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A B S T R A C T   

Manufacturing companies struggle to be efficient and effective when conducting root cause analyses of pro
duction disturbances; a fact which hinders them from creating and developing resilient production systems. This 
article aims to describe the challenges and enablers identified in current research relating to the different phases 
of root cause analysis. A systematic literature review was conducted, in which a total of 14 challenges and 17 
enablers are identified and described. These correlate to the different phases of root cause analysis. Examples of 
challenges are “need for expertise”, “employee bias”, “poor data quality” and “lack of data integration”, among 
others. Examples of enablers are “visualisation tools”, “collaborative platforms”, “thesaurus” and “machine 
learning techniques”. Based on these findings, the authors also propose potential areas for further research and 
then design inputs for new solutions to improve root cause analysis. This article provides a theoretical contri
bution in that it describes the challenges and enablers of root cause analysis and their correlation to the creation 
of resilient production systems. The article also provides practical contributions, with an overview of current 
research to support practitioners in gaining insights into potential solutions to be implemented and further 
developed, with the aim of improving root cause analysis in production systems.   

1. Introduction 

Within the context of manufacturing companies, the concept of 
resilience has received significant attention in recent years; especially 
after the outbreak of the COVID-19 pandemic. To survive and thrive in a 
competitive global market, manufacturing companies need to foster the 
creation and development of highly resilient production systems1 [1]. 
Hollnagel et al. [2] point out four primary abilities that a production 
system needs if it is to become resilient to disturbances: (1) the ability to 
learn or know what has happened, (2) the ability to respond or know what 
to do, (3) the ability to monitor or know what to look for, and (4) the 
ability to anticipate or know what to expect. The focus of this study is on 
the first of these four abilities; the ability to learn from past experiences 
of production disturbances. 

In manufacturing companies, a commonly applied strategy for 
learning from past disturbances is to conduct a root cause analysis. This 

is an investigative process to understand why a disturbance has 
happened by identifying its underlying causes, or “root causes” [3]. 
Once these root causes have been identified, countermeasures may be 
proposed and implemented to eliminate them [4]. The process ensures 
that the same disturbance will not happen again in a production system 
or, if it does reoccur, that its impacts will be minimised [4]. The process 
may also provide inputs into the design of more resilient production 
systems, targeting improved operational performance [5]. 

Nevertheless, manufacturing companies struggle to deal with pro
duction disturbances in their daily operations; as many as a hundred a 
day are not uncommon [6]. A significant proportion of such distur
bances will most likely have been experienced before [7]. This points to 
a potential need to improve the root cause analysis process. Doing so 
might allow manufacturing companies to enhance their ability to learn 
from past disturbances and lead to the design and development of more 
resilient production systems [8]. The upcoming Industry 4.0 
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technologies is expected to afford new opportunities for root cause 
analysis. Lee et al. [9] predict that implementing cyber-physical systems 
will lead to worry-free manufacturing. The leading Industry 4.0 tech
nologies include smart sensors and devices, data analytics, big data, 
Internet of Things, cloud computing and augmented and virtual reality 
[10]. 

While practitioners still struggle to be efficient and effective when 
conducting root cause analyses, the literature on this subject seems to be 
fragmented. There is a need for publications that condense current 
findings and make the knowledge more accessible to practitioners, 
whilst providing researchers with information on further academic de
velopments. Hence, this article aims to describe the challenges and en
ablers identified in the literature regarding root cause analysis in the 
context of production systems. In this study, “challenges” refer to diffi
culties that practitioners encounter when performing root cause anal
ysis, whereas “enablers” refer to activities or tools that practitioners can 
use to facilitate the same process. To achieve the defined aim, the au
thors conducted a literature review. To the best of the authors’ knowl
edge, this is the first literature review regarding the subject. 

The article is structured as follows. First, the frame of reference is 
presented, focusing on resilient systems, production disturbances, and 
the root cause analysis process. The methods used in the literature re
view are then detailed. Subsequently, the results are presented. These 
summarise the main challenges and enablers being researched in this 
area in terms of the different phases of root cause analysis. This is fol
lowed by a discussion, presenting a research agenda for the field, plus 
the main contributions of this study. Finally, the conclusions are 
presented. 

2. Frame of reference 

2.1. Resilient production systems and production disturbances 

The concept of resilience has been used with different meanings and 
implications in various fields such as ecology, social science, psychol
ogy, economy and engineering [11]. This study focuses on resilience in 
the engineering field; more specifically the case of production systems in 
which the term has become more and more important [12,13]. The 
definition of resilience adopted here is that suggested by Zhang & Van 
Luttervelt [14] namely, “the resilience of the production system means the 
system’s capability of leading to success from failure on the system’s own - in 
particular its own infrastructure, substance”. This definition considers a 
production system to be a sociotechnical system, including humans, 
machines, materials, energy, data, information and processes. When 
there is a disturbance, resilient production systems have the capacity to 
remain stable, respond fast, adapt and learn from the experience [14]. 

Zhang and Van Luttervelt [14] suggest some guidelines for devel
oping resilient systems, such as increasing redundancy, total function 
management and ontology modelling to understand possible reconfi
guration modes for disturbances. The same authors also emphasise a 
specific guideline whereby learning from past disturbances should be 
promoted in production systems. Dinh et al. [15] concur, suggesting that 
disturbances should be minimised and their effect limited. This, in turn, 
may be achieved by learning from past disturbance events. Hollnagel 
et al. [2] propose four abilities that characterise resilient systems: 
anticipating, monitoring, responding and learning. Once again, learning 
from the experience of production disturbances is listed as a necessary 
feature in developing resilient production systems. Moreover, learning 
from disturbances in existing production systems can provide the 
necessary knowledge for designing new, resilient production systems 
[5]. 

Production disturbances are all unwanted and unplanned events that 
make a system not perform as expected [16]. In a production system, 
hundreds of disturbances a day must often be managed [6]. These 
include quality issues, material shortages, machine failures, reprog
ramming, absenteeism, and incidents [17,18]. There are different ways 

to classify disturbances. For example, they may be internal or external to 
the production system; they may have minor or major impact; they may 
be completely new events or reoccurrences of past disturbances [19,20]. 
This study focuses on disturbances that reoccur, regardless of their 
source (internal or external) or their impacts (minor or major). 

