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How does the composition of a collection of individuals
affect its outcome in competition with other collections of
individuals? Assuming that individuals can be different, we
develop a model to interpolate between individual-level
interactions and collective-level consequences. Rooted in
theoretical mathematics, the model is not constrained to any
specific context. Potential applications include research,
education, sports, politics, ecology, agriculture, algorithms
and finance. Our first main contribution is a game theoretic
model that interpolates between the internal composition of
an ensemble of individuals and the repercussions for the
ensemble as a whole in competition with others. The second
main contribution is the rigorous identification of all
equilibrium points and strategies. These equilibria suggest a
mechanistic underpinning for biological and physical systems
to tend towards increasing diversity due to the strength it
imparts to the system in competition with others.
1. Introduction
Diversity is a ubiquitous concept of great importance in multiple
fields including scientific research [1], education [2–4], human
resource management [5,6], business [7,8], sports [9], politics
[10], ecology [11–17], algorithms [18], networks [19,20], finance
[21–29] and agriculture [30–33]. In each of these contexts,
diversity may take on a different meaning. Here, we broadly
use diversity as a flexible concept for anything that differentiates.

For groups of people, diversity includes not only demographic
differences [1] but also deep diversity like personality, mentality
and past experiences [34]. One of the reasons diversity may be
beneficial in research is that teams with members from diverse
backgrounds may have a greater variety of perspectives [1]. A
larger research group may be more likely to present a correct
analysis and to draw reliable conclusions if all group members
contribute to a rigorous internal review process. Quoting [35]
‘There is growing evidence that embracing diversity—in all its
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senses—is key to doing good science’. In [36], a quantitative study of over 9 million papers and 6 million
scientists, those authors found ‘that ethnic diversity resulted in an impact gain of 10.63% for papers, and
47.67% for scientists’. According to [1], ‘a paper generated by a more diverse research group could tap
into different networks and thus attract greater attention and citations, an effect observed in patents
studies [37], and in inter-institution and international collaborations [38]’.

For similar reasons diversity may be broadly beneficial in education as explored in [2–4]. Quoting [39]
‘researchers have documented that students’ exposure to other students who are different from
themselves and the novel ideas and challenges that such exposure brings leads to improved cognitive
skills, including critical thinking and problem solving’. In human resources [5,6] and business [7,8],
the effects of diversity upon performance have also been investigated. A study of 385 Norwegian
companies [34] analysed the benefits of deep level diversity in a corporate context. This study
provided strong support for the notion that the higher the level of board diversity with respect to the
board members’ backgrounds (both professional and personal) and personalities, the higher the
degree of board creativity and cognitive conflict during the decision-making process. They proposed
that the deep level diversity of members may result in a board that possesses a greater set of skills,
competencies and perspectives. For similar reasons, diversity may be beneficial in political contexts
[10]. Similarly, in the context of professional sports, meta-analyses showed that overall group diversity
has a positive effect on group outcomes [9,40]. A diverse sports team with a broad skill set may be
able to outcompete a team with a narrow skill set by exploiting those skills which are lacking in a
team with less diversity across its members.

A group of people with a diverse skill set can manage a wider array of challenges and thereby benefit
from diversity. In some cases, diversity is even more crucial; there are biological examples in which
diversity is required for survival. For example, in a biofilm different organisms coexist in a symbiotic
form, because the different species produce chemicals that other species require but do not necessarily
produce themselves [41]. Another example of the importance of biodiversity in an ecological system is
provided by the human microbiome. The gut bacterial ecosystem is important for health, not only
digestive and metabolic function, but also cardiovascular and neuropsychiatric health [42]. Public
databases estimate on the order of 10 000 bacterial species in this ecosystem [43]. Reduced gut
biodiversity is associated with health impairment such as Crohn’s disease [44].

More generally, the overall health of an ecological system is often judged by its level of biodiversity [42].
This biodiversity can be measured at different levels ranging from an ecosystem comprising different
species [42] to a single species comprising phenotypically variable individuals [45]. One instance of
tremendous biodiversity is provided by marine microbes. Their species diversity is estimated to exceed
200 000 species in the plankton [46,47]. At all levels of taxonomy, from species to intra-strain
comparisons, there exists a tremendous variability in genetic, physiological, behavioural and
morphological characteristics [48–62]. In [16,45,63], we suggested that this phenotypic heterogeneity in
all microbe organisms is what makes it possible for countless microbe species to coexist and for new
species to continually emerge [64]. Inspired by the natural evolution of species, evolutionary algorithms
use operations like mutation, recombination and selection to evolve a multi-set of solutions over time.
Population diversity is crucial to these algorithms, perhaps similar to its importance in biological
systems [18]. In some sense, just as the diversity of a research team may contribute to their ability to
create and innovate, biodiversity may play a similar role for ecological systems by facilitating ecological
innovation. The richer the diversity of life, the greater the opportunity for medical discoveries, economic
development and adaptive responses to new challenges [30–33].

On the one hand, we may view diverse individuals as having different strengths, but on the other
hand, we could also view diverse individuals as having different weaknesses. From the perspective of
diverse individuals having different weaknesses, diversification can be a method to mitigate the risk
associated with too many individuals having the same weakness. This is, for example, beneficial to
designing power grids and networks [19,20]. Presumably, every investor is also familiar with the
concept of risk mitigation through diversification of investment products. In finance, a cornerstone of
modern investment strategies, developed by Harry Markowitz in the 1950s [65,66], is known as
modern portfolio theory, for which Markowitz received the Nobel Prize in Economics in 1990. The prize
recognized his development of a rigorous operational theory for portfolio selection under uncertainty
which has evolved into a foundation for financial economics research. A key concept in modern
portfolio theory is to simultaneously analyse two dimensions: the expected return on the portfolio and
its variance. Based on Markowitz’s work, an investor can construct a portfolio of multiple assets to
maximize returns for a given level of risk. Conversely, given a desired level of expected returns, the
investor can construct a portfolio with the lowest possible risk. Although it may seem unrelated, a
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similar approach towards risk mitigation has been suggested in agriculture [30–33]. In these works, they
observe that crop diversification, similar to portfolio diversification, may become increasingly important
the context of climate change.

In all of these contexts, diversity is beneficial for specific reasons. Some of these reasons are
heuristically similar, but we are not aware of one clear mechanistic underpinning for all of them. As a
step in this direction, to investigate the strength of diversity in a broad sense that can be applied to
many contexts, we turn to theoretical mathematics. The advantage is that theoretical mathematics is
not constrained to any one specific application. The limitation is that simplifying assumptions must be
made to obtain results, and so a theoretical mathematical model will never be a perfect real-world
match. However, the same holds for all fundamental science, and one cannot deny its utility.

Here, we study collections of individual entities which compose a team. Then, we investigate
competition between such teams. All teams must obey a set of rules. Game theory sets a natural
mathematical foundation to analyse such situations. Harnessing the tools of game theory requires a
mechanism for interpolating from interactions between individuals to team-level repercussions. To
investigate teams comprising unique and possibly diverse individuals, we introduce a mathematical
model that quantifies how the composition of the individuals within a team affects its competition
with other teams. We then identify the Nash equilibrium points and strategies in the game theoretic
model. These strategies are characterized by diverse teams, suggesting a mechanistic underpinning for
the strength of diversity due to the competitive advantage this diversity imparts to the team.
:211916
2. Results
The games of teams we introduce here generalize the game theoretic competitive model Rowlett et al.
introduced in [16,45,63]. In [45,63], a major aim was to interpolate from individual competitions
between microbes to the cumulative consequences for the species. However, there is no mathematical
reason that the individual competitors in that model must be microbes, or anything else for that
matter. One of the strengths of theoretical mathematics is that it is not constrained to specific
applications. Consequently, a model developed with one application in mind may prove useful for
numerous other contexts. The game theoretic model we construct here is a significant generalization
of the model developed in [45,63]. We consider the model itself to be a meaningful contribution and
therefore in itself a result because it is a tool that can be applied to any collection of individuals that
compete with other collections of individuals, whether they are people, animals, microbes, investment
products, or anything else. Our model could be combined with other competition models for teams to
enhance them by assessing the team-level consequences of incorporating diversity among the
individuals composing the teams.
2.1. Games of teams
We offer a heuristic explanation of our games of teams before providing the rigorous mathematical
definitions. A collection of teams comprising individuals compete. One can imagine this as an event
between the teams in which each team puts forth one player whose competitive ability is determined
according to the team’s strategy. A constraint on all teams is imposed which limits the mean
competitive ability assessed over all players of the team. This can correspond to a budget constraint,
or a resource constraint, or reflect the fact that individuals cannot always perform their best and can
make mistakes. The player is paired with a randomly selected opponent from a randomly selected
competing team. The opponent’s competitive ability is determined according to their team’s strategy.
The competitor with the higher competitive ability wins this round of play. The competition
continues, and cumulative wins and losses are assessed and used to define the payoffs to all of the
competing teams.

To reduce this situation to mathematical expressions and analyse them, we begin by identifying a
specific competitive ability with a real value x [ R. Simply put, x beats anything lower and is beaten by
anything higher; the same value is a tie. The competitive ability is a versatile concept that can be
adapted to each specific field of application. It could be used to quantify one specific characteristic
that is pertinent to competition, or it could be used to represent an aggregate assessment across all
competition-relevant characteristics. The competitive ability could also be used to represent resource
allocation within a team. A strategy is a rule for assigning competitive abilities to the individuals that
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compose the team subject to a constraint that may correspond to biological or financial limitations. We
may at times abuse notation by identifying a team with its strategy.

