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Abstract: High penetration level of renewable energy sources and introduction of controllable loads will
result in significant harmonic emissions and sag and swell events in the future electricity networks.
Development of the methods for high performance simultaneous estimation of the frequency and
amplitude events is required for stable operation of the future electricity networks since zero crossing
frequency detection method (which is widely used nowadays in industry) is not accurate enough and
does not allow estimation of the amplitude events. The multiple model method which is suitable for
simultaneous estimation of the frequency and amplitude is extended in this paper with introduction of a
new decomposition technique based on stepwise partitioning, which allows simultaneous construction
and accurate and computationally efficient inversion of the information matrix. Recursive calculations of
the inverse introduce error accumulation and a new general high order memory based Newton-Schulz
iteration is proposed in this paper for correction and reduction of the accumulated error. Moreover, parallel
Richardson iterations which are based on partitioning method are proposed in this paper for reduction of
the computational complexity. The methods are especially efficient for approximation of the signals with
large number of harmonics. The approaches were tested for simultaneous estimation of the frequency and
sag and swell signatures in the one-phase synchronized voltage waveform measured at the wall outlet.
Simulation results show that the multiple model method provides more accurate frequency estimation in
comparison to zero crossing method.

In addition, the cascade multiple model method which is based on the multi-windowing technique (where
the components of the signals are separated via a proper choice of the window sizes) is introduced in this
paper for estimation of the significantly separated frequencies of the electrical signals. The approach was
tested in the problem of frequency estimation using the measurement record from the electric vehicle
with on-board charger connected to the supply voltage in the laboratory.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Simultaneous Estimation of the Frequency and Amplitudes for Power Quality
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1. INTRODUCTION

Additional significant distortions of voltage and current signals
are expected in the future electricity networks due to higher
penetration level of renewable energy sources, modern power
electronics, non-linear controllable loads and many others. These
distortions result in significant deviations from the fundamental
network frequency, appearance of a large number of harmonics
and significant sag and swell events in the network signals. Zero
crossing frequency detection method (Friedman, 1994) and its
modifications is not accurate enough for frequency estimation in
the presence of large number of harmonics and does not allow
estimation of the sag and swell events.

This necessitates the development of the computationally ef-
ficient methods for simultaneous estimation of the frequency
and amplitude events in the future electricity networks. One
of the promising approaches to simultaneous frequency and
amplitude estimation is the multiple model method described in
Stotsky (2016), where the survey of existing frequency estima-

* This work was not supported by any organization

tion methods was also presented. The frequency in this method is
estimated using spline based estimation of the variance, whereas
the amplitudes are estimated with the least squares method.
Application of the multiple model (which consists of a relatively
large number of models) requires significant computational
efforts, especially for a large number of harmonics. The most
significant computational burden is associated with calculation
and inversion of the large scale information matrix with large
condition number. In other words the development of new
numerical decomposition methods for matrix inversion and
parameter estimation for large scale systems is required, Stotsky
(2015, 2019).

A new decomposition method based on stepwise partitioning,
which allows simultaneous construction and computationally
efficient and accurate inversion of the information matrix is
proposed in this paper. Recursive calculations of the inverse
introduce error accumulation and a new general high order mem-
ory based Newton-Schulz iteration is introduced in this paper
(as generalization of the memory based algorithm described in
Stotsky, 2022) for error reduction.

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
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Computational resources with high degree of parallelism will
be available in the future and new parallel Richardson itera-
tions which are based on the partitioning method are proposed
in this paper for reduction of the computational complexity.
The approaches were tested for simultaneous estimation of
the frequency and sag and swell signatures in the one-phase
synchronized voltage waveform measured at the wall outlet.
The second part of the paper is devoted to the extension of
the multiple model method. Many multi-frequency signals
in electrical systems have significant separation between the
frequencies. Such signals can not be accurately approximated
using conventional approaches due to the large differences in the
frequencies. In other words, one window size which accurately
estimates both low and high frequency components does not
exist. Therefore the cascade approach which allows application
of different window sizes should be developed for accurate
signal approximation.