When managing disturbances, companies tend to follow six different 
stages: (1) detection, (2) diagnosis of the immediate cause, (3) mitiga
tion to re-establish normal conditions, (4) root cause analysis, (5) pre
vention and (6) prediction [16]. The first three stages may be considered 
reactive and the last three proactive. The reactive stages focus on 
ensuring that normal operating conditions are re-established after a 
disturbance. By contrast, the proactive stages concentrate on ensuring 
that disturbances will not reoccur or, if they do, that their impacts are 
minimised [16]. Specifically, the root cause analysis stage concentrates 
on understanding why a disturbance happened. It identifies the causes 
so that these may be dealt with and inhibits similar disturbances from 
reoccurring in the production system. The following sub-section pro
vides further details about this stage. 

2.2. Root cause analysis 

Root cause analysis is a problem-solving method that became 
widespread with the introduction of the Toyota production system and 
the lean manufacturing approach, which supports manufacturing com
panies in their continuous improvement processes of areas including 
production cost, productivity, quality, and maintenance [21,22]. Root 
cause analysis comes about as an investigative process conducted after 
the occurrence of a production disturbance. Its aim is to determine the 
root causes and implement corrective action [3,4,23]. Root causes are 
the most essential, underlying causes of a disturbance [23]. A distur
bance is only eradicated (without reoccurring) if the root causes are 
corrected and eliminated, rather than merely addressing the immediate 
and obvious symptoms [4,24]. 

The root cause analysis process is often conducted by a group of 
people with diverse backgrounds [3,23]. When conducting root cause 
analysis, groups might use one or more different tools and methods to 
find the root causes [23]. Among the most commonly applied tools and 
methods are five whys, fishbone diagrams, cause and effect analysis, 
fault tree analysis and Six Sigma [24,25]. The process of root cause 
analysis can also be conducted in different ways, with different phases 
[4]. However, in manufacturing companies, the root cause analysis 
process tends to consider the phases of: (1) problem identification, (2) 
data collection, (3) identification of root causes and (4) identification 
and implementation of countermeasures [26,27]. 

Manufacturing companies still struggle to be effective and efficient 
when conducting root cause analysis of their production disturbances. 
Firstly, defining the root causes tends to be time-consuming, sometimes 
taking months [28]. Time is needed to collect all the information, 
analyse the data, draw conclusions and verify the root causes and 
countermeasures. Secondly, finding the real root causes can be a difficult 
task, commonly necessitating the participation of a multidisciplinary 
group of people. Since time and knowledge can be limited in 
manufacturing companies, a great number of disturbances end up not 
being investigated [6]. At other times, when disturbances are investi
gated, the conclusions as to the root causes may be inexact, leading to 
their reoccurrence in a production system [3,29,30]. 

Nevertheless, it is anticipated that the way manufacturing companies 
conduct root cause analyses of their production disturbances will 
change. With the rise Industry 4.0 technologies, different solutions will 
support root cause analysis [27]. Some researchers have even envi
sioned a production system nearly free of disturbances due to the 
implementation of Industry 4.0 technologies and new ways of working 
[9]. Various technologies support the realisation of the Industry 4.0 era. 
The most important are smart sensors, smart devices, data analytics, 
cloud technologies, big data, the Internet of things (IoT), augmented and 
virtual reality [10,31,32]. 
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3. Methods 

To achieve the aim of this study (as presented in the Introduction), 
the authors chose to conduct a literature review. This approach is 
considered appropriate when the research objective (as with the present 
study) is to provide an overview of an issue [33,34]. The proper steps 
were followed to enhance methodological quality, as presented in the 
following sub-sections. These were targeted to make this review clear 
and trustworthy, following the recommendations of Aguinis et al. [35], 
Moher et al. [36], and Snyder [33]. 

3.1. Goal and scope 

The literature review process was started by defining the goal of the 
research and delimiting its scope, as suggested by Aguinis et al. [35]. 
This study’s goal was defined as being “to identify and describe the 
challenges of, and enablers for, root cause analysis of production dis
turbances in the context of production systems”. Once the goal was 
defined, the authors checked whether any previous publication had 
addressed the same or a similar issue. A search was carried out in Scopus 
and Web of Science. However, these searches did not reveal any relevant 
publications. 

Regarding the scope of the literature review, the authors determined 
that it would focus solely on academic publications. This choice was 
made since the objective of the article was to describe current research 
in the field. Among the academic publications, qualitative and quanti
tative studies would be considered as well as empirical and theoretical 
ones. This literature review also focused on root cause analysis of pro
duction disturbances in the context of production systems. In this study, 
“production systems” (or “manufacturing systems”) refer to 
manufacturing companies’ industrial processes for transforming raw 
materials into finished goods. 

3.2. Identification of articles 

The identification of articles was the next step in the review process, 
consistent with the recommendations of Aguinis et al. [35] and Snyder 
[33]. The authors decided not to select any specific journals for the 
extraction of articles. This was because the topic being investigated (root 
cause analysis of production disturbances) has been published in a wide 
range of journals. Thus, any limitations on journals might lead to the 
exclusion of relevant publications. Instead, the authors chose to search 
for articles in databases, accessing a large number of journal sources. 
Scopus and Web of Science were the databases selected for the search, 
due to their extended coverage. The keywords for the database searches 
were then defined. This was an interactive process between the authors, 
with different searches being tested and the results analysed. Several 
discussion and feedback sessions between the authors took place until a 
consensus was reached on the keywords. The final agreed keywords 
were (“root cause analysis” AND (“production system*” OR 
“manufacturing system*”)). The authors chose not to include the term 
“resilience” in the search, as this might have excluded many publications 
which did not explicitly establish a relationship between root cause 
analysis and resilience. The defined keywords were searched in the two 
databases limited to articles’ titles, abstracts and keywords on the 12th 
of May 2021. 