Definition 2.1 (Bounded measurable and continuous strategies). Let f be a non-negative, bounded,
Lebesgue measurable function that is not identically zero and is compactly supported. Then, such a
function f is known as an L1 strategy, or equivalently, as a bounded measurable strategy. If we
further assume that f must be continuous, then it is known as a continuous strategy. For a strategy f,
we define

FðxÞ ¼
ðx
�1

f ðtÞdt ¼
ð
½�1,x�

f dm, kfkL1 ¼
ð1
�1

f dm, ð2:1Þ

with integration respect to the Lebesgue measure, μ. All strategies will be assumed to satisfy the
constraint on the mean competitive ability, abbreviated MCA, which is defined as

MCAðfÞ ¼ 1
kfkL1

ð1
�1

tf ðtÞdt � C, for a fixed C [ R: ð2:2Þ

The corresponding competitive games are known as the bounded measurable game of teams and the
continuous game of teams, respectively. We will also analyse discrete strategies and a corresponding
discrete game of teams.

Definition 2.2 (Discrete strategies). Let M > 0 be fixed. A discrete strategy is a non-negative function

on the discrete set of competitive abilities xj ¼ j
M

� �
j[Z

A : {xj} j[Z ! ½0, 1Þ:
We assume that A has finite support, and jAj ¼P j[Z Aðj=MÞ . 0. All strategies will be assumed to
satisfy the constraint on the mean competitive ability

MCAðAÞ ¼ 1
jAj
X
j[Z

A
j
M

� �
j
M

� C, for a fixed C [ R:

The game in this case is the discrete game of teams. In the discrete game, competitive abilities may only
be integer multiples of 1/M, so in this way one can view 1/M as a single unit of competitive ability. The
strategy is a rule for assigning the competitive abilities of the team members, but we note that this does
not mean that each team member’s competitive ability is constant over time. The competitive abilities of
the individuals can vary while maintaining a given strategy for the team as a whole. If one normalizes
the strategy in the bounded measurable and continuous games by dividing by the L1 norm, then the
strategy can be understood as a probability density function. Similarly, in the discrete game, dividing
by |A|, the strategy can be interpreted so that the value at each discrete competitive ability is the
probability that a randomly selected individual is assigned that competitive ability. From this
perspective, the mean competitive ability is the first moment of the probability density function
(strategy). It is necessary to impose a constraint on the MCA because otherwise one would simply
seek strategies supported as close to ∞ as possible. This would correspond to unlimited resources or
infallible super-individuals and is not realistic. We suggest that it is reasonable to assume that
strategies are compactly supported, because in all practical applications of which we are aware, this
will always be the case. Subject to a constraint on the mean competitive ability, what is the best way
to assign competitive abilities to the individuals of a team? Equivalently, what is the best way to
allocate resources to the members of a team, subject to a constraint on the total amount of resources
available? To quantify the success of different strategies in competition, we define their game theoretic
payoffs. We will then use these payoff functions to search for strategies that cannot be defeated.

2.1.1. Team payoffs and Nash equilibrium strategies

For a collection of competing teams ffkgnk¼1 in the bounded measurable and continuous games, we define
the payoff to strategy fk by assessing the cumulative wins and losses of all individuals

Eðfk; f1, . . . , fk�1, fkþ1, . . . , fnÞ ¼
X
‘=k

ð1
�1

fkðxÞ
ðx
�1

f‘ðtÞdt�
ð1
x
f‘ðtÞdt

� �
dx: ð2:3Þ
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For the discrete game, the payoffs are derived and defined analogously, so for a collection of
competing teams, the payoff to strategy Ak is

EðAk; A1, . . . , Ak�1, Akþ1, . . . , AnÞ ¼
X
‘=k

X
j[Z

AkðxjÞ
X
i,j

A‘ðxiÞ �
X
i.j

A‘ðxiÞ
24 35: ð2:4Þ

Whenever a sum is empty, it is defined to be zero. As in [45,63], the definitions of these payoff
functions correspond to individuals from the teams being randomly matched to compete. The way we
have defined the payoffs, if a team doubles in size, then its payoff is multiplied by a factor of 2. In
other words, if the team’s strategy simply changes by a positive scale factor, then its payoff changes
by the same scale factor. We will show that this is irrelevant for determining the optimal strategies.
However, for applications, one may wish to change this, for example by limiting the number of
competitions based on the sizes of the competing teams. Since a team competes against all others, one
could restrict the amount of competitions to be the smaller of (i) the size of the team and (ii) the
cumulative size of all other competing teams. Consequently, to implement this, as in [63] one would
multiply the payoff

Eðfk; f1, . . . , fk�1, fkþ1, . . . , fnÞ,

in the bounded measurable and continuous games (2.3) by the factor

minfkfkkL1 ,
P

j=k kfjkL1g
kfkkL1

P
j=k kfjkL1

:

In the discrete game, one could implement the same consideration by multiplying E (Ak; A1,…, Ak−1,
Ak+1,…, An) in (2.4) by the factor

minfjAkj,
P

j=k jAjjg
jAkj

P
j=k jAjj :

In all cases, the factor in the numerator is the amount of competitions. The factor in the denominator
corresponds to the probabilistic interpretation, so that the payoff is computed according to the
probability that an individual from team k with a specific competitive ability competes with superior
or inferior individuals from the other teams. It is straightforward to calculate that the payoffs satisfy a
zero sum dynamic; see also [45,63]. So, one could allow internal competition within the team without
affecting the payoffs and define the payoffs as done in [45] via

Eðfk; f1, . . . , fk�1, fk, fkþ1, . . . , fnÞ

¼ 1Pn
j¼1 kfjkL1

Xn
‘¼1

ð1
�1

fkðxÞ
ðx
�1

f‘ðtÞ �
ð1
x
f‘ðtÞ

� �
dx:

Analogously in the discrete case, one could define the payoff E (Ak; A1,…, Ak−1, Ak, Ak+1,…, An) to be

1Pn
j¼1 jAjj

Xn
‘¼1

X
j[Z

AkðxjÞ
X
i,j

A‘ðxiÞ �
X
i.j

A‘ðxiÞ
24 35:

These considerations may be useful for practical implementation. However, we will show below that to
locate the optimal strategies, only the sign of the payoff matters (i.e. positive, negative or zero). For this
reason, we will simply use the payoffs defined according to (2.3) and (2.4) for the sake of simplicity in the
mathematical proofs. By optimal strategy, we mean a strategy that has non-negative payoff in competition
with any other strategy. Simply put, this means that it always wins or breaks even. In [63], we called such
a strategy a non-exploitable strategy (nes). We will see that these strategies are connected to an important
notion in game theory: an equilibrium point, also known as a Nash equilibrium point due to Nash’s proof of
their existence [67]. An equilibrium point is a collection of strategies for all competing teams so that if any
one team alone changes their strategy, their payoff does not increase.

Definition 2.3. For n competing teams, an equilibrium point consists of n strategies for the n teams that
satisfy the following condition: For each k = 1,…, n, if Team k changes its strategy but all other Teams ℓ
for all ℓ≠ k retain their strategies, then the payoff to Team k does not increase. That is to say, for all k = 1,



 

CA

send this
towards
–•

send this
towards
–•

CA

Figure 1. If there is no lower bound on the competitive abilities, then any strategy can be defeated. Starting with the yellow
strategy, one constructs the lowball strategy by assigning competitive abilities below and above the support of the yellow
strategy, such that more individuals are above the support, and fewer are individuals are below. Then, one sends the
competitive abilities below towards −∞ until the MCA constraint is satisfied. Consequently, this lowball strategy could have
lower mean competitive ability than the strategy it defeats.
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…, n, we have in the bounded measurable and continuous games

Eðfk; f1, . . . , fk�1, fkþ1, . . . , fnÞ � Eðg; f1, . . . , fk�1, fkþ1, . . . , fnÞ,
for any strategy g of the same type (bounded measurable or continuous). In the discrete game of teams,
similarly, the strategies must satisfy

EðAk; A1, . . . , Ak�1, Akþ1, . . . , AnÞ � EðB; A1, . . . , Ak�1, Akþ1, . . . , AnÞ,
for all k = 1,…, n and for all discrete strategies B. The strategies that compose an equilibrium point are
known as equilibrium strategies.

In many contexts, it is reasonable to expect that the ‘best’ strategy for all players considered
simultaneously are those in an equilibrium point [67]. Here, we will prove that equilibrium strategies
are precisely those strategies which cannot be defeated; they have non-negative payoffs against any
other strategy. For this reason, our results here identify all equilibrium strategies and all equilibrium
points.
2.2. Teams characterized by equilibrium strategies are those with diverse individuals
In addition to developing this game theoretic model, which could be considered a result on its own, we
identify all equilibrium points and equilibrium strategies for these games of teams. We first show that if
one does not put a lower bound on the competitive abilities, then all strategies can be defeated. The idea
is, given a strategy, since it has compact support, one can defeat it by assigning a few individuals
competitive abilities towards −∞, thereby allowing the majority of individuals to have competitive
abilities above the supremum of the compact support. This is somewhat unnatural because such a
strategy could have mean competitive ability tending towards −∞, which would seem to be a non-
optimal strategy. This lowball strategy is depicted in figure 1.