Known methods, such as EMD (Empirical Mode Decomposi-
tion) method, Altintas et al. (2019), applied often for evalua-
tion of the modulation effect are based on construction of the
envelope associated with maximal and minimal values of the
signal. The method has significant computational complexity
associated with calculation of the extreme values and does not
provide sufficient accuracy of estimation in the presence of
the measurement noise due to inaccurate determination of the
envelope.

A new robust cascade estimation method based on the multiple
model concept is developed in this paper. The method allows
accurate estimation of the frequencies and amplitudes by apply-
ing multi-windowing technique, where the components of the
signals are separated via a proper choice of the window sizes.
The approach was tested for estimation of two significantly
separated frequencies in the measurement record of the electric
vehicle with on-board charger connected to the supply voltage
in the laboratory.

2. ESTIMATION WITH MULTIPLE MODEL

Suppose that the measured signal y, is presented in the following
form :

=0 0. +& (1)
where 0, is the vector of unknown parameters and ¢ is unknown
harmonic regressor:

(ka = [cos(qok) sin(qok) cos(2qok)
sin(2qok) ... cos(hqok) sin(hqok)] 2)

where gg is unknown fundamental frequency of the network (for
example, go = 50 Hertz or g9 = 60 Hertz), & is unknown number
of harmonics, and & is a zero mean white Gaussian noise,
k=1,2,... is the step number. The system has four unknown
quantities : 1) the fundamental frequency of network gg, 2)
the number of harmonics /, which can be large in the future
electricity networks, 3) the vector of the parameters 8., and 4)
the variance of the measurement noise, &. It is assumed that the
upper bound / of the number of harmonics is known, i < h.

The algorithm for simultaneous frequency and parameter es-
timation (the algorithm estimates all four unknown quantities
mentioned above) is described in Stotsky (2016), where the
estimates of the regressor vector ¢; are introduced for a number
of fundamental frequencies i (with corresponding number of
harmonics, /), which cover actual frequency. The variance of
the measurement noise is calculated for each regressor and the

estimated frequency corresponds to the minimal value of the
estimated variance. For estimation of the variance the following
large scale system (for a large number of harmonics) A;6; = b;,

where A; = ):j.j; 1) P ¢[; is SPD (Symmetric Positive
Definite) information matrix for regressor ¢; and w is the window
size, k > w, should be solved with sufficiently high accuracy in
each step with respect to 6;. Notice that accurate estimation
of rapidly changing frequencies and amplitudes is possible
with sufficiently small window size only, which results in ill-
conditioned matrices A;.

The accuracy requirements is the main motivation for application
of the Richardson algorithms for estimation of the parameter
vector 6;. Since the convergence of the Richardson iteration
can be slow especially for ill-conditioned and large scale case
the development of computationally efficient procedure for
construction and inversion of the information matrix is required.
Stepwise algorithm which is based on partitioning and deals with
submatrices with significantly smaller condition numbers (the
condition numbers are reduced by several thousand times) is pre-
sented in the next Section 3. The algorithm allows simultaneous
construction and inversion of the information matrix.

3. RECURSIVE PARTITIONING AND CALCULATION OF
THE INVERSE

3.1 Description of the Method

Consider the following partitioning:

P B
A
A= ) 49 = : Do
j:k,(wfl) . . .
B! C.
where SPD information matrix A ! is calculated in a moving
window of a size w, where the regressor vector ¢ contains
trigonometric functions. Calculation of the matrix inverse is
based on the sequential inversion of positive definite upper left
submatrices :
PB " _[1%)[8" 010
BT C - 01 a—1 T (3)
'c o St 1871
where X, = —P"'B,, S, =C,— B P"'B,, and P! is an estimate
of the inverse of the matrix P, = P! > 0 is known from the
previous step,where r = 1,2... is the step number. The inversion
formula (3) can be found in Stotsky (2015).
In other words, the recursive inversion procedure starts with the
S .| P B
partitioning of the matrix [ BT C
1 G1
initial set of the harmonics and calculation of the inverse of P;.
Notice that the positive definite matrix P; has low condition
number and can be easily inverted. The initial number of
harmonics should not be chosen large, which results in a small

} which corresponds to the

P B
B¢ where P and C are
square. The matrix can be transformed to the block-diagonal form using the

1" Any SPD matrix can be partitioned as A = {

X’ (I)} where X = —P~'B and I is

the identity matrix. The block diagonal decomposition can be presented as

TATT = {P O},whereS:C—BTP‘]B>O,P>O, Horn & Johnson (1985),

following transformation matrix 7 = {

0S
Theorem 7.7.6
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calculated using (3), is plotted with a red line in every step of the inversion
of the information matrix. After application of the correction algorithm
described in Section 3.2 the same norm is plotted with the blue line, which
shows significant improvement of the inversion accuracy.