3.3. Inclusion and exclusion criteria 

The next step was to define the inclusion and exclusion criteria, as 
advised by Aguinis et al. [35], Snyder [33] and Moher et al. [36]. Table 1 
shows the agreed exclusion criteria. The first criterion for excluding 
articles related to the context of manufacturing companies. Root cause 
analysis is a process commonly applied in other fields such as medicine, 
software development, nuclear energy, construction and so on. How
ever, articles unrelated to production system applications (specifically in 

manufacturing companies) were excluded. The second criterion con
cerned the relationship of the article to production disturbances. Articles 
related to disturbances in other contexts (project management, for 
example) were excluded. The third criterion related to the article’s focus 
on root cause analysis. Articles mentioning “root cause analysis”, but 
which were not closely related to the topic, were excluded. Examples 
were articles claiming that root cause analysis was needed for a specific 
issue but which did not develop the idea. Finally, the authors defined a 
criterion for excluding similar articles. In cases where two similar arti
cles had the same authors (a conference paper and an extended journal 
paper, for example), the less complete article was excluded. 

3.4. Selection of articles 

After defining the inclusion and exclusion criteria, the authors 
selected the articles, as summarised in Fig. 1 (process adapted from 
[36]). This step started with the identification of 60 articles from Scopus 
and 36 articles from Web of Science; 96 in total. After removing the 
duplicates, 67 articles were selected. The abstracts of those 67 were read 
and screened based on the criteria presented in Table 1. Where doubt 
persisted, the authors decided to include the article for the next stage 
(full reading). In total, 39 articles were selected for full reading. After 
full reading, the articles were screened again, based on the exclusion 
criteria. Finally, 34 articles were selected for content extraction. 

3.5. Data analysis 

The data analysis process started with the organisation of papers 
according to their titles, authors, source titles, database where they were 
found and year of publication. The articles were then classified ac
cording to type of study (empirical/not empirical), proposition of an 
enabler (yes/no), related technologies (type of technology, or not 
technology-related). The objective of this step was to gain an overview 

Table 1 
Agreed exclusion criteria.  

Criteria Criteria explanation 

Not related Not-Man: the article is not related to manufacturing companies 
Not-Dis: the article is not related to production disturbances 
Not-RCA: the article is not related to root cause analysis 
SW: a similar article was identified  

Fig. 1. Literature review process. 
(adapted from [36] for this study) 
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of current research. 
Fig. 2 shows the framework used as a basis for content extraction and 

analysis. The authors looked for data to populate the proposed frame
work in terms of challenges and enablers in the root cause analysis 
process, which might impact the ability to learn from past disturbances 
and develop resilient production systems. The selected articles were 
read and coded using the Nvivo software. New codes were extracted as 
they emerged in the reading/coding process and classified as “chal
lenges” or “enablers”. Once all the articles were coded, the codes in 
“challenges” and “enablers” were further classified into the different 
phases of the root cause analysis process: (1) problem identification; (2) 
data collection; (3) root cause identification; and (4) countermeasure 
identification and implementation. An additional phase ((5) knowledge 
management) was derived inductively from the codes. The codes were 
then labeled inductively, accordingly to what type of challenge or 
enabler they were tackling. Labels such as “employee bias” or “expertise 
need” are examples of labels under “challenges”, while “data architec
ture development” and “collaborative platforms” are examples of labels 
under “enablers”. 

4. Results 

4.1. Overview of included articles 

Fig. 3 presents the publication years of the selected articles. It should 
be noted that the search was conducted in May 2021 and did not, 
therefore, cover the whole year. The 34 articles were collected from 30 
different sources (journals and conference proceedings), showing that 
publication on this subject is quite widespread. The years of publication 
in Fig. 3 and the wide variety of publication sources indicate that there is 
no clear trend in the publication of relevant articles about root cause 
analysis. The selected articles were classified as “empirical” or “not 
empirical” and as “proposing a solution” or “not proposing a solution”. 
The field is quite practice-orientated, as reflected by the fact that 94% of 
the articles present empirical results. Furthermore, the field has a 
pragmatic orientation, with 64% of the articles proposing practical so
lutions for improving the root cause analysis process. The authors 
identified 14 different challenges and 17 different enablers presented in 

Fig. 2. Framework for content extraction.  

Fig. 3. Years of publication of selected articles.  

Table 2 
Challenges in the root cause analysis process.  

Phase in RCA process Challenge Related 
literature 

1. Problem identification Large volume of alarms [37.[38] 
Need for expertise [39.40] 
Employee bias [26] 

2. Data collection Lack of data [41–43] 
Poor data quality [41,44–46] 
Lack of data integration [44,47,48] 

3. Identification of root causes Large volume of data [39,46] 
Expertise need [30,42,45] 
Employee bias [26] 
Miscommunication [49,50] 
Ad hoc process [40,50–52] 

4. Identification and 
implementation of 
countermeasures 

Lack of structured countermeasure 
identification and validation 

[29] 

5. Knowledge management Poor knowledge-sharing [30,53,54] 
Underuse of knowledge gained 
from past investigations 

[50]  
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the 34 reviewed articles. Those were classified in the different phases of 
the root cause analysis process and are detailed in the following sub- 
sections. The related publications are presented in Tables 2 and 3. 

4.2. Challenges in root cause analysis 

4.2.1. Challenges related to problem identification 
The root cause analysis process usually starts with a recognition that 

there is a problem in a production system. However, there are some 
challenges in identifying precisely what the problem is, as shown in the 
first row of Table 2. According to the literature reviewed, three are the 
main problems: large volume of alarms happening simultaneously 
(alarm flood), the need for expertise to define the problem, and 
employee bias. 

A common strategy used by operators to recognise that a problem has 
started in a production system is to monitor alarms in the machines and 
operating systems. The first challenge of problem identification is that, 
in some cases, operators may be flooded with too many alarms simul
taneously [37,38]. One possible cause of an alarm flood is when a 
disturbance impacts many different production variables simulta
neously, with the system unable to isolate the most critical one. Multiple 
alarms are then activated, including unimportant ones, making it hard 
for an operator to understand exactly what is going on and focus on the 
most critical aspect. Vodenčarević and Fett [37] report having experi
enced situations of alarm bursts with more than 200 reported alarms per 
second. 