Proposition 2.4. If strategies may have any compact support, any strategy can be defeated.

Proof. Assume that a strategy f (bounded measurable or continuous) has compact support (as per
definition of strategy). Then there exists an integer N [ N such that the support of f is contained in [−
N, N ]. In the bounded measurable game, let

gðxÞ ¼
1, �3N � 2 , x , �3N � 1,
2, N þ 1 , x , N þ 2,
0, for all other values of x:

8<: (2:5)

We calculate that MCAðgÞ ¼ � N=3þ 1=2. Consequently, one may simply choose N [ N sufficiently
large so that MCA(g) is less than the constraint value. We calculate that the payoff E½g; f � ¼ kfkL1 . 0
by the definition of strategy. A similar construction can be used to construct a strategy B that defeats
any given strategy A with compact support in the discrete game. In the continuous game, since
continuous functions are dense in L1, one can simply approximate g by continuous functions and
apply the dominated convergence theorem to obtain a continuous function ~g such that MCAð~gÞ is less
than the constraint value, and E½~g, f � . 12kfkL1 . 0. ▪



a

f (x)

2C–a

f (x)

f (x)

f (x)

f (x)

f (x)

f (x)

frequency of CA

CA

Figure 2. These are examples of equilibrium strategies in the bounded measurable game of teams. There are infinitely many
equilibrium strategies, because any function that is constant and positive on [a, 2C− a] and zero elsewhere is an equilibrium
strategy. Here, a is their minimum CA value, and C is the value of the constraint on the MCA. Consequently, teams
characterized by an equilibrium strategy span the whole range of diverse competitive abilities from the minimum value, a up
to twice the constraint value minus a. Equivalently, a team characterized by an equilibrium strategy allocates resources evenly
across all team members, centred around the constraint value.
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The ‘lowballing’ strategy of placing competitive abilities below and above the support of a given
strategy is depicted in figure 1. Since it is an artefact based on the ability to send competitive abilities
towards ±∞, and moreover the defeating strategies may have lower MCA than the strategy they
defeat, we suggest it is more natural to impose a lower bound on the range of CAs. With this
assumption, there are equilibrium strategies.

Theorem 2.5. In the bounded measurable game, assume that all strategies have support contained in [a, ∞),
and that the MCA constraint value C > a. A strategy is an equilibrium strategy if and only if it is almost
everywhere equal to

c ¼ constant . 0 on ½a, 2C� a�
0 on ð2C� a, 1�:

�
If one assumes that all strategies have support contained in [a, b] for fixed −∞ < a < b <∞, then there are
equilibrium strategies if and only if the constraint value C∈ (a, ((b + a)/2)], and they are identical to those
given above. Any collection of equilibrium strategies is an equilibrium point, and conversely, every equilibrium
point comprises these equilibrium strategies. The sum of two or more equilibrium strategies is an equilibrium
strategy. Equilibrium strategies have non-negative payoff in competition with any number of other strategies as
long as those strategies are subject to the same constraint.

Remark 2.6. If the competitive ability values are uniformly bounded below by a [ R, then the MCA
constraint value must be greater than or equal to a, otherwise there are no strategies. If the constraint
value C = a, then the only strategies which satisfy definition 2.1 are almost everywhere equal to zero,
because they may only be supported at C = a. This is not particularly interesting. If the competitive
ability values are uniformly bounded below and above, they are contained within a fixed interval [a, b].
If the MCA constraint value is larger than the midpoint of this interval, then equilibrium strategies
would be the same as in the case in which the competitive ability values are contained in [a, ∞), but
this is impossible if 2C− a > b because the equilibrium strategies do not ‘fit’ within the prescribed
interval [a, b]. This could be understood as an artefact of choosing an interval that is too small relative
to the MCA value and remedied by considering the competition on the larger interval [a, 2C− a].

A visualization of equilibrium strategies for the bounded measurable game is shown in figure 2, but
we note that these are just finitely many examples of the infinitely many equilibrium strategies. In the
case of two competing teams, a visualization of the game is shown in figure 3.

Theorem 2.7. In the continuous game, assume that all strategies have support contained in [a, ∞) for a fixed
a [ R. Assume that the MCA constraint value C≥ a. Then, there are no equilibrium strategies. If all strategies are
supported in [a, b] for fixed real numbers a < b, and are only required to be continuous on [a, b], then there are
equilibrium strategies if and only if the constraint value C = (b + a)/2. In this case, the equilibrium strategies
are all constant positive functions on the interval [a, b]. Any collection of equilibrium strategies is an
equilibrium point, and conversely, every equilibrium point comprises these equilibrium strategies. The sum of



CA

CA

supp f1
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Figure 3. This is a visualization of the game between two competing teams showing the dependence on the teams’ competitive
abilities and strategies. Competition occurs in the blue and green rectangle, where both teams have support. In the green area, team
1 is winning. In the blue area, team 2 is winning. The outcome of the game depends on how many individuals each team has in
these areas, and this allocation of competitive abilities to the members of the team is determined by the team’s strategy.

constraint value k + a
2M with k + a even constraint value k + a

2M with k + a odd

y

xa+1 xa+2 xa+3 xa+4 xa+5 xa+6 xa+1 xa+2 xa+3 xa+4 xa+5xj xa xj xa

y

Figure 4. These are examples of equilibrium strategies in the discrete game of teams. There are infinitely many equilibrium
strategies. The common feature they all share is that these strategies always span the whole range of diverse competitive
abilities from xa = a/M to 2C− a/M.
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two or more equilibrium strategies is an equilibrium strategy. Equilibrium strategies have non-negative payoff in
competition with any number of other strategies as long as those strategies are subject to the same constraint.

Remark 2.8. The obstruction to the existence of equilibrium strategies for the continuous game is that
the functions that should be equilibrium strategies are those in the bounded measurable game. These
strategies are not continuous on [a, ∞). If one considers continuous strategies only within a bounded
interval, [a, b], and only requires strategies to be continuous on this interval, then precisely when the
constraint value is the midpoint of this interval, equilibrium strategies exist.

Theorem 2.9. In the discrete case, assume that the set of competitive abilities is xj ¼ j
M

� �
j�a

, with

constraint value C ¼ kþa
2M , for integers a [ Z and k . 0. If k + a is odd, then B is an equilibrium strategy if and

only if it satisfies for some constant c > 0,

Bðx jÞ ¼ c, a � j � k,
Bðx jÞ ¼ 0, k , j:

�
If k + a is even, then B is an equilibrium strategy if and only if MCA(B) =C, and B(x2j+a) = B(xa), and B(x2j+a+1) =

B(xa+1) for j = 0,…, k, with B(xj) = 0 for all j > k. If the set of competitive abilities is instead xj ¼ j
M

� �
a�j�b

, with

constraint value C ¼ kþa
2M , for integers a , b [ Z and k . 0, then if the constraint value C≤ (b + a)/2(M ),

equilibrium strategies are the same as those given above. In all cases, any collection of equilibrium strategies is
an equilibrium point, and conversely, every equilibrium point comprises these equilibrium strategies. In all
cases, the sum of two or more equilibrium strategies is an equilibrium strategy. Equilibrium strategies have
non-negative payoff in competition with any number of other strategies as long as those strategies are subject to
the same constraint.
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In the discrete game, there are also infinitely many equilibrium strategies with examples shown in
figure 4. The equilibrium strategies are characterized by the distribution of competitive abilities
spanning the range from a/M to 2C− (a/M ), with a/M the minimum competitive ability value, and C
the MCA constraint value. Any strategy that is not an equilibrium strategy can be defeated, in the
sense that we provide a recipe in the proofs of our theorems to construct a strategy that will defeat
any non-equilibrium strategy in competition. By contrast, equilibrium strategies can never be beaten.
Equilibrium strategies always win or break even in competition with any number of strategies as long
as those strategies satisfy the same MCA constraint.
 .org/journal/rsos

R.Soc.Open
Sci.9:211
3. Mathematical proofs
We begin by proving that the games are translation invariant in a certain sense. This allows us to reduce
to the case in which all strategies are supported in [0, 1]. Next, we demonstrate a sufficient condition for a
strategy to be an equilibrium strategy. Namely, it is sufficient that the payoff in competition with any
other strategy is non-negative. We then prove that the equilibrium strategies given in theorems 2.5
and 2.9 satisfy this condition by explicitly computing the payoffs according to their definitions.
Moreover, we determine all equilibrium strategies in the case of two competing teams. Finally, we
complete the proof by demonstrating that the sufficient condition to be an equilibrium strategy is also
necessary, so in fact, we locate all equilibrium strategies in this way.
916
3.1. Translation invariance
If there is a collection of competing teams, then there is a bounded closed interval that contains all of their
supports. By possibly expanding the interval, we may assume that it is of the form [a, b], and that the
constraint value C ∈ (a, b). The following lemma shows that it is equivalent to assume the interval is
[0, 1].