Figure 1. The error norm ||/ — A~'H|.., where H = { } and A~ is

size of the matrix P;. The inverse of the partitioned matrix is
easily calculated using (3), where the matrix S of the reduced size
is inverted only. Then the partitioned matrix becomes positive
definite upper left submatrix, whose inverse is known for the
second step. The final step of the procedure corresponds to
accommodation of all 4 harmonics, and simultaneous calculatAion
of the information matrix and its inverse, whereas the matrix S of
the reduced size and condition number is inverted only in each
step. Indeed, stepwise matrix order reduction results in reduction
of the condition numbers of the matrices (the condition number
of the matrix S, in every step is approximately ten thousand
times less than the condition number of the matrix A), which in
turn results in significant improvement of the inversion accuracy
in each step and improvement of the accuracy of the inverse
of the information matrix at the final step. The estimate A~
of the inverse of matrix A is used for parameter calculation in
the following Richardson iteration ¥ = ¥ —A! {A%_1 —
b}, where ¥ is estimate of the parameter vector 8 which
satisfy large scale algebraic equation A0 = b and the spectral
radius p (1 fA_lA) <<< 1, Stotsky (2019). Application of the
Richardson iteration is absolutely necessary for improvement of
the accuracy of the estimated parameters which has the direct

impact on the accuracy of the estimated variance and frequency.

Another application of the partitioning method which results
in computationally efficient parallel Richardson iterations is
described in Section 4.

3.2 Error Accumulation and Reduction

The method described above has been tested for stepwise
construction and inversion of the information matrix with 125
harmonics where five harmonics were added in each step with
monitoring of the inversion error. Inversion error is plotted in
Figure 1 with a red line, which shows error accumulation as a
function of the harmonic number, which can be seen as main
drawback of this method. Notice that the inversion accuracy
can be improved via iterative corrections using Newton-Schulz
algorithms applied in each step for calculation of the inverses

r Br

B! ¢,
defined in (3). High order Newton-Schulz iteration is a powerful
tool for calculation and correction of the inverses of the matrices.
One step of correction with Newton-Schulz iteration (which has
minimal computational complexity) is sufficient for significant
improvement of the inversion accuracy.
A new general high order Newton-Schulz iterative method is
proposed in this Section for the accuracy improvement. A new
memory based convergence accelerator is integrated in the high
order Newton-Schulz iterative method, where the estimate in the
step k is calculated using the estimates from the steps k — 1 and
k — 2 and the error model (constructed via a proper choice of the
algorithm parameters) accumulates multiplicatively inversion
errors calculated in the previous steps aiming for convergence
rate improvement. The method can be written in the following
form:

-1
of the matrices Sr’ "in (3) and ] with preconditioner

n—1

Fli=1=) F G A @)
=0

G = Gi—1+

nm+n—1—q

m . n—1 . .
P {Z EY, Z F Gy — Z F! ,Gy»} )
j=0 j=0 J=0

nm+n—1
Y FLGi
Jj=0
Pc=PFl,, A=F (6)
Fe=1-GyA=P_ F"™" =FJF!---Fl, ;™™ (1)
—_———
Memory Based
Convergence

Accelerator

m n—1
where G| = Z Fy’ Z F§ Gy and the preconditioner Gy is taken
=0 j=0

from the partitioning method (3), n =1,2,..., m=0,1,... and
q=0,...,nm+n— 1 are the parameters of the algorithm which
specify the error model (7), k = 2,3,.... This error model is
obtained by multiplication of (5) by A which results in the
following error model Fy = F_ + P {F""" — F,:‘i";"_q
with subsequent evaluation of P,_; using (6).