Another challenge relating to problem identification is the need for 
expertise. Disturbances propagate and, thus, a problem in one place can 
affect previous and subsequent points in a system. This makes it difficult 
to identify the exact source of a disturbance [39,40]. Additionally, the 
variation of different process parameters might lead to similar out
comes, making it challenging to define a cause-and-effect relationship. 
Establishing the relationship between a symptom and the problem often 
requires knowledge and experience of a process [39]. Companies may 
have to rely on specific employees to properly identify problems; this 
can be particularly problematic if the employee is unavailable or no 
longer works for the company. 

The final challenge in this phase concerns employee bias [26]. 

Employee bias in problem identification may happen for different rea
sons. An employee or specific department may discern that pointing out 
a problem would have negative consequences for them. For example, an 
employee might believe that he or she initiated a specific problem, and 
indicating it might lead to drawbacks in the career. Thus, the problem 
may remain “undiscovered”, or be wrongly identified on purpose. 
Confirmation bias may also arise; in other words, employees may as
sume a current disturbance to be similar to those experienced previ
ously, even if this is not the case. The problem identification, in this case, 
might be wrongly influenced by personal beliefs, instead of relying on 
data and facts. 

4.2.2. Challenges related to data collection 
The root cause analysis process requires the collection of data for 

further analysis, to identify the root causes. Kozjek et al. [47] classify 
three different types of data: process-specific, fault-specific, or “other 
types of data”. Process-specific data refers to data directly connected to 
the production process, such as process parameters and variables. 
Fault-specific data refers to alarms and disturbance data (such as the 
description, location, product impacted and type). “Other types of data” 
refers to data that can be collected from other systems, such as main
tenance, quality, logistics, inspection, suppliers and customers [47]. The 
different types of data may be structured or unstructured. Different 
challenges may arise in the data collection phase (as shown in the second 
row of Table 2). The results of this literature review indicate the main 
challenges as being the limited availability of data, poor data quality and 
lack of integration. 

In some manufacturing companies, the availability of data may be 
limited. This is the case in production systems whose machines may not 
have enough sensors installed [42,43]. Additionally, data may be un
available when machines are equipped with sensors but the resulting 
data is not collected and stored in a database for further use [41]. 
Moreover, although process-specific data is often available, the same 
may not occur (or not to the same extent) for fault-specific data, even 
though this type of data is critical to understanding the causes of dis
turbances [41]. This can happen for several reasons, including that it 
may not be part of a company’s culture to report and collect data about 
disturbances or that employees may not have enough time to perform 
those activities (especially when they are focused on firefighting the 
disturbances). Furthermore, often “other types of data” may be inac
cessible to manufacturing companies. This arises when data belongs to 
another actor in the supply chain (suppliers or customers, for example) 
or when internal systems (maintenance, quality, logistics, etc.) are not 
integrated. 

Another issue that may arise in the data collection phase is data being 
available but not at the proper level of quality. Ooi et al. [41] point out 
that many manufacturing companies still rely on manual data collection. 
This can be time-consuming and, because the process is more 
error-prone, the data quality tends to be lower (compared to an auto
matic process). At other times, data may be incomplete [46]. This is 
especially an issue for fault-related data, which tends to be much scarcer 
than process-related and “other types of data”. A further quality issue 
may emerge if the sensors used in the production system are not 
correctly located. Poor sensor distribution may lead to the collection of 
conflicting, inconsistent and vague data, making it hard to find the 
sources of the disturbances [43]. 

The third and final challenge in data collection is data integration. In 
manufacturing companies, data is often dispersed across many different 
systems [47] and in various formats. Examples of systems include those 
used for production control, maintenance, quality, inspection, planning, 
logistics, inventory, customer orders and customer complaints. Inte
grating data from different systems to understand the events that led to a 
disturbance can be quite challenging [48]. For example, data from 
different systems might be logged with different timestamps and iden
tification numbers, making it more difficult the consolidation for further 
analysis. A maintenance system might, for instance, use different 

Table 3 
Enablers in the root cause analysis process.  

Phase in RCA process Enabler Related literature 

1. Problem identification Alarm analysis 
algorithms 

[37,38] 

Enhanced visualisation [55] 
Collaborative platforms [54] 
Thesaurus of problems [50,56] 

2. Data collection Sensor location 
algorithms 

[43] 

Interconnection 
technology 

[41,42,45,49] 

Data architecture 
development 

[45,56] 

Data quality 
improvement 

[46] 

3. Identification of root causes Enhanced visualisation [51,57] 
Machine learning 
techniques 

[30,39,40,45,47, 
49,55,56] 

Collaborative platforms [54] 
Thesaurus of causes [50] 
Combination of 
methods 

[26] 

4. Identification and 
implementation of 
countermeasures 

Combination of 
methods 

[29] 

Collaborative platforms [54] 
Thesaurus of 
countermeasures 

[50] 

5. Knowledge management Root cause analysis 
platforms 

[50,54]  
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denominations to refer to a specific machine and its parts compared to 
the production, planning or quality systems. Kozjek et al. [47] believe 
there is a lack of development of holistic databases integrating the 
various kinds of operational and decision-support data. 

4.2.3. Challenges related to identification of root causes 
Once collected, data should be analysed to identify different patterns 

and correlations that can lead to the root causes. This review identified 
five challenges regarding this phase: large volume of data, need for 
expertise, employee bias, ad hoc process and miscommunication. The 
related articles appear in the third row of Table 2. 

During the process of identifying root causes, companies often need 
to analyse a large amount of data. Making sense of the data, identifying 
important patterns and locating the root causes can be challenging [39]. 
Ong et al. [46] refer to the issue as a “rich data but poor information” 
problem. At this point, expert participation is usually necessary to 
identify root causes [30]. Expertise is frequently needed to correlate 
variables that are not obvious in the data and establish the link between 
different datasets. Knowledge of processes and understanding of 
possible disturbances and their causes tend to be tacit rather than 
explicit in manufacturing companies. Like in the problem identification 
phase, a reliance on expert knowledge to identify root causes can 
become an issue if the expert is unavailable or no longer working for the 
company. 

