
[
vec(
− HRXb)
vec(P − HRXb)

]∥∥∥∥
2

Q−1

. (83)

Again, we directly take advantage of the ambiguous phase by

using
�

R as the initial solution and applying the substitution


 = � + round(HRXb −�). (84)

The entire process to estimate the rotation matrix and resolve
the carrier-phase ambiguity is summarized in Algorithm 3.

V. PERFORMANCE EVALUATION

In this section, we first present simulation results. Next,
we evaluate the performance of the proposed method
experimentally. Our tests focus on the most challeng-
ing single-frequency and single-epoch scenarios, with only
GPS constellation utilized. To demonstrate the performance
of the proposed approach, we benchmark against the
AFM-based [22] and LAMBDA-based search algorithms (the
C-LAMBDA method [35] for single-baseline set-ups and
the MC-LAMBDA method [40] in multi-baseline scenarios).
A 10◦ cut-off elevation mask is used in all cases, as is usually
recommended to protect against severe multipath effects.

A. Simulation Results

Simulations are implemented based on the Visual soft-
ware [49] using the assumed antenna position and real GPS
constellation information on 7 November 2021. We evaluate
the performance of the proposed approach under different
noise levels by adding Gaussian noise with different standard
deviations to both the pseudo-range and carrier-phase measure-
ments. We also examine the feasibility of the proposed method
under adverse satellite geometry conditions, namely scenarios
with a poor position dilution of precision (PDOP) due to
limited satellite visibility. A pseudo-range to carrier-phase
variance ratio σ 2

ρ /σ
2
ψ = 104 is adopted [15]. We consider

setups involving one, two, and three baselines with a 1-m
baseline length. In the multibaseline cases, the baselines are
perpendicular to each other, so the baseline matrices in the
body frame are

X1
b =

[
1 0
0 1

]
, X2

b =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦. (85)

For each simulated scenario, the tests are repeated 104 times.
Each time the attitude angles are generated randomly.
To search the candidates of the baseline vectors based on
Algorithm 1, the threshold δ
 is set to be 0.05.

Table I reports the success rates of ambiguity resolution
for the proposed method and the benchmark methods. These
results are obtained for a number of different scenarios involv-
ing different numbers of baselines, different numbers of satel-
lites, and various noise levels. The success rate is calculated as
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TABLE I

SUCCESS RATE (%) VERSUS PHASE NOISE σψ(mm), NUMBER OF SATELLITES (#Sat), AND NUMBER OF
BASELINES. C-LAMBDA/MC-LAMBDA AFM PROPOSED

TABLE II

AVERAGE NUMBER OF INTEGERS IN THE SEARCH SPACE OF THE C-LAMBDA OR MC-LAMBDA METHOD VERSUS

PHASE NOISE σψ(mm), NUMBER OF SATELLITES (#Sat), AND NUMBER OF BASELINES

the percentage of trials in which all the integer ambiguities are
retrieved correctly. Note that success cases can provide accu-
rate attitude estimation, whereas failure cases tend to produce
outliers or estimates that are meaningless. This underscores
the pertinence of success rate as a performance indicator.

Based on the search-and-shrink or search-and-expand
algorithm, the C-LAMBDA and MC-LAMBDA methods can
adaptively adjust the search space in the integer domain.
Theoretically, they could find the global optimum of the opti-
mization (14). However, the performance of the C-LAMBDA
and MC-LAMBDA methods dramatically depends on the
accuracy of the float solutions. In challenging scenarios, the
inadequacy of the float solutions results in an extensive set
of potential integer vectors to be evaluated by these two
approaches. The set can grow even larger as the number of
baselines increases and the dimensionality of the ambiguity
vectors/matrices grows. To avoid computational issues due
to prohibitively large search spaces, we force the adaptive
adjustment strategies of the C-LAMBDA and MC-LAMBDA
methods to stop after a search limit of 105 integer searches.