Lemma 3.1. Assume that f and g are both non-negative bounded measurable functions whose supports are
contained in an interval [a, b] for a bounded interval with −∞ < a < b <∞. Define ℓ = b− a, and assume that
C∈ [a, b]. Let

FðxÞ ¼
ðx
a
f ðtÞdt, x [ ½a, b�, GðxÞ ¼

ðx
a
gðtÞdt:

Assume that f and g are both not identically zero. The payoff is defined to be

E½f ; g� ¼
ðb
a
f ðxÞ

ðx
a
gðtÞdt�

ðb
x
gðtÞdt

� �
dx:

Then, define

ehðtÞ ¼ ‘hðt‘þ aÞ, h [ ff , gg, eC ¼ C� a
‘

:

Then f and g satisfy the constraintðb
a
xhðxÞdx � C

ðb
a
hðxÞdx ,

ð1
0
tehðtÞdt � eC ð1

0

ehðtÞdt, h [ ff , gg: ð3:1Þ

Moreover the payoffs to ef and eg satisfy

E½f ; g� ¼ E½ef ; eg�, E½g; f � ¼ E½eg; ef �:
Proof. Using the change of variables x = tℓ + a and notation ehðtÞ : ¼ ‘hðt‘þ aÞ, we compute that the

constraint on the interval [a, b] is

0 �
ðaþ‘

a
ðC� xÞhðxÞdx ¼

ð1
0
½C� ‘t� a�hðt‘þ aÞ‘dt

¼
ð1
0

C
‘
� a

‘
� t

� �
‘2hðt‘þ aÞdt ¼ ‘

ð1
0
ðeC� tÞehðtÞdt:
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Since ℓ > 0, we may divide by it, obtaining that

0 �
ðaþ‘

a
ðC� xÞhðxÞdx , 0 �

ð1
0
ðeC� tÞehðtÞdt,

which proves (3.1). Next, we compute that

eGðsÞ ¼ ðs
0
egðtÞdt ¼ ðs

0
‘gðt‘þ aÞdt ¼

ðs‘þa

a
gðxÞdx ¼ Gðs‘þ aÞ:

Consequently with x = tℓ + a,

E½f ; g� ¼
ðb
a
f ðxÞ

ðx
a
gðyÞdy�

ðb
x
gðyÞdy

� �
dx ¼

ðb
a
f ðxÞ[GðxÞ � (GðbÞ � GðxÞ)] dx

¼
ðb
a
f ðxÞ½2GðxÞ � GðbÞ�dx ¼

ð1
0
f ðt‘þ aÞ½2Gðt‘þ aÞ � GðbÞ�‘dt

¼
ð1
0

ef ðtÞ½2eGðtÞ � eGð1Þ�dt ¼ E½ef ; eg�: B

No generality is therefore lost by assuming the competitive abilities are contained in the interval [0, 1]
for the bounded measurable game as well as the continuous game. The following lemma shows that the
same is true for the discrete game.

Lemma 3.2. Assume that A and B are discrete strategies that define maps

A, B : xj ¼ aþ j‘
M

� �
j�0

! ½0, 1Þ, ‘ ¼ b� a, �1 , a , b , 1,

such that

jAj ¼
X
j�0

AðxjÞ . 0 and jBj ¼
X
j�0

BðxjÞ . 0:

Assume that C∈ (a, b). Then,

MCAðAÞ ¼ 1
jAj
X
j�0

xjAðxjÞ � C , MCAðeAÞ � eC ¼ C� a
‘

,

for

eA :
j
M

� �
j�0

! ½0, 1Þ, eA j
M

� �
¼ AðxjÞ:

Moreover, for

E½A; B� ¼
X
j�0

AðxjÞ
X
i,j

BðxiÞ �
X
i.j

BðxiÞ
0@ 1A,

and eB defined analogously to eA, we have
E½A; B� ¼ E½eA; eB� and E½B; A� ¼ E½eB; eA�:

Proof. Note that jAj ¼ jeAj and jBj ¼ jeBj. Then
MCAðeAÞ ¼ 1

jeAjXj�0

j
M
eA j

M

� �
¼ 1

jAj
X
j�0

j
M

AðxjÞ ¼ 1
jAj
X
j�0

xj � a
‘

AðxjÞ

¼ MCAðAÞ � a
‘

� eC ¼ C� a
‘

, MCAðAÞ � C:
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Moreover,

E½A; B� ¼
X
j�0

AðxjÞ
X
i,j

BðxiÞ �
X
i.j

BðxiÞ
0@ 1A

¼
X
j�0

eA j
M

� � X
i,j

eB i
M

� �
�
X
i.j

eB i
M

� �0@ 1A ¼ E½eA; eB�: B

Remark 3.3. In all cases, the constraint value C > a. In the cases in which the competitive ability
values are only assumed to be bounded from below, since all strategies are compactly supported, for
any finite collection of competing strategies there is R > a so that their supports are all contained in
[a, R]. Consequently, when the strategies are supported in [a, ∞), we may without loss of generality,
assume R≥ 2C− a. By the preceding lemmas, this is equivalent to analysing competition for strategies
supported in [0, 1] with constraint value C≤ 1/2. If the competitive ability values are instead subject
to the same fixed lower and upper bounds, this reduces to analysing competition for strategies
supported in [0, 1] with the possibility that the MCA constraint value may be larger than 1=2. We will
therefore analyse these cases.
i.9:211916
3.2. A sufficient condition for equilibrium strategies
Here, we demonstrate a sufficient condition for a collection of strategies to be an equilibrium point. This
allows us to reduce to considering pairwise competition. Once we complete the analysis for pairwise
competition, we will prove that the sufficient condition is also necessary and thereby identify all
equilibrium strategies. We begin by computing for two competing strategies,

E½f ; g� ¼
ð1
0
f ðxÞ(2GðxÞ � Gð1Þ) dx

¼ Fð1ÞGð1Þ � 2
ð1
0
FðxÞgðxÞdx

� �

¼
ð1
0
gðxÞ(Fð1Þ � 2FðxÞ) dx

¼ �E½g; f �E½f ; g� þ E½g; f � ¼ 0:

ð3:2Þ

This reflects the fact that each team collects all its winnings and pays all its losses to the competing teams,
hence the total value across all teams remains constant. One could interpret this as competition for a
limited amount of resources. We therefore have for a collection of competing teams

Xn
k¼1

Eðfk; . . .Þ ¼ 0,

where E( fk;…) indicates the payoff to strategy fk competing against all others.
As shown in [45,63]

E½A; B� þ E½B; A� ¼ 0E½B; A� ¼ �E½A; B�, ð3:3Þ

and similarly for a collection of competing teams,

Xn
k¼1

EðAk; . . .Þ ¼ 0:

Above E(Ak;…) indicates the payoff to strategy Ak competing against all others.

Proposition 3.4. Assume that a collection of strategies ( f1,…, fn) for the bounded measurable and continuous
games satisfies

Eðfk; fjÞ ¼ 08j, k, Eðfk; gÞ � 0 for any strategy g: ð3:4Þ

Then ( f1,…, fn) is an equilibrium point. The analogous statement holds for the discrete game.
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Proof. Assume that a collection of strategies satisfies (3.4). Then it follows by the definition of the
payoffs that for all k = 1,…, n,

Eðfk; f1, . . . , fk�1, fkþ1, . . . , fnÞ ¼ 0:

Moreover, by the zero sum dynamic, for any strategy gwe have E(g; fk)≤ 0, and so again by the definition
of the payoffs, for all k = 1,…, n,

Eðg; f1, . . . , fk�1, fkþ1, . . . , fnÞ � 0 ¼ Eðfk; f1, . . . , fk�1, fkþ1, . . . , fnÞ:
This collection of strategies is therefore an equilibrium point. The argument for the discrete game is
identical. ▪
rnal/rsos
R.Soc.Open

Sci.9:211916
3.3. The bounded measurable and continuous games of teams

Proposition 3.5. If C = 1/2, then a pair of functions that are positive and constant on [0, 1] and zero
elsewhere is an equilibrium point for the bounded measurable game of teams.

Proof. For any g with MCA(g)≤C competing with

uðxÞ ¼ Uð1Þ, 0 � x � 1,
0, 1 , x

�
and

1
Uð1ÞGð1ÞE½u; g� ¼

ð1
0

1
Gð1Þ

ðx
0
gðtÞdt�

ð1
x
gðtÞdt

� �
dx

¼
ð1
0
2
GðxÞ
Gð1Þ dx� 1

� �
¼ 1� 2

Gð1Þ
ð1
0
xgðxÞdx

� �
¼ 1� 2MCAðgÞ � 0:

The inequality follows from the constraint (2.2) with C = 1/2. Moreover, if g is also positive and constant
on [0, 1] and zero outside this interval, then MCA(g) = 1/2, and so we therefore have that u and g satisfy
the necessary and sufficient conditions to be an equilibrium strategy. ▪

Proposition 3.6. Let f be a bounded measurable strategy subject to the constraint with C = 1/2. Assume that f
is not constant on [0, 1], and that f is supported in [0, 1]. Then there exists a bounded measurable strategy g subject
to the same constraint and supported in [0, 1] for which E[ f; g] < 0.