Different combinations of the parameters n,m and ¢ result in
different algorithms. For example, the case withm =1andg=n
is described in Stotsky (2022) and the case with ¢ = 0 where
P, = I results in classical high order Newton-Schulz algorithm,
Isaacson & Keller (1966). Notice also that the choice of g has
the direct impact on the memory based convergence accelerator
and in turn on the error model and the convergence rate. For
example, the algorithm with the parameter combination n = 1,
m =0 and g = 0 does not converge.

Notice that the factorization methods can be applied directly
to the power series ¥ "' F/ |Gy and the algorithm can
be divided into independent computational parts for efficient
parallel implementation.

The matrix G,, (k = 2), calculated via (5) with the parameters
n=2,m=1 and g = n is used as corrected estimate of the
matrix inverses in Section 3.1. This correction method has been
tested for reduction of the inversion errors which are plotted in
Figure 1. The inversion errors before and after correction are
plotted with the red and blue lines respectively.



Alexander Stotsky et al. / IFAC PapersOnLine 55-9 (2022) 42—47 45

+  APPROXIMATED SIGNAL

MEASURED SIGNAL

VOLTAGE, V
3

0 50 100 150 200 250
STEP NUMBER

AMPLITUDE
OF THE FIRST
HARMONIC, h =1

AMPLITUDE,V

2000 4000 6000 8000
STEP NUMBER

10000 12000 14000

(a)

MULTIPLE MODEL METHOD

ZERO CROSSING METHOD

2000 4000 6000 8000
STEP NUMBER

I I L |
10000 12000 14000

g
nooo

@
\
Il
¢ 1
{
)
i

}
{
{

|
!

{
|

J

o b
o o =
T T YT
g }
T {
1

2000 4000 6000 8000
STEP NUMBER

10000 12000 14000

(b)

Figure 2. Measured voltage signal and its multiple model approximation (with five models and 120 harmonics) are plotted in the first plot of the Figure (a) with
the black line and plus signs respectively. Two frequency estimation methods are compared in the first plot of the Figure (b), where the curves for multiple
model and zero crossing method are plotted with red and black lines respectively. The amplitude of the first harmonic is plotted in the second plot of the
Figure (a). The amplitudes of the first most essential harmonics are plotted in the second plot of the Figure (b) .

4. PARTITIONING BASED PARALLEL RICHARDSON
ITERATIONS

Another application of the partitioning method for estimation
of the parameter vector 0 which satisfy large scale algebraic
equation AO = b is considered in this Section. The SPD
P B]

information matrix A is partitioned as follows A = B’ C

where P and C are square of approximately the same size.

Introduction of a new parameter vector § such that 6 =

TTS, where T = and X = —P B results in the

I 0
xTr
transformation of the algebraic equation to the block diagonal

form TATTS = Tbh, where T A TT = [g (5)‘} and S =C —

BT P~'B which in turn allows partitioning of the vector § =
[6; &]7 and B = Th = [B; B2]". The components &; and &, of
the parameter vector 6§ can be independently estimated in two
parallel Richardson loops:

B = B — PP Sy — i}, do=P"'Bi
A 1,a A A 1A
Dok = Bok—1 =Sk {S Y1 — B}, B0 =555
A I N . A
where B =Tb, T = [XT (I)} and X = —P7'B, By =B, k=
1,2,.... The approximate inverse §k_1 of the matrix § = C —
BTP~!B is calculated recursively inside of the Richardson

algorithm using high order Newton-Schulz method described in
Section 3.2, Stotsky (2022). The estimate P! of the inverse of

the matrix P is calculated beforehand using the same method.

Finally, the estimate of the parameter vector is calculated as
follows 6 = 77 ¢, where ¥ = [ ]”.

This algorithm provides significant computational savings due to
parallel implementation and it is especially efficient for systems
with ill-conditioned matrix A of the large size since the matrix P
of the reduced size and condition number is inverted only and

. . s 1. . .
the approximate inverse Sy ~ is applied for the improvement of
the convergence rate of the Richardson iteration.

5. SIMULTANEOUS ESTIMATION OF THE FREQUENCY
AND AMPLITUDE EVENTS ON REAL DATA

Multiple model approach described above was tested for si-
multaneous estimation of the frequency and sag and swell
signatures on real data from the electricity network. The one-
phase synchronized voltage waveform measured at the wall
outlet (approximately 120V RMS) is used for verification. The
sampling measurement rate is 256 points per cycle. Simulation
results are presented in Figure 2, which shows simultaneous
occurrence of the frequency and sag/swell events.