As shown in Table I, the proposed approach and the
C-LAMBDA method have almost the same success rates in
single-baseline configurations, both outperforming the AFM
method. In the multiple baseline case, the proposed method
utilizes the angle constraint to evaluate and improve the single-
baseline estimates; hence, its performance improves as more
baselines are used. This should be the case, more or less, with

the MC-LAMBDA method if a search limit is not imposed.
However, without the search limit, an unacceptable computa-
tional complexity results in the case of the MC-LAMBDA
algorithm. As shown in Table II, the C-LAMBDA and
MC-LAMBDA methods need to evaluate just a few integer
candidates in ideal scenarios. However, an enormous number
of integers need to be evaluated in many challenging setups.
The application of a search limit to the C-LAMBDA and
MC-LAMBDA methods explains their low success rate in
Table I, but it makes the two algorithms computationally
feasible.

Fig. 6 demonstrates how the angle constraint affects the
success rate for a dual-baseline setup. Table I and Fig. 6
demonstrate that the proposed approach provides the high-
est success rate in almost all scenarios, which illustrates
that this method is remarkably effective. In contrast with
the AFM-based methods, the C-WLS approach jointly uti-
lizes pseudo-range and carrier-phase measurements instead
of only carrier-phase observation. Besides, we strengthen the
proposed C-WLS model by incorporating the high correla-
tions of double-difference observations. On the other hand,
the proposed approach outperforms the C-LAMBDA and
MC-LAMBDA methods, which is attributed to the additional
constraint on the carrier-phase residual errors and the proposed
search strategy. The superiority of the proposed method is
more pronounced in scenarios with fewer satellites and higher
noise levels.
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Fig. 6. Success rate with and without the angle constraint for dual-baseline
setup. (a) σψ = 1 mm. (b) σψ = 3 mm. (c) σψ = 5 mm. (d) σψ = 7 mm.

TABLE III

COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS

Table III summarizes the computational complexity of dif-
ferent algorithms. We characterize the computational complex-
ity based on the required number of operations. For simplicity,
we count each addition, subtraction, multiplication, division,
and square root calculation as one arithmetic operation. The
complexity of each method depends on the two parameters
A and S in addition to a third algorithm-specific parame-
ter K . The computational complexity of the proposed method
depends on the parameter Kw , which represents the average
number of possible integer ambiguities for each element of �.
For the AFM method, we assume that an identical search step
is applied for each Euler angle. The parameter Ka represents
the number of potential attitude angles, which is practically
much greater than Kw . The symbol n denotes the number of
Euler angles, that is, n = 2 for a single baseline or n = 3 for
multiple baselines. Since A,S, Kw � Ka , the complexity of
the proposed method is much lower than that of the AFM
method, especially in multibaseline scenarios. Note that Kw

and Ka are proportionate to the baseline length. Hence, the
proposed approach and the AFM method are more adequate
for short-baseline setups (meter level). The C-LAMBDA and
MC-LAMBDA methods include three steps: shrink the search
space, enumerate the integer vectors/matrices, and minimize
the objective function [50]. The first step dominates the com-
plexity of these methods as it accounts for at least 60% of
the total arithmetic operations [50]. The parameters Ks and
A2S2 Kl denote the number of iterations in the shrinking
process and the required operations in each iteration, respec-
tively. Ks , as shown in Table II, is extremely sensitive to

Fig. 7. GNSS receiver setup.

Fig. 8. Number of tracked satellites and PDOP values. (a) First experiment.
(b) Second experiment.

various parameters, such as A, S, H, �, and �; nevertheless,
Kl depends on the value of Ks . In ideal environments, the
product Ks Kl can be smaller than A(S(S − 1)/2)K 2

w such
that the C-LAMBDA and MC-LAMBDA algorithms are
more computationally efficient than the proposed approach.
However, in challenging scenarios such as those with poor
PDOP, high noise levels, and severe multipath, Ks Kl can
be much greater than A(S(S − 1)/2)K 2

w (Ks Kl could reach
10A(S(S − 1)/2)K 2

w, 100A(S(S − 1)/2)K 2
w , or even more),

making the computational complexity of the C-LAMBDA
and MC-LAMBDA methods being far worse than that of the
proposed method. For instance, consider the antenna geometry
described by X1

b in (85), that is, A = 2, with σψ = 3 mm
and σρ = 30 cm. For S = 6, we have Kw = 10.19,
Ka = 180, Ks = 10.60, and Kl = 35.03, then A2S2 Ks Kl <
A3(S3(S − 1)/2)K 2

w < ASK 3
a . For S = 4, we have Kw =

8.33, Ka = 180, Ks = 25015.6, and Kl = 14.01, then we
obtain A3(S3(S − 1)/2)K 2

w < A2S2 Ks Kl < ASK 3
a .

