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Abstract
Electric power systems are becoming increasingly complex to operate; a trend driven
by an increased demand for electricity, large-scale integration of renewable energy
resources, and new system components with power electronic interfaces. In this
thesis, a new real-time monitoring and control tool that can support system opera-
tors to allow more efficient utilization of the transmission grid has been developed.
The developed tool is comprised of four methods aimed to handle the following
complementary tasks in power system operation: 1) preventive monitoring, 2) pre-
ventive control, 3) emergency monitoring, and 4) emergency control. The methods
are based on recent advances in machine learning and deep reinforcement learning
to allow real-time assessment and optimized control, while taking into account the
dynamic stability of a power system.

The developed method for preventive monitoring is proposed to be used to ensure a
secure operation by providing real-time estimates of a power system’s dynamic secu-
rity margins. The method is based on a two-step approach, where neural networks
are first used to estimate the security margin, which then is followed by a validation
of the estimates using a search algorithm and actual time-domain simulations. The
two-step approach is proposed to mitigate any inconsistency issues associated with
neural networks under new or unseen operating conditions. The method is shown to
reduce the total computation time of the security margin by approximately 70 % for
the given test system. Whenever the security margins are below a certain threshold,
another developed method, aimed at preventive control, is used to determine the
optimal control actions that can restore the security margins to a level above a pre-
defined threshold. This method is based on deep reinforcement learning and uses a
hybrid control scheme that is capable of simultaneously adjusting both discrete and
continuous action variables. The results show that the developed method quickly
learns an effective control policy to ensure a sufficient security margin for a range
of different system scenarios.

In case of severe disturbances and when the preventive methods have not been suf-
ficient to guarantee a stable operation, system operators are required to rely on
emergency monitoring and control methods. In the thesis, a method for emergency
monitoring is developed that can quickly detect the onset of instability and predict
whether the present system state is stable or if it will evolve into an alert or an
emergency state in the near future. As time progresses and if new events occur
in the system, the network can update the assessment continuously. The results
from case studies show good performance and the network can accurately, within
only a few seconds after a disturbance, predict voltage instability in almost all test
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cases. Finally, a method for emergency control is developed, which is based on
deep reinforcement learning and is aimed to mitigate long-term voltage instability
in real-time. Once trained, the method can continuously assess the system stability
and suggest fast and efficient control actions to system operators in case of voltage
instability. The control is trained to use load curtailment supplied from demand re-
sponse and energy storage systems as an efficient and flexible alternative to stabilize
the system. The results show that the developed method learns an effective control
policy that can stabilize the system quickly while also minimizing the amount of
required load curtailment.

Keywords: deep reinforcement learning, dynamic voltage security margin, machine
learning, neural networks, optimal control, security assessment, voltage instability
prediction, voltage stability.
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Chapter 1

Introduction

This chapter presents the background and a problem overview, followed by a summary
of previous work and identified research questions. The aim and the contributions
are presented together with a list of the publications on which the thesis is based
upon.

1.1 Background
The development towards a more sustainable energy system has resulted in a rapidly
growing share of non-controllable renewable generation. Wind and solar power are
among the fastest-growing sources of electric energy globally; a trend that is likely
to continue given that these energy sources have become the lowest-cost source of
new power generation in most parts of the world [1, 2]. Sweden has seen a similar
development, where the installed wind power capacity increased from 241 MW to
9 976 MW between the years 2000 and 2020 [3]. Simultaneously, electric power
generated from conventional fossil-fueled power plants, primarily coal and gas, needs
to be decommissioned at a rapid rate to reduce carbon emissions to the atmosphere.
In Sweden, fossil fuels have not been used for electric power generation to any
significant extent, and nuclear power in combination with hydropower has instead
been used for a large share of the base power. However, due to the lack of economic
profitability, political decisions, and reactors approaching their technical lifetime,
nuclear power is now gradually being decommissioned. By the end of 2019, one
reactor of the Swedish nuclear power station Ringhals was shut down, followed by
the decommissioning of a second reactor at the end of 2020 [4]. Out of originally
twelve reactors in Sweden, only six remain currently in operation, with a total rated
capacity of about 6 900 MW. While there is a political debate about whether Sweden
should continue to rely on nuclear power and even invest in new reactors, its future
is still uncertain and the development of new nuclear reactors would lie many years
into the future.

Although a larger share of renewable energy sources in the power system is desir-
able from a sustainability perspective, the intermittent nature of these may cause
significant planning and operational challenges. In particular, maintaining what
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1. Introduction

is known as the power balance, which requires that the generated power needs to
match the load demand at every time instant, will become increasingly challenging
in a future with a larger share of renewable generation [4]. While technologies such
as energy storage systems or load flexibility could alleviate the problems caused by
an increased generation from intermittent energy sources, these technologies are still
expensive and/or are not yet well-developed. In Sweden, the power balance is in-
stead generally maintained by regulating the output of hydropower stations. In cases
of negative power balance and when the balancing capacity of the hydropower is not
sufficient, electric power is typically imported from neighboring countries. Sweden’s
grid is a part of the synchronous inter-Nordic system, which also includes the trans-
mission grids of Norway, Finland, and eastern Denmark. In addition, a growing
number of HVDC connections link the Nordic system to the European continent
and the United Kingdom. Market integration and electricity connections linking
Sweden to neighboring countries also allow ancillary services to be supported when
required. In Europe, a recent example is the development of the joint automatic fre-
quency restoration reserve, known as the European Platform for the International
Coordination of the Automatic frequency restoration process and Stable System
Operation [5].

To ensure that the balancing capacity of hydropower stations can be utilized to its
full extent, or that sufficient power can be imported from neighboring countries, the
importance of transmission capacity in the power system is expected to increase in
the future [6]. An increased transmission capacity allows energy to be generated
where it is most economically efficient to do so and it sets the limit on how much
power can be transmitted through the transmission lines. Most commonly, it is not
the physical capacity of the transmission lines that limits the transmission capacity
in a system, but rather power system stability-related phenomena [7]. Electric
power systems are most commonly required to be operated according to the N -1
contingency criterion, meaning that the system should be able to withstand the
loss of any single system component, such as generation or transmission capacity,
and still remain stable. A system that satisfies this criterion is said to be (N -1)
secure, and a power system’s transmission capacity is typically computed to always
ensure that this criterion is fulfilled [4]. This thesis deals mainly with the stability
phenomenon called voltage stability, which refers to the capability of a system to
maintain system voltages following a disturbance. Voltage stability is especially an
issue in power systems where generation and loads are geographically separated over
large distances; Sweden being a typical example. A voltage collapse is referring to
a sequence of events accompanying voltage instability that leads to abnormally low
voltages or a blackout in a significant part of a power system [7]. Although voltage
collapses occur relatively seldom, they are related to extremely high costs to society
and system operators need to continuously operate their systems to minimize the
risk of such events.
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1. Introduction

1.2 Problem overview and research questions
Most power systems of today are operated as deregulated energy markets, where
market participants consisting of both buyers (mainly electricity retailers and larger
industries) and sellers (generating companies) place bids on an open energy market
[8]. The role of the system operator is to both maintain the security and stability of
the system and to operate the system efficiently to maximize the use for the other
market participants [9]. While an operation close to the security limits enables
a cost-effective utilization of the system, it may also make it more vulnerable to
disturbances. Consequently, there exists a balance between a power system that is
operated efficiently and one that is operated securely.

The state and stability of a power system are generally monitored using supervisory
control and data acquisition (SCADA) systems. SCADA systems use loosely syn-
chronized scalar measurements with a refresh rate of around two to four seconds
taken at remote terminal units which are then processed by a state estimator to
estimate the most probable state of the power system [10]. In recent years, the de-
ployment of phasor measurement units (PMUs) has increased significantly. PMUs
are highly accurate measuring devices, allowing time-synchronized real-time phasor
measurements of electrical quantities in the power system at a much higher refresh
rate than that of SCADA. If the system is fully observable by time-synchronized
phasor measurements, the measurements can be filtered through a linear state es-
timator, allowing significantly more frequent and faster estimates of the system
state [11]. With sufficient deployment, PMUs could help in the decision-making
process in real-time power system operation and control by visualizing the system
condition and stability margins in real-time.

To always ensure that a power system is operated securely, system operators con-
tinuously monitor the system state and evaluate the system security. However, even
when the system is secure for a given operation point, system operators are also
required to know how far the system can move from its current operating point
and still remain secure. Therefore, system operators continuously compute security
margins, which in turn represent the available transmission capacity in the system.
One commonly used measure of a power system’s security margin is based on the
post-contingency loadability limit (PCLL) [12]. The PCLL is evaluated by estimat-
ing the loadability limit of a post-contingency operating point, where a solution path
is traced by iteratively increasing the system stress until the system’s critical point
is reached [13, 14]. The characteristics of the iteratively increased system stress in
the post-contingency setting are similar to that of the slow load restoration that
typically follows in a long-term voltage stability (LTVS) event. Whenever the se-
curity margins are deemed insufficient, system operators take preventive actions to
ensure that system security can be restored.

In the case of emergency events, such as the occurrence of simultaneous multiple
disturbances, system operators have to rely on the robustness of the system and
system protection schemes (SPSs) to control the system back to a stable state [12].
If a disturbance is causing fast-developing system instability, the time to manually
assess and choose suitable control actions will be too short, and system operators are

3
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typically required to rely on automated local controls instead. For slower-developing
system instability, such as long-term voltage instability, system operators may have
a chance to assess the situation and choose a suitable set of control actions to steer
the system back into stable operation again. Time is an important issue in stability
assessment and the earlier monitoring systems can detect the onset of instability,
the faster system operators can issue control actions to steer the system back to a
stable operation again. A fast response reduces the risk of a system collapse and
can in many cases also reduce the cost of stabilizing the system. Thus, in the case
of a possible emergency event, the ability of system operators to quickly detect
instability and act quickly with the correct control measures is imperative. For
voltage stability, the perhaps simplest method available to system operators is to
monitor system voltages and use the voltage magnitudes as an indicator for system
instability. However, due to the reactive power support of generators and other
voltage control devices in the system, the system voltage magnitudes can remain at
near-nominal levels for a relatively long time following a disturbance. Fast system
degradation and drops in system voltages may then be triggered by, for instance,
the activation of field current limiters of synchronous generators. The remaining
time it takes before a potential voltage collapse is developed may then be too short
for system operators to initiate the required control actions.

The complexity of the power system requires system operators to often rely on sim-
plified static models of how the system behaves during various operating conditions
and with respect to disturbances, as more advanced dynamic models are too time-
consuming to use in real-time applications. However, electric power systems are
becoming increasingly complex, with numerous dynamic components such as non-
linear loads, converter-based generators, and other power electronic devices found
in, for instance, high voltage direct current (HVDC) and flexible alternating current
transmission systems (FACTS) [15, 16]. These components have in common that
their dynamic response following a disturbance in the system is significantly faster
when compared to more conventional equipment. Depending on control settings and
specified grid codes, the faster dynamic response can be beneficial for the system
stability, where, for instance, a fast reactive power response of converter-based wind
power or HVDC can help to stabilize the system following a disturbance. However,
other components, such as power electronic interfaced loads, inhibit characteristics
that may cause instability events to develop faster, causing existing monitoring and
emergency systems to act too slowly. The dynamic response following a contingency
can typically not be captured using static assessments, and studies have indicated
that static models of the power system might be insufficient when estimating the
actual security margin [13, 17]. Faster dynamics will also result in power system
instability developing more quickly, increasing the need for faster methods for in-
stability detection. In comparison to the often used static models, there are more
advanced methods available that can better account for the actual dynamic response
in a power system. However, even with recent progress in high-performance comput-
ing, these methods are not readily available for use in real-time monitoring of a large
power system. To overcome this issue, various data-driven methods and machine
learning (ML) methods have been proposed in the literature. The main advantage
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of ML methods is that time-consuming computations can be performed in an offline
setting. Once a ML algorithm is trained, it can almost instantaneously provide es-
timations and warnings to operators that otherwise would require time-consuming
computations. However, despite years of research, examples where ML methods
have been practically applied in system operators’ monitoring and control systems
are, to the author’s best knowledge, very few. These methods still suffer from ro-
bustness issues and uncertainty when handling operating conditions not included in
the training of the algorithms. Blackouts and other major failures are related to
extremely high costs, and from a system operator’s point of view, a robust method
that always works is generally preferred to a generally more efficient method that
in some instances does not.

Another challenge in operating a power system is the design of SPSs and suitable
control actions. Power systems are very large and interconnected systems that
exhibit complex characteristics with a large number of states, nonlinear dynamics,
and system uncertainties [18, 19]. To determine what set of actions at a unique
operating point might stabilize the system most cost-efficiently, or what actions
can ensure that the system is returned to a secure state, is far from trivial. The
result is that system operators generally have to rely on relatively simple and robust
control schemes which might either take overly drastic actions or choose actions
that are sub-optimal from a system perspective. Reinforcement learning (RL), a
sub-field in ML aimed for control purposes, has received significant attention in
the research lately and has proven effective in solving complex control problems in
environments such as games [20, 21], autonomous driving [22], and robotics [23].
Its applications in power systems are still relatively unexplored in the research,
but successful implementations of it could allow more efficient control and a safer
operation of the power system.

Based on the problem overview and the motivation of the thesis, the following
research questions have been identified:

• Research question 1: How will the transition towards a higher penetration
of converter-based renewable generations and loads in the power system affect
current methods for security margin assessment?

• Research question 2: How can the current methods for assessment of se-
curity margins be improved, taking into account assessment speed, accuracy,
and robustness?

• Research question 3: What are the requirements for future voltage instabil-
ity detection methods? How can they be developed to be sufficiently advanced
to capture the intricate dynamics during a voltage collapse, while at the same
time being fast enough to be used in real-time?

• Research question 4: What are the requirements for future control systems
used to maintain a stable and secure power system? How can they be de-
veloped to handle the highly non-linear and complex dynamical nature of an
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electric power system?

• Research question 5: In the case of data-driven methods, what are the main
practical aspects to consider to mitigate robustness issues and other barriers to
allow the implementation of such methods in real power system applications?

1.3 Previous work
In this section, an overview of previous work related to the developed research
questions is presented.

To ensure that a power system can handle the dynamic event following a disturbance,
system operators often use an approach referred to as dynamic security assessment
(DSA). In DSA, time-domain analysis is typically used to test a power system’s
dynamic response after a disturbance to ensure its ability to reach a stable post-
disturbance operating point [12]. The assessment of a power system’s dynamic
stability with respect to a large set of different possible contingencies is a complex
and time-consuming task and is typically impractical for real-time applications [24].
However, progress in high-performance computing has enabled close-to-real-time
DSA to be deployed and tested in various systems. In [25], the deployment of an
online DSA platform was reported in the PJM control center (a regional transmission
organization in the United States), which was able to process over 3,000 different
contingencies every 15 minutes. In [26], a computing platform was shown to be
capable of simulating 1,000 contingencies for a test system consisting of 20,502 buses
and 3,263 generators in under 27 minutes. Another example includes a platform for
transient stability which was able to simulate over 4,000 contingencies across six pre-
fault operating points on a 25,000 bus system at an average of 200 seconds [27]. In
[28], an online DSA platform, adapted by California’s independent system operator,
was evaluated, showing that it was capable of performing DSA within 11-15 minutes
for a base system state and with respect to 60 different contingencies.

Despite these recent advances in high-performance computing, the required time to
assess the dynamic security with respect to a large range of different contingencies
is still relatively substantial. To overcome this issue, various ML methods have
been proposed in the literature. The idea of using ML is to train a classifier, using
both simulated and historic data, to be able to interpret the system state and as-
sess its security. Once the classifier is trained, it can provide almost instantaneous
assessments of the system’s dynamic security. The concept is originating from re-
search undertaken in [29, 30] and a large number of publications in this research
area have since been published. A large range of different classifiers have been pro-
posed and are most commonly based on decision trees (DTs) [16, 31–35] or neural
networks (NNs) [30,36,37].

In DSA, system operators are only provided with information regarding whether
the current operating point is dynamically secure. An alternative measure of the
margin to the most stressed point where the system can remain dynamically secure
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following a disturbance is the secure operating limit (SOL). The SOL is the margin
to the most stressed pre-contingency operating point that can withstand a set of
credible contingencies [13, 15]. In some applications where the SOL is mainly used
in monitoring voltage stability margins, it has also been referred to as the dynamic
voltage security margin (DVSM). SOL estimation requires several time-domain
simulations to trace the security limit for a set of different contingencies, which is
not feasible to perform in the time frame needed by system operators. In [13], an
attempt to reduce the computational cost in estimating the SOL was developed
based on quasi-steady state (QSS) simulations. The method was further developed
in [38], where a combination of QSS and time-domain simulations was proposed
to include the impact of short-term effects during the transient state following a
disturbance. Although this approach reduces the computational effort compared
to a full time-domain simulation, it may still prove too slow for some real-time
applications. In [39–42], different ML approaches based on NNs were proposed to
allow real-time estimation of the DVSM.

Following more severe events and disturbances, system operators need to identify
whether the current system state is stable, or if it is drifting towards instabil-
ity. There has been research involving different voltage instability detection (VID)
methods, where the complexity and the scope of the developed methods vary sig-
nificantly [43]. A drawback of several of the developed VID methods is that they
provide a relatively late indication of instability, which reduces the available time
system operators have to control the system back into stable operation and in-
creases the risk of a voltage collapse. An alternative approach is voltage instability
prediction (VIP), where the future state of the system is predicted using information
and measurements gathered in the (short) time left following a voltage instability
event. A method for VIP based on ML was first proposed in [31], where a DT was
trained on a generated database consisting of the intermediate short-term equilib-
rium that follows a disturbance. This post-contingency state, where the majority
of the electromechanical transients have died out, was referred to as the "just after
disturbance"-state. Extensions of the method utilizing phasor measurements have
later been proposed in [44–46], where the performance of different attributes or in-
put data has been tested. A method based on training a NN to online monitor
voltage security was proposed in [47]. An attempt to incorporate some time-related
features to improve the performance in VIP was presented in [48], where a temporal
decision tree (TDT) approach was proposed. The TDT method, further discussed
in [49] and [50], could incorporate some time-related variables, such as the difference
between two measurements for a specific value of elapsed time.

If a power system is no longer secure, or is even drifting towards an unstable state,
system operators need to take actions to restore security and/or mitigate instability.
Optimal control methods such as model predictive control (MPC) have in several
studies been proposed to deal with various types of electric power system control
problems [18, 51]. However, to be able to compute the optimal control actions in a
time frame required by system operators, significant simplifications of the system
model are then generally required. Data-based control schemes, such as in [52, 53],
are an alternative approach based on an (offline) assessment of different states and
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actions. The optimal actions for each state are stored in a database and supervised
learning algorithms are trained to map a state to a set of optimized actions. However,
the combinatorial complexity in assessing all the state-action pairs, especially if the
number of available control actions is high, may result in slow learning, resulting in
the method being unsuitable to handle changes (e.g. in topology) in the underlying
power system.

In recent years, significant progress has been made in solving complex control prob-
lems by using RL. RL is a data-driven approach where a control agent learns an
optimal policy through interactions with a real power system or its simulation
model [54,55]. Its combination with deep learning, called deep reinforcement learn-
ing (DRL), has proven effective in solving complex control problems in a range of
different applications. DRL enables automatic high-dimensional feature extraction,
making the control agent capable of handling the large number of states that are in-
volved in electric power system control. Previous implementations of DRL in electric
power system control have so far mainly been focused on emergency control, which
has the role of controlling the system back into a stable state after a disturbance
has already occurred [56]. Implementations include methods adapted for automatic
voltage control [57–60], optimal load shedding [19, 61, 62], dynamic breaking [19],
and oscillation damping [63]. DRL-based implementations adapted for preventive
control found in the literature are few and in [56], the authors argue that the reason
may be that these control problems have traditionally been formulated as static
optimization problems. One example of an RL-based implementation for preventive
control is presented in [64], which aimed to determine the optimal control of active
power generation for preventing cascading failures and blackouts.

1.4 Aim of the thesis
The aim of this thesis is to develop a new real-time dynamic stability assessment and
control tool (RDS-ACT) that can support system operators and allow more efficient
utilization of the transmission grid. This is achieved partly by developing methods
that can provide better knowledge of the actual security margins in real-time, and
partly by developing better methods to detect and assess system conditions and
disturbances that might cause the system to become unstable. Fast detection of
voltage instability reduces the risks and the related costs of controlling the system
back into stable operation, and it also allows system operators to operate their
systems with higher confidence in quickly detecting instability. Furthermore, this
thesis develops two different methods that in real-time can suggest optimized actions
to either restore the security margins above defined thresholds, or that can mitigate
instability if a larger disturbance has taken place in the system. The capability to
choose efficient and suitable control actions can both minimize the impact on the
end consumers and significantly improve the operational efficiency during stressed
operating conditions.
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1.5 Main contributions
The main contributions of this thesis are the following:

1. A methodology that allows a fair comparison between the PCLL and the
SOL is developed. Furthermore, the impact that various load models may
have on these security margin estimation methods is evaluated. An extensive
numerical comparison between the SOL and the PCLL is performed for a range
of both static and dynamic load model configurations to determine under what
circumstances the SOL is preferable to the PCLL.

2. A method for fast and robust computing of the DVSM is proposed and tested.
The method is based on ML to support the estimation of the DVSM, which
otherwise is typically too time-consuming to perform in real-time. To miti-
gate inconsistency issues associated with ML methods under new or unseen
operating conditions, a method to quickly validate the estimated results is
developed.

3. A method for VIP using an recurrent neural network (RNN) with long short-
term memory (LSTM) is developed. This specific design of the network can
utilize previous measurements and information, such as the trend of bus volt-
age magnitudes, tap changes, or fault locations, to improve the accuracy for
VIP. A methodology for including consecutive contingencies (N -1-1) into the
training data for the VIP algorithm is presented. A new training approach
of the VIP algorithm is developed to provide system operators with an online
assessment tool. As time progresses after a voltage instability event, the net-
work is capable of incorporating new observations and continuously updating
the assessment.

4. A DRL-based method for preventive control is developed. The method can
in real-time suggest optimal control actions to maintain a sufficient SOL to
ensure a secure operation of a power system. The developed DRL method
uses a hybrid control scheme that is capable of simultaneously adjusting both
discrete (e.g. switching of a shunt capacitor) and continuous (e.g. the level of
active power generation rescheduling and load curtailment) action variables.

5. A DRL-based method for emergency control is developed aimed to mitigate
long-term voltage instability. The method can monitor the system state, and
in case of larger disturbances, it can in real-time provide fast and efficient
control actions to stabilize the system. The DRL control is trained to use
system services from demand response (DR) and energy storage systems (ESS)
as a more efficient and flexible alternative to stabilize the system, compared
to, for instance, conventional load shedding.
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Additional paper produced during the PhD studies but not included in
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verter Wind Turbines and the Impact on Long-term Voltage Stability" in Proc. 2019
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1.7 Thesis outline
The thesis is organized as follows:

Chapter 2 develops the definitions used in the rest of the thesis and also pro-
vides an overview of current practices in security and stability assessment,
with an emphasis on voltage stability and VID methods. Moreover, a general
framework for electric power system control and the main challenges involved
are presented. Parts of the chapter are based on the summary and results

10



1. Introduction

established in Paper VII.

Chapter 3 provides a theoretical background on the concepts of ML and NNs. The
concept of RNNs with LSTM is introduced. A general framework of RL and
DRL is then presented and a few basic theoretical concepts and the proximal
policy optimization algorithm is introduced.

Chapter 4 introduces the overall functionality of the proposed RDS-ACT. Fur-
thermore, the test system used in evaluating the developed RDS-ACT is pre-
sented and its general characteristics are briefly discussed.

Chapter 5 presents both theoretical and numerical comparisons of the static and
dynamic security margins under various load configurations. The chapter is
mainly based on the results established in Paper III.

Chapter 6 introduces the concept of DVSM and discusses and illustrates the
difference to conventional voltage security margin (VSM) using transient P -V
curves. A method for fast estimation of the DVSM is then proposed and tested.
The chapter is mainly based on the methodology and the results established
in Paper V.

Chapter 7 presents a voltage instability prediction method based on an RNN
using LSTM. The method allows system operators to continuously assess and
predict whether the present system state is stable or will evolve into an alert
or an emergency state in the near future. The chapter is mainly based on the
methodology and the results established in Paper IV.

Chapter 8 presents a DRL-based method for preventive control to ensure suffi-
cient security margins in an electric power system. The method is capable of
simultaneously controlling the switching of reactive shunts as well as perform-
ing load curtailment to alleviate system stress in highly loaded areas. The
chapter is mainly based on the methodology and the results established in
Paper II.

Chapter 9 presents a DRL-based method for emergency control to mitigate LTVS
events. The method use and control ancillary services provided by DR and
ESS to mitigate instability. The chapter is mainly based on the methodology
and the results established in Paper I.

Chapter 10 highlights the key conclusions of the thesis and provides ideas for
future research.

All figures included in this thesis have been created by the author.
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Chapter 2

Stability assessment and control of
electric power systems

This chapter describes the definitions and criteria of stability phenomena that are
used in this thesis. The chapter has an emphasis on assessment methods aimed at
voltage stability, which is the main focus of the thesis. The overall drivers for dif-
ferent instability phenomena are discussed along with a presentation of the current
practices of stability and security assessment. A brief overview of the different meth-
ods used in voltage instability detection is presented. Parts of the chapter are based
on the summary and results established in Paper VII.