Furthermore, as in the problem identification phase, employee bias 
may exist during the identification of root causes [26,30,45]. Root-cause 
assessment bias may emerge for different reasons and may lead an 
investigation to draw the wrong conclusions [30,52]. Especially for 
companies with a blame culture, employee bias may lead to misidenti
fication of root causes to avoid any direct negative consequences for a 
specific employee or group. 

Another challenge concerns miscommunication during the root 
cause identification. Brundage et al. [50] point out that this phase 
usually involves a group of people with different backgrounds. Meet
ings, exchanges of emails, phone calls and so on are usually necessary 
and miscommunication often arises. Time may be required so that 
people can understand each other’s perspectives; this impacts the time 
needed for identifying root causes [49,50]. 

Finally, some authors consider that identifying root causes tends to 
be an ad hoc practice [40,50–52]. Often, companies have no structured 
process to be followed when analysing root causes. This makes it more 
difficult for employees to perform this task systematically. A different 
process may be conducted for each new disturbance and this may 
impose some issues when comparing the performance and outcomes of 
investigations and reusing data from previous root cause analyses. 

4.2.4. Challenges related to identifying and implementing countermeasures 
One important phase in the root cause analysis process refers to 

identifying and implementing actions to correct and eliminate root 
causes. This phase does not refer to mitigating actions after a distur
bance has occurred. Rather, it refers to the actions needed to eradicate 
root causes. Only when countermeasures have been identified and 
implemented and disturbances eliminated can a company ensure a 
similar disturbance will not reoccur. Viveros et al. [29] suggest that the 
root cause analysis process should be improved so it can become effi
cient and effective in defining and implementing actions to prevent the 
recurrence of disturbances (see the fourth row of Table 2). The same 
authors point out that often there is no systematic way in the root cause 
analysis process to define countermeasures and test whether they are 
effective. This may lead to countermeasures being defined that will not 
have the desired effect of eliminating root causes. 

4.2.5. Challenges related to knowledge management in root cause analysis 
To improve the four phases described in the previous sub-sections 

(problem identification, data collection, identification of root causes, 
identification and implementation of countermeasures), a knowledge 

management phase is necessary. Through knowledge management, 
companies can guarantee greater efficiency through the dissemination 
of the learnings of the conducted root cause analyses. In this phase, two 
challenges were identified in the reviewed literature: poor knowledge- 
sharing and underuse of knowledge gained from past investigations. 
The related literature appears in the last row of Table 2. 

Qian et al. [53] identify that companies with different plants 
worldwide commonly do not share knowledge about disturbances 
among their plants, even though the individual plants may have expe
rienced similar issues and come up with different solutions. Information 
tends to be locally captured and stored, making it difficult to transfer 
knowledge between different locations [50,53]. Moreover, a lack of 
collaboration imposes challenges to the root cause analysis process 
within both the company and the supply chain. Mourtzis et al. [54] point 
out that, even though modern companies should collaborate with 
different stakeholders across the supply chain, current collaboration 
practices within and outside companies need modernisation to improve 
the root cause analysis process. 

Brundage et al. [50] indicate that the use of past root cause analysis 
investigations is also very limited in companies. In manufacturing 
companies, root cause analysis is often conducted using “pen and 
paper”, with no proper digital data storage of the findings. When a 
similar disturbance occurs, the process is often repeated and a new 
investigation conducted, without utilising knowledge gained from pre
vious occasions. 

4.3. Enablers to more effective and more efficient root cause analysis 

Similar to what was done with the challenges in the process, the 17 
identified enablers for the root cause analysis process were divided ac
cording to which phase they impact mostly, as shown in Table 3. More 
details are provided in the following sub-sections. 

4.3.1. Enablers related to problem identification 
Four enablers were identified for the problem identification phase 

(see the first row of Table 3 for related literature). The first enabler is 
based on alarm analysis. To tackle the problem of operators being 
flooded with multiple simultaneous alarms, Vodenčarević and Fett [37] 
indicate that the data-mining field has focused on developing different 
algorithms for isolating critical alarms. This is essential information for 
an operator in the course of a disturbance in a production system, once it 
can give directions regarding the machine or the parts of the machine 
that should be dealt with. Kinghorst et al. [38] propose a graph-based 
approach based on the conditional probability of an alarm A in the 
occurrence of a second alarm B that can be used to automatically split 
alarm data, thus helping operators identify statistically dependent and 
critical alarms. This is an important enabler in the identification of the 
problem, since it supports the operator in the delimitation of a specific 
machine, part of a machine, or a process variable that demands imme
diate attention. 

The second enabler concerns the use of tools to enhance the visual
isation of problematic process parameters. To do so, Sand et al. [55] 
propose a real time fast reaction system that analyses process data, 
detecting jumps, outliers and anomalous distributions and tracks back 
the changes in the process variables. Based on data mining, cluster 
analysis and decision trees are created, and the results can be presented 
in graphs for the operators. An efficient visualisation strategy can sup
port operators in fast and focused problem identification. 

The third enabler involves collaborative platforms, as proposed by 
Mourtzis et al. [54]. Once a problem is detected, the employee who 
detected it can ask for feedback from other employees about their 
problem statement. After submitting a new problem, other employees 
can vote on a social platform as to whether or not they agree with the 
proposed statement. Past problem descriptions can also be retrieved 
through advanced indexing techniques supporting problem identifica
tion for newly experienced issues. The proposed platform allows the use 
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of natural language in retrieving past problems and describing new ones, 
creating an intuitive tool to support operators in problem identification 
[54]. 