B. Experimental Results

In this section, we provide performance evaluation based on
experimental data obtained from three Advanced Navigation
Solutions (ANavS) multisensor modules [51]. Each multisen-
sor module includes a GNSS receiver and an inertial mea-
surement unit (IMU). Two static experiments were performed
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Fig. 9. Attitude angle error distribution for data 1. (a) Yaw. (b) Pitch. (c) Roll.

Fig. 10. Attitude angle error distribution for data 2. (a) Yaw. (b) Pitch. (c) Roll.

on the campus of King Abdullah University of Science and
Technology, Thuwal, Saudi Arabia. We estimate the ground
truth using GNSS and IMU measurements over a long period
to ensure high accuracy. As shown in Fig. 7, the receivers were
firmly attached to a fixed platform and remained stationary
throughout the experiments. The baseline matrix in the body
frame used in both tests is described by

X3
b =

[
0.63 0.315

0 0.545

]
.

Two datasets were collected with 5 Hz sampling on April 6,
2021 (between 18:05 and 18:35, UTC time) and May 25, 2021
(from 20:34 to 21:50, UTC time), respectively. The first exper-
iment collected around 9000 epochs of data within 30 min,
and the other test collected 25 500 epochs of observations.
We apply the elevation-dependent model to characterize the
GNSS observation variance components [52] and consider
the correlation introduced by differencing operations. Note
that in our comparison of various methods, we utilize only
GPS observations, with the number of tracked satellites and
the corresponding PDOP values shown in Fig. 8. In con-
trast, the ground truth is estimated by leveraging observations
from two GNSS constellations (GPS and GLONASS), IMU
measurements, and barometer data integrated over the whole
observation time.

Tables IV and V summarize the experimental results by
listing the success rate and the root-mean-square error (RMSE)
of attitude angles, respectively. Only success cases are consid-
ered in calculating the RMSE to eliminate the contribution of
outliers. As stated earlier, the constrained search space (at most
105 integers) in the integer domain explains the low ambiguity

TABLE IV

SUCCESS RATE (%) BASED ON THE EXPERIMENTAL DATA

TABLE V

RMSE (DEG.) BASED ON THE EXPERIMENTAL DATA

resolution success rate of the MC-LAMBDA method in the
first experiment. Data 1 was measured in a particular area with
trees, buildings, and other obstructions, which results in signal
blockage and multipath errors. Data 2 was collected with good
satellite visibility. Hence, the results of data 2 are remarkably
better than those obtained from Data 1. From Table IV, we see
that the proposed method has the best success-rate perfor-
mance, and the advantage is more significant in challenging
environments, which indicates its notable reliability.

Figs. 9 and 10 shows the distribution of attitude angle
estimation error for two experiments. From the plots, it can
be readily seen that the proposed method obtains the largest
fraction of Euler angle estimates with an error smaller than a
given value. This is more visible with data 1. These figures
indicate that the proposed approach can provide better attitude
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angle estimates compared with the AFM-based and the MC-
LAMBDA methods.

VI. CONCLUSION

A C-WLS method for attitude determination using mul-
tiple GNSS antennas is presented. Unlike existing attitude
determination methods, the proposed approach allows the atti-
tude determination problem to be tackled directly—without
initially estimating the integer ambiguities—while respecting
the antenna array constraints and the integer property of the
carrier-phase ambiguities. Given a stated assumption on the
double-difference carrier-phase noise, the proposed approach
includes an additional constraint on the residual phase to
strengthen the optimization model. We solve the C-WLS prob-
lem by searching the potential candidates in the unit sphere and
obtaining an improved solution through a refinement process.
The proposed method targets the estimation of the attitude
parameters but inherently returns the integer ambiguities. Sim-
ulation and experimental results demonstrate the effectiveness
of the proposed approach.
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