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Abstract—In future cellular networks, it will be possible to
estimate the channel parameters of non-line-of-sight propagation
paths providing unique opportunities for simultaneous localization
and mapping (SLAM) with commodity user equipments (UEs).
Radio-SLAM generally relies on generating samples of the UE
trajectory and constructing a trajectory-conditioned map. To
reduce the number of samples and complexity, we propose an
iterative method to approximate the optimal sampling density.
The numerical results demonstrate that the added computational
complexity of the proposed method can be easily justified by the
more efficient use of particles. As an outcome, the presented filter
nearly achieves the lower bound and still runs in real-time.

Index Terms—millimeter wave, simultaneous localization and
mapping, probability hypothesis density, importance density

I. INTRODUCTION

The high temporal and spatial resolution of the fifth gen-
eration (5G) millimeter wave (mmWave) and the future sixth
generation (6G) systems provide unique opportunities in posi-
tioning and sensing [1]. Downlink mmWave positioning refer-
ence signals (PRS) can be sent from the base station (BS) to
the user equipment (UE) along the line-of-sight (LOS) and/or
non-line-of-sight (NLOS) paths. At the UE side, the PRS are
received and state-of-the-art channel estimators [2] can provide
channel gain, time of arrival (TOA), angle of arrival (AOA) and
angle of departure (AOD) estimates for the propagation paths.
The intrinsic connection of the NLOS paths to the propagation
environment together with the channel estimates enables not
only localization but also mapping the environment [3].

The process of jointly localizing the UE and creating a map
of the environment is known as simultaneous localization and
mapping (SLAM), often referred to as Radio-SLAM in the
mmWave context. Several different solutions to the problem
exist including: geometry-based methods [4], belief propagation
algorithms [5] and methods relying on random finite set (RFS)
theory [6]. Formulating the Radio-SLAM problem using RFSs
has proven to be a noteworthy candidate [6]–[10], and the
attractiveness of the method lies in the fact that it enables
a fully integrated Bayesian framework for Radio-SLAM. The
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RFS methods can inherently deal with the challenges of Radio-
SLAM and these are: data association uncertainty, unknown
number of map features, clutter measurements and misde-
tections [6]. One approach to solve the problem is based
on an exact factorization of the posterior into a product of
conditional landmark distributions and a distribution over UE
trajectories [11]. The nonlinear UE trajectory is targeted using
a particle filter (PF) and the trajectory-conditioned map is
estimated with a probability hypothesis density (PHD) [6] or a
Poisson multi-Bernoulli mixture [7] filter. The aforementioned
works typically require a large number of particles, severely
impacting the computational overhead. A better choice of the
importance density allows for fewer particles without loss of
performance, as was shown in FastSLAM 2.0 which used an
optimal importance density (OID) approximation [12].

In this paper, a better approximation of the importance
density is presented so that the UE posterior can be repre-
sented with fewer particles. We exploit an iterative method for
approximating the OID, which is based on using generalized
statistical linear regression (SLR), combined with iterated pos-
terior linearization (IPL) [13], [14]. In Radio-SLAM, the use of
SLR and IPL was first demonstrated in [10], and it was shown
that the approach has certain benefits. It is worth noting that
in this paper IPL is used to approximate the OID, whereas in
[10], IPL is used to update the joint posterior SLAM density.

To the best of our knowledge, this is the first time a joint
OID approximation is applied to RFS-SLAM. Moreover, the
proposed method overcomes two important limitations of the
one-step OID approximation used in FastSLAM 2.0. First of all,
the one-step OID approximation may not work for certain types
of non-Gaussian likelihoods. Second, linearization is conducted
around the prior, not the posterior.

II. RFS-BASED SLAM

A. Radio-SLAM Models

This paper focuses on a feature-based approach that de-
composes the physical environment into parametric point rep-
resentation referred to as landmarks. As illustrated in Fig.1,
we consider three types of landmarks: (i) BS for which the
location is known; (ii) reflecting surfaces modeled as virtual
anchors (VAs) and; (iii) small objects that are modeled as



Fig. 1. In Radio-SLAM, a UE simultaneously localizes itself and builds a map
of the environment using channel parameter estimates.

scattering points (SPs) [6]. The state of the landmarks is
m = [m⊺LM, mST]

⊺, where mLM ∈ R3 is the 3D location and
mST ∈ {BS,VA,SP} the source type. The UE state is given by
s = [x, y, α, B]⊺, where [x, y]⊺ is the 2D location, α the
vehicle heading and B the bias between the UE and network
clocks. For further details, the reader is referred to [6], [8]–[10].