The fourth proposed enabler for problem identification is the 
development of a thesaurus of all possible problems stored with alter
native terms; the different names by which the same problem may be 
known [50,56]. Chakravorti et al. [56] recommend using a maintenance 
manual to create such a thesaurus, while Brundage et al. [50] suggest 
basing the creation on expert knowledge combined with machine 
learning. In this type of solution, an operator inputs a possible descrip
tion of the problem, which can be compared against a thesaurus of 
previously based terms. A suggestion can then be made to the operator 
regarding potential descriptions to the problem. 

4.3.2. Enablers related to data collection 
Among the reviewed articles, different enablers were identified 

regarding data collection, with the related literature presented in the 
second row of Table 3. The first of those involves having proper sensors 
in the production system to enable automatic data collection. Shukla 
et al. [43] suggest that not only is having the sensors important but also 
placing them correctly. To do so, the same authors present a 
feature-based approach for determining the optimal sensor distribution 
of multi-station assembly processes for identifying product quality de
viations, with the objective of maximizing the number of measurement 
of critical design features, collecting essential data for better root cause 
analysis. 

Correctly locating the sensors is necessary, but not enough. To con
nect the sensors to the IT infrastructure, it is also essential for data to be 
collected in a database for later data analysis [41,42,49]. Ooi et al. [41] 
propose a collaborative IoT gateway solution to manage the inter
networking connections between the devices and subsystems, plus 
connection to the cloud to assure communication reliability. Further
more, Palasciano et al. [42] propose a data acquisition platform 
comprising a monitoring system connected to the machines (data 
recorder), plus an Internet-accessible database that can be customised to 
a given production system. In the presented platform, the data recorder 
keeps track of two thousand different parameters, communicating with 
the control unit of the machines and independent sensors in order to 
retrieve the intended data. 

To connect and integrate different data systems, Chakravorti et al. 
[56] and Stojanovic & Stojanovic [45] also recommend developing 
suitable data architectures. Stojanovic & Stojanovic [45] propose a data 
architecture that integrates data retrieved from machine sensors, the 
manufacturing execution system, and human input (implicit knowledge 
from the workforce). Chakravorti et al. [56] propose a data architecture 
combining systems related to production and machine data acquisition, 
maintenance management, and planning systems. The integration of 
different sources of data is essential to find the root causes, since the 
faults in production systems might be initiated by a great number of 
different activities, being the information usually spread in the company 
and commonly not in the same format. 

Finally, to deal with the issue of imbalanced disturbance data, 
namely that disturbance data is not as available as data regarding 
normal operating behaviors, Ong & Choo [46] propose an algorithm for 
weighting the data based on principal component analysis. This might 
be a necessary step in data treatment, so that interesting patterns can be 
further extracted, leading to insights about likely root causes. 

4.3.3. Enablers relating to identification of root causes 
The reviewed articles propose different enablers regarding the root 

cause identification phase (see third row of Table 3). Baier et al. [51] and 
Nonaka et al. [57] suggest using visualisation tools for faster identifi
cation of root causes. Baier et al. [51] propose a solution for displaying 
data graphically for determining the main influencing factors on end 
products failing end-of-line tests. In this case, an analysis is done 
considering the correlation between the process variability of individual 

parameters and existing errors. A spectrogram (a graphical representa
tion similar to audio signals) is then generated with the most important 
process parameters, facilitating human interpretation. Nonaka et al. 
[57] present an approach to identify productivity detractors in large-size 
production systems (more than 500 processes). The approach is based on 
the analysis of the coeficient of variation of the fluctations in the system. 
As a result, a visualisation matrix is built to support operators in finding 
root causes in large and complex production systems. 

The use of machine learning to establish correlations between vari
ables and find the root causes of disturbances is suggested by Chakra
vorti et al. [56], Kozjek et al. [47], Sand et al. [55] and Stojanovic & 
Stojanovic [45]. This can be done by using expert knowledge to cate
gorise the data and establish correlations, or by analysing unlabelled 
data directly to identify patterns. Different machine learning techniques 
are suggested to help in identifying root causes. These include decision 
trees, clustering, Bayesian network and fuzzy set theory [45,47,55,56]. 
Stojanovic & Stojanovic [45] propose a model-driven root cause analysis 
in which an existing failure mode, effect and criticality analysis 
(FMECA) provides the initial instructions regarding prominent failures 
for the machine learning algorithm, being this further updated with 
real-time data. Kozjek et al. [47] suggest a method based on two data 
analysis phases. In the first one, rules describing the production system 
are extracted through a decision tree heuristic algorithm and expert 
knowledge about the manufacturing process. In the second phase, based 
on the extracted rules and by applying a machine learning clustering 
technique, the faulty conditions of the process are revealed together 
with their likely sources, guiding the search for root causes. 

Mourtzis et al. [54] suggest the use of a collaborative platform for 
root cause identification, similar to what was proposed in the problem 
identification phase. Once an issue is identified, employees from 
different areas can suggest potential root causes in the collaborative 
platform. Other employees can then comment and vote on whether they 
agree that the suggested root causes are the true ones. Root causes are 
also suggested based on past investigations and by applying machine 
learning. The most likely root causes are then presented, with their 
probability being constantly recalculated based on users’ feedback. 
Moreover, similar to what was proposed in the problem identification 
stage, Brundage et al. [50] suggest the development of a thesaurus, 
cataloging all possible root causes of a disturbance alongside their 
probabilities, with these also being constantly updated via machine 
learning. Different terms used to describe all possible denominations of 
the same causes are compiled using natural language, facilitating the 
recognition of reoccurring root causes for users. 

Finally, Lee & Chang [26] propose combining root cause analysis 
with the methods of the theory of constraints and Six Sigma. According 
to the authors, this allows the methods’ strengths to be united in a more 
assertive definition of root causes. On that account, theory of constraints 
can provide guidance for critical areas in which root cause analysis 
should be prioritised, whereas Six Sigma offers a statistical strategy to 
quantify the main issues in the production system and their most likely 
causes. 