Proof. If MCA( f ) < 1/2 then a strategy g(x) that is positive and constant on [0, 1] and supported in this
interval satisfies E[ f; g] < 0. We may therefore henceforth assume MCA( f ) = 1/2. Then,

�
ð1
0

f ðxÞ
2

dx ¼ �Fð1Þ
2

¼ �
ð1
0
xf ðxÞdx

and

E½f ; g� ¼
ð1
0
f ðxÞð2GðxÞ � Gð1ÞÞdx ¼ 2Gð1Þ

ð1
0
f ðxÞ GðxÞ

Gð1Þ �
1
2

� �
dx

E½f ; g� ¼ 2Gð1Þ
ð1
0
f ðxÞ GðxÞ

Gð1Þ � x
� �

dx,

and so similarly if MCA(g) = 1/2, we have

E½g; f � ¼ 2Fð1Þ
ð1
0
gðxÞ FðxÞ

Fð1Þ � x
� �

dx:

Since f is not constant there exists x∈ [0, 1] such that F(x)≠ xF(1). Thus, the integrand above must
assume both positive and negative values on sets of positive measure. We note that since f [ L1, it
follows that F(x) is continuous. Consequently, there is a non-empty open interval (a, b) , [0, 1], and a
constant R > 0, such that

FðxÞ
Fð1Þ � x . R 8 x [ ½a, b�: ð3:5Þ
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If (a, b) is not fully contained in either (0, 1/2) or (1/2, 1), then we split (a, b) into smaller intervals, one of
which is fully contained in either (0, 1/2) or (1/2, 1). We therefore assume without loss of generality that
(a, b) is contained in either (0, 1/2) or (1/2, 1). First, assume (a, b), (1/2, 1). Define for positive
parameters M, N and δ < a,

gðxÞ ¼
M x [ ½0, d�
N x [ ða, bÞ
0 otherwise:

8<: ð3:6Þ

We will choose these parameters such that g is a bounded measurable strategy supported in [0, 1] with
MCA(g) = 1/2, and for which E[ f; g] < 0. To do this, we compute

Gð1Þ ¼ MdþNðb� aÞ, MCAðgÞ ¼ Md2=2þNðb2 � a2Þ=2
MdþNðb� aÞ :

To guarantee that MCA(g) = 1/2, we therefore require

Md2 þNðb2 � a2Þ ¼ MdþNðb� aÞ

, M ¼ Nðb� aÞðbþ a� 1Þ
dð1� dÞ :

ð3:7Þ

Since (a, b)∈ (1/2, 1), b + a− 1 > 0, and so it is possible to choose M, N > 0 and 0 < δ < 1 so that this
equation is satisfied. Then,

E½g; f � ¼ 2Fð1Þ
ð1
0
gðxÞ FðxÞ

Fð1Þ � x
� �

dx

¼ 2Fð1Þ
ðd
0
M

FðxÞ
Fð1Þ � x
� �

dxþ
ðb
a
N

FðxÞ
Fð1Þ � x
� �

dx
� �

� 2Fð1Þ(�Md2=2þNRðb� aÞ) ¼ Fð1Þ �Nðb� aÞðbþ a� 1Þd
1� d

þ 2NRðb� aÞ
� �

¼ Fð1ÞNðb� aÞ 2R� dðbþ a� 1Þ
1� d

� �
:

Assume we choose δ∈ (0, 1/2). Then since b + a− 1≤ 1, E[g; f ] > 0 for any choice of d [ ð0, RÞ> ð0, 1=2Þ.
If (a, b) , (0, 1/2), define for a constant δ with 0 < δ < 1/2,

gðxÞ ¼
N x [ ða, bÞ
M x [ ð1� d, 1�
0 otherwise:

8<: ð3:8Þ

Then

Gð1Þ ¼ Nðb� aÞ þMd, MCAðgÞ ¼ Nðb2 � a2Þ=2þMð2d� d2Þ=2
Nðb� aÞ þMd

:

We therefore fix

MCAðgÞ ¼ 1
2
Nðb2 � a2Þ þMð2d� d2Þ ¼ Nðb� aÞ þMd

, M ¼ Nðb� aÞð1� b� aÞ
dð1� dÞ :

Noting that (a, b) , (0, 1/2), it is therefore possible to choose N, M > 0 and δ∈ (0, 1) to satisfy this
equality.

Then, we estimate

FðxÞ
Fð1Þ � x
���� ���� ¼ FðxÞ � Fð1Þ þ Fð1Þð1� xÞ

Fð1Þ
���� ���� � jFðxÞ � Fð1Þj

Fð1Þ þ j1� xj

� kfk1
Fð1Þ þ 1

� �
ð1� xÞ, x [ ð0, 1Þ,



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211916
14

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 A

ug
us

t 2
02

2 
having used

jFðxÞ � Fð1Þj ¼ Fð1Þ � FðxÞ ¼
ð1
x
f ðxÞdx � ð1� xÞkfk1:

Hence

E½g; f � ¼ 2Fð1Þ
ð1
0
gðxÞ FðxÞ

Fð1Þ � x
� �

dx

¼ 2Fð1Þ
ðb
a
N

FðxÞ
Fð1Þ � x
� �

dxþ
ð1
1�d

M
FðxÞ
Fð1Þ � x
� �

dx
� �

� 2Fð1Þ NRðb� aÞ �Md2 1þ kfk1
Fð1Þ

� �� �
¼ 2Fð1Þ NRðb� aÞ �Nðb� aÞð1� b� aÞd

ð1� dÞ 1þ kfk1
Fð1Þ

� �� �
¼ 2Fð1ÞNðb� aÞ R� d

ð1� b� aÞ
1� d

1þ kfk1
Fð1Þ

� �� �
:

Since (a, b) , (0, 1/2), 0 < 1− b− a < 1, so assuming that δ∈ (0, 1/2), we obtain that E[g; f ] > 0 for any

d [ 0,
R

2ð1þ kfk1=Fð1ÞÞ
� �\

0,
1
2

� �
: B

Corollary 3.7. In the case when the constraint C = 1/2, all equilibrium strategies in the bounded measurable
game of teams for functions supported in [0, 1] are positive constants on the unit interval, and conversely, all
equilibrium points comprise positive constant functions.

Proof. A collection of equilibrium strategies ( f1,…, fn) must satisfy

E½fk; fj� ¼ 0, 8j, k, E½fk; g� � 0

for any other strategy g. By the preceding proposition, the only strategies that satisfy these conditions are
those in the statement of the corollary. ▪

Corollary 3.8. In the continuous game of teams restricted to a fixed interval [a, b] with constraint value
C = (b + a)/2 all equilibrium strategies are positive constant functions on [a, b].

Proof. In ([45], theorem 1), we proved that all equilibrium strategies, if we consider only the unit
interval with constraint value C = 1/2, are constant positive functions. By the translation invariance,
this is equivalent to considering the continuous game on [a, b] with constraint value C = (b + a)/2. ▪

We assume next that the constraint value is in (0, 1/2).

Theorem 3.9. Assume that C∈ (0, 1/2). Then all equilibrium strategies in the bounded measurable game for
functions supported in [0, 1] comprise elements of L1 that are almost everywhere equal to

0 x [ ½2C, 1�
a x [ ½0, 2C�

�
,

for some positive constant a. For the continuous game, there are no equilibrium strategies.

Proof. We compute that the payoff

E½g; f � ¼
ð1
0
gðxÞ

ðx
0
f ðtÞdt�

ð1
x
f ðtÞdt

� �
dx

¼
ð1
0
gðxÞ(2FðxÞ � Fð1Þ) dx ¼ 2Fð1Þ

ð1
0
gðxÞ FðxÞ

Fð1Þ �
1
2

� �
dx,

Then, insert

1
2

ð1
0
gðxÞdx ¼ 1

2
Gð1Þ ¼ 1

2MCAðgÞ
ð1
0
xgðxÞdx:
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We then find that

1
2Fð1ÞE½g; f � ¼

ð1
0
gðxÞ FðxÞ

Fð1Þ �
x

2MCAðgÞ
� �

dx ð3:9Þ

and

1
2Gð1ÞE½f ; g� ¼

ð1
0
f ðxÞ GðxÞ

Gð1Þ �
x

2MCAðfÞ
� �

dx: ð3:10Þ

Case 1 in the bounded measurable game: Assume that f is not identically zero on the interval (2C, 1]. Since
we are working in L1, functions that differ on sets of measure zero are identical as elements of L1, so it is
equivalent to assume that f is positive on a set of positive measure inside (2C, 1]. Consider the function

hðxÞ ¼ 1 x [ ½0, 2C�,
0 x [ ð2C, 1�:

�
ð3:11Þ

Then, as it is defined, h is a strategy. We note that for any strategy g,

1
2Gð1ÞE½f ; g� ¼

ð1
0
f ðxÞ GðxÞ

Gð1Þ �
x

2MCAðfÞ
� �

dx �
ð1
0
f ðxÞ GðxÞ

Gð1Þ �
x
2C

� �
dx,

because

MCAðfÞ � C
x

MCAðfÞ �
x
C
:

We then compute that for

HðxÞ ¼
ðx
0
hðtÞdt ð3:12Þ

and

1
2Hð1ÞE½f ; h� �

ð1
0
f ðxÞ HðxÞ

Hð1Þ �
x
2C

� �
dx

¼
ð1
2C

f ðxÞ HðxÞ
Hð1Þ �

x
2C

� �
dx ¼

ð1
2C

f ðxÞ 1� x
2C

	 

dx , 0,

since (1− (x/2C )) < 0 on (2C, 1], and f is non-zero on (2C, 1] and strictly positive on a set of positive
measure by assumption.