The first plot in the Figure 2(a) shows approximation perfor-
mance of the multiple model approach for five models and
120 harmonics, where measured voltage signal and multiple
model approximation are plotted with the black line and plus
signs respectively. The Figure 2(a) shows that the signal is well
approximated with 120 harmonics in one cycle.

Two frequency estimation methods are compared in the first
plot of the Figure 2(b), where the curves for multiple model
and zero crossing method are plotted with red and black lines
respectively. The curves show that the multiple model method
provides more accurate frequency estimation in comparison
to zero crossing method. Moreover, multiple model method is
suitable for detection of the sag and swell events, which is not
possible with zero crossing method. Indeed, the second plot of
the Figure 2(a) shows the voltage swell (which is a momentary
increase in voltage that occurs usually when a heavy load turns
off in the system) on the amplitude of the first harmonic. Finally,
the amplitudes of the first most essential harmonics are plotted in
the second plot of the Figure 2(b) , which confirms simultaneous
occurrence of the frequency and amplitude events.

In addition, the simulation results show that zero crossing
algorithm accumulates errors for sufficiently large measure-
ment records. Error accumulation problem can be solved by
introduction of the local coordinates, Stotsky (2016). Parameter
calculation method based on LU decomposition does not provide
accurate results in the multiple model method for ill-conditioned
information matrices. The accuracy of the parameter calculation
was improved by application of the Richardson method.
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Fi gure 3. The first plot of the Figure (a) shows measured signal plotted with the red line and its approximation plotted with the green dash line. Estimated low
frequency component of the signal is plotted with a black line. The error between the signal and its low frequency component is plotted with a red line on the
second plot of the Figure (a) and its approximation is plotted with a black line. The frequency estimates are plotted in the first and second plots respectively of

the Figure (b).

6. MULTIPLE MODEL IN CASCADE FREQUENCY
ESTIMATION

Suppose that multi-frequency signal y; can be presented in the
following composite form :

Ye=po+pi+..+pmt&=Y pi+é& ®)
i=0

pi= ¢/ 6. ©)
ol = [1cos(gik) sin(gik) ... (10)

where p; represent the parts of the signal associated with the
frequencies g; and higher harmonics n;, 6,; = 6. is the vector
of unknown time varying parameters, i =0, 1,...,m, & is a zero
mean white Gaussian noise and k = 1,2, ... is the step number.
The signal has m + 1 fundamental (main) time varying frequen-
cies, where each frequency has its own higher harmonics. The
time varying frequencies g; = g are well separated from each
other, and gy is the lowest frequency. Notice that the regressor
vector (10) may contain overtones of the frequencies g; instead
of higher harmonics. The frequencies ¢;, higher harmonics n;,
parameters 0,; and the noise &, are unknown. It is assumed that
the upper bounds of the numbers of the harmonics 7; are known.
Notice that the signals presented in the form (8) can not be
accurately approximated using conventional approaches due to
the large differences in frequencies. In other words, both low and
high frequency components of the signal can not be accurately
estimated using one window size (in the case of estimation
in the moving window). Therefore the cascade approach which
allows application of different window sizes should be developed
for accurate approximation of the signal and tracking of the
frequencies.

The signal (8) can be presented in the following cascade form:

Yi+1 = Yi — Pi, y0:ykai:0717"'um_1 (11)

and the components p; and y; of the signal yy are estimated
separately as follows:

cos(n;qik) sin(niqik)]

pi= 0] 6, Jir1=3i— pi, So=yo. Pi~pi (12)
¢ =[lcos(gik) sin(§ik) ... cos(mgik) sin(mgik)] (13)
A;0; = b; (14)
j=k
A=Y 0ol k>w (15)
j=k—(w;—1)
j=k
bi= Y 0y (16)
j=k—(w;i—1)
m
Se=Po+P1+ ot pu=Y pi (17)
i=0
Jj=k
Z (ymj _Iamj)2
v J=k—(wpn—1) (18)

Wm —ng,, — 1

where the parameter vector 6; in (12) is estimated using the
least squares method as the solution of the algebraic equation
(14) with symmetric and positive definite information matrix
A; defined in (15). The frequencies §; are estimated with the
multiple model method, see Section 2 and Stotsky (2016). The
regressor vector ¢;, (13) contains estimated frequencies §;, and
the window size w; is selected according to the frequencies. Such
selection captures different components of the signal for accurate
approximation. For example, a sufficiently large window size
wy is selected for the lowest frequency go. Large window size
filters out all high frequency components of the signal, g;, i =
1,2,... and their harmonics. Each subsequent window size should
be chosen smaller than the previous one, providing filtering for
the corresponding frequencies.