2.1 Classification of stability phenomena
Power system stability has traditionally been classified by the most common system
variables in which instability can be observed, namely; voltage stability, rotor angle
stability, and frequency stability [7]. However, the dynamic behavior of power sys-
tems has gradually changed due to an increasing penetration of converter-interfaced
generation (CIG), loads, and transmission devices. In a report published in 2020
by a joint task force set up by IEEE Power System Dynamic Performance Com-
mittee and CIGRE, the classic definitions and classifications of basic stability terms
were updated to also incorporate the effects of fast-response power electronic de-
vices [65]. In addition to the original stability categories, two new stability classes
were introduced, namely converter-driven stability and resonance stability.

Each stability phenomenon and its drivers are briefly explained in the following
sections. Although the developed tools in this thesis can be generalized to other
types of stability phenomena, the main focus has been the assessment and control
of voltage stability events, with an additional emphasis on LTVS. Thus, in the
following sections, a focus on methods and analysis used in voltage stability assess-
ment is presented. An overview of the different stability phenomena is illustrated in
Fig. 2.1.
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Figure 2.1: Updated classification of typical power system stability phenomena,
adapted from [66].

2.1.1 Rotor angle stability
Rotor angle stability refers to the ability of synchronous machines in a power system
to remain in synchronism after being subjected to a disturbance [7]. The rotor
angle stability depends on the ability to maintain and restore equilibrium between
electromagnetic torque and mechanical torque of each synchronous machine in the
system. Rotor angle stability is further divided into two subcategories; small signal
(caused by small disturbances) rotor angle stability and transient (caused by large
disturbances) rotor angle stability.

2.1.2 Frequency stability
Frequency stability refers to the ability of a power system to maintain a steady
frequency following a disturbance that causes a significant imbalance between gen-
eration and load [7]. It depends on the ability to maintain and restore equilibrium
between system loads and generations, with a minimum of unintentional loss of
load. Instability in the form of sustained frequency swings may lead to tripping of
generating units and/or loads. Frequency stability, as identified in Fig. 2.1, may
be divided into a short-term phenomenon or a long-term phenomenon. During fre-
quency deviations, the time frame of the processes and devices that are activated
will range from a fraction of a second, such as the response of under-frequency load
shedding and generator controls and protections, to several minutes, corresponding
to the response of devices such as prime mover energy supply systems and load
voltage regulators.

2.1.3 Voltage stability
Voltage stability refers to the ability of a power system to maintain steady voltages
at all buses in the system after being subjected to a disturbance from a given initial
operating condition. It depends on the ability to maintain/restore equilibrium be-
tween load demand and load supply from the power system [7]. Voltage instability
in a power system may lead to loss of loads or disconnection of other components
such as tripping of transmission lines or generators due to too low voltage levels.
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The concept of voltage collapse is generally referred to as a sudden event, often
initiated by a larger disturbance or by a sequence of events, leading to a blackout
or abnormally low voltages in the whole, or larger parts, of a power system. His-
toric events of voltage collapses are relatively few, but the related costs to society
are extremely high [12]. The voltage stability phenomenon is complex and often
requires a full network representation for its analysis [7]. Reactive power plays an
important role in voltage stability, and voltage stability problems are often related
to the incapability of the system to provide sufficient reactive power to keep sys-
tem voltages at nominal levels. However, the main driver for voltage instability in
power systems is the loads and the load restoration that follows a disturbance [12].
Historically, the majority of all voltage instability incidents experienced so far have
resulted from larger disturbances, such as the loss of generation or transmission ca-
pacity. The time frames of voltage stability problems caused by larger disturbances
are generally divided into a short-term or a long-term phenomenon, as identified in
Fig. 2.1.

• Short-term voltage stability: involves dynamics of fast-acting load components
such as induction motors, loads with power electronic interfaces, and HVDC
converters [7]. The study period of interest is in the order of a couple of
seconds, and the analysis generally requires detailed time-domain (dynamic)
simulations. One of the most common causes has been attributed to induction
motor stalling and HVDC links connected to weak alternating current (AC)
systems. Stalling induction motors draw a very high reactive current, stress-
ing the grid significantly and may cause cascading faults, resulting in a swift
voltage collapse [67].

• Long-term voltage stability: involves the analysis of slower acting equipment
such as tap-changing transformers, thermostatically controlled loads, and gen-
erator current limiters. The study period of a typical LTVS event may extend
to several minutes [7]. Following a typical disturbance with a loss of gen-
eration or transmission capacity, the loss of generation is redirected and the
remaining transmission lines have to carry a larger current, causing increased
active and reactive power losses and voltage drops. The reduced system volt-
ages initially affect voltage-dependent loads, which are then restored by the
action of, for example, load tap changers (LTCs), distribution voltage regula-
tors, motor slip adjustments, or thermostatic load restoration. The restored
loads will further increase the active and reactive power flow through a mainly
inductive transmission system, which increases the reactive power losses and
further deteriorates the system voltages. The system may eventually collapse
when the load dynamics attempt to restore the loads beyond the capability of
the generators and the transmission network.

The above-mentioned examples are generally referred to as a large-disturbance volt-
age stability events. Less common are voltage instability caused by small distur-
bances, such as incremental changes in system load. Since system operators contin-
uously ensure that sufficient margins are kept to fulfill the N -1 contingency criterion,
small-disturbance events are very seldom the sole cause of voltage instability. How-
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ever, the methodology used in the small-disturbance analysis is often valuable in the
analysis of the voltage security margins, which is further discussed in Section 5.1.4.

2.1.4 Resonance stability
Resonance refers to periodically and oscillatory exchanges of energy which, in the
case of insufficient dissipation of energy in the flow path, may grow and cause mag-
nification of voltage/current/torque magnitudes. When such magnitudes exceed
specified thresholds, it is said that resonance instability has occurred [65]. Reso-
nance stability is divided into two possible forms: (1) a torsional resonance due to
resonance between series-compensated lines and the mechanical torsional frequen-
cies of turbine-generators shafts, and (2) an electrical resonance between series-
compensated lines and the electrical characteristics of generators.

2.1.5 Converter-driven stability
The dynamic behavior of CIG is significantly different from that of conventional
synchronous generators, due to the predominant voltage source converter interface
with the grid [65]. CIG is controlled through control loops and algorithms with
fast response times, such as the phase-locked-loop and inner-current control loops.
The controls of CIG will affect both electromechanical dynamics of machines and
electromagnetic transients of the network, which in turn may lead to unstable power
system oscillations of a wide frequency range.

Converter-driven stability is divided into two subgroups; fast-interaction converter-
driven stability and slow-interaction converter-driven stability. Fast-interaction converter-
driven stability refers to instabilities that involve system-wide stability problems
driven by fast dynamic interactions of the control systems of power electronic-based
systems with fast-response components of the power system. These include the
transmission network, the stator dynamics of synchronous generators, or other power
electronic-based devices. The slow-interaction converter-driven stability refers to
system-wide instabilities driven by slow dynamic interactions of the control systems
of power electronic-based devices with slow-response components of the power sys-
tem. These include the electromechanical dynamics of synchronous generators and
some generator controllers.

2.2 Security assessment and instability detection
Security assessment refers to the daily operational and planning activities of system
operators to ensure a secure and stable operation of a power system. The main goal
is to continuously ensure a secure normal (operating) state in the system. A system
is said to be operated in a normal state if both the load constraints and the operating
constraints are satisfied [12]. The load constraints ensure that the load demand is
met by the generation in the system, while the operating constraints ensure that
minimum or maximum limits, in terms of variables such as line currents and bus
voltages, are satisfied.

In the event of a disturbance in the system, the system may either settle to (i) a (new)
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secure operating state, (ii) an (unsecure) alert state, or (iii) end up in an emergency
state. Ensuring that a power system can be operated securely with respect to all
possible disturbances would not be practically or economically feasible. In practice,
the power system security is assessed with respect to a set of credible disturbances,
generally referred to as contingencies. Power systems are almost exclusively operated
according to the N -1 contingency criterion, meaning that the system should be able
to withstand the loss of any single component, such as transmission or generation
capacity, without the system entering an emergency state. A system capable to
handle such an event without entering an emergency state is said to be secure. A
system that cannot handle such an event without entering an emergency state is
said to be operated in an unsecure state.

With reference to dynamical system theory, an operating state (or equilibrium) x∗
is called stable if all solutions with an initial condition close to x∗ remain near x∗ for
all time [12]. An equilibrium that is not stable is called unstable. Thus, a system
can be stable at a current operating state, while at the same time not fulfilling the
security criterion of handling a larger disturbance and still maintaining stability.
An unstable system can be exemplified by a power system drifting towards voltage
instability, driven by the action of load restoration devices.

The different operating states are illustrated in Fig. 2.2 and in Fig. 2.3, where the
state space of a power system is reduced and illustrated in only two dimensions.
In Fig. 2.2, the system is operated in the secure region. A disturbance causes the
system state to transition to the unsecure region. Here, the system is still stable, but
if it is further disturbed it may be at risk of becoming unstable with major blackouts
as a possible result. The system can then be transferred back to the secure region
through preventive control actions and sufficient remedial actions. Alternatively, in
Fig. 2.3, the system is operated in an unsecure state. Following a disturbance, the

Unstable region

Secure region

Unsecure region

Secure (stable) state

Unsecure (stable) state

Emergency (unstable) state

Figure 2.2: An example of a normal operating state, followed by a disturbance.
Through preventive control, the system operating state is restored to normal.
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Unstable region

Unsecure region

Secure region

Secure (stable) state

Unsecure (stable) state

Emergency (unstable) state

Figure 2.3: An example of an unsecure operating state, followed by a disturbance.
The system state ends up in an emergency state, and without sufficient emergency
control actions, the system will collapse.

system becomes unstable and enters an emergency state, and without sufficiently fast
counteractions and emergency control, a larger system collapse may be imminent.

Generally, the stability assessment of a system operator can be divided into two
different but complementary lines of defense used to avoid instability: preventive
and emergency methods. The preventive methods are mainly used during normal
operation to ensure that the power system is operated securely according to the N -1
contingency criterion. Emergency methods are instead used when a disturbance (or
several) has already occurred. The aim of these methods is typically to perform
instability detection, allowing system operators to identify imminent instability and
trigger fast remedial actions. In the following subsections, the main practices in
these two applications of stability assessment are presented.

2.2.1 Preventive assessment techniques
Security assessment involves assessing a power system’s ability to undergo distur-
bances for a given operating point. The level of accuracy in the assessments varies,
where simpler methods are based on static assessment methods and assessing the
post-contingency long-term equilibrium [12]. A static load flow assessment of a
power system will have no solution if there is an absence of a post-contingency long-
term equilibrium, which provides a simple way to check whether an equilibrium of
the system exists. However, this simple approach suffers from several drawbacks.
An absence of a post-contingency long-term equilibrium may be the result of purely
numerical problems that are not related to the system being unstable. Other draw-
backs include the lack of information regarding the nature and the location of the
problem [12].

To overcome these issues, and to also ensure that a power system can handle the
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dynamic event following a large disturbance, system operators often use DSA. DSA
refers to the analysis to determine whether or not a power system can meet security
and reliability criteria in both transient and steady-state frames [68]. Commonly,
time-domain analysis is used to test the power system’s dynamic response for a range
of different contingencies [16]. In general, DSA includes assessing not only voltage
stability, but also any criteria such as thermal overloading, transient stability, or
frequency stability.

More than just ensuring that the current operating condition is secure, the preven-
tive assessments should also provide information to system operators of the margin
to instability. Security margins are related to system stress, generally in terms of an
increased transfer of active power. The security margins are also characterized by
the direction of system stress in the parameter space by load increases and genera-
tion scheduling of various buses [12]. Two main approaches are used to compute the
security margins of a power system: the PCLL and the SOL [12, 69]. The PCLL is
evaluated by estimating the loadability limit of a post-contingency operating point,
where a solution path is traced by iteratively increasing the system stress until the
system’s critical point is reached. The characteristics of the iteratively increased
system stress in the post-contingency setting are similar to that of the slow load
restoration that typically follows in a LTVS event. The SOL instead refers to the
most stressed pre-contingency operating state in which the system can withstand a
specified set of contingencies. In [13], the SOL is defined to encompass three types
of different information:

• A direction of system stress: the system stress is a combination of load demand
increase and/or generation rescheduling. These are quantities that the system
operator can observe and control in the pre-contingency state.

• Operator controller actions while the system is stressed: the actions taken by
system operators or controllers as a response to the increased system stress im-
posed in the pre-contingency situation. Typically, their role is to keep the volt-
age profile within limits and maximize the available reactive reserves. Com-
pensation switching, generation redispatch, adjustments of generator voltages,
and secondary voltage control are typical examples of actions likely to increase
system security.

• Post-contingency corrective controls: the actions taken by SPSs in the system
after the system has been subjected to a disturbance. Some are less intrusive
such as compensation switching or increases in generator voltage set-points,
while other actions such as load shedding or system separation are typically
only used as a last resort to avoid a system collapse.

Computing the transition from a pre-contingency operating point to a post-contingency
operating point is numerically infeasible when using static assessments and when the
system is close to the system collapse point. Thus, the SOL generally requires ei-
ther time-domain or QSS simulations to replicate the dynamic response following a
disturbance. The SOL provides a security margin with respect to not only voltage
instability, but also other stability-related phenomena such as rotor angle stability
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Figure 2.4: Different measures of transfer capacities and reliability margins under
changing operating conditions.

or inter-area oscillations. In some parts of this thesis which specifically concern the
assessment of voltage stability the more specific term of DVSM will be used.

The security margins are used to compute the transfer capacities in a power system,
which sets the limit for how much power can be transmitted through the system.
The different margins and capacities are illustrated in Fig. 2.4 with the following
definitions [70]:

• Total transfer capacity (TTC): the maximum transmission of active power
between different areas/subsystems which is permitted with respect to a given
security criterion (most commonly the N -1 criterion).

• Transmission reliability margin (TRM): the security margin that takes
into account the uncertainties on the computed TTC values. The TRM is in
some cases arbitrarily determined, but is generally based on [70]:

1. Unintended deviations of physical flows during operation due to the phys-
ical functioning of load-frequency regulation.

2. Emergency exchanges between system operators to cope with unexpected
unbalanced situations in real-time.

3. Inaccuracies in, for instance, data collection, models, and measurements.

• Net transfer capacity (NTC): defined as NTC = TTC - TRM and is the
maximum exchange possible between two areas when taking into account the
uncertainties in the TTC estimation.

• Available transfer capacity (ATC): the maximum incremental transfer
capacity possible between two parts of a power system without violating the
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security margins.

The ability to accurately assess and compute the transfer capacities and the related
security margins is of very high importance to a system operator. Different meth-
ods for estimating the security margins in a power system, as well as comparisons
between static and dynamic estimation approaches, are presented in Chapter 5.

2.2.2 Emergency assessment techniques
The previously described methods fall under the category of preventive assessment
methods. In the case of more severe incidents, such as the occurrence of multi-
ple simultaneous contingencies, or in the event that the preventive methods have
not been accurate or fast enough, the system operators have to rely on emergency
methods to quickly detect instability, and then initiate suitable control actions to
steer the system back into a normal operation again. The aim of such emergency
assessment techniques is thus to detect the onset of instability itself, rather than its
consequences [43].

The time scales of different stability phenomena will have an impact on the assess-
ment methods that are feasible to use. For instance, in transient angle stability, the
time scale of a typical instability event often ranges between a few hundred millisec-
onds up to a maximum of a few seconds, while that of a long-term voltage instability
may have a time scale that ranges several minutes. Any emergency assessment tech-
nique aimed at transient stability will thus have to automatically trigger control
actions, while those for long-term voltage instability may be used to warn system
operators, which then manually choose suitable actions to protect the system sta-
bility. From here on, this thesis focuses on emergency assessment techniques used
for VID methods, which are used to detect the onset of (mainly long-term) voltage
instability.

One of the most simple methods for VID, yet a commonly used one, is to monitor
voltage magnitudes in the power system [43]. If the voltages drop below a certain
threshold value, it can provide an indication that the system may be headed towards
a collapse. However, using system voltages as an indicator of voltage instability
can be problematic. In Fig. 2.5, the evolution of two transmission bus voltages is
presented for the modified Nordic32 test system after a disturbance, which illustrates
the problem of using voltage magnitudes as indicators for voltage instability. The
Nordic32 test system is further presented in Section 4.2 and is a commonly used
test system for voltage stability studies. The disturbance of concern is a tripped
transmission line between buses 4032 and 4044. The voltage instability is gradually
developed after the disturbance, driven by components such as LTCs and over-
excitation limiters (OELs). The voltage magnitudes are relatively high following
the disturbance, but at some point, the mechanism of load power restoration causes
the system to deteriorate to such a degree that the total power consumed in the
system is reduced instead of restored for each attempt of load restoration. Through
the reactive power support of generators and other voltage control devices, the
voltage magnitudes are kept at a relatively high level for a long time after the
actual disturbance. To overcome this issue, there has been significant research in
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Figure 2.5: Evolution of bus voltages during a voltage instability event.

the development of new and faster methods for VID. The development in phasor
measurement technology also allows several new perspectives and methods for wide-
area monitoring and control of power systems. The methods differ in their approach,
both in complexity and the required level of system observability. An overview of
common methods used in VID is presented in Section 2.3.

2.3 An overview of VID methods
The aim of VID methods is to as fast as possible detect, or even predict, the onset of
voltage instability. Numerous different methods have been proposed in the literature
where the complexity and the requirements of the available measurement infrastruc-
ture vary significantly. The methods may also significantly differ in the accuracy
and speed of the detection, as well as robustness to errors and other functionality.
Available methods for VID can be divided into two different main categories:

1. VID methods based on local measurements: A VID method is in this thesis
defined to be local if it relies on measurements from only two or fewer buses.
Thus, those VID methods where measurements are required on both sides
of, for instance, a transmission corridor, are also considered to be local VID
methods.

2. VID methods based on the observability of the whole region: These methods
are generally more accurate than VID methods that are based on local mea-
surements. However, as the name indicates, they require full or close to full
observability of the monitored region, and the measurements used in these
models should preferably be filtered through a state estimator causing in-
creased computation time and complexity.

The following section is a brief overview of a few certain methods for VID, illustrated
in Fig. 2.6. The number of different methods for VID is vast and the overview
here is not meant to be exhaustive but is rather intended to provide an overview
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Figure 2.6: An overview of different types of methods aimed for VID.

of the available methods and their advantages and disadvantages. More thorough
overviews and comparisons for different types of VID methods can be found in
[43,71,72] and in paper IV.

2.3.1 Thévenin equivalent matching
VID methods based on Thévenin equivalent (TE) matching use the TE impedance
as an indicator of the margin to voltage instability [73]. Considering the simple two-
bus system in Fig. 2.7, it can be shown that the maximum transferable apparent
power in the system occurs when

|Zth| = |ZL| (2.1)

where Zth is the complex TE impedance, and ZL is the complex load impedance.
The relationship between the TE equivalent impedance and the other system pa-
rameters may be stated as:

Eth = V L + Zth · I (2.2)

where Eth is the TE voltage, and V L and I are the complex load voltage and current,
respectively. Using the relationship in (2.2), the values of Zth can be estimated. The
real and imaginary values of Eth and Zth in (2.2) result in four unknowns, requiring
phasor measurements to be taken at two or more times to solve for the unknown
parameters. By tracking and comparing the TE impedance and the load impedance,
the system operator can assess the load margin to instability, for each bus in the
system that the index is computed for. An indication of instability occurs when the
load impedance becomes lower than the TE impedance. It should be noted that
this margin is not the same as the VSM or the DVSM presented in Section 5, as it
only provides a margin to instability in the system with respect to a theoretic load
increase, and not an N -1 security margin.

2.3.2 Line VID methods
Line VID methods are based on measurements being available on both sides of a two-
port transmission line. The number of different line VID methods is vast, although
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Figure 2.7: A two-bus Thévenin equivalent circuit.

many are based on the same concepts. Over time, several line VID methods based on
the concept of maximal transferable power have been developed. These are similar
to the TE-based methods for the bus VID methods, with the difference being that
measurements are required at each end of a transmission line. An example of an
early developed line VID was the transmission path stability index in [74], which
showed that the maximum power transfer occurs when the voltage drop equals the
load-side voltage. Other line VID methods based on similar concepts are the voltage
collapse proximity indicators in [75], where four indicators are developed, based on
the maximum transferable power and the maximum possible line losses that may
occur over a transmission line.

Other formulations of line VID methods include methods that are based on solutions
to the classical voltage-power equation for a two-bus system with negligible resis-
tance, later presented in (5.1). It can be shown that the maximum power transfer
occurs when the value of the inner square root in (5.1) is zero. A line index called
Lmn based on this formulation is presented in [76]. The index can be formulated as:

4XQr

[Vs sin(θ − δ]2 = Lmn ≤ 1.0 (2.3)

where θ is the impedance angle, X is the line reactance, Qr is the reactive power at
the receiving end, δ is the voltage angle difference between the two nodes, and Vs
indicates the sending end voltage magnitude. Instability is indicated whenever the
stability index Lmn exceeds a value of 1.

2.3.3 LIVES and new LIVES
In [77, 78], a method called local identification of voltage emergency situations
(LIVES) is introduced and tested. The LIVES stability criterion is based on moni-
toring the change in the secondary voltage after a tap decrease on the primary side
(∆r < 0) of a LTC transformer, which simplified may be stated as:

∆V2

∆r < 0 (2.4)

where ∆V2 is the change in the secondary voltage. Thus, if a tap decrease leads to a
negative change in ∆V2, this indicates an unstable condition. Further, the criterion
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indirectly takes into account the effect of other taps acting in the system as it can
observe the net effect of various LTCs over a cycle of tap operations. In [79], this
concept is developed further by monitoring the stability condition of (2.4), solely
from the transformer bus, given that the primary voltage V 1 and current I1 phasor
measurements are available. The decreasing tap change is measured indirectly as
a conductance increase seen from the primary side, whilst the secondary voltage is
indirectly monitored as an increase of consumed active power, ∆P . The new index,
denoted as the new LIVES Index (NLI) is formulated as:

NLI = ∆P
∆G1

> 0 (2.5)

where

G1 = Re{I1/V 1}

Simulations show promise during several different grid conditions and topologies, al-
lowing early indication of impending voltage collapses. The method is further tested
in [80], where the method is extended and applied for distance relays of transmission
lines feeding weak areas.

2.3.4 Thévenin equivalent multiport
In [81], it was shown that the TE matching methods do not work properly for
multi-load systems. To overcome these difficulties, a concept called coupled single-
port circuits was introduced, where an additional term modeling the coupling effects
of generators and other load variations of other buses was added. In [82], it was
found that the coupled single-port model may still yield underestimations if loads
are not proportionally increasing. A modified coupled single-port model was then
proposed to handle the underestimations that occur if loads are not proportionally
increasing. Another extension was proposed in [83], which could better incorporate
the dynamic nature of the grid equivalence in the estimations. Here, adjustments to
the equivalent parameters of the coupled single-port model were calculated from two
consecutive phasor measurements at the corresponding bus to capture the power
system evolution. In [84], an improved method for TE impedance matching was
proposed which could anticipate the activation of OELs to increase the speed of the
VID method.

A clear drawback of any TE matching methods is that they cannot incorporate and
foresee the load restoration that follows after a disturbance in the system, which
is often the main driver for instability. It should be noted that these methods
included in this section rely on PMUs covering all relevant generation and load
buses, requiring a well-developed PMU configuration.

2.3.5 Reactive reserves monitoring
Voltage instability is highly related to the incapability of the system to provide
sufficient reactive power reserves to maintain voltages around nominal values. By
monitoring the reactive power reserves of system components, such as synchronous
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generators and static var compensators, the remaining reserves can be used as an
indicator for VID [43]. Several studies have examined reactive power reserves as an
indicator for VID, examples including [85–88]. However, a difficulty in using reactive
power reserves for VID is that reactive power cannot be effectively transmitted over
long distances on inductive transmission lines. Hence, although reactive reserves
do exist in certain areas of a power system, it is infeasible to transmit them to the
areas with low system voltages. Thus, methods using reactive reserves monitoring
need to only take into account that reactive power reserves need to be close to the
affected area to be effective [86, 87].

2.3.6 Sensitivities with OEL anticipation
In [11], a method using the sensitivities of reactive power generation to reactive
power loads is considered. The method fits a set of algebraic equations to the
sampled state of a power system, which is either gathered directly from wide-area
phasor measurements or from a state estimator. Then, the sensitivities are computed
to identify when a combination of load powers has passed through the system’s
maximum. A change of sign in the computed sensitivities is an indicator that the
system has become unstable. The method does not require explicit modeling of the
system loads but will take into account LTC and OEL activation, either directly
from measurements or by anticipation techniques. The method was tested and
compared to conventional TE matching methods in [89], where the method proved to
be significantly faster than conventional TE methods to identify voltage instability.

2.3.7 Machine learning-based VIP
The concept of VIP significantly differs from conventional VID methods. Most meth-
ods for VID attempt to detect when the system is near, or has already reached, the
point of maximum load power. However, when this point is reached, instability can
develop quickly and the remaining time for system operators to initiate emergency
control actions may be too short. In contrast, machine learning-based methods for
VIP attempt to predict the onset of instability. This would allow system operators
to get an indication, almost instantaneously after a disturbance, whether that dis-
turbance is going to cause a voltage collapse in the near future. These methods are
generally based on off-line training of a chosen ML algorithm to be able to corre-
late a certain state space with the future state of the system. In Chapter 7, a new
method for VIP is proposed and presented.