Case 2 in the bounded measurable game: Assume that f (x) = 0 for x∈ [2C, 1] (equivalently, f = 0 almost
everywhere in [2C, 1] but since we work in L1 this is equivalent). The proof in this case then reduces
to the case in which the constraint value is 1/2, and the competitive abilities are selected from the
range [0, 1] by lemma 3.1.

Case 1 in the continuous game: Assume that f is not identically zero on the interval (2C, 1]. In this case,
we shall begin with a bounded measurable function that is discontinuous and approximate it by
continuous functions. For the functions h and H defined in (3.11) and (3.12), respectively, we have
computed in case 1 of the bounded measurable game that E[ f; h] < 0. Since we require continuous
functions, we define

h1ðxÞ ¼

x
1 x [ ½0, 1�,
1 x [ ½1, 2C� 1�,
� x

1 þ 2C
1 , x [ ½2C� 1, 2C�,

0 x [ ½2C, 1�:

8>><>>:
Let us note that hɛ is a continuous non-negative function, and MCA(hɛ) = C since it is symmetric with

respect to C on [0, 2C ] and identically zero on [2C, 1]. These functions for different values of ɛ are shown
in figure 5. Next, we note that hɛ→ h pointwise almost everywhere on [0, 1] as ɛ→ 0, therefore,

f ðxÞ H1ðxÞ
H1ð1Þ �

x
2C

� �
! f ðxÞ HðxÞ

Hð1Þ �
x
2C

� �
,

pointwise almost everywhere on [0, 1] as ɛ→ 0. The dominated convergence theorem and E[ f; h] < 0



y

1

C 2C 1 xe2 e1

Figure 5. These are graphs of h11 and h11 with ɛ1 > ɛ2.
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imply that

ð1
0
f ðxÞ H1ðxÞ

H1ð1Þ �
x
2C

� �
dx , 0E½f ; h1� , 0,

for sufficiently small ɛ > 0.
Case 2 in the continuous game: Assume that f (x) = 0 for x∈ [2C, 1]. We then consider

ef ðtÞ ¼ f ð2CtÞ, t [ ½0, 1�:

Since f is continuous on [0, 1], f cannot be a positive constant on [0, 2C ], and therefore f (2Ct) is
not equal to a positive constant for t∈ [0, 1]. The proof in this case follows from lemma 3.1 and
theorem 1 in [45]. ▪

Corollary 3.10. In the continuous game of teams with a fixed lower bound for the competitive ability but no
fixed upper bound, there are no equilibrium strategies.

Proof. If we require the strategies to be continuous on [a, ∞), then by the translation invariance, this
reduces to considering the interval [0, 1] with MCA constraint value C ∈ (0, 1/2]. If C < 1/2, then there are
no continuous equilibrium strategies by theorem 3.9. If C = 1/2, then functions that are constant and
positive on [0, 1] are equilibrium strategies (ignoring the exterior of this interval). By contradiction, if
a continuous function on [a, ∞) were an equilibrium strategy, then its translation to [0, 1] should be
positive and constant on this entire interval. However, translating back to [a, ∞), this function would
need to be both positive and constant on [a, 2C − a] and continuous on [a, ∞). That is impossible. So
in this case, there are also no equilibrium strategies. ▪

Theorem 3.11. Assume that C∈ (1/2, 1]. Then there are no equilibrium strategies either for the bounded
measurable game of teams or for the continuous game of teams with competitive abilities contained in [0, 1].

Proof. Assume that f is bounded and measurable, noting that if f is continuous then this is
immediately the case. We will construct a continuous (and therefore also bounded and measurable)
function g subject to the same constraint such that E[ f; g] < 0. For

FðxÞ ¼
ðx
0
f ðtÞdt,

since f is bounded and measurable, F is continuous. Since C > 1/2,

FðxÞ
Fð1Þ �

x
2C

����
x¼1

¼ Fð1Þ
Fð1Þ �

1
2C

¼ 1� 1
2C

. 0:

The continuity of F ensures that there is a δ∈ (0, 1) such that

FðxÞ
Fð1Þ �

x
2C

. 0 8x [ ½1� d, 1�: ð3:13Þ
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Lemma 3.12. If

gðxÞ ¼
M2 1

M � x
� �

, x [ 0, 1
M

 �
0, x [ 1

M , 1� 1
M

 �
B x� 1þ 1

M

� �
, x [ 1� 1

M , 1
 �

8><>:
then

Gð1Þ ¼ 1
2
þ B
2M2 and MCAðgÞ ¼ M2 þ Bð3M� 1Þ

3MðBþM2Þ :

Proof of lemma 3.12. The formulae follow from direct computation. We will split the integral
computations into the two intervals [0, 1/M] and [1− 1/M, 1], since

Gð1Þ ¼
ð1=M
0

gðxÞdxþ
ð1
1�1=M

gðxÞdx

and

MCAðgÞ ¼ 1
Gð1Þ

ð1=M
0

xgðxÞdxþ
ð1
1�1=M

xgðxÞdx
 !

:

We find ð1=M
0

xgðxÞdx ¼
ð1=M
0

ðMx�M2x2Þdx

¼ M
x2

2

����1=M
0

�M2x
3

3

����1=M
0

¼ 1
2M

� 1
3M

¼ 1
6M

and ð1
1�1=M

Bx2 � 1� 1
M

� �
Bx

� �
dx ¼ B

x3

3

����1
1�1=M

� 1� 1
M

� �
B
x2

2

����1
1�1=M

¼ B
1
3
� ð1� 1=MÞ3

3

 !
� 1� 1

M

� �
B

1
2
� ð1� 1=MÞ2

2

 !

¼ B
3

3M� 3M2 þ 1
M3

� �
� B

2
M� 1
M

� �
2M� 1

2

� �
¼ B

6
6M2 � 6Mþ 2� 3ð2M2 � 3Mþ 3Þ

M3

� �
¼ B

6
3M� 1
M3

� �
:

Also, ð1=M
0

gðxÞdx ¼
ð1=M
0

ðM�M2xÞdx ¼ 1�M2 1
2M2 ¼

1
2

and ð1
1�1=M

gðxÞdx ¼
ð1
1�1=M

Bx� 1� 1
M

� �
B

� �
dx

¼ B
1� ð1� 1=MÞ2

2
� 1� 1

M

� �
B 1� 1� 1

M

� �� �

¼ B
1
2

1� 1
M

� �2
� 1� 1

M

� �
þ 1
2

 !

¼ B
2

1� 1
M

� �
� 1

� �2

¼ B
2M2 :

Thus,

Gð1Þ ¼ B
2M2 þ

1
2
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and ð1
0
xgðxÞdx ¼ 1

6M
þ B

6
3M� 1
M3

� �
:

The formula for MCA(g) follows directly by dividing by G(1). ▪

We proceed by taking g as in lemma 3.12 and solving for B so that MCA(g) =C

M2 þ Bð3M� 1Þ
3MðBþM2Þ ¼ C , B ¼ M2ð3CM� 1Þ

3Mð1� CÞ � 1
: ð3:14Þ

Since B should be positive, we must choose the parameter M sufficiently large, so we assume that it is
chosen to satisfy

M . max
1
3C

,
1

3ð1� CÞ
� �

: ð3:15Þ

Denote

I1 ¼
ð1=M
0

FðxÞ
Fð1Þ �

x
2C

� �
gðxÞdx and I2 ¼

ð1
1�1=M

FðxÞ
Fð1Þ �

x
2C

� �
gðxÞdx:

We estimate using the definition of F,

FðxÞ
Fð1Þ �

x
2C

���� ���� � x
kfk1
Fð1Þ þ

x
2C

� kfk1
MFð1Þ þ

1
2MC

, 8x [ ½0, 1=M�:

Above ‖f‖∞ is the supremum norm of f which is finite by assumption. Since 0≤ g(x)≤M for all x∈ [0, 1/
M], we therefore estimate

jI1j �
ð1=M
0

M
kfk1
MFð1Þ þ

1
2MC

� �
dx ¼ 1

M
kfk1
Fð1Þ þ

1
2C

� �
: ð3:16Þ

We would like to obtain an estimate for I2 from below. In addition to the conditions (3.15), let us
further assume that

M .
1
d
¼) 1

M
, d: ð3:17Þ

By the inequality (3.13),

9g . 0 :
FðtÞ
Fð1Þ �

t
2C

� g 8t [ [1� 1=M, 1]:

We therefore obtain the estimate

I2 �
ð1
1�1=M

ggðxÞdx ¼
ð1
1�1=M

gB x� 1þ 1
M

� �
dx ¼ g

2
B
M2 :

This leads to the estimate

I1 þ I2 � I2 � jI1j � g

2
B
M2 �

1
M

kfk1
Fð1Þ þ

1
2C

� �
:

Therefore, in order to ensure that I1 + I2 > 0, recalling the expression for B in (3.14), we require

g

2M2

M2ð3CM� 1Þ
ð3Mð1� CÞ � 1Þ �

1
M

kfk1
Fð1Þ þ

1
2C

� �
. 0

, Mð3CM� 1Þ
3Mð1� CÞ � 1

.
2
g

kfk1
Fð1Þ þ

1
2C

� �
: ð3:18Þ

The left side of (3.18) tends to infinity withM, whereas the right side is fixed and bounded. Consequently,
it is possible to chooseM sufficiently large so that (3.15), (3.17) and (3.18) are all satisfied, and we thereby
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obtain

1
2Fð1ÞE½g, f � ¼ I1 þ I2 � I2 � jI1j

� g

2
3CM� 1

ð3Mð1� CÞ � 1
� 1

M
kfk1
Fð1Þ þ

1
2C

� �
. 0

E½g, f � . 0:

B

Proposition 3.13. Assume that a collection of strategies ( f1,…, fn) for the bounded measurable or continuous
game is an equilibrium point. Then they satisfy

Eðfk; fjÞ ¼ 08j, k, Eðfk; gÞ � 0 for any strategy g:

Equivalently, each of fk is an equilibrium strategy for the two-player game.