The signal y; in (8) is approximated component-wise by i in
(17) and the variance of the measurement noise is estimated in
the last step of the process via (18), where w,, is the smallest
window size and ng,, is the number of estimated parameters.
Notice that the variance of the approximation error can be
estimated in each step of the algorithm. The variance is reduced
in each step and the number steps can be increased until the
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reduction of the variance (which can be verified using the test
for equal variances) is not statistically significant. The test for
equal variances determines stopping criteria for the algorithm.

6.1 Processing of the Measurement Record on Electric Vehicle

The approach presented above is illustrated on the measurement
record of EV (Electric Vehicle) with on-board charger connected
to the supply voltage in the laboratory. The nominal frequency
of the supply source is 50 Hz with the voltage level of 230 V
(RMS). The single-phase voltage was recorded over two seconds
with the sampling rate of 1 MHz. The data was provided by
European Metrology, (2019).

The waveform includes EMI (Electromagnetic Interference) with
the switching frequency of a charger (at approximately 27 kHz)
and its second harmonic.

The model of the signal is presented in the form (8) with
m = 1, where the regressor ¢ contains only two trigonometric
functions, without high order harmonics, ny = 1 and the signal
p1 contains the frequency of a charger (approximately 27 kHz)
and its second harmonic. The signal is approximated as follows:

k= Po+ 1 (19)
Do =90 60, yo=yx (20)
95 = [cos(qok) sin(qok)] @
Pr=90761, $1=yc—po (22)
o7 =[1cos(g1k) sin(g k) cos(izyg1k) sin(iz,§k)] (23)

where V. is approximation of the signal y; defined in (8). The
signals po and p; are approximations of the components pg
and p; respectively. The component py is estimated via (20)
where §p is estimated using multiple model approach, and
the parameter vector 6y is calculated using the least squares
method with the sufficiently large window size, wy = 8000. The
difference y; = y; — po is the input to the next step where the
model p is defined in (22). The model contains the frequency
g1 estimated using multiple model and the parameter vector 0;
, which contains the offset parameter for compensation of the
approximation errors in the previous step. The parameter vector
is estimated using the least squares method with 77; = 2 and the
window size w; = 50 << < wy.

Simulation results of the system (19) - (23) are presented in
Figure 3. The first plot of the Figure 3(a) shows measured
signal plotted with the red line and its approximation (which is

calculated via the model (19)) plotted with the green dash line.

Estimated low frequency component pg of the signal is plotted
with a black line. The error §; = y; — pg is plotted with a red
line on the second plot of the Figure 3(a) and its approximation
p1 calculated using (22 ) is plotted with a black line. Finally,
the frequency estimates g and §; estimated using the cascade
multiple model approach are plotted in the first and second plots
respectively of the Figure 3(b). Histogram of the residual error
which represents the measurement noise is plotted in Figure 4.

7. CONCLUSIONS

Significant wave form distortions and harmonic emissions which
are expected in the future networks necessitate the development
of fast, accurate and computationally efficient methods for
frequency and amplitude estimation. This paper offers new com-
putationally efficient tool-kit for simultaneous frequency and
amplitude estimation within the multiple model concept for large
scale systems. The tool-kit includes stepwise partitioning with
corrections for construction and inversion of the information
matrix and partitioning based parallel Richardson algorithms.
Simulation results on the measurement record show that the mul-
tiple model method provides more accurate frequency estimation
in comparison to zero crossing method and high performance
detection of the sag and swell events via accurate estimation of
the amplitudes.

In addition, the multiple model concept was extended in this
paper and new cascade method based on multi-windowing tech-
nique was introduced. Simulation results on the measurement
record of the electric vehicle confirmed that the method pro-
vides accurate stepwise estimation of the significantly separated
frequencies.
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