2.4 Overview of power system stability control
Electric power system stability control is complex and its applications differ signifi-
cantly with respect to the stability phenomena that the control is adapted for, the
type of control, its location, and the scope of the control task. Furthermore, power
system stability control must be cost-effective, robust, and have the capability to op-
erate appropriately over a wide range of operating and disturbance conditions [90].
In this section, a brief presentation of various concepts and classifications commonly
used in power system stability control is presented.
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Figure 2.8: Power system operating states and controls, adapted from [91].

Power system stability control may, in the same way as for stability and security
assessment be divided into preventive and emergency control applications [92]. The
preventive control applications refer to the actions used by system operators to en-
sure that the system can maintain security and sufficient security margins, and they
are issued whenever security criteria or margins are exceeded. Similarly, emergency
control actions are used whenever the system has entered an emergency state, and
the system operator is required to initiate fast actions to ensure that the system’s
stability is restored. Here, the main goal is often to avoid a system collapse or a
larger disconnection of the grid, and more significant and expensive control actions
are available for the system operator. Another type of control, called restorative
control is often defined and is involved in restoring the system back to normal op-
eration by reconnecting all facilities and restoring system load. Restorative control
is generally issued after emergency control has managed to avert system instability
after a large disturbance [92]. In Fig. 2.8, the different operating states and the
control used to transfer the system between states are illustrated. In addition to the
normal, the alert, and the emergency states earlier illustrated in Fig. 2.2, we here
also show the restorative state and the in extremis state. In a restorative state, the
operating constraints are generally satisfied, but not the load constraints (e.g., due
to a blackout or a load shedding action). For the in extremis state, both the load
constraints and the operating constraints are violated, and a major system collapse
may be imminent if not sufficient actions are taken to stabilize the system.

Traditionally, power system stability has been maintained mainly through local con-
trol. This includes control actions such as under-voltage load shedding, excitation
control, generator tripping, and reactive power switching, where local measurements
in combination with feedback control and relays are used to maintain the controlled
system parameter locally. Wide-area control is less common, but applications in the
area have increased with the development of synchronized phasor measurement and
better communication technology [90]. Wide-area control allows system operators to
observe the whole system state and offer increased controllability and more efficient
overall control. They may augment local controls, or provide adaptive functions
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rather than the typically crude primary control used in local control schemes.

The majority of local control schemes are either based on different types of contin-
uous feedback controls (e.g., the voltage control of excitation systems) or are rule-
based (e.g., under-voltage load shedding schemes used to disconnect load whenever
the measured voltage is below a certain threshold). There are also more advanced
types of control schemes, including model-based control (e.g., model predictive con-
trol) that uses a model of the power system or the controlled component to improve
the control. Other examples include different types of learning-based control, which
is a model-free based control that learns an optimal control scheme through training
on large sets of measured (or simulated) data. In this thesis, the focus is on using
RL, which is a ML-based control, further discussed in Section 3.4.
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Chapter 3

Machine learning and deep
learning methods

This chapter provides a theoretical background of machine learning, with a focus
on neural networks and reinforcement learning. The general structure and training
aspects of neural networks are presented along with an introduction to recurrent neu-
ral networks and the long short-term memory architecture. Finally, the concept of
Markov decision processes is introduced followed by an introduction to reinforcement
learning and the proximal policy optimization algorithm. The presented theory is not
intended to be exhaustive or cover all aspects of machine learning, but is rather fo-
cused on including the theory required for understanding the tools developed in this
thesis.

3.1 Overview of machine learning methods
ML can be defined as a set of methods and statistical models used to perform specific
tasks without using explicit instructions, instead relying on patterns and inference
from data. ML algorithms differ in their approach, the type of task or problem that
they are intended to solve, and the type of data used as input and output in the
training. ML is often divided into three main types of learning, namely: supervised
learning, reinforcement learning, and unsupervised learning.

In supervised learning, the ML algorithm is trained on a set of data that contains
both the inputs and the desired outputs to perform tasks such as classification or
regression. One of the simplest supervised learning algorithms is linear regression,
which uses a set ofN input-output training data pairs {(x1,y1)...(xN ,yN)}. A linear
regression model has the general form of f(x) = xW + b, which is used to generate
a linear function mapping each xi to each yi. When training the linear regression
model, the aim is to find the most suitable parameters for the weight matrix W and
the bias vector b, to minimize a chosen objective function (commonly the average
squared error). Once the algorithm is trained, it should be capable to predict or
estimate similar outputs from now unseen input data. In more general cases where
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the relation between x and y is not necessarily linear, one may need to develop a
nonlinear function mapping the inputs to the outputs [93]. In this thesis, we will
mainly rely on various methods based on NNs to develop these nonlinear functions,
which are further detailed in Section 3.2.

RL is an ML-based framework used for finding solutions to sequential decision-
making problems. A decision-maker (an "agent ") attempts to learn an optimal
policy by continuous interaction with an environment, where actions leading to
high rewards are reinforced through various training schemes. The environment
that RL uses is typically stated in the form of an Markov decision process (MDP),
which provides a framework of how to model different state transitions and rewards
functions based on the taken actions. The learning of RL algorithms is typically
less stable than supervised learning algorithms and the issue of choosing whether to
exploit a relatively good policy or explore new types of actions (generally referred to
as the exploration versus exploitation trade-off ) are two significant challenges with
RL. In this thesis, we mainly use an algorithm called policy proximal optimization,
which is further detailed in Section 3.4.5.

Unsupervised learning is used to find hidden patterns and structures in data, where
the output data is unlabeled. This type of learning algorithm has not been used in
the thesis and is therefore not further described in following the sections.

3.2 Neural networks and deep learning
Feedforward NNs, also known as multilayer perceptrons, are loosely inspired by the
neurons in the human brain and their ability to classify and learn events from input
data. The strength of NNs lies both in their capability of learning and approximating
nonlinear functions and the scaling performance of the methods when trained on
large sets of data. The universal approximation theorem, a famous theorem in
NN mathematics, states that a feed-forward NN with a single hidden layer can
approximate any given function arbitrarily well, provided that sufficiently many
neurons are available in the hidden layer [94].

A typical NN with a single layer of hidden units is presented in Fig. 3.1. The NN
consists of connected nodes, known as artificial neurons, stacked in different layers.
Neurons in one layer only connect to neurons of the immediately preceding and the
immediately following layers. The input layer receives external data, while the layer
that produces the final result is denoted as the output layer. Between these layers are
the hidden layers, where each neuron typically has a nonlinear activation function,
which imitates the actions of synapses in a biological brain. The connections between
each neuron are represented by weight parameters, and the aim of training a NN is
to adjust these weights so that the network can form an effective mapping between
the inputs to the outputs. In the following sections, we provide a general overview
of the steps needed in training the network. We provide the NN model for a single
hidden layer, which can then be generalized to NN models using multiple hidden
layers, generally referred to as deep networks.
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Figure 3.1: A simple NN with a single hidden layer.

3.2.1 The forward pass
The forward pass in a NN is used to compute the outputs, both in training as a
means to adjust the weight parameters, but also in actual implementations where
the outputs of the network are used as estimates or predictions. Following [93], the
forward pass of the single hidden layered NN is presented below. Superscripts M
and N refer to the number of input features and the number of hidden neuron cells
in the hidden layer, respectively. Vector notation is used, meaning that, for instance,
the output of the hidden layer h (x) is not the output of a single neuron cell, but
the output of a vector of N neuron cells. The operation is summarized here for a
single sample by the following steps.

The input layer first passes a row vector x ∈ RM of inputs through the weight matrix
W 1 ∈ RN×M , illustrated by the lines connecting each of the cells in Fig. 3.1. The
outputs of the hidden layer are computed by applying an element-wise nonlinear
function to the weighted input values:

h (x) = σ(W 1x+ b1) (3.1)

where σ is a nonlinear activation function, and b1 ∈ RN is a bias term for the first
weight matrix. Common activation functions used in the hidden layers of NNs are
the hyperbolic tangent function (Tanh) or the rectified linear unit function (ReLU)
function. The outputs of the hidden layer are passed through the second weight
matrix W 2, which is used to compute the outputs z:

z = W 2h+ b2 (3.2)

where b2 is a bias term for the second weight matrix. The dimensions of W 2, b2,
and consequently z depend on the application of the NN and the number of target
values. A final activation function is applied in the output layer to generate the
estimated target values: ŷ = f(z). For binary classification, a sigmoid activation
function is applied on the sum of the estimated outputs, generating ŷ ranging from
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0 to 1:
ŷ = 1

1 + e−z
(3.3)

In multiclass classification, a softmax activation function is applied that normalizes
the output into a probability distribution consisting of K number of probabilities
proportional to the exponents of the input numbers:

ŷ = ezi∑K
j=1 e

zj
(3.4)

for i = 1, ..., K and z = (z1, ..., zK) ∈ RK , whereK is the number of target values. In
regression, ŷ is simply a linear combination of z. Other types of activation functions
are possible, but in supervised learning these are by far the most common types.

3.2.2 Loss and learning
The aim of training a NN is to tune the weight matrices connecting each layer of
neurons such that the network can accurately model the relationship between the
inputs and the target values. A suitable loss function L (ŷ,y) is first applied to
the difference between the estimated target vectors and the true target vectors that
are used in the training set. To use a NN for classification, cross-entropy (log-loss)
functions are commonly used, while for regression purposes other means of loss, such
as the mean squared error (MSE), are applied.

The tuning of the parameters in the weight matrices is performed iteratively using
gradient-based optimization algorithms, which refers to moving along an error gra-
dient towards some minimum level of error of a defined objective function J . Using
the whole training set to update the weight parameters is commonly referred to as
batch gradient descent, in which the objective function can be defined as:

J = 1
S

S∑
i=1

L (ŷ,y) (3.5)

where S is the total number of samples in the training set. In batch gradient
descent, the objective function is defined as the average loss over the whole training
set. However, batch gradient descent is often computationally inefficient and requires
significant computational memory when a network is trained on large sets of data. To
overcome this issue, training methods that use smaller subsets of the total training
set are often used. In mini-batch gradient descent, a smaller batch is used to update
the parameters. When all batches in the whole training set have been used to update
the weight parameters, it is said that the network has been trained for one epoch.

The gradient of the objective function is computed with respect to the weight param-
eters and the bias vectors. A method called backpropagation, where the computed
gradient is passed back along each hidden layer, is used to update the weight param-
eters connecting each layer. The weight parameters are updated iteratively in small
steps, and it is common to train a NN for several epochs to reach good performance
on the training set.
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3.2.3 Overfitting and validation
The aim in training a NN is not to fit the data on the specific training set, but
rather to generalize the training so that the network can provide good mapping on
yet unseen data. A common problem when training NNs is overfitting, where the
network is trained too closely on the specific training set, with the result that it fails
to fit additional data or predict future observations accurately.

To ensure that the network is not overfitting on the training data, the performance
of the network on a separate validation set is commonly monitored. In case the
validation loss starts to increase, the training of the network can either be stopped,
or various regularization techniques can be applied to avoid overfitting. Many regu-
larization techniques are based on limiting the capacity of the networks, by adding
different penalties to the loss function. A very common and simple regularization
function is the L2 parameter norm penalty, also known as weight decay. This tech-
nique penalizes large numbers of the weight parameters by adding a regularization
term Ω = λ 1

2m
∑k
i=1 ||w||2i to the objective function. The value of λ controls how

strict the regularization is, and m is the number of training samples. A too small
value of λ may result in an insufficient regularization with overfitting as a result,
while a too large value may result in underfitting or high variance, with poor per-
formance on both the training set and the validation set. Another popular regular-
ization technique is called dropout, where a certain percentage of the connections
between each layer are randomly masked (or "dropped"). This technique ensures
that the network does not rely too heavily on certain connections.

3.2.4 Hyperparameters and network depth
Hyperparameters are parameters that control the training of the NN, and include
parameters such as the learning rate of the optimization algorithm, the number of
epochs the network is trained, or the structure and number of neurons in the hidden
layers. The hyperparameters play a crucial part in the performance of the NN
and a hyperparameter search is generally conducted where different combinations
of hyperparameters are assessed and tested [93].

Deeper network architectures, with several hidden layers ordered in chain-like struc-
tures, are often able to use fewer hidden units per layer, and thus far fewer param-
eters, compared to more shallow networks used in the same applications. Deeper
architectures are also found to better generalize the performance on unseen data.
However, the drawback of deeper architectures is that these also tend to be harder
to optimize [93].

3.2.5 Recurrent neural networks
In many applications, the capability to provide accurate classifications or estimations
at a specific time t would be even more accurate if it was possible to account for
previous or historic data. RNN provide this capability by using sequence-based
networks that are adapted for processing sequences of input data, capable of utilizing
both current and past data [95]. The concept of RNNs is not new but has received
an increasing amount of attention in recent years. In power systems, RNNs have

33



3. Machine learning and deep learning methods

xt-1

RNN
ht-1

xt

ht

ht-1 ht

xt+1

ht+1

ht+1
RNN RNN

Figure 3.2: A sequence of consecutive RNN blocks.

previously been used in applications ranging from market forecasting [15], transient
stability assessment [16], and in power quality assessments [17].

A typical RNN sequence is illustrated in Fig. 3.2, where each block has a directed
connection to the following block in the sequence. The main difference from a
feedforward NN is that the output of each block depends not only on the input
vector at the current time step but also on the output from previous blocks in the
sequence. If the block is the first one in the sequence, the inputs are made up solely
by the input vector. Depending on the architecture of the RNN, the output vector of
each block can be used for both classification at the current time step, and/or used
as an input to the following block. Each block contains interior connections, weights,
and non-linear activation functions. The block’s complexity ranges from those of
simple RNNs using conventional neuron layers, to more advanced structures such as
the LSTM. RNNs are generally trained using an approach called backpropagation-
through-time. Backpropagation-through-time is similar to the backpropagation used
in training a conventional NN, with the difference that the error gradients also have
to be propagated back in time through the RNN sequence [96].

3.2.6 Long short-term memory
The standard implementation of RNN has difficulties in capturing long-term depen-
dencies of events that are significantly separated in time. When the error signal
is passed back through many RNN sequences, it tends to either blow up or van-
ish [97]. This is effect is generally recognized as vanishing or exploding gradients.
In an LSTM network, the information and the error gradients can be propagated
through time within an internal state memory cell, making the network capable of
memorizing features of significance over time [98].

A typical LSTM block is illustrated in Fig 3.3. The state memory cell, illustrated
by the light grey area, is controlled by nonlinear gating units that regulate the flow
in and out of the cell [99]. Following [98] and [99], the forward operation of an
LSTM block is summarized below. It should be noted that each block consists of a
number of hidden LSTM cells. Vector notation is used, meaning that, for instance,
the hidden state vector ht is not the output of a single LSTM cell at time t, but the
output of a vector of N LSTM cells. The operation of an LSTM block at a time t
may then be summarized by:

f t = σ
(
W fx

t +U fh
t−1 + bf

)
(3.6)

it = σ
(
W ix

t +U ih
t−1 + bi

)
(3.7)

c̃t = tanh
(
W cx

t +U ch
t−1 + bc

)
(3.8)
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Figure 3.3: Detailed schematics of an LSTM block.

ct = f t � ct−1 + it � c̃t (3.9)

ot = σ
(
W ox

t +U oh
t−1 + bo

)
(3.10)

ht = ot � tanh(ct), (3.11)

where element-wise multiplication is denoted by �, σ is the logistic sigmoid function,
tanh is the hyperbolic tangent function, and with the following variables:

• xt ∈ RM : input vector to an LSTM block

• ht,ht−1 ∈ RN : output vector at time t respectively t-1

• f t ∈ RN : activation vector of the forget gate

• it ∈ RN : activation vector of the input gate

• c̃t ∈ RN : vector of the candidate gate

• ct ∈ RN : cell state memory vector

• it ∈ RN : activation vector of the output gate

where W , U , and b represent the weight matrices and bias vectors for each gate.
The superscripts M and N refer to the number of inputs and hidden LSTM cells in
each LSTM block, respectively.

The information stored in the state memory cell is regulated by the operation of the
different gates, as illustrated in Fig. 3.3. By the operation of (3.6), the forget gate
controls what information should be stored from the previous memory cell state, and
what can be discarded as irrelevant. The input gate and candidate gate control and
update the memory cell state with new information by the operation of (3.7)–(3.8).
In (3.9), the state memory cell is first updated by an element-wise multiplication of
the previous cell state memory vector and the resulting vector of the forget gate.
Then, the state memory cell is updated with new values provided by an element-wise
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multiplication of the resulting vectors from the input gate and the candidate gate.
Equations (3.10)–(3.11) show how the hidden state is updated by the operation of
the output gate, modulated by the updated cell state memory vector.

An LSTM network may then be constructed by creating a sequence of several LSTM
blocks. A partition of an LSTM sequence is illustrated in Fig. 3.4, where each block
has a directed connection to the following block in the sequence. If the block is the
first one in the sequence, the past system state is initialized with a preset value.
For a deep LSTM network, with several stacked layers, the inputs to the deeper
layers consist of the hidden states of LSTM blocks of previous layers. The cell
state memory is only passed along the time sequence between LSTM blocks of the
same layer. Typically, for classification purposes, an output vector y is generated
by applying a nonlinear function of the hidden state implemented by a separate
feedforward NN. Depending on the application of the network, output vectors may
be computed for a single, or several, LSTM block’s hidden states.

xt-1
LSTM

ht-1 ct-1

LSTM
xt

ht

ht-1

xt+1
LSTM

ht+1ct

ht
ct+1

ht+1

Figure 3.4: An LSTM sequence with a directed connection between the blocks.

3.3 Markov decision processes
An MDP is a mathematical framework used for modeling control problems. It is gen-
erally used for time-discrete sequential problems where the outcome of the actions is
partly stochastic and partly influenced by the decision-maker [100]. Mathematically,
an MDP is defined by the tuple S, A, T , R and γ:

• S: a set of states called the state space.

• A: a set of actions called the action space.

• T : the state transition dynamics distribution satisfying the Markov property.

• R: a reward function S ×A � R which depends on the current state and the
action taken at that state.

• γ: a discount factor γ ∈ [0, 1].

The agent-environment interface used in an MDP is illustrated in Fig. 3.5. The
decision-maker is generally referred to as the "agent" and the system it operates
and interacts with is called the "environment". The agent monitors the state of the
environment and selects actions that affect it, in turn giving rise to new states. The
actions and the environment also give rise to rewards, which the agent generally
seeks to maximize over time through its choice of actions [101]. The terms of agent,
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Figure 3.5: The agent-environment scheme used in an MDP.

environment, and action correspond to the terms used in control theory of controller,
controlled system (or plant), and control signal, respectively.

The agent and the environment interact in a sequence of time steps (t = 0, 1, 2, 3..).
At each time step t, the agent receives a representation of the environment’s state,
st ∈ S, and by following a defined policy selects an action at ∈ A. For the next time
step, as a consequence of the taken action, the agent receives a numerical reward
Rt ∈ R, and finds itself in a new state st+1. The continuous interaction between the
agent and the environment gives rise to a sequence of states, actions, and reward
pairs. If there exists a natural notion of a final time step in an MDP, it is referred to
as an episodic task. If the MDP does not break naturally into identifiable episodes,
it is referred to as a continuous task.

The dynamics of the MDP are modelled by the state transition dynamics distribu-
tion p(st+1 = s′|st = s, at = a), which models the probability of a transition from
state s to the next state s′ when taking action a at time t. An important property in
an MDP is theMarkov property: p(st+1|s1, a1, ..., st, at) = p(st+1|st, at), which, if sat-
isfied, states that the state must include information about all aspects of past agent-
environment interactions. The expected reward for any state-action pair can be mod-
elled by the reward function r(s, a) : S ×A � R : r(s, a) = E [Rt|st−1 = s, at−1 = a].
The reward provides a quantitative measure used to improve the policy of the agent.
Actions and policies are said to be optimal if they lead to the maximum cumulative
reward over time.

3.4 Reinforcement learning
RL relies on an MDP framework for modeling sequential decision-making problems,
but different classes of RL algorithms make different mathematical assumptions.
The main task in RL is always for the agent to learn an optimal policy π, which allows
it to maximize the expected future reward. The policy maps states to actions and can
be defined to be either stochastic or deterministic depending on the design of the RL
algorithm. A stochastic policy specifies probabilities π(a|s) for taking each action in
each state, which may be mathematically formulated by πθ(a|s) : S −→ P(A) where
P(A) is the set of probability measures onA and π(a|s) is the conditional probability
density of taking action a in state s associated with the policy. Conversely, for a
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deterministic policy, the actions taken by the policy are always fixed for each state in
the environment: π(s) : S −→ (A). RL methods may also be divided into methods
that use a model-based or a model-free approach. Model-based RL explicitly models
the state transition dynamics distribution T and the reward function R, which are
built from dynamic programming methods. Model-free RL techniques do not model
the state transition dynamics distribution or the reward function and instead rely
exclusively on samples generated from the environment.

In general, the RL agent seeks to maximize the expected return, where the return,
denoted Gt, is defined as some specific function of the reward sequence. In general,
future rewards are discounted and the return can be formulated (for episodic tasks)
as:

Gγ
t =

T∑
k=t

γk−tR(sk, ak) (3.12)

where the discount term γ is ranging from 0 to 1 depending on how much future
returns should be discounted. The majority of RL algorithms attempt to learn an
approximation of the so-called value function, which represents the expected return
if one starts in a particular state, and then acts according to the learned policy after
that. The value function can be mathematically stated as:

V π(s) = E [Gγ
t |st = s; π] (3.13)

Another often used function used in training RL agents is the action-value function,
which is defined as the expected total return in state s when taking action a and
then following the policy:

Qπ(s, a) = E [Gγ
t |st = s, at = a; π] (3.14)

There exist many RL algorithms that learn to develop optimal policies in different
ways, such as Q-learning [102], SARSA [103], or policy-based methods such as RE-
INFORCE [104] and natural gradients [105]. It is often the environment and the
design of the control that governs which algorithm is best suited for the task at
hand.

3.4.1 Value-based methods versus policy-based methods
RL algorithms that attempt to learn the action-value function are commonly referred
to as value-based methods, which include popular RL algorithms such as Q-learning
or SARSA. For instance, in Q-learning, the agent tries to learn the action-value
function for all possible states and actions that the agent might operate in. Once
it has learned the action-value function (or Q-function), it can act greedily and
choose the actions that have the highest expected reward. To encourage exploration,
random actions are generally selected with a certain (diminishing) probability. An
advantage of many value-based methods is that they can learn on data sampled off-
policy. This means that the agent can continue to learn from data that is sampled
with an old policy. Thus, old samples do not necessarily need to be discarded after
the agent has been trained on them but can be stored and used to improve the
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training of the agent later on. This typically improves the sample efficiency of the
algorithm, making value-based methods suitable for environments where training
data are more limited.

The basic formulation of policy-based methods does not explicitly require informa-
tion about the action-value function, but instead directly learns the policy. This
is advantageous for certain environments, where the action-value function may be
complex to learn, but the policy itself might be relatively simple to learn from data.
Most policy-based methods learn on-policy, which means that once the policy has
been updated on a batch of samples, the data needs to be discarded and new sam-
pled, causing such methods to be typically less sample efficient. An advantage of
many policy-based methods is that they can formulate stochastic policies. Stochas-
tic policies have many advantages, which include natural exploration due to the
stochastic nature of the policy, efficient handling of continuous action spaces (and
possibly hybrid action spaces), and avoidance of convergence issues that are common
in value-based methods. A drawback of policy-based methods is that they tend to
have relatively slow convergence and have high variance during learning.

3.4.2 Exploration and exploitation
One of the main challenges in RL, which is not present in supervised or unsuper-
vised learning schemes, is the trade-off between exploring new actions and exploiting
already learned knowledge. An RL agent should prefer actions that it has tried in
the past and found to be effective, but to discover such actions, it has to try actions
that have not been selected before. Thus, the agent must exploit its knowledge in
order to obtain a reward, but it must also explore to make better action selections in
the future [101]. Neither exploration nor exploitation can be pursued by the agent
exclusively without failing at the task of learning an optimal policy.

3.4.3 Deep reinforcement learning
The basic formulation of RL is only applicable on low-dimensional environments
and with a discrete state space. For such environments, tabular methods, where the
value function and the action-value function can be learned directly for each possible
state, are effective. However, for most actual control applications, the number of
feature dimensions is large and even infinite for environments with continuous state
spaces.

To handle these issues, it is common to use some form of function approximation
that maps the state space to either a value function or a policy. One of the most
popular choices, which has proven effective in solving many advanced control tasks,
has been to combine RL with deep learning, then referred to as DRL. While deep
learning generally refers to methods that use several hidden NN layers, DRL is
more synonymous with a RL algorithm that uses any architecture based on NNs
to approximate the state space. The state-space approximation is used differently
depending on the DRL algorithm at hand. For value-based methods, such as deep
Q-learning, it is used to map states to action-values, which are then used to define a
policy. In policy gradient methods, the deep learning approximation instead maps
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the state directly to the policy. In this thesis, mainly policy gradient methods are
used and examples of DRL architecture used for such applications are presented in
Chapter 8 and 9.