Proof. Assume that ( f1,…, fn) is an equilibrium point. Then by definition of equilibrium point

Eðfk; f1, . . . , fk�1, fkþ1, . . . , fnÞ � E
X
‘=k

f‘; f1, . . . , fk�1, fkþ1, . . . , fn

 !
¼ 0: ð3:19Þ

Above,
P

‘=k f‘ is the strategy obtained by summing the strategies fℓ for all ℓ≠ k. Note that this is also a
strategy. The above inequality holds for all k = 1,…, n. By the zero sum dynamic

E½f ; g� þ E½g; f � ¼ 0,

for any arbitrary two strategies f and g. By induction, we will show that for any collection of strategies
fgkgmk¼1, we have

Xm
k¼1

Eðgk; g1, . . . , gk�1, gkþ1, . . . gmÞ ¼ 0:

For m = 2, this is true. Assume this also holds for some m≥ 2. Then, by the definition of our payoff
functions

Xmþ1

k¼1

Eðgk; g1, . . . , gk�1, gkþ1, . . . gmþ1Þ ¼
Xmþ1

k¼1

X
‘=k

Eðgk; g‘Þ

¼
Xm
k¼1

X
‘�fk,mþ1g

Eðgk; g‘Þ þ
Xm
‘¼1

Eðgmþ1; g‘Þ þ
Xm
‘¼1

Eðg‘; gmþ1Þ ¼ 0:

Above we have used the induction assumption and the fact that E(gm+1; gℓ) + E(gℓ; gm+1) = 0 for each ℓ.
Applying this calculation to ( f1,…, fn), we therefore have

Xn
k¼1

Eðfk; f1, . . . , fk�1, fkþ1, . . . , fnÞ ¼ 0:

Since each summand is non-negative by (3.19), they must all vanish. Consequently, for any strategy g, by
definition of equilibrium strategy,

Eðg; f1, . . . , fk�1, fkþ1, . . . , fnÞ � 0 ¼ Eðfk; f1, . . . , fk�1, fkþ1, . . . , fnÞ, ð3:20Þ
and this holds for all k = 1,…, n. We therefore have for the particular choice g = fj for some fixed j that

E fj;
X
‘=k

f‘

 !
� 0 8k,

Xn
k¼1

E fj;
X
‘=k

f‘

 !
� 0:

We compute using the definition of the payoffs and the zero-sum dynamic

0 �
Xn
k¼1

E fj;
X
‘=k

f‘

 !
¼
Xn
k¼1

X
‘=k

Eðfj; f‘Þ ¼
Xn
k¼1

ðn� 1ÞEðfj; fkÞ

¼ ðn� 1Þ
X
k=j

Eðfj; fkÞ ¼ ðn� 1ÞEðfj; f1, . . . , f j�1, f jþ1, . . . , fnÞ

Eðfj; f1, . . . , f j�1, f jþ1, . . . , fnÞ � 0:
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Since this last inequality has been shown to be an equality, each of the summands must vanish, showing
that

E fj;
X
‘=k

f‘

 !
¼ 0, 8j, k:

Combining

Eðfj; f1, . . . , f j�1, f jþ1, . . . , fnÞ ¼ 0 and E fj;
X
‘=k

f‘

 !
¼ 0Eðfj; fkÞ ¼ 0,

for all j and k. Consider for a moment the case in which there are only two competing strategies. Then a
necessary and sufficient condition for ( f, h) to be an equilibrium point is that

Eðf ; hÞ ¼ 0 ¼ Eðh; fÞ, Eðf ; gÞ � 0, Eðh; gÞ � 0, for all strategies g: (3:21)

Moreover, having identified all equilibrium strategies in the two-player game, it follows that if f− h≥ 0
and is not identically zero, then f− h is also an equilibrium strategy. Define

gk ¼
X
‘=k

f‘ ¼) Eðg; gkÞ � Eðfk; gkÞ ¼ 0 for all strategies g,

having used (3.20). We also have

Eðgk; gjÞ ¼ 0 8j, k:
Consequently, each gk is an equilibrium strategy for the two-player game. By linearity, the sum of two
equilibrium strategies is again an equilibrium strategy. We therefore have

Xn
k¼1

gk ¼ ðn� 1Þ
Xn
k¼1

fk,

is an equilibrium strategy. A non-zero scalar multiple of an equilibrium strategy is again an equilibrium
strategy by linearity, hence

Xn
k¼1

fk,

is an equilibrium strategy. Then since fk is not identically zero by definition of strategy,

Xn
‘¼1

f‘ � gk ¼ fk,

is an equilibrium strategy for the two-player game, for each k = 1,…, n. ▪
3.4. The discrete game of teams
As noted by the translation invariance, we may assume that all competitive ability values are contained
in [0, 1]. In the case where the constraint value C = 1/2, we have found all equilibrium strategies in ([45],
theorem 1). We summarize the results obtained in [45] that determine all equilibrium strategies for the
constraint value C = 1/2.

Theorem 3.14 (theorem 1 of [45]). In the case when M is odd, and the constraint value C = 1/2, then all
equilibrium strategies supported in

j
M

� �M

j¼0
,

are uniform strategies. A uniform strategy U satisfies U(xi) = a for all 0≤ i≤M, for some constant a > 0. In the case
when M is even, then all equilibrium strategies are those A which have |A| > 0, MCAðAÞ ¼ 1=2 and furthermore
satisfy

Aðx2jÞ ¼ Aðx0Þ, Aðx2jþ1Þ ¼ Aðx1Þ, 8j [ 0, 1, . . . ,
M
2

� �
:
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Next, we assume that the constraint value C < 1/2 and is similar to the case in which C = 1/2, namely
the constraint value satisfies

C ¼ jC
M

or C ¼ 2jC þ 1
2M

:

The equilibrium strategies in this case are of two types, analogous to those in the case when C = 1/2 and
M is either odd or even.

Theorem 3.15. If the MCA constraint is for C = jC/M < 1/2, then all equilibrium strategies are those with
MCA=C that are of the form

Aðx2kÞ ¼ a, 0 � k � jC,
0 k � jC þ 1,

�
Aðx2kþ1Þ ¼ b, 0 � k � jC � 1,

0, k � jC:

�

If the MCA constraint is for C = ((2jC + 1)/2M) < 1/2, then all equilibrium strategies are of the form

AðxkÞ ¼ c, 0 � k � 2jC þ 1,
0, k � 2jC þ 2,

�

for any constant c > 0.

Proof. If C = jC/M, we define

AðxkÞ ¼ 1, k [ f0, 1, 2, . . . , 2jCg
0, k . 2jC:

�

Then |A| = 2jC + 1, and MCA(A) =C. We compute E[A; B] for competition against a strategy B subject to
the same constraint

E½A; B� ¼
X2jC
k¼0

Xk�1

i¼0

BðxiÞ �
XM
i¼kþ1

BðxiÞ
 !

¼
X2jC
k¼0

2
Xk�1

i¼0

BðxiÞ þ BðxkÞ � jBj
 !

¼ 2
X2jC
k¼0

Xk�1

i¼0

BðxiÞ þ
X2jC
k¼0

BðxkÞ � ð2jC þ 1ÞjBj

¼ 2
X2jC
k¼0

ð2jC � kÞBðxkÞ þ
X2jC
k¼0

BðxkÞ � ð2jC þ 1ÞjBj

¼ 2
X2jC
k¼0

ðjC � kÞBðxkÞ þ ð2jC þ 1Þ
X2jC
k¼0

BðxkÞ � ð2jC þ 1Þ
XM
k¼0

BðxkÞ

¼ 2
X2jC
k¼0

ðjC � kÞBðxkÞ � ð2jC þ 1Þ
XM

k¼2jCþ1

BðxkÞ:

Since B is subject to the constraint

MCAðBÞ ¼
PM

k¼0
k
M

BðxkÞPM
k¼0 BðxkÞ

� C ¼ jC
M

,
XM
k¼0

ðk � jCÞBðxkÞ � 0,

it follows that

XM
k¼2jCþ1

ðk � jCÞBðxkÞ �
X2jC
k¼0

ðjC � kÞBðxkÞ: ð3:22Þ



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211916
22

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 A

ug
us

t 2
02

2 
Thus,

E½A; B� � 2
XM

k¼2jCþ1

ðk � jCÞBðxkÞ � ð2jC þ 1Þ
XM

k¼2jCþ1

BðxkÞ

¼
XM

k¼2jCþ1

ð2k � 4jC � 1ÞBðxkÞ � 0: ð3:23Þ

Since 2k− 4jC− 1≥ 0 for all k≥ 2jC + 1, and B(xk)≥ 0 for all k, equality holds in (3.23) if and only if B(xk) = 0
for all k > 2jC. If this is not the case, then E[A; B] > 0, and therefore A defeats B. We note that the same
holds for any other team that has positive identical values at xk for k = 0,…, 2jC and zero at all other
xk. Consequently, it suffices to consider the problem for the interval [0, 2jC/M] with competitive abilities

0 ,
1
M

, . . . ,
2jC
M

, C ¼ jC
M

:

As shown in lemma 3.2, this problem is equivalent to the case in which the constraint is equal to 1/2, and
M is even.