4.3.4. Enablers related to identification and implementation of 
countermeasures 

To identify and implement actions assuring the root causes will be 
eradicated, different enablers are presented in the literature (see fourth 
row of Table 3). The first of those involves using specific methods 
alongside root cause analysis. Viveros et al. [29] propose combining root 
cause analysis with the TRIZ method. TRIZ stands for Theory of Inven
tive Problem Solving and is based on brainstorming possible solutions 
for an issue, and the same authors suggest it to be applied for the 
identification of countermeasures for the identified root causes. When 
conducting TRIZ, an “ideal final result” is defined by the group, being a 
contradiction analysis carried out afterward for the identification of 
possible side-effects of the proposed countermeasures. The authors 
suggest that introducing TRIZ in the identification of countermeasures 
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might be a valuable manner of coming up and verifing the most suitable 
actions to be implemented to correct the root causes. 

As with the enablers identified in the problem and root cause iden
tification phases, a collaborative platform can also be used so that em
ployees can share potential actions for solving a root cause. Employees 
may also vote and comment if they believe a specific countermeasure 
would eradicate a particular root cause [54]. Furthermore, a thesaurus 
may also be created with all known countermeasures for a specific root 
cause [50]. By applying machine learning, the most appropriate actions 
can be updated and suggested to employees. Additionally, it is also 
possible to create a feedback strategy in which the implemented coun
termeasures can be validated regarding their efficacy in eradicating the 
root causes, allowing manufacturing companies to make sure they are 
taking the right measures to minimize disturbances in their production 
systems. 

4.3.5. Enablers related to knowledge management in root cause analysis 
To improve knowledge management in the root cause analysis pro

cess, it is important to use the results of past investigations (see last row 
of Table 3 for related literature). This might reduce the level of dupli
cated work so that employees can avoid repeating the same or a similar 
investigation. It can also help less experienced employees to learn from 
past investigations conducted by more senior employees. Both Brundage 
et al. [50] and Mourtzis et al. [54] suggest solutions based on knowledge 
repositories that enable knowledge to be reused in all the different 
phases. This is based on the use of collaborative platforms and the cre
ation of a knowledge encyclopedia for production disturbances, their 
causes and any countermeasures. 

5. Discussion 

In this study, a literature review was conducted to identify and 
describe challenges and enablers related to the process of root cause 
analysis. The result was a total of 14 challenges and 17 enablers. Pre
vious research indicates that manufacturing companies face challenges 
in being effective and efficient in root cause analysis [3,6,28,30]. 
Moreover, previous research suggests that Industry 4.0 technology is 
expected to change how manufacturing companies deal with production 

disturbances [9], [28]. However, precisely what the challenges and 
enablers are and how they relate to the different phases of root cause 
analysis has not been systematically clarified by previous research. This 
study adds to current research by filling this gap. The results presented 
are consistent with previous research but offer a higher level of detail on 
the challenges and enablers. Fig. 4 summarises how the main findings of 
this study relate to the goal of developing resilient production systems, 
as further detailed in sub-Section 5.1. Based on their results, the authors 
propose a research agenda and possible design inputs for new solutions 
in sub-Section 5.2. The limitations of the present study are presented in 
sub-Section 5.3. 

5.1. Challenges and enablers and their relationship to resilient production 
systems 

By following the root cause analysis process, companies gain insights 
leading to changes in the design and operation of their production sys
tems. They can also avoid the reoccurrence of disturbances or minimise 
their impact. Ultimately, proper root cause analysis enhances the ability 
of companies to learn from past events, leading to more resilient pro
duction systems (see Fig. 4). This study has identified challenges and 
enablers in the different phases of root cause analysis (see Tables 2 and 3 
for related articles). As shown in Fig. 4, the challenges are expected to 
negatively affect the performance of root cause analysis. This reduces 
the likelihood of companies learning from past disturbances. The chal
lenges increase the time needed to find and deal with root causes, thus 
decreasing the efficiency of a process. Moreover, the challenges also 
make it hard to find the true root causes, thus reducing the effectiveness 
of a process. Furthermore, as presented in Fig. 4, the identified enablers 
to improve the root cause analysis phases have the opposite effect. In 
other words, they have a positive impact on a company’s ability to learn 
from past disturbances, leading to more resilient production systems. 
The enablers are expected to make the root cause analysis process more 
efficient and effective, allowing companies to find and deal with the true 
root causes more quickly. 

Fig. 4. Root cause analysis process (challenges and enablers) and relationship to resilient production systems.  
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5.2. Improved root cause analysis of production disturbances for the 
development of resilient production systems – research agenda and design 
inputs for new solutions 

Although different solutions for improving root cause analysis in 
manufacturing companies have already been proposed, the results of 
this literature review indicate further areas of potential research by the 
academic community to help practitioners deal with their challenges. 
The same areas may also comprise potential design inputs to new so
lutions. The following sub-sections elucidate these areas. 

a. Use of diverse datasets in the root cause analysis process. 
Data analytics is likely one of the most promising areas for helping 

practitioners find and deal with root causes. Some researchers have 
focused on it, as shown in Table 3. However, there are limitations to the 
currently presented enablers, chief among them being the use of limited 
types of data. The enablers identified in this study focus primarily on 
structured data, either as process-related, fault-related or “other” types 
of data, such as maintenance or quality data. There is much unexplored 
potential for using unstructured data in all phases of the root cause 
analysis process. Examples of unstructured data are video, image, sound 
and free text. Video, image and sound data might be acquired by, say, 
recording a production system’s operations, video calls, or visual in
spections. Free text might be acquired from such things as reports, 
handbooks, emails, free descriptions of disturbances and their causes. 
These types of data can help in analysing previous events and decisions 
which may have caused a specific disturbance. Further research should 
focus on: (1) understanding what types of unstructured data are 
potentially available in production systems related to disturbances; (2) 
identifying the challenges of integrating them into current datasets; and 
(3) proposing solutions to overcome the challenges of integration and 
draw insights to aid the root cause analysis process. New datasets may 
then be used in designing new solutions for improved root cause 
analysis. 

b. Collaboration outside manufacturing companies – development of 
collaborative platforms. 