3.4.4 Policy gradient and actor-critic methods
Policy gradient methods are a class of model-free RL algorithms that learn a param-
eterized policy πθ that can select actions without requiring a value function [101].
These methods seek to maximize a defined objective function J(θ) parametrized by
θ, so their updates approximate gradient ascent:

θt+1 = θt + α∇̂J(θt) (3.15)

where ∇̂J(θt) represents a stochastic estimate of the gradient of the objective func-
tion with respect to θt [101] and α is the learning rate used in the optimization. One
of the most commonly used gradient estimator in RL has the following form:

∇̂J(θt) = Êt
[
∇θ log πθ(at|st)Âπφ(st, at)

]
(3.16)

where the expectation Êt [...] indicates an empirical average over a batch of samples
drawn from the MDP, ∇θ log πθ(at|st) is the gradient of the parametrized policy,
and Âπφ is an estimator of the advantage function at time step t. The estimated
advantage function can be written as:

Ât = Q̂π(st, at)− V̂ π
φ (st) (3.17)

where V̂ π
φ and Q̂π are estimates of the value function and the action-value function,

respectively. The action-value function Q̂π can be estimated in different ways. A
straightforward method is to use the sample return Gγ

t from (3.12) which provides an
unbiased estimate of Q̂π. The drawback of using the sample return as an estimate
of Q̂π, is that the estimate can have high variance, resulting in slow convergence
of the algorithm. A method to achieve lower variance, at the cost of introducing
some bias to the estimate, is to use methods based on temporal difference (TD). An
alternative way of formulation the advantage function based on a TD formulation
is:

Ât = Q̂π
φ(at, st)− V̂ π

φ (st) =
= Rt + V̂ π

φ (st+1)− V̂ π
φ (st)︸ ︷︷ ︸

δ-error

(3.18)

where the action-value function is recursively defined as the sum of the immediate
reward Rt after taking action at in state st and the estimated discounted value
of the subsequent state γV̂ π

φ (st+1). Since V̂ π
φ (st+1) is an estimated approximation,

this formulation will introduce some bias to the advantage estimate, but it will
simultaneously reduce the variance. When this recursive expression is used to form
the advantage estimate, it is commonly referred to as the δ-error (or TD error).
The value function used to compute the advantage function in (3.17) and (3.18) is
generally unknown and has to be learned simultaneously as the policy. If the value
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function is learned in addition to the policy and the δ-error is used to approximate
the advantage function, the algorithm is usually referred to have an Actor-Critic
architecture. The policy πθ is estimated by the actor while the value function V̂ π

φ is
estimated by the critic.

The value function can be learned simultaneously as the policy, commonly by min-
imizing a new cost function L(φ), based on the mean-squared error (or some other
loss function) between the true value function V π(st) and its approximation V̂ π

φ (st):

L(φ) = Eπ
[(
V π(st)− V̂ π

φ (st)
)2
]

(3.19)

In the case the δ-error is used to form the advantage function, the value function
can be learned by minimizing the mean-squared error (or some other loss function)
of the sampled and computed δ-errors.

3.4.5 The proximal policy optimization algorithm
The basic formulation of policy gradient methods suffers from two main weaknesses:
1) sample inefficiency and 2) robustness issues during training. Policy gradient
methods are in general on-policy methods, which means that they always need to
sample transitions following the current policy. Once the policy has been updated
by training on the current batch of transitions, the samples need to be discarded and
new transitions sampled. This causes on-policy methods to be less sample efficient
compared to off-policy methods (such as Q-learning) where the state-value function
can still continue to be learned from old transition data. A tempting solution is to
either run multiple steps of optimization on the same batch of data or to use a large
learning rate to improve the learning speed. However, doing so is not well-justified,
and empirically it often leads to destructively large policy updates [106].

The proximal policy optimization (PPO) algorithm, first presented in [106], presents
a solution to these problems. In this paper, we use the "clipped" version of the PPO
algorithm, where the objective function is defined as:

J clip(θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
(3.20)

where rt is a probability ratio given by:

rt = πθ(at|st)
πθold(at|st)

(3.21)

and θold refers to the vector of policy parameters used in sampling the transitions
and thus before any update of the policy parameters. The clipped objective function
ensures that one does move too far away from the current policy, which allows one to
run multiple epochs of gradient ascent on the samples without causing destructively
large policy updates. The rt-ratio is always equal to 1 before the first epoch, when
current policy πθ(at|st) is the same as was used to sample the transitions πθold(at|st).
The intuition of (3.20) is best explained in two parts; when the advantage function
is positive and negative, respectively. The two objective functions are illustrated
in Fig. 3.6 for both a positive and a negative advantage function. The red circle
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Figure 3.6: A single time step of the clipped surrogate function as a function of the
probability ratio rt, for A > 0 and A < 0, respectively. The red circle indicates the
starting point of the optimization for the first epoch, i.e. rt=1.

indicates the starting point of the optimization, whereas the dotted line indicates
the limit to how much the ratio rt can change before it is limited.

• Positive advantage function: a positive advantage function for a given state-
action pair indicates that the taken action yielded a higher reward than was
anticipated by the critic network. Thus, the objective function will increase
if that action becomes more likely in that specific state; that is, if πθ(a|s)
increases, or equivalently if the rt ratio increases above 1. However, the min-
term puts a limit to how much the probability can increase, and whenever
πθ(a|s) > (1 + ε)πθold

(a|s) the min term activates and the gradient of the
objective function is reduced to zero.

• Negative advantage function: a negative advantage function for a given state-
action pair indicates that the taken action yielded a lower reward than was
anticipated by the critic network. The objective function will increase if that
action becomes less likely when in that specific state; that is, if πθ(a|s) de-
creases, or equivalently if the rt ratio decreases below 1. Again, the min-
term puts a limit to how much the probability can decrease, and whenever
πθ(a|s) < (1 − ε)πθold

(a|s) the min-term activates and the gradient of the
objective function is reduced to zero.

3.4.6 Adaptations for continuous-discrete control
To handle a hybrid actions space of both continuous and discrete actions, an im-
plementation similar to the one introduced in [107] can be used. A hybrid policy
πθ(a|s) is defined as a state-dependent distribution that jointly models discrete and
continuous random variables. Independence between action dimensions, denoted by
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ai, is assumed and the hybrid policy can be written as:

πθ(a|s) = πcθ(aC|s)πdθ(aD|s) =
=

∏
ai∈aC

πcθ(ai|s)
∏

ai∈aD

πdθ(ai|s) (3.22)

where aC and aD are subsets of action dimensions with continuous and discrete
values respectively (where C and D represent continuous respectively discrete action
spaces), and a is a vector of both discrete and continuous actions. Each component
of the continuous policy πcθ can be represented as a normal distribution:

πcθ(ai|s) = N
(
µi,θ(s), σ2

i,θ(s)
)

(3.23)

where µi,θ and σi,θ are the parametrized mean value and standard deviation of
each continuous action dimension. Each component of the discrete policy πdθ can be
described as a Bernoulli distribution parameterized by state-dependent probabilities
Pi,θ(s):

πdθ(ai|s) = Bernoullii
(
P i
θ(s)

)
(3.24)

where θ are the parameters of the policy components that we want to optimize. It
should be noted that other types of distributions, such as a Beta distribution for a
continuous action space, or a Softmax distribution for multi-class discrete actions
are also possible options.
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Chapter 4

Description of a real-time dynamic
stability assessment and control

tool

In this chapter, the overall functionality of the proposed real-time dynamic stabil-
ity assessment and control tool is presented. Furthermore, the test system used in
evaluating the developed monitor and control methods is presented and its general
characteristics are briefly discussed. The real-time dynamic stability assessment
and control tool is based on four different developed methods presented in subsequent
chapters. The first method is developed for preventive monitoring, where a method
for fast security margin estimation is developed. The second method is developed for
monitoring emergency events, where a method for voltage instability prediction based
on a long short-term memory network is developed. The third method is developed
for preventive control, where a method based on deep reinforcement learning is used
to control and ensure a sufficient security margin. The final method is developed for
emergency control, where a method based on deep reinforcement learning is used to
stabilize the system in case of emergency events and larger disturbances. In Chapters
6 - 9, each of the developed methods will be presented in more depth.

4.1 Overview of the Real-time Dynamic Stability
Assessment and Control Tool (RDS-ACT)

This thesis aims to develop a RDS-ACT that can support system operators with
better information on the current stability and security margins of their power sys-
tems. In case of too small margins towards the security boundary, or in the case of
larger disturbances, the tool can also suggest optimized control actions to steer the
system into a secure and/or stable operation again. An overview of the proposed
RDS-ACT in the setting of a monitoring and control system in a power system
is presented in Fig. 4.1. The functionality of the RDS-ACT is divided to handle
the two complementary tasks, namely: i) emergency monitoring and control and ii)
preventive monitoring and control.
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Figure 4.1: An overview of the proposed RDS-ACT and the signals and control
actions in a monitoring system.

All developed methods are intended to use real-time system measurements sam-
pled directly from a power transmission system. The requirements on the system
measurements, such as measurement update rates or the availability of phasor mea-
surements, are discussed in each of the chapters covering the functionality of the
methods. To assure that errors and missing values are filtered out, measurements
are typically assumed to always be preceded by a state estimator. Circuit breaker
statuses are assumed to always be known. In this work, simulated measurement
data are used exclusively.

4.1.1 Preventive monitoring and control
The proposed method for preventive monitoring is used to provide fast and robust
estimations of the DVSM. The method uses a regression-based NN to provide a
qualified estimate of the actual DVSM. In addition, a second NN is used to provide
a classification of which contingency will be dimensioning for the system. The
estimates from the NNs are then used in a method called dual binary search, which
is used to validate the actual DVSM using time-domain simulations. The ML-based
approach is thus only proposed to support the estimation of the DVSM, while the
actual DVSM is always validated through actual time-domain simulations.

The proposed method for preventive control is based on using a DRL framework
which in real-time can suggest suitable control actions whenever the security mar-
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gins are below a predefined threshold. The developed DRL control uses a hybrid
control scheme that is capable of simultaneously adjusting both discrete action vari-
ables (switching of shunt reactive power devices) and continuous action variables
(controlling power flows by load and generation rescheduling in stressed system ar-
eas). The system operator can choose to automatically initiate these actions in the
system or assess the suggested actions and then take the actions manually.

4.1.2 Emergency monitoring and control
The proposed method for emergency monitoring is based on using an RNN with
LSTM for VIP, from now on abbreviated into LSTM-VIP. The method is designed
to take current and historic measurements to assess whether the current state may
cause voltage instability several minutes into the future. As time progresses and if
new events occur in the system, the network updates the assessment continuously.
Stability warnings are then passed to the system operator, which can initiate emer-
gency control actions. The network is also adapted to be able to indicate where in
the system instability emerges allowing more cost-effective countermeasures.

The proposed method for emergency control is based on using a DRL framework
aimed to mitigate long-term voltage instability. Once trained, the DRL control can
continuously assess the system stability and suggest fast and efficient control actions
to system operators in case of voltage instability. The DRL control is trained to
use system services from DR and ESS as a more efficient and flexible alternative
to stabilize the system, compared to e.g., conventional load shedding. As time is
critical in many emergency events, the actions suggested by the DRL controller
may be required to be activated automatically in the system to avoid a system
collapse. However, in long-term voltage instability events, where the time between
the disturbance occurs and a possible unstable state may develop is relatively long,
the system operators may have time to manually assess the suggested actions by the
DRL emergency controller before activating them.

4.2 Test system
The methods are tested on an updated version of the classic Nordic32 test system,
presented in [108]. The system is fictitious but captures similar voltage dynamics as
in the Swedish and the Nordic power system. A one-line diagram of the test system
is presented in Fig. 4.2. The system is divided into four different regions:

• "North": mainly consists of hydro generation and some smaller loads.

• "Central": the largest load center with significant generation of thermal power
generation.

• "Eq": an equivalent of an external system connected to the "North".

• "South: an area with thermal generation which is loosely connected to the
"Central" area.
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Table 4.1: Active power generation and load for the Nordic 32 test system.

Area Generated power (MW) Load (MW)

"North" 4,628.5 1,180.0
"Central" 2,850.0 6,190.0
"South" 1,590.0 1,390.0
"Eq." 2,437.4 2,300.0

Total 11,505.9 11,060.0

The modified Nordic32 test system has long transmission lines of 400 kV and 220 kV
nominal voltage. The test system also includes a representation of regional systems
operating at 130 kV. Table 4.1 provides the active power generation and load in each
area and for the whole test system.

The system is heavily loaded with large power transfers mainly between the areas
"North" and "Central". The transferable power is limited by the reactive power
capabilities of generators in both of these areas. A disturbance in the transmission
capacity connecting the "North" and the "Central" areas is critical for the stability of
the system. A reduced transmission capacity, caused by, for instance, a disconnected
transmission line, would increase the strain on the remaining lines in the system.
The increased current in the remaining transmission lines would increase the reactive
power losses in the system, which would cause lower system voltages. Voltage-
dependent loads are restored through the actions of LTCs. The load restoration
has an adverse effect on the voltage stability of the system as the restored loads will
cause increased stress on the remaining lines in the system and may cause the system
to deteriorate further. Reactive power limits of generators are enforced by OELs
which further limits the capability to maintain nominal voltages in the system.

For the developed modified Nordic32 system, two developed operating points were
presented in [108]. "Operating point A" is an unsecure operating point and an outage
of either a larger thermal generating unit in the "Central" area or a disconnection of
a transmission line connecting the "North" and "Central" areas may cause instability.
"Operating point B" is a secure operating point that should be able to withstand
the loss of any single component. Both the two different operating points are used
as starting values in different chapters of the thesis. All time-domain simulations
have been performed using the power system simulation software PSS®E with its
built-in dynamical models.
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Figure 4.2: The Nordic32 test system used in testing the developed algorithms,
adapted from [108].
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Chapter 5

Comparison of dynamic and static
security margins

In this chapter, the differences between static and dynamic security margins are
established. First, the theoretical difference between the two methods is established
and then visualized using the concept of transient P -V curves. Second, numerical
comparisons are provided to further examine the differences between the different
security margins under various load configurations and types of disturbances. The
chapter is mainly based on the results established in Paper III.

5.1 Theoretical comparison of SOL and PCLL
In this section, the theoretical difference between the SOL and the conventional
PCLL is established and then visualized using the concept of transient P -V curves
(first introduced in [109]). A small test system’s dynamic response following a
disturbance is used in the analysis.

5.1.1 Small test system
The small 2-bus test system in Fig. 5.1 is used in the analysis. It consists of a
controlled sending end voltage (E∠0), supplied by a voltage source. A complex load
(P + jQ) is fed through a number of lines represented by inductances with the total
reactance of Xt. A popular method in static voltage stability analysis is to use P -V
curves, where the receiving end voltage is plotted with respect to an increasing level
of active power transfer in the system. In the following figures in this section, P -V
curves for the case when E = 1.05 pu, Xt = 0.4 pu, and a fully active power load
are illustrated. An additional P -V curve is plotted in each figure for a N -1 case
when one line has been disconnected (increasing Xt to 0.5 pu). Assuming lossless
transmission, the curves are developed using the voltage equation for a two-bus
system, given by [12]:

V =

√√√√E2

2 −QXt ±
√
E4

4 −X
2
t P 2 −XtE2Q (5.1)
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E∠0 V1∠θ1Xt

P+jQ

Figure 5.1: Simple 2-bus system used in the analysis.

where the upper part of each P -V curve corresponds to the solution of (5.1) with
the plus sign, while the lower part of each curve corresponds to the solution with
the minus sign.

The voltage instability mechanism is mainly driven by loads and the impact of load
modeling in voltage stability analysis is imperative [12]. The power consumption of
loads is affected by the system voltages and different load models are often used to
characterize this relationship. One often used model is the exponential load model,
which is given by:

P = zP0

(
V

V0

)α
(5.2)

Q = zQ0

(
V

V0

)β
(5.3)

where P0 and Q0 are the active and reactive power consumed at voltage V equal to
the reference voltage V0 when z = 1. z is a dimensionless and independent variable
indicating the actual loading of the system [12]. The voltage dependency is modeled
by the α and β parameters, where α = β = {0, 1, 2} represents constant power
(MVA), constant current, and constant impedance characteristics, respectively.

5.1.2 Estimating SOL and PCLL
The differences in how the PCLL and the SOL are estimated are illustrated in
Fig. 5.2 using the developed P -V curves. The security margin is defined as the
change in loading from an initial operating condition (OC) to the N -1 critical point.
It should be noted that in real applications, the limit is often significantly smaller
due to the other stopping criteria such as too low system voltages. Furthermore,
in the following examples, only a single contingency (or disturbance) is considered
when computing the PCLL and the SOL. However, in actual implementations, all
larger contingencies should be assessed and the one that results in the lowest level
of security margin is then generally used.
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Figure 5.2: Difference in the estimation process for the PCLL and SOL illustrated
using P -V curves.

• PCLL estimation: in PCLL estimation, the post-contingency OC is found by
first introducing a contingency on the initial OC, which is followed by solving
the resulting load flow study. This is illustrated in Fig. 5.2 by the movement
along arrow 1′. Once the post-contingency OC is found, the stability limit is
then traced along the solution path by iteratively increasing the system stress
until the critical point is reached, moving along the arrow 2′. Continuation
power flow (CPF) methods are preferably used to avoid convergence problems
close to the collapse point [14,110]. The distance between the pre-contingency
operating point and the N -1 critical point represents the PCLL.

• SOL estimation: the steps of estimating the SOL are conceptually different
from the PCLL, where instead the dynamic security of the system is being
tested with an increasing level of pre-contingency stress in the system, illus-
trated by arrow 1 in Fig. 5.2 [13]. For every new pre-contingency operating
point (an increase in system stress), a dynamic simulation is initiated where
the system response following a disturbance is studied. The simulation runs
until the system stabilizes or becomes unstable. The final pre-contingency
operating point that is tested and still provides a stable operating point is
illustrated by moving along arrow 2 in Fig. 5.2. The distance between the ini-
tial operating point and the last pre-contingency operating point that can still
handle a dimensioning contingency without causing instability then represents
the SOL.

5.1.3 Load response after a disturbance
Loads are often recognized to maintain constant power characteristics in a long-term
system perspective but do not generally behave as such following a disturbance. As-
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Figure 5.3: Example of slow load restoration after a contingency.

suming a sudden voltage change, loads will initially drop according to their instan-
taneous characteristics [109]. Then, the impedance or the drawn current is adjusted
to restore the load to its original level; a process that can be exemplified by, for
instance, the automatic changes in the slip of induction motors or by changes in tap
positions to increase the voltage for loads behind LTCs.

A typical load restoration event following a disturbance is illustrated in Fig. 5.3.
The initial OC is located at A. Instantly after a disturbance, the load is assumed
to have constant impedance characteristics, which results in a change in operating
point from A to B. Load restoration dynamics then change the operating point
from B to C, which corresponds to the same initial load level as point A.

5.1.4 Transient P-V curves and fast load dynamics
The overall load restoration after a disturbance is generally assumed to act signifi-
cantly slower than the dynamics of other system components, such as the dynamics
of generators and excitation systems. The PCLL is based on this time-scale decom-
position, where short-term dynamics, such as generator and excitation dynamics,
are assumed to be in equilibrium. It was proven in [111], that if the system starts
at a stable equilibrium and is slowly stressed towards the collapse point without
encountering oscillations or other limit-induced events (e.g. reactive power limits
for generators), the static equations are sufficient to locate the exact collapse point
experienced by the dynamic system. Thus, if it is possible to assume that the short-
term dynamics are in equilibrium and if no other limit-induced events occur, the
loadability limit of the post-disturbance system can be found even though only static
estimation methods are used to trace the security margin.

Load dynamics of induction motors and power electronic loads, such as chargers for
electric vehicles, are inherently fast. For these components, the load is often restored
in a time frame within a second, similar to other generator and excitation dynamics
[12, 112]. Thus, if the system is dominated by loads with fast load restoration,
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Figure 5.4: Transient P -V curves for a secure initial OC.

the assumption that the short-term dynamics are in equilibrium may no longer be
accurate. In [109], a concept called transient P -V curves was adopted to allow
visualization and analysis of short-term dynamics using classical P -V curves. Here,
the same approach is used when the difference between PCLL and SOL is illustrated.
In the analysis, the post-disturbance P -V curve is not fixed in time but is allowed
to be affected by short-term system dynamics of, for instance, excitation systems.
Nor is the load curve fixed in time, which allows the load restoration that follows
after a disturbance to be illustrated. As the main purpose here is to provide a
principal understanding of the concept, the transient P -V curves in the following
figures are hypothetical and are not based on simulated values. Similarly, the curves
illustrating the fast load restoration dynamics from a constant impedance load to a
constant power load are drawn to allow a better understanding of the concept.

In Fig. 5.4, the dynamic response following a disturbance is illustrated for a secure
initial OC. The load restoration curves and the transient P -V curves are illustrated
using different shades of grey, where a lighter shade indicates closer in time after the
disturbance. The time just after a disturbance is indicated by t1; t2 relates to a short
time after the disturbance; t3 relates to the time when all short-term dynamics are in
equilibrium. The load is assumed to have long-term constant power characteristics,
but just after a disturbance, the load will initially change to a constant impedance
characteristic. Then, by fast load restoration, the load is quickly restored to the
pre-disturbance level.

The initial OC is found in point A. Just after the disturbance (at t1), the short-
term dynamics of system components such as generators or excitation systems will
not yet have stabilized, which has the effect of shifting the post-disturbance P -V
curve to the left. As a result of the initial load characteristics and the shifted P -V
curve, the operating point moves along the arrow to operating point B. After
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Figure 5.5: Transient P -V curves for an unsecure initial OC.

the shifted operating point, two separate dynamic responses are initiated. The
system dynamics of mainly generators and excitation systems begin to stabilize, by
for example restoring terminal voltages, which has the effect of restoring the P -V
curve towards the final post-disturbance P -V curve. Simultaneously, the fast load
dynamics is restoring the load from the initial load characteristics back to the pre-
contingency load level. As an effect of the system dynamics and the load restoration,
the operating point moves along the arrows from B to C, then finally from C to
D. In this case, the system was found to be stable even after the disturbance with
the new operating point D.

In Fig. 5.5, the same system is slightly more stressed, with a higher level of initial
transferred power. Just after the contingency, the operating point moves along the
arrow from A′ to B′, by same the reasoning as in the previous example. However,
due to the fast load dynamics, there exists no intersection between the curves at t2,
and without any emergency control actions, the system stability would be lost. The
example in Fig. 5.5 illustrates a type of event that the SOL could identify and take
into account, which is not possible when estimating the PCLL. It should be noted
that the P -V curve for the N -1 case and the load characteristic at t3 still intersect
in this case, indicating that when using the PCLL, it would seem that the initial
OC was still secure.

5.1.5 SOL versus PCLL
The analysis in the previous section showed that the SOL is preferred over the
PCLL in power systems with a large share of loads with fast restoration dynamics.
Furthermore, the closer power systems are being operated to the limits of operation,
as for the event illustrated in Fig. 5.5, the more likely it is that the system will
become unstable during the transient state after a disturbance.
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Instability caused by the short-term dynamics that follows a disturbance can gen-
erally be divided into three different instability mechanisms [12,66]:

• Loss of post-disturbance equilibrium of short-term dynamics: Typically exem-
plified by the stalling of induction motors after a disturbance causing the trans-
mission impedance to increase. Due to the increased transmission impedance,
the mechanical and electrical torque curves of the motor may not intersect,
causing the system to lack a post-disturbance equilibrium, similar to the case
illustrated in Fig. 5.5.

• Lack of attraction towards the stable post-disturbance equilibrium of short-term
dynamics: Typically exemplified by transient angle instability and the loss of
synchronism by one (or several) generators following a too slow fault clearing.

• Oscillatory instability of the post-disturbance equilibrium: Typically exempli-
fied by rotor angle stability, in which the equilibrium between electromag-
netic torque and mechanical torque of synchronous machines in the system
is disturbed. Instability may be caused by increasing angular swings of some
generators leading to their loss of synchronism with other generators [66].

Typically, time-domain simulations are required to capture the short-term dynamics
after a large disturbance. SOLs computed using QSS simulations can not account for
the short-term dynamics that follow after a disturbance and are thus better suited to
only monitor long-term voltage instability phenomena. Extensions of the QSS model
have been proposed that are capable of also incorporating frequency dynamics that
take place over the same time scale as a long-term voltage instability event [38,113].
Combinations of time-domain simulations and QSS, as proposed in [38], can use
time-domain simulations to model the system during the short-term period following
a disturbance, followed by QSS simulations used to simulate the long-term interval
after the short-term effects are finalized. However, short-term instability may also
be induced by long-term dynamics, where the system degradation caused by long-
term instability eventually can trigger the above-mentioned short-term events [12].
It should be noted that SOLs computed by combinations of time-domain simulations
and QSS, as proposed in [38], cannot capture this type of event.

5.2 Methodology for comparing SOL with PCLL
In this section, a methodology used to allow a fair comparison of the PCLL and
the SOL is presented. A direct comparison between the SOL and PCLL is not
trivial, as one is computed using a static model of the system, while the other is
typically estimated using a dynamic model. Thus, although it is well-known that the
PCLL and the SOL may produce significantly different estimations of the security
margin, the difference in the results can be caused by both how the simulations were
conducted, as well as owing to the fact that the SOL can account for the system’s
dynamic response after a disturbance.

To address this issue, a methodology is here developed that allows the two secu-
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rity margins to be fairly compared and to isolate the root cause of the difference
between them. Furthermore, a comparison for a large range of different static and
dynamic load configurations and disturbance scenarios that are based on the de-
veloped methodology is presented. It should be noted that other aspects, such as
post-disturbance controls and generation characteristics of, for instance, converter-
interfaced generation, will also have a significant impact on the difference between
the two security margins. The two security margin methods are analyzed mainly
with respect to the following stability criteria: short-term and long-term voltage
stability and rotor (transient) angle stability.