Now assume that the constraint value is of the second type, i.e. C = (2jC + 1)/2M. Therefore,

1
jBj
XM
k¼1

BðxkÞ k
M

� 2jC þ 1
2M

,
XM
k¼0

kBðxkÞ � 2jC þ 1
2

jBj ¼ jC þ 1
2

� �XM
k¼0

BðxkÞ:

Hence, the MCA constraint admits the following reformulation:

XM
k¼0

k � jC � 1
2

� �
BðxkÞ � 0:

Thus,

XM
k¼2jCþ2

k � jC � 1
2

� �
BðxkÞ �

X2jCþ1

k¼0

jC þ 1
2
� k

� �
BðxkÞ: ð3:24Þ

We define the strategy A such that

AðxkÞ ¼ 1, k [ f0, 1, 2, . . . , 2jC þ 1g
0, k . 2jC þ 1:

�
Then |A| = 2jC + 2, and MCA(A) =C = ( jC/M) + (1/2M). The payoff

E½A; B� ¼
X2jCþ1

k¼0

2
Xk�1

i¼0

BðxiÞ þ BðxkÞ �
XM
i¼0

BðxiÞ
 !

¼ 2
X2jCþ1

k¼0

ð2jC þ 1� kÞBðxkÞ þ
X2jCþ1

k¼0

BðxkÞ � ð2jC þ 2Þ
XM
k¼0

BðxkÞ

¼
X2jCþ1

k¼0

ð2jC þ 1� 2kÞBðxkÞ � ð2jC þ 2Þ
XM

k¼2jCþ2

BðxkÞ:

Using the MCA constraint and (3.24), we find

E½A; B� �
XM

k¼2jCþ2

ð2k � 1� 2jCÞBðxkÞ � ð2jC þ 2Þ
XM

k¼2jCþ2

BðxkÞ

¼
XM

k¼2jCþ2

ð2k � 3� 4jCÞBðxkÞ � 0:

Above, we use the facts that B(xk)≥ 0 for all k, and (2k− 3− 4jC) > 0 for k≥ 2jC + 2. Hence each term in the
sum is non-negative, and the inequality is an equality if and only if B (xk) = 0 for all k≥ 2jC + 2. It therefore
suffices to consider teams with competitive abilities contained in the range [0, ((2jC + 1)/M )], subject to
the constraint MCA≤C = ( jC/M) + (1/2M). By the translation invariance of the problem as
demonstrated in lemma 3.2, this is equivalent to the case in which C ¼ 1

2
, and M is odd. ▪
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Proposition 3.16. Assume that a collection of strategies (A1,…, An) for the discrete game is an equilibrium
point. Then they satisfy

EðAk; AjÞ ¼ 0 8j, k, EðAk; BÞ � 0 for any strategy B:

Equivalently, each of Ak is an equilibrium strategy for the two-player game.

Proof. The proof is obtained from the proof for the bounded measurable and continuous games by an
identical argument, by substituting Ak for fk and B for g. ▪
g.org/journal/rsos
R.Soc.Open

Sci.9:211916
4. Discussion
Games involving competing teams are widely researched and applied in numerous contexts; see [68,69]
and references therein. Many authors have modelled competing teams as single players in the game
theoretic sense [70–73]. Quoting [74], the ‘use of a two-person game to model conflict between groups
presupposes that all group members have identical preferences over the set of possible outcomes and
therefore that each group can be treated as a unitary player’. In biology, it has also been common to
analyse competition between species by viewing the species as the player in the game theoretic sense
[75]. Those approaches provide no mechanism to interpolate between the possibly diverse individuals
of a team and the repercussions of the internal composition of the team for its competition with other
teams.

Team games differ significantly from the player-to-player games that prevailed in the early days of
game theory [76,77]. Our game, being non-cooperative, differs from cooperative game theory.
According to [78], cooperative game theory models ‘the combination of specialized expertise within
the team’. However, in the aforementioned work and many other studies based on cooperative
game theory, teams do not necessarily compete with other teams [78–80]. Conflicting teams of
cooperating players were also studied in [81] using graphs to describe connections between the
teams. In contrast to our model, each team is valued by a ‘utility function’ on coalitions. Our teams
may have different and dynamical sizes, which is a major difference to [79], which defined a team
game as ‘a cooperative game in TU-form, whose values on coalitions of every cardinality but one
are zero’. Many authors also investigate teams with non-cooperative game theory. However, there
too, it is common to form teams without any actual competition between them. Examples include a
selection process for team formations within a single sports club [82], in governance [83] or
technology investment [84]. In [85], they propose a hybrid approach that bears some resemblance to
ours. Their teams are collections of individuals with cost functions that depend on the actions of all
players—including those of other teams. Considering a pair of teams, they ‘stipulate that the
relationship between the two teams is completely adversarial and that cooperation between them is
not permissible. In other words, both cooperation within each team and competition between the
teams must coexist’. Conflicting teams of cooperating players were also studied in [81]. They define
optimal solutions as states with Nash equilibria between teams such that each team’s strategy is
Pareto optimal within the team itself. In contrast to this study, our teams need not have Pareto
optimal strategies. As noted in the review [70], there is a general lack of multi-player games in
conflict descriptions as most authors model conflicting agents as single players or assume that a
conflict is a two-player multi-stage interaction. We believe that this motivates our study, as our
game allows for each team a possibly large number of members.

Teams are important in evolutionary game theory, in which a standard approach is non-cooperative
game theory [86,87]. Although teams refer to a constellation of individuals, the individuals composing
a team in our model are an abstract concept. The individuals and team can represent any situation
which satisfies the rules of our game. The motivation for non-cooperative game theory is that the
individuals composing a team act independently. In numerous contexts, this is a reasonable
assumption. For example, when the individuals in a team represent people, animals, microbes or
other organisms, most spontaneous decisions are made without consulting others. If one considers
the game as an aggregate over numerous decisions and subsequent consequences, then the majority
of the actions taken by an individual are taken without consulting others. Although this may not be
perfectly accurate, a similar assumption is made in modern portfolio theory [65,66], by assuming
that the prices of distinct investment products are independent. This is not quite correct; it is a
simplification that allows one to draw conclusions using the law of large numbers. The prices of
investment products can be and often are correlated. Nonetheless, in spite of this imperfect
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simplification, modern portfolio theory remains widely in use today, indicating the utility of the theory,
even if it is not perfect. Portfolio optimization uses game theory, both cooperative [21–23] and non-
cooperative [24–28]. The constraint in our model on the mean competitive ability is similar to a
budget constraint for the total value of a portfolio [29].

Our first contribution in this work is a game theoretic model that interpolates between the internal
composition of a team and the repercussions for the team as a whole in competition with other teams.
This model could be further developed and adapted to specific scenarios. It could also be combined
with other competition models for teams in which the individuals are identical, like a plug-in which
allows for different and diverse individuals and interpolates between the individual-level interactions
and the team-level consequences. The second main contribution is the identification of all Nash
equilibrium points and strategies. These strategies correspond to the most heterogeneous team
composition. This indicates that a diverse team is a strong team in the face of competition with other
teams. Our model is one dimensional in the sense that competitors are assigned scalar-valued
competitive abilities, and all competitors are in the same competition. In other words, we do not
consider competitions that involve several, parallel ‘abilities’. Such generalizations would need to
invoke non-trivial dependence between abilities, because otherwise each ability, being independent,
would adhere to the rules of our one-dimensional game. So, in fact, one could also apply our results to
the case of multiple independent abilities and offer the same conclusion: the best strategy would be
maximally diverse in each ability. We leave the question of several, cross-dependent abilities to future
investigations and acknowledge that more research is required in order to understand such situations. It
is important to note that in our model, the individuals in the teams are randomly paired to compete,
implying a certain unpredictability. However, in other situations, in the face of one particular,
predictable challenge, there may be an optimal strategy, known as an evolutionary stable strategy (ess)
[88,89]. In such a situation, a homogeneous team comprising individuals characterized by an ess may
be the strongest. This is not in contradiction, because one can show that in ourmodel, there is no ess [45,63].
5. Conclusion
Seeking a theoretical explanation for the strength of diversity within a team, one could argue that a team
is a type of biological system, whether the team represents a collection of people, animals, organisms or
investment products. According to [90], ‘there exists in evolution a spontaneous tendency toward
increased diversity and complexity, one that acts whether natural selection is present or not’. Those
authors dubbed this the Zero-Force Evolutionary Law, or more colloquially, Biology’s First Law. Our
results give a mechanistic underpinning for the strength of diversity that is broadly applicable due to
its foundation in theoretical mathematics and that is consistent with the predictions of the
fundamentals laws of biology and physics.
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