The underlying state-space model is represented by

sk ∼ p(sk ∣sk−1,uk), (1a)

znk ∼ p(zk ∣sk,m
j
), (1b)

where k denotes the time and uk = [νk, ωk]
⊺ is a deterministic

speed νk and angular velocity ωk control command of the UE.
The n-th measurement is denoted as znk , and it contains the
TOA (depending on [xk, yk]

⊺ and Bk), AOA (depending on
[xk, yk]

⊺ and αk) and AOD (depending on [xk, yk]
⊺) esti-

mates, and the intrinsic connection of the channel parameters
to the BS, landmark and UE pose is presented [6]. Since the
number of landmarks in the field-of-view (FOV) is unknown,
the map and measurements are represented with finite sets,
Mk = {m

1,m2, . . . ,m∣Mk ∣} and Zk = {z
1,z2, . . . ,z∣Zk ∣}

respectively, and ∣⋯∣ denotes the cardinality of a set. Due to
imperfections in the receiver and channel estimator, it is also
possible that mj ∈Mk is not detected and znk ∈ Zk corresponds
to clutter.

B. PHD-SLAM Filter

In probabilistic form, the SLAM problem aims to estimate
the joint posterior density of the landmarks and UE trajectory,
given the initial state s0, recorded observations Z1∶k and control
inputs u1∶k up to and including time k. The joint posterior RFS-
SLAM density can be decomposed as [11]

p(s1∶k,Mk ∣Z1∶k,u1∶k, s0)

= p(s1∶k ∣Z1∶k,u1∶k, s0)p(Mk ∣Z1∶k, s0∶k). (2)

Now, the nonlinear UE trajectory s0∶k can be tracked using
a PF and the trajectory-conditioned map is estimated using a
PHD. The overall PHD-SLAM density at time k is represented

by a set of N particles, {w(i)k , s
(i)
0∶k, v

(i)
k (m∣s

(i)
k )}

N

i=1
, where

w
(i)
k , s(i)0∶k and v

(i)
k (m∣s

(i)
k ) are the weight, trajectory and PHD

of particle i, respectively. The PHD is parametrized using a
Gaussian mixture (GM) [15]

v
(i)

k∣k
(m∣s

(i)
k ) =

J
(i)
k∣k

∑
j=1

η
(i,j)

k∣k
N (µ

(i,j)

k∣k
,Σ
(i,j)

k∣k
), (3)

where J
(i)

k∣k
is the number of GM components at time k and,

η
(i,j)

k∣k
, µ(i,j)

k∣k
and Σ

(i,j)

k∣k
are the weight, mean and covariance of

landmark j for particle i in corresponding order.
1) PHD Mapping: Assume that the PHD at time k − 1 is a

GM of the form given in (3), then it follows that the predicted
PHD at time k is also a GM given by [11]

v
(i)

k∣k−1
(m∣s

(i)
k ) = v

(i)

k−1∣k−1
(m∣s

(i)
k−1) + v

(i)
B,k(m∣s

(i)
k ), (4)

where the parameters of v
(i)

k−1∣k−1
(⋅) are unchanged since the

landmarks are static, v(i)B,k(⋅) is the birth process with J
(i)
B,k GM

components, and the number of components in the predicted
PHD is J

(i)

k∣k−1
= J

(i)

k−1∣k−1
+ J

(i)
B,k. The birth process indicates

where and with which intensities new landmarks appear. In this
paper, the measurements are used to generate new landmarks as
follows. First, a linearization point m0 is approximated using
znk and the inverse measurement function (see [6, Appendix
D] and [9, Eq. (18)]). Second, the mean and Jacobian of the
measurement model in (1b) are computed with respect to m0

and thereafter, location and covariance of the birth landmark are
obtained by conditioning on znk . An uninformative prior with
infinite covariance is utilized and the conditioning is computed
in information form [16].