All simulations have been tested on the slightly modified version of the Nordic32
test system, detailed in Section 4.2. The security margins are computed by increas-
ing the loading in the area "Central", while the generation in the area "North" is
increased by a corresponding quantity. The starting point for all scenarios is the
secure "operating point B" as defined in [114]. To ensure numerical stability during
the dynamical simulation runs, a short integration step of 0.001 seconds was used in
the simulations. In certain sensitive scenarios, such as when the simulations resulted
in a non-converging dynamic simulation, the integration step was at times varied to
provide a converging simulation.

5.2.1 Load models
In this section, the load models used in the comparison are presented. The power
consumption of loads is generally affected by the system voltages and different load
models are often used to characterize this relationship. A traditional load model
used in both static and dynamic stability analysis is the ZIP model, which is made
up of three components: constant impedance (Z), constant current (I), and constant
power (P ). The characteristics of the ZIP model is given by [12]:

P = zP0

[
aP

(
V

V0

)2
+ bP

V

V0
+ cP

]
(5.4a)

Q = zQ0

[
aQ

(
V

V0

)2
+ bQ

V

V0
+ cQ

]
(5.4b)

where aP + bP + cP = aQ + bQ + cQ = 1 for ax ≥ 0, P0 and Q0 are the real and
reactive powers consumed at a reference voltage V0, given that z = 1. V is the
actual voltage and z is a variable indicating the actual loading of the system [12].
The constants ax, bx, and cx represent the share of constant impedance, constant
current, and constant power of the load, respectively.

Although simple and widely used in security analysis [115], the ZIP model cannot
model any dynamic behavior of the loads themselves. The significance of induction
motor loads and other fast-acting dynamic loads are often highlighted in system
stability studies. Induction motors (IMs) are characterized by fast load restoration
dynamics (often in the time frame of a second) and have a high reactive power
demand. Induction motors are also prone to stalling, which may cause the motor
to draw high reactive currents from the grid, resulting in a deteriorating effect on
the system stability [12]. In PSS®E, a complex load (CLOD) model can be used
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Figure 5.6: Overview of the CLOD model [116].

to represent a bundled mix of loads with different dynamic load characteristics into
a single model. The CLOD models a composition of various load types including
induction motors and several static loads but requires only eight parameters, which
is achieved by internally using typical manufacturer data for each load type. The
CLOD model was chosen as it provides a simple yet efficient solution to model
different configurations of common load types, including induction motors, when no
detailed dynamics data were available. In Fig. 5.6, a schematic of the CLOD model
is presented. The transformer and feeders connecting the system bus to the load bus
are modeled as a single impedance. At the load bus, different percentages of large
and small IMs, discharge lighting loads, transformer saturation, and constant power
loads can be modeled. The remaining part of the load is modeled as a polynomial
load where the voltage dependency of the active load is controlled through a constant
Kp. The performance curves of the two motor models, the discharge lightning model,
and the transformer saturation model are further detailed in [116].

It should be noted that all constant power loads in PSS®E are modeled as constant
power only for a certain range of load voltages. When voltages drop below a thresh-
old, by default 0.7 per unit in PSS®E, the constant power loads instead follow a
function based on the magnitude of the bus voltage, further detailed in [117].

5.2.2 Methodology and adaptations
To ensure that the difference in the computed security margins was not caused by
differences in how the simulations were conducted, but rather by the fact that the
SOL could better account for the system’s dynamic response after a disturbance, a
few adaptations of the methods were required. Instead of using CPF methods to
compute the PCLL, a method that slowly ramps up the system stress in a dynamic
simulation setting is adopted; an approach similar to the one used to compute the
(pre-contingency) loadability margins in [114]. This approach allows the PCLL to be
performed in a dynamic setting while mimicking how the system stress would have
been increased if it would have been performed in a static setting. The advantage of

59



5. Comparison of dynamic and static security margins

adopting this methodology is that the loading and the generation set points could
be increased in the exact same way for both the computation of the PCLL and the
SOL.

In [114], when computing the PCLL, the authors increased the system stress in
small increments over time but did not evaluate whether the system had stabilized
before continuing to stress the system. This could result in that additional system
stress was being added to an already unstable system and that the PCLL became
overestimated. For instance, long-term voltage instability events typically last sev-
eral minutes, and a significant amount of system stress could thus have been added
to the system while the system’s maximum load power point had already been ex-
ceeded. To address this issue, an adaptive method to analyze whether the system
had stabilized was adopted. To achieve this, the timer settings of LTCs and OELs
were monitored continuously throughout the simulation. The LTC timers are ac-
tivated whenever the voltage magnitude at a controlled bus is below (or above) a
certain controlled bound. The OEL timers are activated whenever the field cur-
rent of a generator is above a certain threshold. The specific timer settings for the
OELs are computed by a function based on the magnitude of which the threshold
is exceeded, see [118]. If the controlled voltages, respectively the field currents, are
restored within the controlled bounds, respectively the field current thresholds, the
timers are reset. These two components have the longest timer settings in the test
system, and if all timers were reset for a given time (3 seconds) after a disturbance
(or a load increase), the system was assumed to have stabilized.

5.2.3 Steps for PCLL computation
The steps used in computing the PCLL were the following:

• Initialize dynamic simulation and introduce contingency: The PCLL compu-
tation was initialized by applying a chosen contingency in the system in a
dynamic simulation from the base case. The dynamic simulation then ran
until the system was fully stabilized.

• Increase system stress: Once the system had stabilized after the initial distur-
bance, the system stress was increased in small increments of 1 MW, which was
distributed among all the loads in the "Central" area. To reduce the required
simulation time, the system stress was for certain fault scenarios (scenarios A
and B) initially increased in larger increments (5 MW), since lower stress levels
were found to not cause instability in the system. The different fault scenarios
are further discussed in Section 5.3.1. The power factor of each load was kept
constant. Simultaneously, the load change was compensated by the primary
frequency response of the generators in the system. The added load for both
the PCLL and SOL was computed as a nominal load increase at 1.0 pu voltage
to ensure that the same amount of load was added for both methods regardless
of the current load voltage in the dynamic simulation. Increased active line
losses caused by the increased system stress were also automatically compen-
sated by the generators’ primary frequency response, while the reactive line
losses were automatically compensated by the generators’ excitation systems.
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• Check stability criterion: After the increased system stress, the simulation
continued to run until the system either stabilized or until a stability criterion
was violated. The system was considered unstable if any bus voltage in the
system was lower than 0.9 pu. Although the modified Nordic32 test system is
characterized by sensitivity towards voltage instability, other types of instabil-
ity can violate the stability criterion. For instance, transient angle instability
can cause locally low voltages due to lost synchronism of certain generators.

• Re-iterate: The system stress was increased until the system eventually vi-
olated the stability criterion. The difference in loading from the base case
to the final stable operating point in the stressed post-contingency system
represented the computed PCLL.

5.2.4 Steps for SOL computation
The SOL was computed similarly to the PCLL, but by instead stressing the system
in its pre-contingency configuration and then introducing the disturbance. The steps
used in the computation of the SOLs were the following:

• Initialize simulation and increase system stress: When the ZIP model was
used to model the loads, the dynamic simulation was initialized directly at
the beginning of the simulation. The system stress was then increased in its
pre-contingency base case in small increments of 1 MW, in the same way as
was done for the PCLL computation in its post-contingency configuration.
The small step size in system stress was chosen to allow the illustration of
the security margins using P -V curves. In more general applications, faster
methods such as the binary search method described in [13] or the dual binary
search method described in [119], can otherwise be used to compute the SOL.
Adjustments for the CLOD model: For the scenarios using the CLOD model,
the increased system stress was required to be added in a static load flow sce-
nario, which was then converted for dynamical studies. The increased load
was distributed in a similar manner as when using the ZIP load model, ex-
cept that the load was added in a static load flow scenario instead of during
a dynamic simulation. However, the increased load could now not be auto-
matically compensated by the generators’ primary frequency response, and the
increased load was instead distributed and compensated by increasing the gen-
eration set-points of all the hydro generators in the "North" and "Eq" regions,
see Fig. 4.2. The distribution of the increased generation was based on the
rated capacity of each generator and a generator with a higher rated capacity
received a larger share of the increased generation. Increased active line losses
caused by the increased system stress were compensated by an increase in the
generation of the slack bus generator, "g20". While this distribution can be
assumed to be relatively similar to how the primary frequency control of the
governors would have compensated for the increased load, it will cause a small
difference in how the system stress is increased between the two load models.

• Introduce disturbance and check stability: A disturbance was then applied in
the system. A final end time of the dynamic simulation of 1,000 seconds was

61



5. Comparison of dynamic and static security margins

used. The system was considered unstable if any bus voltage in the system
was lower than 0.9 pu at the end of the simulation. The simulation was also
stopped in advance if any bus voltage decreased below 0.7 pu (still allowing
the system to first stabilize for 20 seconds after the disturbance).

• Re-iterate: If the system was stable, the system was reinitialized to the last
pre-contingency state, followed by increasing the system stress by an additional
1 MW and applying the same disturbance. The SOL is then computed from
the difference in loading from the base case to the final stable operating point
in the stressed post-contingency system.

5.3 Simulation results and discussion
In this section, the results of the numerical comparison between the PCLL and the
SOL are presented. Three different contingency scenarios were tested. The results
of PCLL and the SOL computation are presented for each contingency scenario and
each load model configuration. It should be noted that the different types of dis-
turbances were chosen to exemplify the difference between the two security margin
methods under various conditions. In real applications, all relevant contingencies
that might be dimensioning for the security margin should be analyzed. In general,
system operators perform contingency filtering (or selection) as it would be com-
putationally infeasible to analyze all possible disturbances that might occur [13].
Furthermore, the direction of the system stress and the load-generation configura-
tion should be representative of the specific system in consideration.

5.3.1 Contingency scenarios and loading scenarios
The following contingency scenarios were examined:

• Scenario A: A three-phased fault for 40 milliseconds, followed by tripping
the faulted line. The faulted line is the one connecting the two areas "North"
and "Central" between bus 4032 to bus 4044.

• Scenario B: A longer three-phased fault for 100 milliseconds, followed by
tripping the faulted line. The faulted line is the one connecting the two areas
"North" and "Central" between bus 4032 to bus 4044.

• Scenario C: Tripping of generator "g7" located at bus 1043 in the "Central"
area.

For each of the contingency scenarios, different combinations of the ZIP load were
tested for both the PCLL and the SOL. In addition, the SOL was computed for
different compositions when the CLOD model was used to model the loads in the
system. Adjusting the load levels during a dynamic simulation, which was required
when computing the PCLL, was not feasible when using the CLOD model, as it
requires that its internal parameters are recomputed whenever the load composition
changes. Thus, the CLOD model was analyzed only with respect to the SOL.
Furthermore, the CLOD model was found to be generally numerically unstable for
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longer fault clearing times. Therefore, a comparison of the results for Scenario A is
only provided with a fault clearing time of 40 milliseconds.

5.3.2 Simulation results
The PCLL and SOL results for each scenario and each load configuration using the
ZIP model are presented in Table 5.1. The SOL results for scenario A and different
configurations of the CLOD model are presented in Table 5.2. The largest difference
between the PCLL and SOL is found for cases with a high share of constant power
characteristics of the active part of the loads. For instance, for scenario 1A with
fully constant power characteristics for the active part of the load and fully constant
impedance characteristics for the reactive part of the load, the SOL was only 28
MW, while the PCLL was found to be 275 MW. The difference between the two
security margin methods then reduces rapidly with a decreasing level of constant
power characteristics on the active part of the load. Already at slightly lower levels
of constant power loads, for instance, in Scenario 4A, the difference between the
SOL and the PCLL becomes close to negligible. In Fig. 5.7, the post-disturbance
P -V curves of the transmission side of bus 1041 are illustrated, respectively, for
Scenario 1A. The P -V curves are computed by sampling the voltage magnitude
when the system had stabilized after each dynamic simulation. Here, with a fully
constant power characteristic of the active part of the loads, the P -V curves are
almost identical for both the PCLL and the SOL up until the collapse point for the
SOL.
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Table 5.1: Computed PCLL and SOL for different loading and contingency scenarios.

Constant
MVA I Z Scenario A Scenario B Scenario C

Scenario (P/Q) (P/Q) (P/Q) PCLL SOL PCLL SOL PCLL SOL
number [%] [%] [%] [MW] [MW] [MW] [MW] [MW] [MW]

1 100/0 0/0 0/100 275 28 275 4 351 71
2 95/0 5/0 0/100 340 88 340 86 353 128
3 90/0 10/0 0/100 341 146 341 144 357 196
4 80/0 20/0 0/100 364 362 364 260 365 362
5 50/0 50/0 0/100 387 386 387 387 380 378
6 95/0 5/50 0/50 280 55 280 48 283 85
7 80/0 20/50 0/50 359 240 359 233 357 356
8 50/0 50/50 0/50 382 382 382 381 375 372
9 0/0 100/0 0/100 425 424 425 425 407 405
10 0/0 50/0 50/100 465 464 465 456 439 438
11 0/0 20/0 80/100 488 488 488 489 457 458
12 0/0 0/0 100/100 504 504 504 505 471 471
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Figure 5.7: P -V curves computed at bus 1041 for scenario 1A.

The difference between the PCLL and the SOL is more significant for Scenario B
when a longer fault clearing time was used in the simulations. For instance, in
Scenario 1B, the SOL was estimated to be only 4 MW, compared to 275 MW for
the PCLL. With reference to the discussion with the transient P -V curves presented
in Section 5.1.4, a longer fault clearing time would have the effect of shifting the
post-disturbance P -V curve for a longer time to the left, causing the system to lack
attraction towards a stable post-disturbance equilibrium. Yet again, the difference
between the two security margins decreases rapidly as the share of constant active
power loads decreases. For instance, in Scenario 5B with a 50% share constant active
power load, and the remaining part of the active load being of constant current
characteristics, the SOL and the PCLL are almost identical. The post-disturbance
P -V curves of scenario 5B on the transmission side of bus 1041 are illustrated in
Fig. 5.8. The figure shows that although the computed P -V curves of the SOL are
slightly below that of the PCLL, the two security margins find almost the same
critical point of the system.

For all cases, except when the load is of fully constant power characteristics, the
P -V curves computed using the SOL are slightly below the ones computed using the
PCLL. Although the initial response of the excitation systems used in the Nordic32
test system is fast, there is an integrating part of the control system which takes a
longer time until the voltage magnitudes of the generators are restored to their pre-
disturbance set-point (differing slightly due to the droop in the automatic voltage
regulation). In the PCLL case, this voltage restoration is allowed to fully stabilize
after the initial disturbance before the system stress is added to the system. This
is not the case for the SOL, in which the system is stressed before the disturbance
is applied to the system. In turn, this causes LTCs and OELs to act earlier for a
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Figure 5.8: P -V curves computed at bus 1041 for scenario 5B.

lower level of system stress, causing the magnitude of the post-disturbance voltages
to be generally lower.

In Scenario C, the chosen contingency was the disconnection of the generator "g7",
located in the "Central" area. Once again, the largest difference between the PCLL
and SOL is found for cases with a high share of constant power characteristics of
the active part of the loads. For load scenarios with a larger share of either constant
current or constant impedance characteristics of the active part of the load, the
difference between the two security margins becomes negligible.

In Table 5.2, the computed SOLs for scenario A when using different configurations
of the CLOD model are presented. The scenarios are generated by varying the load
composition, consisting of large induction motors (LIMs), small induction motors
(SIMs), discharge lightning (DL), transformer saturation (TS), constant power loads
(MVA), and the remaining load which is of constant impedance characteristics (Kp =
2). Unsurprisingly, the computed SOL was the lowest when there was a large share
of motor loads in the system. When the loads were modeled with a too high share of
motor loads, such as scenario 13A, the computed SOL for the base case was negative.
There was a relatively large difference between the computed SOL for scenario 17A
with a 35% share of LIM loads and 25% share SIM loads, and scenario 20A with
a 25% share of LIM loads and 35% share of SIM loads. LIM loads generally draw
a higher reactive current during instances of low system voltages than SIM loads,
which may have caused the computed SOL to differ from 47 MW for scenario 17A
to 120 MW for scenario 20A.

In most scenarios where the CLOD model was used and for the level of system stress
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Table 5.2: SOLs for different load configurations of the CLOD model

CLOD model parameters Scenario A

Scenario LIM SIM DL TS MVA Remaining (Kp=2) SOL
number [%] [%] [%] [%] [%] [%] [MW]

13 35 35 5 5 10 10 -
14 30 30 5 5 10 20 60
15 25 25 5 5 10 30 372
16 35 30 5 5 10 15 28
17 35 25 5 5 10 20 47
18 35 20 5 5 10 25 59
19 30 35 5 5 10 15 37
20 25 35 5 5 10 20 120
21 20 35 5 5 10 25 365

that made the system unstable, the system crashed during the transient state just
after the disturbance. The CLOD models were found to be particularly sensitive
towards long fault clearing times, and the Nordic32 test system consistently crashed
when using a longer fault clearing time (such as 0.1 seconds). The difference between
the two security margins is thus likely even greater if breakers with longer fault
clearing times can be assumed to dominate the system. However, in a few scenarios,
the long-term load restoration in the system was the main driver for instability. One
of these cases, scenario 15A, is illustrated in Fig 5.9, which shows the development
of bus voltages over time for different levels of system stress. For the lower system
stress levels of 150 MW and 372 MW, the system is able to satisfy the given stability
criterion, although the 372 MW level causes the system voltages to drop significantly.
However, for a system stress level of 373 MW, the long-term load restoration and
the activation of OELs cause the system to lose stability after about 500 seconds.

5.3.3 Discussion
The results in the previous section show that although the same operating point
has been used as a starting point for all scenarios, the PCLL and the SOL differ
significantly depending on the current load configuration and the type of fault that
is considered. The largest difference between the two security margin methods was
found when either the loads were of high constant power characteristics or consisted
of a large penetration of induction motor loads. These results thus confirm the
well-known fact that loads with fast restoration dynamics (where a constant power
characteristic can be considered a theoretic extreme case) will deteriorate the system
stability, and illustrate how significant this impact may be on the computed security
margins.

The main conclusions of this study, that high penetration of loads with fast restora-
tion dynamics will result in a difference between the PCLL and the SOL, should
generalize well to other types of power systems. However, care should be taken
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Figure 5.9: Voltage evolution for bus 1041 for Scenario 15A for different levels of
system stress.

when generalizing the specific results of this study to real power systems with differ-
ent characteristics. For instance, although the difference between the SOL and the
PCLL in this study was found to be negligible whenever the share of constant power
characteristic of the active part of the loads was lower than 50%, this is not neces-
sarily the case for other systems with different dynamics. System operators would
thus be required to perform a similar analysis on their specific systems to analyze
during what specific loading scenarios the PCLL and the SOL start to differ.

The stability assessment practice of many system operators is, to the author’s best
knowledge, to compute security margin estimations based on the PCLL, often in
combination with DSA. While DSA can provide certain types of security margins
based on indices such as the transient energy functions [120], it does not provide
an accurate measure of the loadability limit to the point where the system can no
longer remain secure. If system operators continue to rely on conventional security
margins computed by the PCLL, it is important to at least verify the reliability of
those security margins to avoid either overly optimistic security margins or to avoid
the need of adding unnecessary large reliability margins to the computed security
margins. To account for modeling inaccuracies, transmission reliability margins
are often added to ensure that modeling inaccuracies will not cause the system to
be operated unknowingly in a non-secure operating state. Thus, if more accurate
methods to determine security margins are used, such as the SOL, these reliability
margins may theoretically be reduced and the system operators could more efficiently
utilize the existing transmission capacity.

Dynamic load modeling may also become increasingly important in the future, as
more loads are expected to be controlled through power electronically-controlled
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interfaces. These types of loads, such as electric vehicle chargers, inhibit very fast
dynamic responses after disturbances [121]. Despite this, dynamic load models
are still relatively unused in the industry. In a large survey study from 2013 on
international industry practice on power system load modeling, it was shown that
about 70% of system operators and utilities still only used static load models for
power system stability studies [122]. A drawback of advanced load models is that
the load composition is often partly unknown to system operators, and it is thus
more straightforward to use the simplified static load models. Another drawback is
the increase in computational requirement during simulations, which reduces their
applicability in real-time applications. However, although complex load models do
not necessarily need to be used in real-time applications, sensitivity analyses can
preferably be performed using these models, so that the impact of various degrees
of motor loads and other types of loads on the stability of a system can be studied.

While this study focused on the impact of different load models, converter-interfaced
generation and other power electronic devices in the power system will also have a
significant impact on the computed security margins. Although a growing share of
renewable generation is often challenging from a planning perspective due to the in-
termittency of the energy source, the converter interface may in fact mitigate some
of the short-term instability phenomena. For instance, with proper design of the
converter controls, such components can contribute in providing fast voltage/reac-
tive power control or active power control for fast frequency responses. The impact
of such components, also in combination with loads with fast restoration dynamics,
deserves further attention in future research.
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Chapter 6

Fast dynamic voltage security
margin estimation

This chapter presents a method for fast dynamic voltage security margin estimation
based on the methodology and the results established in Paper V. The method is
proposed to be included as a preventive monitoring application in the developed real-
time dynamic stability assessment and control tool, earlier presented in Chapter 4.

6.1 Introduction
In Chapter 5, the circumstances when the SOL is preferred to the conventional PCLL
was presented. However, SOL estimation is computationally demanding, where mul-
tiple time-domain simulations (or combinations with QSS) are required to trace the
security limit for a range of different contingencies. In this chapter, a methodology
for fast estimation of the DVSM is proposed to overcome the computational difficul-
ties when estimating the margin. The DVSM is computed identically as the SOL,
with the difference that only voltage stability limits are taken into account for the
stability criterion.

The method uses two different NNs to provide both an estimate of the actual DVSM
at a specific OC, and to determine the dimensioning contingency for the system with
respect to the DVSM. These estimated values are then used as starting points in
a method called dual binary search to significantly reduce the required computa-
tional time in computing the actual DVSM. The method is developed to mitigate
inconsistency issues associated with ML methods under new or unseen operating
conditions.

6.2 Methodology for fast estimation of the DVSM
The NNs are trained on a training set consisting of i) computed values of DVSM
for a range of different OC, and ii) the dimensioning contingency for the same OCs.
Once the NNs are trained, they can almost instantaneously provide estimations
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of the DVSM for a certain OC, and classify which contingency is most likely to
be dimensioning for the system security margin. The first step of the method is
the generation of credible OCs and estimations of the DVSM for a set of credible
contingencies. The method is tested on the Nordic32 test system found in Fig. 4.2
with all data and models as presented in [108]. After a representative training set
has been generated, the training scheme of the two NNs is presented. Each step in
the methodology is described in the following subsections.

6.2.1 Generation of training data
The training data for the NNs were generated using PSS®E 34.2.0 with its in-built
dynamic models [118]. Here, full time-domain simulations have been used, but the
methodology could also be generalized for combinations of QSS and full time-domain
simulations. The steps of generating the training data are illustrated in the flowchart
in Fig. 6.1 and can be summarized as follows:

Randomly initialize
starting OC

Feasible?
Yes

No

Run dynamic simulation
& apply contingencies

Conti

Meeting stability criteria?

Increase ΔP1 and solve load flow

Yes

DVSM

|ΔP1| < ε

Yes

Return to previous
pre-contingency

state

No
New ΔP1

ΔP1 = -|ΔP1|/2
No

i = i + 1
Use sampled DVSM
as starting point for

next contingency

Sample lowest DVSM and
dimensioning contingecny
as target values (yDVSM, ycont)

Sample initial OC
as input values (x)

START

Figure 6.1: Flowchart of the generation of training data for the DVSM and the NN.

(i) Choose initial operating conditions: All initial OCs were randomly generated
around the stable operating point of the simulated Nordic32 system denoted
as "operating point B" in [108]. The total load in the system for each initial
OC was generated by multiplying all the active loads randomly from the same
uniform distribution (80 % of the original load as the lower limit, 95 % of
the original load as the upper limit). Then, each individual load was varied
by again multiplying the now updated load value with a random variable
generated from a new uniform distribution (this time with 80% as the lower
limit, and 120 % as the upper limit). The power factor of all loads was kept
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constant. The total change in loading was then randomly distributed among
all the generators in the system. The generated initial OCs were first solved
using a conventional full Newton-Raphson load flow solution, which served as
a starting point for the dynamical simulation. In the case the system was not
found feasible, the initial OC was re-initialized.

(ii) Increase system stress and solve load flow: The system stress was then in-
creased for the secure initial OC by increasing the power transfer between the
two areas "North" and "Central". The increased system stress was achieved
by increasing the loads in the "Central" area with a total of ∆P1 = 200 MW,
while simultaneously increasing the generation in the "North" area by the same
amount. The power factors of each load were again kept at the initial values.
The distribution of the added load and generation was based on the initial
load or the rated capacity of each generator. Thus, a bus with a larger initial
load, or a generator with a higher rated capacity, received a larger share of
the increased load and generation. The required generation that could not be
supplied by the regular generators was distributed to the slack bus generator
in the system, g20, see Fig. 4.2. After the loads and generation were updated,
the load flow was reiterated which served as a starting point for the time-
domain simulations. To avoid numerical and stability issues when increasing
the system stress of the static system, the system stress was increased in small
increments where a load flow solution was solved for each increment.