As shown in Table 3, one of the reviewed articles proposes collabo
rative platforms as an enabler for improving the performance of the root 
cause analysis process. However, this platform focuses primarily on 
collaboration within companies. There is also a potential unexplored 
collaboration outside manufacturing companies. This may be further 
investigated from the supply chain perspective and from that of other 
companies working in the same type of field. From the supply chain 
perspective, greater integration, information-sharing and collaboration 
between manufacturing companies, logistics operators, suppliers, tech
nology providers and customers can be promoted, thus improving the 
root cause analysis process. Often, a disturbance within a company is 
reflected across the whole supply chain. Also often, a disturbance in a 
production system may originate from outside a company. Furthermore, 
the effects of production disturbances can commonly be recognised 
among customers, especially if they are quality-related. Researchers can 
help practitioners develop strategies and technical solutions to improve 
outside collaboration practices in their root cause analysis process, thus 
leading to higher effectiveness and efficiency. 

Moreover, collaboration may also be achieved among companies 
with similar production systems. Collaborating to disseminate knowl
edge gained and identify problems, causes and countermeasures can put 
companies in a win-win situation, help them become more assertive and 
speed up the process of finding and dealing with root causes. Although 
various competitive issues may minimise the opportunities for collabo
ration in this scenario, collaboration can play a critical role in avoiding 
future instances of specific types of disturbances, such as safety-related 
ones. 

There are different ways in which researchers may help companies 
achieve greater collaboration in the supply chain and among companies 
in the same area. One possible way is the further development of 
collaborative platforms, including additional stakeholders (outside the 

company). In such platforms, companies can share data and information 
related to disturbances within their supply chain, thus enhancing agility 
and disseminating the findings of specific investigations. The same idea 
can also be used as a design input for new solutions. 

c. Creation of holistic data architectures. 
As the basis for the development of data analytics-related solutions 

and collaborative platforms, it is critical to properly integrate the 
different types of data flowing from different systems into various levels 
within companies and outside them. This can only be achieved if the 
different data sources in the production systems/companies such as 
sensors, machines, systems (maintenance, production, quality, etc.) are 
interconnected and integrated. It can be particularly challenging for a 
root cause analysis process to match different data types if the data ar
chitecture was not conceived for that purpose. 

Although some publications propose different data architecture so
lutions (as shown in Table 3), given the limitations regarding the data 
types and collaboration aspects, further research is necessary. In 
developing data architectures, new types should also be considered 
(such as unstructured data), as well as integrating systems outside 
manufacturing companies (from other actors in the supply chain, for 
example). With holistic data architecture, it is possible to combine 
different data sources and integrate different systems outside a com
pany, thus leading to a more insightful root cause analysis process. Re
searchers can help practitioners in proposing data architecture solutions 
that consider all potential data types and which are simple and easy to 
implement in their current production systems, being this also a po
tential feature for new solutions. 

d. Support to employees in the root cause analysis process. 
Although the reviewed literature emphasizes the need for expertise 

as a challenge in the root cause analysis process (see Table 2), employee 
training, education and support as potential enablers to the issue are not 
mentioned. Rather, the focus tends to fall primarily on technological 
solutions. However, humans will continue to be part of the root cause 
analysis process and their role is expected to become more and more 
refined. Finding the root causes of less complex problems is expected to 
become automated but, in complex disturbances, the participation of 
humans in the root cause analysis process will continue to be critical. 
Therefore, it is essential to provide employees with the necessary edu
cation and also to ensure they have enough time to understand and 
perform the necessary tasks related to the root cause analysis process. 

The authors also recommend future research to focus on strategies to 
develop effective training in implementing root cause analysis. One 
suggestion is the development of intuitive applications that can guide 
employees in the different phases of root cause analysis. This would be 
adapted to their production system contexts, using the various existing 
datasets to gain insights. Furthermore, the authors suggest new man
agement strategies to be further researched to certify employees get the 
necessary support and time they need to perform the tasks in the 
different phases of root cause analysis. One possible focus area regards 
the development of shop floor management strategies, focusing on 
developing specific organizational frameworks to be applied in the root 
cause analysis process. 

5.3. Limitations 

When performing a literature review, relevant articles might not be 
included depending primarily on the definition of the scope and the 
search process. In the case of this study, the authors defined the scope as 
being academic publications available in the databases Scopus and Web 
of Science, meaning that relevant publications not found in those da
tabases were not included. The choice of keywords for the search in the 
databases (see sub-Section 3.2 for details) also has a similar effect. In this 
study, the authors defined the search string as (“root cause analysis” 
AND (“production system*” OR “manufacturing system*”), being po
tential relevant articles that might have used different denominations 
not included in the review. 
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One emerging area that should be highlighted concerns automatic 
root cause analysis. Automatic root cause analysis can be applicable to 
address the identified challenges, but relevant publications might not 
have been captured in the defined search strategy if they have focused 
on contexts other than production/manufacturing systems. As further 
research, the authors suggest a specific review of literature regarding 
general applications of automatic root cause analysis, pointing out the 
differences in relation to non-automatic solutions. 

6. Conclusion 

Through a systematic literature review, this study identifies and 
explains the challenges and enablers proposed in current research for the 
root cause analysis process. A total of 14 challenges and 17 enablers in 
the different phases of the process were identified. Challenges include e. 
g., “need for expertise”, “employee bias”, “poor data quality”, and “lack 
of data integration”, and enablers include e.g., “visualisation tools”, 
“collaborative platforms”, “thesaurus”, and “machine learning tech
niques”. Based on the findings, a research agenda and potential design 
inputs for new solutions have been proposed, hoping to support the 
development of more resilient production systems. 

Specifically, four main focus areas are suggested in the research 
agenda: (1) use of diverse datasets in the root cause analysis process, (2) 
collaboration outside manufacturing companies – development of 
collaborative platforms, (3) creation of holistic data architectures, and 
(4) support to employees in the root cause analysis process. This study 
also explains the relationship between the root cause analysis process 
and the ability to learn from past disturbances. The challenges and en
ablers can help practitioners better understand their current issues 
regarding root cause analysis and assist them in selecting potential so
lutions that are ready to test and implement. The proposed design inputs 
can also guide how current processes might be further improved, thus 
leading to more resilient production systems. 
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