Given the measurement set Zk at time k and the predicted
PHD v

(i)

k∣k−1
(⋅), the posterior map PHD is a GM given by [11]

v
(i)

k∣k
(m∣s

(i)
k ) = [1 − PD(m∣s

(i)
k )]v

(i)

k∣k−1
(m∣s

(i)
k )

+ ∑
z∈Zk

Λ(m∣s
(i)
k )

c(z) + ∫ Λ(m′∣s
(i)
k )dm

′

, (5)

where PD(m∣s
(i)
k ) is the adaptive detection probability [6], c(z)

is the PHD of the clutter RFS [15], and

Λ(m∣s
(i)
k ) = PD(m∣s

(i)
k )p(z∣s

(i)
k ,m)v

(i)

k∣k−1
(m∣s

(i)
k ). (6)

It is worth noting that every component of v(i)
k∣k−1
(⋅) is updated

by a miss detection and by every measurement such that the
number of GM components in the updated PHD v

(i)

k∣k
(⋅) is

J
(i)

k∣k
= J

(i)

k∣k−1
×(∣Zk ∣+1). This leads to an exponential growth in

the number of GM components and therefore, the GM pruning
algorithm proposed in [15] is used to reduce the number of GM
components after each update.

2) UE Trajectory: The posterior of the UE trajectory,
p(s1∶k ∣Z1∶k,u1∶k, s0), is estimated using the sequential im-
portance resampling (SIR) PF [17] summarized in Algo-
rithm 1. In the algorithm, the weight update requires solving
p(Zk ∣Z1∶k−1, s

(i)
0∶k). With a Poisson point process prior and a

point object measurement model the solution is [6]

p(Zk ∣Z1∶k−1, s
(i)
0∶k) = ∏

z∈Zk

c(z) + ∫ Λ(m∣s
(i)
k )dm, (7)



Algorithm 1 SIR particle filter
1: for i = 1, . . . ,N do
2: Compute importance density and sample from it

s
(i)
k ∼ q(sk ∣s

(i)
0∶k−1,Z1∶k,u1∶k) (8)

3: Calculate the weights according to

w
(i)
k = w

(i)
k−1

p(Zk ∣Z1∶k−1, s
(i)
0∶k)p(s

(i)
k ∣s

(i)
k−1,uk)

q(s
(i)
k ∣s

(i)
0∶k−1,Z1∶k,u1∶k)

. (9)

4: end for
5: Normalize the weights w(i)k = w

(i)
k /∑

N
i=1w

(i)
k and compute

the effective sample size ESS = 1/∑N
i=1w

(i)
k .

6: Resample if ESS < N/2

which can be evaluated during the PHD update step.

III. IMPORTANCE DENSITY

A. Data Association
To be able to compute the importance density, the data

association between the measurements and landmarks must be
solved first. The problem is casted as an optimal assignment
problem as in [9] and solved using the auction algorithm [18].
After solving the optimal assignment, we introduce the con-
catenated state and measurement vectors

x
(i)
k = [(s

(i)
k )

⊺ (m1)⊺ . . . (mM)⊺]
⊺

,

yk = [(z
ℓ(1))⊺ . . . (zℓ(M))⊺]

⊺

,

where ℓ(j) denotes the assignment of landmark mj to measure-
ment zℓ(j) and M the total number of associated landmarks.

B. Optimal Importance Density Approximation

The choice of importance density q(s
(i)
k ∣s

(i)
0∶k−1,Z1∶k,u1∶k)

in (9) is a crucial aspect of particle filtering which considerably
affects the performance of the filter. In order to minimize the
variance of weight increment in (9), new samples for xk should
be drawn according to the OID given by [17]

q(s
(i)
k ∣s

(i)
0∶k−1,Z1∶k,u1∶k) = p(x

(i)
k ∣x

(i)
k−1,yk,uk)

∝ p(yk ∣x
(i)
k )p(x

(i)
k ∣x

(i)
k−1,uk),

(10)

where the superscript i is omitted for brevity in the following.
Since the motion and measurement models are nonlinear,

the OID cannot be sampled from. One way to address this is
to approximate (10) with a density that can be sampled from
instead. Here, we use a Gaussian approximation of the form

p(xk ∣xk−1,yk,uk) ≈ N (xk;µ
x∣y
k ,Σ

x∣y
k ) . (11)

This can be found by first finding the approximation

p(xk,yk ∣xk−1,uk) ≈ N ([
xk

yk
] ; [

µx
k

µy
k

] , [
Σxx

k Σxy
k

Σyx
k Σyy

k

]) , (12)

followed by conditioning on yk. This yields

µ
x∣y
k = µx

k +Σ
xy
k (Σ

yy
k )

−1
(yk −µ

y
k) , (13a)