(iii) Run time-domain simulation and test for security: A time-domain simulation
was then initialized for the first contingency. In the relatively small Nordic32
test system, the same single contingency was found to be dimensioning for al-
most all different initial OCs. To test the possibilities of using a NN to classify
the dimensioning contingency, two different contingencies were handpicked as
they were found to be dimensioning for different OCs. The tested contingency
type was a three-phased fault on a transmission line applied for 0.1 seconds,
followed by tripping the faulted line which was then kept tripped during the
remaining time of the simulation. The lines between the buses "4031− 4041"
and "4032− 4044", connecting the "North" and "Central" areas were used, see
Fig. 4.2 for reference. Each simulation then ran for a total of 500 seconds. The
system was considered secure if, at the end of each simulation, all transmission
bus voltages were above 0.90 pu.

Each dynamic simulation ran for a total of 500 seconds but was in the case of
a major voltage collapse stopped in advance. The simulation time was chosen
to ensure that the system either fully stabilized or collapsed. It should be
noted that the required simulation time is dependent on the power system in
consideration, and it is likely that different simulation times would be required
in actual implementations of the algorithm. The system was considered secure
if, at the end of each simulation, all transmission bus voltages were above
0.90 pu.

(iv) Re-iterate and test other contingencies: In case the system was found secure
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for the tested contingency, the system stress was increased again with ∆P1,
followed by another security test. In case the system was not found secure, the
previously added system stress was reduced by half, and the process was re-
initialized. This process of iteratively updating the system stress and testing
for security continued until the increase in system stress was below a precision
value of ε = 5 MW. The DVSM was then computed by taking the difference in
system loading between the initial OC and the secure system with the highest
level of system stress.

Once the DVSM for the first contingency was computed, the same procedure
was repeated for the second contingency. To save computational time, the
estimated DVSM for the first contingency was used as a starting point for
the estimation of the second contingency. If the system at that level of system
stress was found secure for the second contingency, the simulation was stopped.
Otherwise, the search algorithm continued until a new smaller value of the
DVSM was found.

(v) Sampling the input values and target values: An input vector x consisting
of measurements of all bus voltage magnitudes and angles, and active and
reactive power flows were sampled from each one of the initial OCs. The choice
of which input values to include in the training was based on the results in [123],
which found that bus voltage magnitudes and angles were found to be the best
combination of inputs when estimating the VSM using a NN. The active and
reactive power flows were then added as additional inputs as this was found
to increase the accuracy in the estimations even further. Two target vectors
yDV SM and yCont were generated by sampling the DVSM for each case, and
the contingency that was dimensioning for the specific case, respectively. The
previously described steps were re-iterated until a sufficiently large training
set was generated.

6.2.2 Architecture of the neural networks
The architecture of the two NNs used in this thesis are presented in Fig. 6.2 and the
specific details regarding the architecture and the training parameters of the two
NNs are specified in Table 6.1. In the training phase, the two NNs take the same
vector of input values, which are forwarded to each of the hidden layers through a
set of weights, illustrated by the lines connecting each of the neurons. The output of
each neuron in the hidden layer is computed using a non-linear activation function
on the sum of all the inputs, which is then forwarded to the output layers. The
ReLU was used as the non-linear activation function for the two NNs. For the
NN estimating the DVSM, the outputs are forwarded to a regression layer with a
linear activation function. For the NN responsible for ranking the contingencies, the
outputs are forwarded to a layer with a softmax activation used for classification.
The softmax activation function is generally used for multi-class classification but
generally works well also for binary classification as is the case here. The softmax
activation function outputs a probability vector, where each class is given a certain
probability. The probability vector can then be used to rank the contingencies in
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Figure 6.2: The two NNs trained to evaluate the DVSM and the buses with the
lowest margin to instability.

order of which most likely will become dimensioning.

In the training phase, the networks use the true target vectors yDV SM and yCont,
while during the test or prediction phase, the network estimates the DVSM and the
ranked contingencies by generating the vectors ŷDV SM and ŷCont for the current OC.
The supervised training approach aims to update and learn the suitable values for
the weights connecting each layer, implicitly modeling the non-linear relationship
between the inputs and outputs.

6.2.3 Training
Different data sets were used in the training, validation, and testing of the method.
The training data has the dimension (364 x 6,000), where the dimensions represents
the number of inputs, and the total number of training cases, respectively. Each
network was trained for a maximum number of epochs, where an epoch is finished
when all the cases in the training set have been used to update the network pa-
rameters. To reduce overfitting on the data, ridge regression (also known as L2
regularisation) was used to ensure the data does not rely too heavily on any single
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Table 6.1: Design and hyperparameters used in training.

Parameter NN 1 / NN 2
D
at
a

Number of inputs 364 / 364
Training cases 6,000 / 6,000
Validation cases 400 / 400
Test cases 400 / 400

Ar
ch
ite

ct
ur
e Hidden layers 1 / 1

Final activation function Linear / Softmax
Hidden cells 128 / 32
Hidden layer activation ReLU / ReLU

Tr
ai
ni
ng

Max Epochs 1,000 / 3,000
Learning rate (α) 1 · 10−6 / 1 · 10−5

Dropout 0 % / 50 %
L2 parameter 0.01 / 0.01
Optimizer Adam / Adam [124]
Loss metric MSE / Categorical cross-entropy

feature. To further reduce overfitting, a technique called dropout was applied where
a certain percentage of the connections between each layer were masked/dropped,
to ensure that the model does not rely too heavily on certain connections. The
MSE was used as a metric for the NN estimating the DVSM, while the categor-
ical cross-entropy loss function was used for the NN classifying the dimensioning
contingency. An adaptable algorithm for gradient-based optimization, Adam, was
used in training the network [124]. The learning rate was the only parameter that
was specifically tuned for the algorithm, while the remaining used the default values
according to [124].

It should be noted that both the training parameters and the architecture of the
two networks have been iteratively tuned to increase the regression and classification
accuracy. A deeper architecture with more hidden layers was found to not increase
the performance for the specific test case and training set size. Other hyperparam-
eters and network architectures would likely have better performance for other test
systems than the Nordic32. By increasing the training set size further and spending
even more effort in tuning the networks, even better accuracy could theoretically be
achieved.

6.2.4 Fast DVSM estimation and dual binary search
In [13], a binary search method was proposed to estimate the DVSM. Here, an
alternative approach denoted as the dual binary search method is proposed, which
should be able to increase the computational speed of the DVSM. The trained
NNs in Fig. 6.2 takes the same set of measurements and generates: (i) an estimated
value of the DVSM, and (ii) an estimated ranked order of the contingencies that most
probably will be dimensioning for the current OC. The estimated DVSM is used as a
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Figure 6.3: Dual binary search for multiple contingencies.

qualified estimate of the real DVSM, which is validated through actual time-domain
simulations. The dual binary search method is then used to take advantage of the
estimated DVSM and the dimensioning contingency to reduce the computational
time when validating the real DVSM for the system.

The dual binary search method is illustrated for two cases in Fig. 6.3. Case 1 illus-
trates the estimation process for an overestimated value of the DVSM, while Case 2
illustrates the estimation process for an underestimated value of the DVSM. Black
dots indicate secure operating points and white dots indicate unsecure operating
points. The estimated DVSM is always the starting point for the search of the ac-
tual DVSM of the system. The system stress is increased to this point iteratively
using the approach explained in section (ii) to avoid convergence problems.
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Once the stressed static base case is found, a time-domain simulation is initiated for
the highest ranked contingency by the second NN, which is the contingency that most
likely will be dimensioning for the DVSM. The initial estimated DVSM level is then
tested for the chosen contingency. In case it is stable (respectively unstable), the
system stress is increased (respectively decreased) with a certain value represented
by ∆P2. A value of ∆P2 equal to the MSE of the estimated values for the DVSM
is proposed, which should represent a reasonable uncertainty and step size for the
estimation. If the new operating point is found to be secure, the system stress is
again increased with ∆P2. In case it is not found to be secure, which happens in
the example illustrated in Fig. 6.3, the system stress is reduced by ∆P2/2. The dual
binary search is then continued until a secure operating point is found and when the
step size in system stress change is smaller than a specified precision level (ε).

This level of system stress is then tested for the other contingencies, in ranked
order, until all lower-ranked contingencies have been tested and found secure. For
both the cases illustrated in Fig. 6.3, this level of system stress for the second-ranked
contingency was found to result in a secure operating point. A third and final ranked
contingency is then tested, which for Case 1 in Fig. 6.3 is found to be unsecure. The
system stress is thus reduced further for this case, resulting in a secure operating
point which then constitutes the dimensioning DVSM for the system. It should be
noted that for Case 1, the contingency ranking was not perfect, with the result that
an extra time-domain simulation was required.

6.3 Results and discussions
In the following section, the results from the regression and classification on the test
set for the two NNs are presented. Furthermore, the reduction in computational
effort is compared between the conventional tracing method and the proposed dual
binary search method. Finally, practical applications and discussions related to
DVSM estimation are presented.

6.3.1 Regression and classification accuracy
The prediction accuracy for the NN estimating the DVSM is presented in Fig. 6.4,
where the estimated DVSM is plotted with respect to the real DVSM for the test
set. The diagonal line indicates where the points should lie in case the estimated
DVSM perfectly matches the real DVSM. Table 6.2 lists the mean and maximum
error of the estimations in percentage, as well as the MSE presented in MW. The
results indicate that the NN is generally capable of accurately estimating the DVSM
given an initial OC, with a mean error for the test set of 1.49 %. The maximum
estimation error was found to be 10.96 %, while the MSE was estimated to be 13.35
MW.

The classification accuracy of the NN used in ranking the dimensioning contingency
is presented in Table 6.3 in the form of a confusion table. Each number in each row
represents the instances of the real dimensioning contingencies, while each number
in each column represents the instances of the predicted dimensioning contingencies.
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Figure 6.4: Prediction accuracy of estimating the DVSM.

Table 6.2: Regression results for estimating the DVSM.

Mean estimation error Maximum estimation error Mean squared error
[%] [MW] [MW]
1.49 10.96 13.35

The conditional probabilities of correctly classifying the dimensioning contingency
are presented in the column furthest to the right. Similarly, the conditional proba-
bilities of a dimensioning contingency actually belonging to the predicted class are
presented in the bottom row of the table. The total accuracy for the classification
is presented in the rightmost corner of the table, and an accuracy of 91.3 % was
provided for the test set. Thus, in about 9 instances of 10, the NN is capable of
classifying which contingency that will be dimensioning for the DVSM for a specific
OC. It should again be mentioned that the estimation and classification results could
be enhanced further by either increasing the training set size or by a more careful
exploration of suitable hyperparameters for the training of the networks.

Table 6.3: Confusion table showing real and predicted dimensioning contingencies.

Predicted
L4044 - L4032 L4044 - L4032 Accuracy

Re
al

L4044 - L4032 104 23 81.9 %
L4044 - L4031 12 261 95.6 %
Accuracy 89.6 % 91.9 % 91.3 %
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6.3.2 Computational efficiency
In this section, the computational efficiency is compared between the proposed fast
dual binary search method and the more conventional tracing method that was used
in generating the training set (see Section 6.2.1 for reference). The proposed fast dual
binary search method, explained in Section 6.2.4, uses the estimated DVSM value
and the dimensioning contingency as a starting point to validate the real DVSM.
The computational efficiency is measured as the average number of time-domain
simulations required in estimating the DVSM. The results of using the two different
methods are presented in Table 6.4. The average number of time-domain simulations
required in estimating the DVSM using the conventional tracing method was found
to be 15.3, while the corresponding number using the proposed dual binary search
method was 4.7. The reduction in the average number of time-domain simulations
required was thus -69.2 % when the proposed method was applied.

Table 6.4: Reduction in computational effort using the proposed method.

Average number of time-domain simulations
Conventional tracing Dual binary Relative reduction
method search method in computation time
[No.] [No.] [%]
15.3 4.7 -69.2 %

It should be noted that the exact comparison in computational efficiency between
the two methods is of comparatively little interest, as it mainly applies to the specific
test case used in this thesis. For instance, the computational savings are probably
significantly higher in most real applications, where a larger range of contingen-
cies may be dimensioning for the DVSM. Furthermore, in real applications where
the range of the DVSM may be larger than what has been used here, the conven-
tional search algorithm would require significantly more time-domain simulations
to find the true DVSM. Similarly, it is also possible to further enhance both the
conventional search algorithm and the dual binary search algorithm by, for instance,
choosing more suitable values of ∆P1, or increasing the precision value of ε. The
most notable result is instead that the computational effort in estimating the DVSM
can be reduced from requiring a large number of time-domain simulations, to only
requiring a few. Although a few time-domain simulations would still take some time
to compute for a real power system, it should be possible to provide sufficiently fast
estimations of the DVSM to classify it as a "near real-time" estimation.

6.3.3 Impact of sudden topology change
In any real application, the performance of a NN is dependent on its generalization
capability. This refers to the capability of the NN to generalize the learning from the
actual training set to other, yet unseen, cases. In this section, the performance of the
NNs to generalize their estimations when subjected to test cases where unplanned
topology changes have taken place is examined.
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For simplicity, only topology changes in the form of opened transmission lines are
considered. To ensure that the Nordic32 test system is still secure despite the topol-
ogy changes, only topology changes in the "North" region, see Fig. 4.2, were con-
sidered. Furthermore, only transmission lines between buses served by two parallel
transmission lines were used in generating the test set with topology changes. A new
test set of 400 cases was then generated in the same manner as explained in Section
6.2.1, with the difference that the topology changes were now added randomly.

In Fig. 6.5, the prediction accuracy of the NN estimating the DVSM is presented
when the network has been trained on two different training sets. Case 1 presents the
prediction accuracy when no unseen cases with topology change have been included
in the training set. Case 2 presents the prediction accuracy when a few (100)
training cases with topology change have been included in the training set. For
Case 2, the two NNs were re-trained on the updated training set using the same
training approach as previously described. Table 6.5 lists the mean error of the
estimations in percentage for each case, as well as the MSE presented in MW. The
result for Case 1 indicates that a sudden topology change will significantly affect the
accuracy of the predictions. Although many cases were accurately predicted, the
number of outliers increased significantly. The prediction accuracy was higher for
Case 2, even though only a very small number of cases with the topology changes
were added to the training set. The classification accuracy of the NN used in ranking
the dimensioning contingency was also affected significantly for the two cases, with
a total classification accuracy of 55 % and 78.5 % for case 1 and case 2, respectively.

The results highlight the importance of obtaining a representative training set and
also taking into account the possibilities of unplanned topology changes. It was seen,
that by the inclusion of even a very small set of training cases with various topology
changes, the prediction accuracy could be increased significantly. Thus, in the event
of an unplanned change in the system, the system operator could quickly generate a
small training set on the new OC, and then retrain the NNs on the generated data.
It should be noted that the proposed robust methodology of always validating the
estimations of the NNs with actual time-domain simulations reduces the impact of
these types of erroneous estimations. The main impact of a poor estimation of the
DVSM will be that the time to validate it will increase.

Table 6.5: Regression results of the DVSM estimation for the two cases.

Mean estimation error Mean squared error
[%] [MW]

Case 1 12.97 134.38
Case 2 7.33 63.59

6.3.4 Discussions and practical applications
The proposed method is aimed to be used as an online tool for system operators to
estimate a power system’s dynamic voltage security margin. The method does not
necessarily have to replace conventional VSM estimation, but may instead be used
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Figure 6.5: Prediction accuracy of the NN during sudden topology changes. With
and without trained on a training set with a 100 training cases with topology changes
included.

as an additional source of information to system operators to provide better and
more accurate estimates of the total transmission capacity in their systems.

Theoretically, the DVSM estimates by the NNs could be used directly to provide real-
time estimates of the security margin. However, despite years of research, examples
where these methods have been practically applied in system operators’ monitoring
and control systems are, to the authors’ best knowledge, very few. From a system
operator view, an inferior method that always works are generally preferable to a
superior method that in some instances does not. The proposed method is thus
suggested to utilize the advantages of ML, while still ensuring that the method
always provides good estimates regardless of the current OCs.

The results in the previous section indicated that by using the proposed method,
the number of required time-domain simulations to estimate the DVSM could be
reduced to only a few, allowing system operators to estimate the DVSM in a time
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frame that could be defined as "near real-time". The update frequency of security
margins will affect the required transmission reliability margins as the underlying
system continuously change between the assessments. The actual estimation speed
will still be affected by a range of different factors such as the computational speed
of the hardware being used, the size of the specific power system in consideration,
or the required precision (i.e. the value of ε).

Measurements of bus voltage magnitudes and angles, as well as active and reactive
power, have been assumed to be available, either directly from measurements or
from state estimations of the system. However, to ensure that missing values and
errors are filtered out, all measurements should preferably be preceded by a state
estimator. To adapt to the evolving operating conditions and self-rectify any bad
predictions, the two NNs should be trained continuously during operation. Using
approaches such as stochastic gradient descent, the NNs weight parameters can
continuously be tuned to increase the robustness and accuracy.
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Chapter 7

Voltage instability prediction
using a long short-term memory

network

This chapter presents an algorithm for real-time voltage instability prediction based
on the developed methodology and the resulting findings in paper IV and paper VI.
The methodology for training the voltage instability prediction tool to indicate where
in the system the instability would emerge was first presented in paper VI. The final
voltage instability prediction tool is mainly based on the proposed architecture pre-
sented in paper IV. The method is proposed to be included as an emergency monitor-
ing application in the developed real-time dynamic stability assessment and control
tool, earlier presented in Chapter 4.

7.1 Introduction
In Chapter II, the voltage instability event and the need for emergency monitoring
systems were discussed. It was further discussed that conventional methods for VID
may be too slow to detect instability in time for system operators to initiate sufficient
emergency control actions. An alternative option is to use ML-based methods for
VIP, which can predict the onset of instability only seconds after a disturbance has
occurred in a system.

These methods are trained to indirectly correlate a post-disturbance state and learn
its dynamical trajectory, to be able to directly assess whether the system is heading
towards instability. Most previously developed methods for VIP have in common
that only instantaneous measurements are used as inputs to the VIP algorithms.
These inputs represent the "state signal" that the ML algorithm uses to predict the
future state. Ideally, the state signal should summarize all relevant information
required to determine the future state of the system. A state signal achieving this
is said to have Markov property [101]. However, the dynamic response of a power
system cannot be modeled as a first-order Markov process using only the static
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states provided by available measurements in the power system. Rather, the future
state of the system also depends on a range of unknown state variables such as the
rotor speed of generators, tap positions, or rotor slips of induction motors.

In response to these limitations, a new method based on an RNN with LSTM is
proposed. LSTM networks excel at capturing long-term dependencies [99], which
is an inherent aspect in long-term voltage stability [43]. The methodology and test
results for the proposed method, from here on denoted as LSTM-VIP, are presented
in the following sections.

7.2 Methodology for LSTM-VIP
The proposed method for real-time VIP is based on off-line training of an LSTM
network on a large data set consisting of time-domain simulation responses following
a set of credible contingencies. The method is aimed to be used as a supplementary
warning system that can assess the current state of the system in real-time. The
LSTM network takes real-time and historic measurements and attempts to assess
whether the current state will cause voltage stability issues several minutes into
the future. As time progresses and if new events occur in the system, the network
updates the assessment continuously. The network is also adapted to be able to
indicate where in the system instability emerges, following the approach developed
in [125], allowing more cost-effective countermeasures.

The first step of the method is the off-line generation of credible OCs and contingency
scenarios using time-domain simulations. The method is generic, but is here tested
on the Nordic32 test system with all data and models as presented in [108]. After a
representative training set is generated, training of the LSTM network is performed.
Each step in the methodology is described in the following subsections.

7.2.1 Generation of training data
The generation of a training set is a critical step and a range of different initial OCs
and contingencies were included to generate a representative training set. Dynamic
simulations were performed using PSS®E 34.2.0 with its built-in models [118]. The
steps of generating the training data are illustrated as a flowchart in Fig. 7.1 and
can be summarized as follows:

(i) Randomly initialize OC : For the Nordic32 system, the initial OCs were ran-
domly generated around the operation point denoted as "operating point B"
in [108]. A large number of possible OCs were simulated by randomly initiating
the loads from a uniform distribution around the base case load levels (80 %
of the original load as a lower limit and 120 % as an upper limit), while the
power factor was kept constant. The total load change was distributed among
the generators based on a weighted random distribution, where a higher rated
capacity of a generator results in a higher probability to cover a larger share
of the total load change. All generation that could not be supplied by the
regular generators were distributed to the slack bus at g20, see Fig. 4.2.
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Randomly initialize OC

Solve load flow
Feasible?

Run dynamic simulation
until convergence or collapse

Yes

No

Start dynamic simulation and
run for a period to sample N-0 data

At every time step (t),
sample input data (xt)
from measurements
(V,δV,P,Q)

N-1

Wait for certain
randomized time period

Classify each event and generate target value
vectors for whole simulation sequence

N-1-1

Apply a second random
contingency

Reiterate

Apply a random contingencyApply a random contingency

Figure 7.1: Flowchart for generating input data and target values.

In real applications, more delicate methods for efficient database generation
and more careful generation of relevant OCs should be used [16, 126], where
for instance the impact of unit commitment and topology changes are taken
into account.

(ii) Solve and check for feasibility: The generated OCs were solved with a power
flow simulator, which served as a starting point for the dynamical simulation.
If the system load flow did not converge, the initial OC was re-initialized.

(iii) Start dynamic simulation and introduce contingencies: Two separate dynamic
simulations were then initiated for the N -1 and the N -1-1 cases. The process is
illustrated in Fig. 7.2. For each of the two cases, the system runs without any
contingencies for 65 seconds to generate a sufficient amount of N -0 data for
the LSTM network to train on. At t = 66 seconds, the same first contingency
was applied to both of the cases. After an additional uniformly distributed
random time in [10−30] seconds after the first contingency, a secondary consec-
utive contingency was applied for the N -1-1 cases. Events resulting in several
(near-)simultaneous contingencies were not taken into account (N -k events).

The considered contingencies in the simulations were either (i) tripping of a
generator, or (ii) a three-phased fault during 0.1 seconds, followed by tripping
the faulted line, which was then kept tripped during the remaining time of
the simulation. The first contingency was chosen to be a major fault, meaning
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a fault on any transmission line connecting the different main areas in the
system (excluding the "Eq." area, see Fig. 4.2), or any larger thermal generator
in the "Central" area. The second contingency, for the N -1-1 cases, included
tripping of any transmission line in the whole system, excluding lines in the
"Eq." area. No variations of load and generation were taken into account
during the dynamic simulations as these, in the relatively short time of the
simulations, are presumed to have a small impact on the system stability. In
real settings, depending on the system and the experience of the operator, all
relevant contingencies can be used in the training.

(iv) Sample inputs and run until stopping criteria: For each of the two cases,
an input vector xt consisting of measurements of all bus voltage magnitudes
(Vmag) and angles (Vθ), active and reactive power flows (Pflow, Qflow), were
sampled every second (∆t = 1s) and saved in a data file. The value of ∆t = 1s
is dependent on the possible measurement update rate in the actual system and
will determine the rate the estimations are available to the system operator.
No information regarding the type and location of applied the contingencies
were sampled, as this information implicitly can be learned by the LSTM
network. For instance, the LSTM network should be able to correlate a zero
power flow in a transmission line with that line being out of service.

Each dynamic simulation ran for a total of 560 seconds, but was, in the case
of a major voltage collapse, stopped in advance. The simulation interval of
560 seconds was chosen to allow time for all dynamic events to occur and for
the system to either fully stabilize or collapse.

(v) Classify each event and generate target value vectors: For each case, a sequence
of true target value vectors y1, ...,y560 was generated for every time step in
the time-domain simulation. Each yt in these sequences represents the classi-
fication of the system if the system is allowed to run from time t up until 560
seconds without any changes to the current system. As time progresses and
new events occur, the class of yt may change. The sequences consist of multi-
dimensional vectors where the actual class is encoded using one-hot (binary)
encoding.

The classification was performed according both to the severity and the lo-
cation of the system degradation at the end of the time-domain simulation.
The system was defined as stable if all transmission bus voltage magnitudes
were above or equal to 1 pu, in an alert state if any transmission bus voltage
magnitude ranged between 0.9 < V < 1.0 pu, and in an emergency state if
any transmission bus voltage magnitude was below 0.9 pu. Overvoltages were
not taken into account.

The target values for the alert cases were also classified according to where
the lowest bus voltage magnitudes were found at the end of each dynamic
simulation. The Nordic32 test system is predefined into four different regions,
namely: "Eq", "North", "Central", and "South" [108]. The regions "North",
"South", and "Eq." were found to be stable regions, and no alert events were
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Figure 7.2: Example of classification of an N -1 and an N -1-1 case.

found in these regions for any of the simulated cases. To test the capability of
the network to also indicate where instability emerges in the system, the "Cen-
tral" area was divided into three separate regions (indicated by C1, C2, C3
in Fig. 7.3). The classification for each time step of each simulation belonged
then to one of 5 different possibilities. Either the whole system was predicted
stable; it ended up in an emergency state; or an alert state was predicted in
one of the three defined regions (C1, C2, or C3) where the lowest occurring
transmission bus voltage was found.