Σ
x∣y
k =Σxx

k −Σ
xy
k (Σ

yy
k )

−1
Σyx

k . (13b)

Algorithm 2 IPL OID approximation

1: Set µx,0
π = E{xn ∣ x

(i)
n−1} and Σx,0

π = Cov{xn ∣ x
(i)
n−1}

2: for l = 1, . . . , L do
3: Calculate µy,l

π , Σy,l
π , and Σxy,l

π using (14) and µx,l−1
π ,

Σx,l−1
π

4: Calculate Al, bl, and Ωl using (16)
5: Calculate µ

x∣y,l
k and Σ

x∣y,l
k using (13) and (17)

6: Set µx,l
π ← µ

x∣y,l
k and Σx,l

π ←Σ
x∣y,l
k

7: end for

C. Statistical Linear Regression and Posterior Linearization
The main problem in finding the approximation (12) is to

determine the mean µy
k and covariance matrices Σyy

k and Σxy
k .

To this end, we use an approach based on generalized SLR and
IPL [13], [14] as outlined below.

Let x ∼ π(x) with mean µx
π and covariance Σxx

π , and
y ∼ p(y∣x) with conditional moments E{y∣x} and Cov{y∣x}.
Using conditional expectations, it follows that [19]

µy
π = Eπ {E{y∣x}} , (14a)

Σyy
π = Covπ {E{y∣x}} +Eπ {Cov{y∣x}} , (14b)

Σyx
π = Covπ {E{y∣x},x} , (14c)

where the expectations are with respect to π(x) as denoted
by the subscript π. Then, generalized SLR finds the affine
approximation [13], [19]

y ≈Ax + b + v, (15a)
v ∼ N (0,Ω), (15b)

with respect to π(x), where

A =Σyx
π (Σ

xx
π )

−1
, (16a)

b = µy
π −Aµx

π, (16b)
Ω =Σyy

π −AΣxx
π A⊺. (16c)

Given the linearization (15)–(16), the approximation of the OID
with respect to the linearization density π(x) then is

µy
k =Aµx

k + b, (17a)
Σy

k =AΣxx
k A⊺ +Ω, (17b)

Σxy
k =Σ

xx
k A⊺. (17c)

The choice of the linearization density π(x) is key for approxi-
mating the OID well. Ideally, linearization is done with respect
to the OID itself (posterior linearization). However, since this
is unavailable to begin with, IPL [13] can be used.

IPL iteratively refines the OID approximation by first cal-
culating an approximation based on the prior, in this case
the dynamic model p(xk ∣xk−1,uk). This first linearization is
used to obtain a first approximation of the OID. Next, the
approximation of the OID is used to find a better linearization,
and then to find an improved OID approximation. This is
repeated either for a fixed number of iterations or until the OID
has converged [14] and is summarized in Algorithm 2. Note that
Algorithm 2 is run for each particle individually, resulting in
individual OID approximations for each particle.



(a) (b)

Fig. 2. In (a), RMS positioning error and GOSPA for each time step k and in (b), RMS positioning error of the UE and landmarks as a function of N . The
PCRB illustrated using ( ) and the PHD-SLAM filter using the motion model as the importance density ( ) and the proposed importance density ( ).

IV. NUMERICAL EVALUATION

A. Simulation Setup

The UE motion is modeled using a coordinated turn model
and a 360○ turn is conducted around a BS. The landmark
states are unknown and there are four VAs and four SPs in the
surrounding environment. The VAs are always visible whereas
the SPs are only visible if they are within the SP FOV. More
details on the experimental setting can be found in [6] and the
parameters are the same as used in [9]. The OID approximation
uses, L = 5, iterations unless otherwise stated. In this paper, the
PHD update step in (5) and the moments in (14) are computed
using Taylor series based approximations.

The UE state is estimated using weighted sum of the particles
[11] and the landmarks are estimated using the method de-
scribed in [20, Table III]. State estimation accuracy is assessed
using the root mean squared error (RMSE) and mapping per-
formance with the generalized optimal subpattern assignment
(GOSPA) metric [21]. The proposed filter is evaluated with
respect to the posterior Cramér-Rao bound (PCRB) [9] and
benchmarked against another PHD-SLAM filter that uses the
motion model as the importance density [6]. Comparison to [12]
will also be discussed at the end of the section. Overall, 100
Monte Carlo simulations are performed with every parameter
setting and the results are obtained by averaging over the
different simulations.