The classification process is illustrated in Fig. 7.2. The target values are always
classified as stable up until the first contingency. From different combinations
of OCs and contingencies, the system may then end up being in a stable
state, an alert state in area C1, C2, or C3, or in an emergency state. For
the N -1 case, the sequence of true target value vectors from the time of the
contingency to the end of the simulation are classified depending on which of
these five states the systems end up in. For the example of the N -1 case in
Fig. 7.2, the system ends up in an alert state in the C1 area. For the N -1-1
case, the target values are classified as stable up until the first contingency.
The target values are then gathered from the N -1 case, using the end state of
that simulation for classifying the state between the first and the consecutive
contingency. After the second consecutive contingency, the system runs until
it either collapses or until 560 seconds. Depending on this final state, the
sequence of true target value vectors from the second contingency until the
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Figure 7.3: One-line diagram of Nordic32 system with subareas.

end of the simulation is classified. In the example in Fig. 7.2, an emergency
state is reached. Note that the scales in Fig. 7.2 are different from those in
the simulations for easier interpretation.

It should be noted that the classification of the different states (stable, alert,
emergency) could be performed more intricately to satisfy other criteria of
stability. For instance, these could be related to a minimum level of loadability
of the system in its post-disturbance state. The loadability limit could then
be computed by, for instance, parameterized continuation methods such as the
CPF method [14], or by certain line indicators [71]. Other stability criteria
could include the capability of the system in its post-disturbance state to
handle yet another disturbance.

(vi) Reiterate: The described steps are reiterated until a sufficiently large training
set is generated.

7.2.2 Architecture of the LSTM network
The proposed LSTM network architecture, shown in Fig. 7.4, is generally referred to
as a "many-to-one" architecture, where previous measurements in the time sequence
are used for the classification in the final block. The network consists of three stacked
LSTM layers which are used to capture different levels of features from the inputs.
Each LSTM block consists of 32 individual LSTM cells. The first layer of LSTM
blocks takes a generated sequence of input vectors as inputs; then by mathematical
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Figure 7.4: The proposed LSTM network architecture.

operation as presented in Section 3.2.6, the output of each block is forwarded both
to the following block in the sequence, as well as to the upper layer of LSTM blocks.
The inputs to the deeper layers consist only of the hidden states of LSTM blocks
of previous layers, while both the hidden state and the cell state memory is passed
along the time sequence between LSTM blocks of the same layer.

The LSTM network is designed to take sequences of 60 time steps of measurements
as inputs. The internal architecture of each LSTM cell and functionality of the
nonlinear gating units as presented in Section 3.2.6, allows the LSTM network to
fully utilize and pass forward the information from the first to the final time step in
the sequence. The third layer of LSTM blocks only passes the output forward along
the time sequence. The output layer at time t is a fully connected network with
softmax activation for classification. In training, the network uses the true target
vector yt at time t, while during the test or prediction phase, the network estimates
a prediction vector ŷt at time t. The interpretation of the prediction problem is
further explained in section 7.2.4.

7.2.3 Training the LSTM network
Different data sets were used for training, validation, and testing of the method
on a mix of N -1 and N -1-1 cases. The training data set has the following dimen-
sion (135,000×364×560), where the dimension represents the number of training
cases, the number of inputs, and the total interval in seconds for each simulation,
respectively.

Before training, a process generally referred to as sequence preprocessing was per-
formed to prepare batches of sequences with suitable length. The network is designed
to take a sequence of 60 time steps of measurements as inputs and subsequences with
a length of 60 time steps (xt−59, ...,xt) were thus extracted from the 560 seconds
long simulation intervals, for different values of t. For each subsequence of input
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Table 7.1: Design and hyperparameters used in training.
Parameter Values and size

D
at
a

Simulation interval 560
Input dimension 364
Input data type Vmag, Vθ, Pflow, Qflow

Target classes 5
Training cases (N -1+N -1-1) 45,000 + 90,000
Validation cases (N -1/N -1-1) 5,000 / 10,000
Test cases (N -1/N -1-1) 10,000 / 10,000

Ar
ch
ite

ct
ur
e LSTM layers 3

LSTM sequence length 60
FC activation function Softmax
LSTM hidden cells 32
LSTM Activation function Tanh

Tr
ai
ni
ng

Max Epochs 500
Learning rate (α) 0.0001
Dropout & recurrent dropout 50 % / 50 %
Optimizer Adam [124]
Loss metric Categorical cross-entropy

vectors, a corresponding target value (yt) at time t was gathered. The sequence pre-
processing was performed 120 times for each training and validation case by varying
t between values of t = [60, 180]. The lower bound of t is required to always allow
historic data to be included into the sequence. The LSTM network could have been
trained on the whole simulation interval by increasing the upper bound of t from
180 to 560. However, since the method is proposed to be used in fast VIP appli-
cations, there is less usefulness of predicting instability long after the contingencies
have occurred.

The generated subsequences were then used to train the LSTM network. Due to
memory limitations, a method called mini-batch gradient descent was utilized where
mini-batches of 1000 subsequences were used separately to train the network. The
training was performed for a maximum of 500 epochs. An epoch is finished when all
generated batches have been used to update the network parameters. An adaptable
algorithm suitable for gradient-based optimization of stochastic objective functions,
more commonly known as "Adam" was used in training the network [124]. The
algorithm used default parameters according to [124], except for the learning rate
which was tuned. The loss function on which the optimizer is applied is the cat-
egorical cross-entropy function, which is suitable for multi-classification problems.
To avoid overfitting the data, two regularization techniques were used during the
training. First, early stopping was implemented, and the training of the network
was stopped in case the performance on the validation set did not improve after six
epochs. Second, a technique called dropout was applied, where a certain percentage
of the connections between inputs and the LSTM cells were randomly masked (or
"dropped") to reduce overfitting on the data. Both conventional dropout and recur-

92



7. Voltage instability prediction using a long short-term memory network

rent dropout between consecutive blocks were applied during the training phase.

All other parameters related to the training of the network are presented in Table
7.1. The LSTM network was trained and implemented in Python, using the Keras
library with TensorFlow backend. The architecture and parameters used to train
the network have been iteratively tuned to increase the classification accuracy. It
should be noted that the tuning could be extended even further to allow an even
better classification accuracy.

7.2.4 Interpretation and intuition of the VIP problem
By the proposed training and architecture of the LSTM network, a classification
problem is solved where the current system state space is separated into different
regions. Every state on a trajectory to a stable, alert (in C1, C2, or C3), or emer-
gency state is labeled accordingly. The LSTM network is then trained on this data
to implicitly learn these asymptotic properties of solutions and the trajectories of
the system state. Once trained, the network can correlate the inputs, current and
historic measurements, with a certain state-space region and trajectory, allowing
warnings of voltage instability only moments after a contingency have occurred in a
system. The classification is performed under the assumption that the current sys-
tem is unchanged, meaning that no additional contingencies or changes in generation
and load configuration will occur. However, as time progresses, new observations
are used as inputs to the LSTM network to continuously update and incorporate
such changes in the system.

This VIP problem should be interpreted as a fixed horizon prediction problem,
where the prediction horizon always is the final state given by the trajectories of
the (dynamical) system. This interpretation assumes that the simulation horizon
of the generated time-domain simulations are sufficiently long so that extending
the simulation horizon even further, for this particular system beyond 560 seconds,
would not change the partitioning of the state space.

7.3 Results
In this section, the classification accuracy of the LSTM network is presented for two
different test sets, one containing only N -1 cases, the other containing N -1-1 cases.
Each test set was composed of 10, 000 cases of dynamic simulations. The test results
of the predictions are presented using categorical accuracy, where the indices of the
true target values are compared to the argument maxima of the predictions. The
accuracy at each time step is then calculated over time for each of the two test sets.

The data were fed into the network in the form of a rolling window, with subse-
quences generated in the exact same manner as described in Section 7.2.3. As time
t progresses, new measurements entered the network from the rightmost block in
the input layer and were shifted to the left in each time increment. Since the LSTM
network require a sequence of 60 time steps of data, no predictions were made before
t = 60. To facilitate the presentation in the following figures, a new time index T is
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Figure 7.5: Classification accuracy over time for the proposed LSTM network.

introduced here. The relationship between the two time indices is T = t− 60. The
LSTM network’s performance for VIP is not only tested during the short "just after
disturbance" state but during a longer period of the dynamic trajectory the system
takes following the disturbances. This is performed to test the network’s capability
to incorporate new observations and improving its assessment as time progresses
throughout a voltage instability event. The classification accuracy is only plotted
for 120 seconds after T to better visualize the changes in accuracy after the contin-
gencies.

The classification accuracy over time is presented in Fig. 7.5. The classification
accuracy for the N -1 test set dropped significantly at T = 6 seconds, which is the
same instant that the first contingency is applied. The large drop in classification
accuracy can be attributed to low bus voltages instantaneously following the first
contingency, which the LSTM network has learned to correlate to a voltage insta-
bility event. The large drop in accuracy only remained for a single measurement
point. After the first contingency, the classification accuracy increased and remained
constant at 100 % for the rest of the simulations. The classification accuracy for the
N -1-1 test set was identical up until the time when the consecutive contingencies
were randomly applied. During this time, illustrated by the arrows in Fig. 7.5, the
classification accuracy decreased slightly. Since these contingencies do not occur at
the same time instant in each test case, the same instant drop in accuracy as for
the N -1 cases was not seen. The accuracy then gradually increased and stabilized
at around 97-98 %.

The results show that the LSTM network can classify and predict future stability
almost perfectly for the N-1 contingency cases and with good accuracy for the N-1-1
cases. To examine which cases were misclassified, the prediction accuracy for the
two test sets, evaluated at T = 50 seconds, are presented in Table 7.2 in the form of a
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confusion table. Each number in the column in the table represents instances of the
predicted classes and each number in the row represents the instances of the actual
classes. The (empirical) conditional probabilities of correctly classifying a certain
state is presented in the column furthest to the right. Similarly, the conditional
probability of a state actually belonging to the predicted state is presented in the
bottom row of the table. The total accuracy is presented in the lower right corner
of the table. The accuracy for all N -1 cases is 100 % and no cases are falsely
classified. For the N -1-1 test set, the lowest classification accuracy occurred for the
alert states. After inspection of the falsely classified cases, it was found that several
of these were borderline cases where the transmission bus voltage magnitude used in
the classification were very close to what was used in the other classes. The highest
classification accuracy occurred for the emergency cases with 99.8 %.

It should be noted that the test and training sets were weighted with more cases
ending up in certain classes than others. It is thus probable that the results are
slightly biased with higher accuracy for these classes, and that the classification
accuracy of the other classes may be lower as an effect.

7.4 Sensitivity analysis
In this section, a sensitivity analysis of various hyperparameters and other aspects
that will affect the performance of the LSTM network is presented. First, the impact
of the sequence length of the LSTM network is examined and compared to that of
a conventional NN. The impact of different measurement update rates and is then
examined, followed by a study of the network’s generalization capability.

7.4.1 Impact of sequence length
In this section, the performance of the sequence-based approach is tested and com-
pared against a conventional feedforward NN, which only uses a single snapshot of
measurements as inputs. Further, to test the impact of a shorter time sequence, the
results of an LSTM network using a time sequence of 30 time steps, instead of 60,
are presented.

To allow a fair comparison between the two approaches, the feedforward NN used
in this comparison was designed to be as similar as possible to the LSTM network.
Essentially, the design of the NN in the comparison is identical to the final time
step in the LSTM network presented in Fig. 7.4, with the difference that each layer
consists of a hidden layer of neurons. The designed NN has thus three hidden
unit layers, each layer with 32 hidden nodes. The same FC layer with a softmax
activation function was used. The training for the NN was performed identically as
for the LSTM network, with the exception that instead of a sequence of input values,
a single snapshot was used. The LSTM network using a shorter time sequence was
trained identically to that of the longer LSTM network with the exception that a
shorter sequence of 30 instead of 60 time steps was used.

In Fig. 7.6, the classification accuracy on the N -1-1 test set is presented for the two

95



7.
Voltage

instability
prediction

using
a
long

short-term
m
em

ory
network

Table 7.2: Confusion table showing prediction results and accuracy of the LSTM network evaluated at T = 50 seconds.

Predicted states (N-1 / N-1-1)
Stable state Alert state Emergency state Accuracy

Classification All areas C1 C2 C3 All areas

Ac
tu
al

st
at
es

Stable state All areas 2,766 / 1,147 0 / 36 0 / 11 0 / 8 0 / 8 100 / 94.8 %

Alert state
C1 0 / 0 856 / 562 0 / 3 0 / 0 0 / 5 100 / 98.6 %
C2 0 / 5 0 / 5 1,874 / 1,222 0 / 0 0 / 109 100 / 91.1 %
C3 0 / 0 0 / 0 0 / 12 0 / 208 0 / 0 - / 94.5 %

Emergency state All areas 0 / 0 0 / 0 0 / 10 0 / 0 4,504 / 6,649 100 / 99.8 %

Accuracy 100 / 99.6 % 100 / 93.2 % 100 / 97.1 % - / 96.3 % 100 / 98.2 % 100 / 97.9 %
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Figure 7.6: Impact of sequence length on classification accuracy.

LSTM networks with the different time sequence length and for the conventional
NN. The classification accuracy for the conventional NN was around 93 % after all
the consecutive contingencies had been applied, while that of the proposed LSTM
network is around 97-98 %. The results show that the performance of the LSTM
network using 60 time steps in the sequence significantly exceeded that of the con-
ventional NN, generally providing better classification accuracy over the whole time
frame of the simulation cases.

The classification accuracy of the LSTM network using a shorter sequence was sim-
ilar to the one using a longer sequence, with the difference of a large drop in clas-
sification accuracy occurring at around T = 46 seconds, see Fig. 7.6. The accuracy
declined for 20 seconds and was then restored to around 97 % accuracy. A similar
decline in classification accuracy, though less significant, can be noted for the LSTM
network using the longer time sequence at T = 76. Thus, a decline in classification
accuracy started exactly 60 respectively 30 seconds after the consecutive contin-
gencies were introduced (at T = 16) for the two networks, corresponding to the
network’s respective sequence length. One explanation of these results is that the
LSTM networks utilize information concerning the contingency and pre-contingency
state to enhance the classification accuracy. When the networks starts to lose the
information about the pre-contingency state, the chance of a misclassification in-
creases. The results strengthen the hypothesis that a long sequence LSTM network
could be used to enhance the state signal to provide better classification accuracy.
Theoretically, an even longer sequence could be used to increase the accuracy even
further. However, this would increase the computational cost of training, and a
balance between classification accuracy and computational cost should be sought.
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7.4.2 Impact of measurement update rate
The performance of the LSTM network is in this section tested for different values of
the measurement update rate. The performance is compared between the previously
assumed available measurement update rate of ∆t = 1s and the slower update rates
of ∆t = 3s and ∆t = 5s. Due to the slower update rates, the architecture and the
number of LSTM blocks along the time sequence had to be reduced accordingly.
The original LSTM network was designed to take subsequences of 60 time steps
of measurements as inputs. Thus, for the LSTM network adapted for ∆t = 3s,
the number of LSTM blocks along the time sequence was reduced to a third (20
blocks along the time sequence), while the number of blocks for the LSTM network
adapted for ∆t = 5s was reduced to a fifth (12 blocks along the time sequence). The
LSTM networks adapted for the new measurement update rates were then trained
identically to the original LSTM network, with the difference that now only every
third, respectively fifth, measurement in each generated subsequence were passed
on the networks.

The classification accuracy for the different values of ∆t is presented in Fig. 7.7
using the same N -1-1 test set as in previous sections. The results show that the
performance when using a measurement update rate of ∆t = 1s exceeds those using
a slower update rate. The largest difference can be identified during the period when
the second consecutive contingencies are applied, which indicates that a lower value
of ∆t is especially valuable for classification during the short time that follows a
disturbance. It should be noted that due to the slower update rates of ∆t, there is
no dip in the classification accuracy following the first contingency.

A larger value of ∆t may also increase the time it takes to accurately predict insta-
bility, as new measurements are being passed less frequently to the LSTM network.
In Table 7.3, the average time, after a contingency, to accurately predict the future
state of the system is presented for the different values of ∆t. The average time is
only presented for the time it takes to correctly classify the system states following
the second consecutive contingency, since correct classification following the first
contingency was almost instantaneous in all test cases. The time was computed
as the averaged passed time after the second contingency, up until the time when
the LSTM network could consistently and accurately predict the state of the sys-
tem. For cases that took longer time than 100 seconds to be correctly classified, a
detection time of 100 seconds was assumed to avoid skewed averaged values.

The average time to correctly predict the system state was found to be 6.6 seconds
for the proposed LSTM architecture using a measurement update rate of ∆t = 1s.
The corresponding values for the LSTM networks using the slower update rates of
∆t = 3s and ∆t = 5s, were 8.7 seconds and 10.7 seconds, respectively. The longer
time longer time to accurately predict instability for the slower update rates of ∆t
can be attributed partly to a lower classification accuracy, and partly to the fact
that measurements are being updated less frequently.
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Figure 7.7: Classification accuracy over time for different values of ∆t.

Table 7.3: Average time to predict the onset of voltage instability.
Measurement update rates

∆t = 1s ∆t = 3s ∆t = 5s
Average
prediction time [s] 6.6 8.7 10.7

7.4.3 Generalization capability and training set requirement
The generalization capability of a ML method refers to the capability to generalize
the learning from the actual training set to other, yet unseen, cases. Such capability
is especially valuable in overcoming the combinatorial increase of complexity in the
training when N -1-1 cases are also considered [127].

In Fig. 7.8, the classification accuracy is presented on the N -1-1 test set when the
LSTM network have been trained on three different training sets. The results are
presented when the network was trained on i) the full training set with all N -1
and N -1-1 cases included, ii) a smaller training set with all N -1 cases but where
only a small batch (5, 000) of N -1-1 cases have been included, and iii) a training set
where the network is only trained on N -1. The same training approach as previously
described were used. According to Fig. 7.8, the classification accuracy was signifi-
cantly reduced when no N -1-1 cases are included in the test set. When including
the small batch (5, 000) of N -1-1 cases, the classification accuracy increased signifi-
cantly. However, the accuracy is still lower than when the full training set is used.
Thus, the importance of obtaining a representative training set is still imperative if
a high classification accuracy is to be achieved.
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Figure 7.8: Classification accuracy over time when varying the number of N -1-1
cases included in the training data.

7.5 Practical applications and requirements
The method is proposed to be used as an online tool for system operators to predict
the system’s future stability given the current state. It should be stressed that the
method is not proposed to replace conventional VID methods, but rather function
as a supplementary tool to provide early warnings. The instantaneous prediction
capability of the proposed method has to be weighed against the possibility of mis-
classification of the system’s future stability. When comparing the proposed method
to other conventional indicators for VID (see [43]), it is important to remember that
these might be more accurate once instability detected, but generally take signifi-
cantly longer time to indicate instability, thus reducing the time frame that system
operators have to steer the system back into stable operation.

The proposed method is mainly intended for predicting mid-term or long-term volt-
age instability where system operators will have the possibility to act on the warn-
ings provided by the network. Theoretically, the method could be adapted to also
handle short-term voltage instability. However, this would require more frequent
measurement updates to ensure that the onset of short-term instability is detected
in time. Because of the difference in the dynamical trajectories of the system for the
two different types of instability events, training a separate LSTM network would
likely provide better performance. Furthermore, the signals provided by the network
would have to automatically trigger emergency controls, since the available time for
system operators to act on the signals would be too short for manual control actions.

For the proposed method to be effective in prediction of long-term voltage instability,
measurement updates should be available within a few seconds. Here, a measure-
ment update rate each second have been assumed to be available. As was found in
Section 7.4.2, slower measurement update rates lead both to lower classification ac-
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curacy and slower predictions. To assure that errors and missing values are filtered
out, measurements should always be preceded by a state estimator. However, state
estimates from a non-linear state estimator based on remote terminal units may
be too slow to be effective. Thus, time-synchronized measurements from wide-area
phasor measurements filtered through a linear state estimator would be preferred.

The softmax classifier of the LSTM network outputs a probability vector, where
each class is given a certain probability. It should be noted that this probability
vector does not provide a true representation of the model confidence. However, it
can still be useful as a proxy by system operators to track the network’s confidence
in each prediction. Thus, the operator can use the probability vector directly in
an online interface to track the network’s belief in each prediction. Alternatively,
argument maxima or other functions could be used to present the most probable
prediction of the network, or, for instance, to avoid predictions of falsely labeled
stable states.

The practical classification accuracy of the proposed method will be affected by
many aspects and will generally be lower than on a simulated test set. One of the
more important aspects are modeling errors, including erroneous system parameters
or inaccurate modeling of parameter values for dynamic models. Such aspects will
introduce a difference between the simulated and the actual dynamic response after
a contingency.
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Chapter 8

Security margin control using
deep reinforcement learning

This chapter develops a real-time control method based on deep reinforcement learn-
ing aimed to determine the optimal control actions to maintain a sufficient secure
operating limit. The results and the developed methodology were established in pa-
per II. The control method is proposed to be included as a preventive control method
in the developed real-time dynamic stability assessment and control tool, earlier pre-
sented in Chapter 4.

8.1 Introduction
Maintaining a secure operation of an electrical power system is a major aspect
of power system operation. To be able to optimally activate the correct preventive
control measures whenever the security of the system is threatened can both increase
the operational efficiency of an electrical power system, as well as allow an operation
closer to the actual limits of the system. Previous implementations of DRL in
electric power system control have mainly been focused on emergency control, which
aims at controlling the system back into a stable state after a disturbance has
already occurred [56]. Typically, preventive control problems such as maintaining a
certain security margin have been defined as static optimization problems. DRL is
better suited to handle sequential decision-making problems but with relatively small
adjustments, preventive control problems can easily be adjusted to fit a sequential
decision problem where the advantages of the DRL framework can be utilized.

While previous DRL implementations in electric power system control have achieved
good performance on the presented test systems, some limitations in terms of prac-
tical control remain. To achieve efficient control, system operators are typically
required to simultaneously control both discrete (e.g., switching of a shunt capac-
itor) and continuous (e.g., the level of active power generation rescheduling and
load curtailment) action variables. However, state-of-the-art DRL algorithms such
as deep Q-networks, or deep deterministic policy gradients are generally designed
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to only control either discrete or continuous action variables, and all previous im-
plementations of DRL in electric power system control have been reduced to rather
simple control schemes where only a single type of action space has been considered.

In this chapter, the lack of preventive control methods is addressed and a new
method based on DRL aimed at determining the optimal control actions to maintain
a sufficient SOL is introduced. Furthermore, a hybrid control scheme, which is
capable of simultaneously adjusting both discrete and continuous action variables
is presented. Several aspects of the DRL control, including robustness to different
simulation scenarios and noise in the inputs, are evaluated. From here on, the control
agent used in controlling and maintaining a sufficient SOL is referred to as the hybrid
DRL agent, due to its capability of handling multiple action spaces simultaneously.
The methodology and test results for the proposed method are presented in the
following sections.

8.2 Framework for a real-time control of secure
operating limits

In this section, the framework used in training the real-time SOL control algorithm
is presented. The algorithm works by continuously monitoring the current state of
the system through a set of measurements. If the hybrid DRL agent assesses that
the system is not secure, or has a too small margin towards the security bound-
ary, actions are initiated to steer the system to a more secure state. Other types
of control, such as maintaining system voltages within acceptable limits, are not
included in the developed control, but could theoretically be added as additional
control goals. The hybrid DRL agent is trained on different loading scenarios where
the security state of the system is varied to reflect the different operating conditions
that may occur in a real power system.

8.2.1 Test system and security margin definitions
All simulations have been tested on the slightly modified version of the Nordic32
test system, detailed in Chapter 4 and again illustrated in Fig. 8.1. The security
margin that the DRL agent attempts to control and maintain is based on the SOL. In
Chapter 5, the SOL was shown to provide a more accurate measure of the security
margin than other methods that are based on static assessments of the system,
especially when the system is characterized by a larger share of loads with fast
restoration dynamics.

The system stress used to compute the SOL is typically defined as a combination of
load demand increase and/or generation rescheduling, which are quantities that the
system operator can observe and control in the pre-contingency state. The SOL is
then computed with respect to a set of credible contingencies. The SOL is in this
study determined by a search process similar to the "binary search" proposed in [13],
which is slightly differing from the "dual binary search" method earlier presented in
Chapter 6. The process is illustrated in Fig. 8.2 and is based on searching through
a narrowing interval by iteratively testing the system security with respect to a
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Figure 8.1: One-line diagram of the modified Nordic32 system [114]. Loads and
generators included in the continuous action space are marked in red, while shunt
capacitors participating in the discrete action space are marked in blue.

dimensioning fault and different levels of system stress. The upper part in Fig. 8.2
illustrates the search process when the state was not secure, while the lower part
in Fig. 8.2 illustrates the search process when the state was secure. Black dots
indicate a secure state, while white dots indicate a state that is not secure. The
search process is exemplified for a secure starting state. If the starting state is found
secure, the system stress is increased by a total of ∆P . If the new state was found
to be secure, the system stress was again increased with ∆P . In case it was not
found to be not secure, the system stress was instead reduced by ∆P/2. The search
process continued until a secure operating point was found and when the step size
in system stress change was sufficiently small.
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Figure 8.2: Illustration of the search process for the SOL for a secure and a non-
secure initial operating point.

In the following simulations, the system stress is achieved by increasing the loads
in the "Central" area of the modified Nordic32 test system, while simultaneously
adjusting the generation in the "North" area with the same amount. The power
factors of all loads were kept at their initial values and the distribution of the
added load and generation were scaled by the initial load or the rated capacity of
each generator. The dimensioning contingencies of concern will be the three largest
generators that are located in the "Central" area, namely: generator g14, g15, and
g16. The contingency resulting in the lowest SOL is always dimensioning for the
system. An initial step size of ∆P = 128 MW was used in the search process for the
SOL and the process was stopped whenever the step size in system stress is equal
to 1 MW.