B. Results

The positioning accuracy of the UE and GOSPA for the
landmarks are illustrated in Fig. 2(a) using N = 1000. As
the UE cycles the BS, the positioning accuracy of the VAs
improve as more measurements are received and as the geo-
metric dilution of precision decreases. Moreover, the SPs are
localized once in the FOV and as a result, the GOSPA gradually

decreases. The notable steps in GOSPA correspond to time
instances the SPs are within the FOV for the first time and
miss detection is not penalized by the GOSPA metric anymore.
As the map accuracy increases, also the root mean squared
(RMS) positioning error of the UE decreases. As shown, the
presented filter together with the iterative OID approximation
nearly achieves the PCRB outperforming the filter that uses
the motion model as the importance density. The RMSEs of
the other states are summarized in Table I.

The positioning accuracy of the UE and landmarks as a
function of number of particles are illustrated in Fig. 2(b). As
shown, using the iterative OID approximation, the number of
required particles is approximately 40 times lower than with
the benchmark solution. The main reason for this difference
is that using the motion model as the importance density
leads to an inefficient sample approximation as most of the
particles are located where the posterior is close to zero. More
quantitatively, the relative effective sample size (ESS) is 48.3%
using the proposed importance density and 2.4% using the
motion model. Thus, the benchmark filter requires far more
particles to approximate the UE posterior accurately.

Performance of the proposed method for different number of
iterations L is summarized in Table I. In general, the accuracy
of PHD-SLAM improves as L grows and since the result does
not improve after three iterations, results for L > 3 are not
shown. In the table, results for different number of particles are
also shown for which N is selected so that the computation time
is equal to 500 ms which corresponds to the sampling interval.
As tabulated in Table I, the added computational complexity
for L > 0 can be easily justified by the more efficient use
of particles which results to superior performance. If only a
fraction of the computational resources can be reserved for
Radio-SLAM, good accuracy and real-time operation can still
be accomplished using L > 0. As an example, comparative



TABLE I
PERFORMANCE OF PHD-SLAM FOR DIFFERENT NUMBER OF OID APPROXIMATION ITERATIONS L AND PARTICLES N .

UE / Vehicle Landmark Average / iteration
L N Position [m] Heading [deg] Clock bias [ns] Position [m] GOSPA ESS [%] Time [ms]
0 1000 0.279 0.192 0.433 0.663 1.310 2.416 756
1 1000 0.195 0.140 0.341 0.562 0.880 48.115 1125
2 1000 0.193 0.137 0.338 0.560 0.868 48.235 1312
3 1000 0.193 0.137 0.338 0.559 0.867 48.252 1321
0 661 0.337 0.227 0.482 0.754 1.628 2.517 500
1 444 0.204 0.143 0.353 0.564 0.953 49.233 500
5 379 0.204 0.140 0.341 0.563 0.870 49.436 500
5 25 0.288 0.173 0.461 0.667 1.308 56.280 33

performance to N = 1000 and L = 0 can be achieved with only
25 particles and using L = 5.

There is a direct relationship of the proposed OID approx-
imation to importance densities used in earlier SLAM works.
Selecting L = 0, lines 2−7 of Algorithm 2 are not computed and
the OID approximation is equivalent to the importance density
used in [6], [7]. On the other hand, selecting L = 1, linearization
is performed around the prior mean and the proposed method
is equivalent to the one-step OID approximation used in Fast-
SLAM 2.0 [12]. It is worth noting that previous works in Radio-
SLAM have only used the motion model as the importance
density and as we have shown, the one-step and iterative OID
approximations yield outstanding performance and their use is
highly recommended. In future research, we will explore more
complex and realistic experimental settings and investigate
whether the proposed method bring further advantages over the
one-step OID approximation used in FastSLAM 2.0.

V. CONCLUSIONS

In this paper, we have provided the details to iteratively
approximate the optimal importance density and utilized the
method in a probability hypothesis density (PHD) simultaneous
localization and mapping (SLAM) filter. The proposed method
is demonstrated in a 5G downlink scenario and the simulation
results imply a significant increase in the average effective
sample size. This improvement enables the proposed system to
achieve comparative performance and a reduced computational
overhead, or superior accuracy and a comparative run-time with
respect to a benchmark PHD-SLAM solution. The development
efforts of this paper take performing high accuracy and real-
time Radio-SLAM in future 5G and beyond networks one step
closer.
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