A relatively simple stability criterion was used to determine whether a state was se-
cure or not. The system was considered secure if, at the end of the post-contingency
evaluation, all transmission bus voltages were above 0.90 pu. Although the modi-
fied Nordic32 test system is characterized by sensitivity towards long-term voltage
instability, other types of instability can violate the defined stability criterion. For
instance, transient angle instability can cause locally low voltages due to lost syn-
chronism of certain generators. Frequency stability has not been included in the
analysis but has been assumed to be stabilized by automatic frequency control ac-
tions of generators after a disturbance. All dynamic simulations ran for a maximum
of 600 seconds but were stopped in advance if the case either collapsed (any bus
voltage below 0.7 pu) or if the system stabilized early. This approach should en-
sure that the system had either stabilized or become unstable at the end of each
simulation.

8.2.2 MDP formulation for security margin control
The SOL control problem is defined as an episodic MDP. At the beginning of each
episode, the DRL agent receives a representation of the system state st through a
set of measurements. Depending on the current policy πθ, the DRL agent picks
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different actions which are activated in the system. The taken actions and the
transition dynamics distribution causes the system state to change (st → st+1) and
give rise to a reward Rt. If the DRL agent managed to restore the SOL above the
defined threshold, or if a maximum number of time steps have been reached, the
episode ends. Otherwise, the DRL agent continues observing new states, actions,
and rewards. The MDP for the SOL control problem is defined as:

• States: a state vector st consisting of measurements of the bus voltage mag-
nitudes of all buses in the system and, active and reactive power flows on all
transmission lines and transformers. The current time step t of the episode
was also added to the state vector. Neural networks are sensitive to input per-
turbations so to make the DRL agent more robust toward such errors, all state
values were also randomly perturbed by multiplying each value with a random
number sampled from a normal distribution with a mean of 1 and a standard
deviation of 0.001. All states were then normalized by subtracting the mean
of each state value and then dividing its standard deviation. The mean and
standard deviation of each state value was computed from previously sampled
states and a list with a maximum of 10 000 historic states was stored. Once
10 000 states were added to the list, the mean and standard deviation used
for normalizing states became fixed.

• Actions: the DRL agent can activate either continuous and/or discrete action
variables. The continuous actions were used to reschedule power generation
and perform load curtailment to reduce the transfer of power through the sys-
tem. This was achieved by reducing the active load in the "Central" area at
certain participating load buses: 4042, 4047, 4051, 1041, 1042, 1044, while
simultaneously increasing the generation in the "North" area at certain partic-
ipating generators: G1, G5, G8, G9, G11, G12, G20. The active load decrease
was distributed on each of the participating load buses based on their initial
load before the change, while the power factors of all loads were kept con-
stant. The discrete action variables included the switching of an additional
100 MVAr of reactive power support from any, or several, shunt capacitors.
The discrete actions (D1-D5) controlled the shunt capacitors at the following
buses: D1: 1041, D2: 1043, D3: 1044, D4: 1045, D5: 4041. The participating
buses and equipment for the continuous and the discrete actions are all marked
in red respectively blue, in the line diagram in Fig. 8.1.

• State transition: The state transition dynamics are deterministic and governed
by a set of differential and algebraic equations used to build the dynamic model
in PSS®E [118].

• Rewards: The reward Rt for the taken actions was computed by a combination
of the resulting SOL and the costs for the continuous (Ccont) and the discrete
(Cdisc) actions, respectively. Any activation of the discrete actions contributed
to a negative reward of −5, representing the cost of the mechanical wear that is
involved in switching the shunt capacitors. The cost for the continuous actions
contributed to a negative reward of -0.1 per adjusted MW in the power transfer.
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Changing a total of ± 200 MW would thus result in a negative contribution
to the reward of −20. This negative reward reflects the system cost of market
adjustments or load/generation curtailment. The control goal is to always
restore the SOL to a value equal to or above 30 MW, which would ensure
that a sufficient security margin is achieved and that the N -1 contingency
criterion always would be satisfied with some margin to account for possible
inaccuracies. If the SOL was below 30 MW, a negative reward of -50 was added
to the total reward for that time step. The final reward when accounting for
the resulting SOL was then computed as:

Rt =

Ccont + Cdisc + SOL− 50, if SOL ≤ 30 MW
Ccont + Cdisc, otherwise

(8.1)

In this study, the reward is unitless, but should in real applications reflect the
actual monetary cost of different actions and the corresponding rewards when
the control goal is either achieved or missed.

8.2.3 Training data generation
An overview of the steps involved in training data generation and the training of the
DRL agent is illustrated in Fig. 8.3. The different steps are detailed in the sections
below. To speed up training, the data generation was parallelized and multiple CPU
cores were used to generate data.

1. Generate initial operating condition: A large range of different initial OCs was
generated to serve as training data for the algorithm. All loads in the system
were randomly and individually varied by multiplying the active load value
with a random variable generated from a uniform distribution (80 % of the
original load as lower limit, 130 % of the original load as upper limit). The
power factors of all loads were kept constant. The total change in loading
was distributed proportionally among all the generators in the system based
on the initial active power produced by each generator. The generated initial
OCs were solved by a full Newton-Raphson load flow and were re-initialized
in case the load flow did not converge.

2. Sample state st and action at from the policy and move to next state: Once an
initial OC was generated, the state st was sampled from the system and passed
to the actor network. The actor network outputs parameters that form the
current hybrid policy πθ(a|s) from which a set of actions were sampled. The
actor network and how it is used to form the hybrid policy is further detailed
and discussed in Section 8.2.4. Once the actions were sampled and activated
in the system, a new Newton-Raphson load flow was computed which formed
the state transition from st → st+1.

3. Compute the SOL: Once the load flow for the new state was solved, the SOL
was computed following the steps defined in Section 8.2.1.

4. End episode and save transitions: The episode was ended if either the SOL
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Figure 8.3: Flowchart showing the generation of training data and the training of
the actor and critic network.

was restored above 30 MW (the defined security margin for when the system
was assumed to be secure) or if the current time step was equal to T=8.
At the end of all episodes, the transition data gathered during the episode
(st,at,Rt,...,sT ,aT ,RT ) was stored and later used during training. The training
data generation was reiterated for a total of N = 64 episodes before it was
trained on the generated data.

8.2.4 Architecture of actor and critic network
The actor network is illustrated in Fig. 8.4 and further detailed in Table 8.1. It shares
a common hidden layer, then a separate hidden layer is used for each type of activa-
tion function. The network outputs parameters used in defining the Normal distri-
bution (3.23) and the Bernoulli distributions (3.24) that are used for the continuous
and discrete action variables, respectively. The Normal distribution is parametrized
by a mean value µcont and a standard deviation σcont, while the Bernoulli distribu-
tion is parametrized by a single probability parameter ranging from 0-1. The mean
value µcont is computed using a linear activation function in the final layer, and
the standard deviation σcont is computed using a Softplus activation function that
ensures that the value never becomes negative, while the Bernoulli distribution is
achieved using a sigmoid activation function in the final layer that ensures that the
output is bounded between 0 and 1.

The critic network is separate from the actor network and consists of a simple NN
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Figure 8.4: Architecture of the actor network.

with two hidden layers and a linear final activation function, further detailed in
Table 8.1.

8.2.5 Training actor and critic networks
Once a batch of training data was sampled, the actor and critic networks were
trained. The training was performed using the software Tensorflow in Python which
automatically computes the gradients on the defined cost functions. The critic
network was first used to estimate the value function V̂ π

φ of each state. The returns
Gγ
t were estimated using (3.12) and the advantage estimates Ât were estimated using

(3.17) and the estimated value of the state V̂ π
φ given by the critic network. A γ of

0.99 was used to compute the returns. The final objective function for the actor
network was computed by taking the mean value of all samples for all N episodes
on J clip. The critic objective function was defined as the mean squared error (MSE)
of the value function error, computed from (3.19). The final critic objective function
was formed by taking the mean value of all samples for all N episodes on the MSE
of the value function error.
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Table 8.1: Design and hyperparameters used in training
Parameter Values

Ar
ch
ite

ct
ur
e
Cr

iti
c

Number of inputs 499
Neurons in first layer 128
Neurons in second hidden layer 64
Final activation function Linear
Hidden layer activation RelU

Ac
to
r

Number of inputs 499
Neurons in common hidden layer 128
Neurons in each separate hidden layer 64
Final activation for µcont Linear
Final activation for σcont Softplus
Final activation for P (Dx|s) Sigmoid
Hidden layer activation RelU

Tr
ai
ni
ng

Max Epochs (K) 10
PPO clip parameter (ε) 0.2
Discount factor (γ) 0.99
Optimizer RMSprop [128]

Table 8.2: Learning rates over training iterations.

αactor αcritic

Training iteration≤ 250 1 · 10−3 5 · 10−3

Training iteration > 250 1 · 10−4 5 · 10−4

Once the actor and critic objectives were formed, they were optimized using the
RMSprop algorithm, which is an adaptable algorithm suitable for gradient-based
optimization of stochastic objective functions [128]. The actor objective function
was maximized with respect to θ, while the critic network objective function was
minimized with respect to φ. The training was performed for K = 10 epochs on the
whole batch of N episodes simultaneously. It should be mentioned that although
a search of suitable hyperparameters was conducted, the performance could have
been improved even more by further optimizing training parameters such as the
learning rate or the number of hidden neurons in each layer. To speed up training
and to stabilize it during later stages, the learning rate was adjusted as the number
of training iterations increased and is specified in Table 8.2. After the networks
were trained, the sampled training data were discarded and new were generated.
The training results are presented in the following section.

111



8. Security margin control using deep reinforcement learning

8.3 Test sets and training results
The hybrid DRL agent was trained for a total of 600 training iterations, corre-
sponding to 38,400 different episodes and a total of 68,900 samples (each episode
consisted of up to 8 time steps/samples, depending on the episode length). The
training performance is presented in Fig. 8.5. The total episode reward is presented
in sub-figure (i), the final SOL of the episode is presented in sub-figure (ii), and the
number of episode time steps is presented in sub-figure (iii). The red line shows a
centered moving average computed over the mean value of 500 episodes. To better
visualize the results, only every 100th value during the training is illustrated in the
figure. The results show that the performance improved rapidly until around 19,000
episodes, after which the policy managed to achieve a SOL above the threshold
value of 30 MW using only a single time step for a majority of the episodes. After
this, the performance continued improving by mainly optimizing the level of action
activation for each of the scenarios.

In Fig. 8.6, the development of the different policy parameters is presented. The
policy parameter governing the standard deviation σcont increased at first, which was
then followed by the mean value µcont being adjusted. After the model was trained
on approximately 40,000 samples, the mean value µcont stabilized. After that, the
model improved mainly by reducing its exploration rate (the standard deviation
σcont and the randomness of the discrete actions). In sub-figure (iii) of Fig. 8.6, the
probability of the taken action D3 is illustrated, showing that the policy became
more and more certain of whether the discrete action should be activated or kept
inactivated. Similar training development for the other discrete actions was observed
as well.

8.3.1 Test sets
The hybrid DRL control was tested on three different test sets to evaluate its per-
formance to handle different types of seen and unseen scenarios. Each of the test
sets is detailed below.

1. Test set 1: Data generated in the same way as for the training data, but
using a deterministic policy instead.

2. Test set 2: Introducing new unseen OCs by increasing the variation of the
generation and load configurations. Instead of randomly adjusting each load
between 80 % to 130 % as specified in Section 8.2.3, the OCs were adjusted
randomly between 70 % to 140 %.

3. Test set 3: Introducing larger measurement errors by multiplying each state
value with a random number with a mean of 1 and a standard deviation of
0.01.

During training, the actor used a stochastic policy which allowed it to automati-
cally explore the available action space. While the exploration rate (the standard
deviation of the continuous action space and the randomness of the discrete action
spaces) of the agent decreased during the final part of the training, it would require

112



8. Security margin control using deep reinforcement learning

Figure 8.5: Performance and development over training samples and episodes: Sub-
figures showing (i) episode rewards during all episodes; (ii) final SOL; (iii) episode
length. The red line indicates a moving average computed over the mean of 500
episodes. For better visualization, every 100th value is illustrated.
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Figure 8.6: Development of policy parameters over episodes. Sub-figures showing
(i) the mean value output µcont; (ii) the standard deviation output σcont; (iii) the
probability of taking the discrete action P (D3|s). For better visualization, every
100th value is illustrated.

a significantly longer training time for it to reach a point where it essentially con-
verged towards a fully deterministic policy. When implementing the policy online
it is generally more suitable to transform the control policy into a deterministic one
and always pick the actions that with the highest probability are optimal. When test-
ing the algorithm, the continuous action was thus controlled directly by the mean
value µcont. Each of the discrete actions was activated whenever any of the defined
Bernoulli probabilities satisfied P (Di|s) ≥ 0.5.

8.3.2 Test results
The performance of the hybrid DRL control when tested on the different test sets is
presented in Table 8.3, each consisting of 200 episodes. For test set 1, the average
episode length was 1.09 steps, indicating that the hybrid DRL control managed to
ensure a sufficient security margin in a single time step for a majority of all scenarios.
For test set 2, where new unseen OCs were introduced by increasing the variation
by which the loads and generation were initialized, showed good performance as
well. The average episode length increased slightly to 1.12 steps, indicating that
some of the unseen OCs forced the hybrid DRL control to require a few more steps
before the SOL was restored. The average total episode reward for each of these
test sets was -28.6 and -26.3, respectively. For test set 3, where the impact of larger
measurement errors on the state values was evaluated, the performance dropped
slightly. The average episode reward was reduced to -34.7, while the average episode
length increased to 1.19 steps. Thus, for several of the scenarios in the test set, the
hybrid DRL control required slightly more time steps before the SOL was restored
above the threshold. The results also indicate the importance of incorporating
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Table 8.3: Average performance of the hybrid DRL control.
Test set 1 Test set 2 Test set 3

Episode reward -28.6 -26.3 -34.7
Episode length [steps] 1.09 1.12 1.19

random errors that exist in real power systems, but which are generally not present
when training the method on purely simulated data.

8.4 Comparing the hybrid DRL control to con-
trols based on discrete action spaces

The main advantage of the proposed hybrid DRL architecture is the capability to
simultaneously adjust both discrete and continuous action variables. To evaluate the
impact of this feature, the developed hybrid control is compared to two other control
policies which are only capable of controlling a discrete action space: one which is
based on a rule-based look-up table control, while the other is based on DRL but
only adapted for discrete action spaces. Each of the two methods and their actions
is discussed in the following subsections.

8.4.1 Rule-based look-up table control
Conventional methods for preventive control typically rely on system operators to
choose actions by matching the current system state with the nearest system state
defined in a preventive control look-up table. The difficulty of assessing raw mea-
surements from the system requires system operators to pre-process the system
state, generally by first computing the security margin and then, in case the secu-
rity margin is below a defined threshold, taking measures to restore it. Thus, using
a control based on a rule-based look-up table, a system operator would have to (i)
first estimate the security margin, (ii) possibly activate actions to restore it, and
finally (iii) re-evaluate the security margin to ensure that it is above the defined
threshold. In comparison, the developed hybrid DRL control can take actions by
directly monitoring the system state, without the need for the additional first step
(i) with time-consuming data pre-processing and computation of the SOL.

Since the rule-based look-up table require an initial computation of the SOL before
any actions can be initiated, a penalty is added to be able to compare its performance
to that of the hybrid DRL control. The pre-processing of measurement data and
the initial computation of the SOL corresponds to an additional episode step for
the hybrid DRL control. Thus, a penalty of -50 (the penalty added for the DRL
agent at every time step it does not achieve its control goal) and an added time
step for each episode, are added to the performance of the rule-based look-up table.
However, for the scenarios when the initially estimated SOL was above the threshold
value of 30 MW, no actions had to be taken and thus no penalty was added for
those scenarios. Depending on the initially estimated SOL, different actions (A1-
A6) were activated, each specified in Table 8.4. The actions activated controlled
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Table 8.4: Discrete actions for the discrete-DRL control and the rule-based look-up
table.

Action Initially Actions activated
number estimated SOL Load curtailment Switching of

[MW] [MW] reactive shunts

A1 SOL > 30 0 None
A2 0 < SOL ≤ 30 -50 D1
A3 −100 < SOL ≤ 0 -100 D1 +D2

A4 −250 < SOL ≤ −100 -200 D1 +D2 +D3
A5 −350 < SOL ≤ −250 -350 D1 +D2 +D3
A6 SOL ≤ −350 -500 All

load curtailment and/or switching of reactive shunts which refer to the continuous
respectively discrete actions specified in Section 8.2.2. The actions and their SOL
activation levels were designed to always ensure that the SOL was restored above
the threshold of 30 MW using a single action.

8.4.2 DRL control adapted for discrete actions
The DRL control that only handles a discrete action space is developed using the
same PPO algorithm as for the hybrid control but is adapted only for a discrete
action space. The discrete DRL control can choose from the same actions (A1-A6)
defined in Table 8.4 as for the rule-based look-up control, but each of the actions
is now instead chosen directly by the DRL agent without the need of an initially
estimated SOL. The discrete DRL actor network has an identical architecture as
the one used for the hybrid control, but instead of forming outputs used in defining
the Normal and Bernoulli distributions, it uses a Softmax activation function in the
final layer. The used Softmax function normalizes the outputs into a categorical
probability distribution consisting of six numbers (the available discrete actions A1-
A6) where each probability is proportional to the exponents of the input numbers,
according to (3.4). From the defined categorical probability distribution, different
discrete actions could then be sampled. The same hyperparameters and number
of training episodes as were used for the hybrid DRL control and as is defined in
Table 8.1 were used during training, with the exception that a lower learning rate
for the actor and critic network of αactor = 1 · 10−5 and αcritic = 5 · 10−5 was used,
respectively. The lower learning rates were used to ensure that the discrete DRL
agent did not converge to a sub-optimal policy due to a too high initial learning
rate.

8.4.3 Results
In Table 8.5, the total episode reward and the episode length for the rule-based look-
up table and the discrete DRL control are presented for each of the defined test sets.
For each metric and test set, the percentage difference in performance compared to
the hybrid DRL control is also presented in parenthesis after each value. The results
show that the proposed hybrid DRL control performed significantly better on all of
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Table 8.5: Average performance when using a rule-based look-up table control.
Values in parenthesis presents the percentage increase to the average performance
of the hybrid DRL control.

Rule-based look-up table Discrete DRL control
Episode reward Episode length Episode reward Episode length

[steps] [steps]

Test set 1 -72.6 (153.7 %) 1.77 (61.9 %) -35.9 (25.2 %) 1.10 (1.4 %)
Test set 2 -62.3 (136.4%) 1.65 (47.3 %) -33.3 (26.4 %) 1.11 (-0.9%)
Test set 3 -72.6 (109.0 %) 1.77 (47.7 %) -39.9 (14.7 %) 1.16 (-3.3 %)

the defined test sets. For instance, the (negative) average reward increased from
109.0 % for test set 3, up to 153.7 % for test set 1 when the rule-based look-up table
control was used. In the case of the discrete DRL control, the (negative) average
reward increased from 14.7 % for test set 3, up to 25.2 % for test set 1.

The episode length for the rule-based look-up table was significantly higher for all
of the test sets, mostly caused by the requirement of the look-up table control to
take two steps (one to estimate the initial SOL, and one to verify that the SOL had
been restored) whenever the initial SOL was below the threshold value of 30 MW.
The average episode length for the discrete DRL control was in a similar range as
for the hybrid DRL control for the different test sets. However, although both the
hybrid DRL control and the discrete DRL control required a similar number of time
steps in each episode, the hybrid DRL control achieved a significantly better total
episode reward on each test set. This indicates that the possibility of both adjusting
discrete and continuous action variables results in a more flexible control policy that
more efficiently can adjust the SOL of a power system. In Fig. 8.7, a histogram
showing the total episode reward difference between (a) the hybrid DRL control and
the look-up table control, and (b) the hybrid DRL control and the discrete DRL
control, is presented for the different scenarios included in test set 1. The results
show that in 76.5 % and 73.5 % of all scenarios respectively, the hybrid DRL control
achieved a better performance than the other types of control.

Finally, it should be stressed that the choice of method to compare the hybrid DRL
control to is not trivial. A typical choice would be to evaluate it against some
optimization-based control. However, evaluating a dynamic security margin (the
SOL) with respect to a number of different contingencies and choosing from a wide
range of different actions is a highly non-linear and non-convex optimization prob-
lem. Solving such a problem with optimization-based methods would either require
significant simplifications in the model or would be too time-consuming to achieve
in the time required by system operators, making the comparison impractical.

8.4.4 Practical aspects and requirements
The developed hybrid DRL agent is proposed to be used as an online tool for system
operators to control and ensure a sufficient SOL in real-time. While the DRL agent
can be applied online to automatically activate actions, it can also be used to suggest
actions that system operators after evaluation can manually choose to activate.
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Figure 8.7: Histogram showing the episode reward difference between (a) the hybrid
DRL control and the look-up table control and (b) the hybrid DRL control and the
discrete DRL control, given for test set 1.
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Theoretically, it could also be used as a method that could complement how system
operators today develop their preventive control look-up tables. Instead of manually
assessing the effectiveness of different actions on a few typical system scenarios, the
DRL framework could be used to more efficiently evaluate what range of actions
will be efficient for a larger range of different scenarios and automate the evaluation
process.

Finally, the time consumption during data generation and the high requirement of
computational power should be addressed. The training of the hybrid DRL agent
is time-consuming, both due to the large requirement of training data and the fact
that training scenarios were generated using full dynamic simulations. The par-
allelization of the data generation on different CPU cores significantly increased
the efficiency by which the data was generated. Furthermore, the use of the PPO
algorithm, which allowed multiple epochs of training on the same batch data, fur-
ther increased the efficiency of the training. A possibility to further speed up the
generation of training data is to compute the SOL based on QSS simulations or
combinations of QSS and dynamic simulations, as suggested in [13] or [38]. While
QSS methods, or combinations of QSS and dynamic simulations, do not provide as
accurate estimations of the SOL as if it had been computed using a full dynamic
simulation, it is still significantly more accurate than most methods today that are
based on static estimations of the security margin.
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Chapter 9

Deep reinforcement learning for
long-term voltage stability control

This chapter develops a real-time control method based on deep reinforcement learn-
ing that can suggest optimized control actions to system operators to mitigate voltage
instability. The results and the developed methodology were established in paper I.
The control method is proposed to be included as an emergency control method in the
developed real-time dynamic stability assessment and control tool, earlier presented
in Chapter 4.

9.1 Introduction
In this chapter, a method based on DRL is developed for control to mitigate long-
term voltage instability. LTVS control in large-scale power systems is a highly non-
linear and non-convex optimal decision-making problem. At every time instant, the
controller (in DRL: the agent) should assess the state of the system and choose an
action that can most efficiently stabilize it to the lowest system cost. The complexity
lies both in interpreting the state of the system and to determine what action is most
optimal to take in that current state.

The developed method of DRL control for LTVS is based on off-line training on a
large data set consisting of dynamical simulations for a range of different disturbance
and load scenarios. By training a DRL agent on those scenarios, a policy πθ is
developed which can form a mapping from the state (provided by measurements in
the system) to an action. Once the DRL agent has been trained, it can in real-time
suggest optimized control actions to system operators to mitigate voltage instability.
Furthermore, the feasibility of using future system services from e.g. DR and ESS
as a more economic and flexible alternative to stabilize the system is evaluated. The
study specifically examines the capability of the DRL control to account for the
uncertainty involved in using such services (e.g. the price and the availability) as
an alternative to conventional load shedding. Finally, an evaluation of the method’s
robustness and capability of handling scenarios that have not been included in the
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training data of the algorithm. This is important since the number of states and
the possible combinations with different disturbance scenarios are very large for real
power systems.

9.2 DRL for long-term voltage stability control
The training data are generated using PSS®E 35.0.0 with its in-built dynamical
models [118]. All simulations have been tested on the slightly modified version of
the Nordic32 test system, detailed in [114] and illustrated in Fig. 4.2. In the following
sections, all the details in generating the training data and the development of the
DRL control are presented.

9.2.1 Training data generation
An overview of the steps involved in training data generation and the training of
the DRL agent is illustrated in Fig. 9.1. The different steps in the training data
generation are detailed in the sections below.

(1) Generate initial operating condition: For the Nordic32 system, the initial OCs
were randomly generated around the non-secure operation point denoted as
"operating point A" in [114]. All loads in the system were randomly and
individually varied by multiplying the active load value with a random variable
generated from a uniform distribution (95 % of the original load as lower limit,
105 % of the original load as upper limit). The power factor of all loads was
kept constant. A load flow solution was then computed where any changes in
total load in the system were compensated by the slack bus generator, g20,
see Fig. 9.2.

(2) Introduce random disturbance: Once an initial OC was generated, a dynamic
simulation was initialized and a single larger disturbance was introduced. The
DRL agent was trained to handle different types of disturbances, and with the
same probability for each scenario, either a line was tripped between buses (i)
4032 -4044, (ii) 4032 -4042, (iii) 4031 -4041, (iv) 4021 -4042, or the tripping of
either (v) generator g6, or (vi) generator g7. The disturbances were chosen as
they were proven to cause significant system stress in the "Central" area, and
without suitable control actions would in most load scenarios cause long-term
voltage instability. In an actual application, preferably all disturbances that
are likely to cause long-term voltage instability should be evaluated and in-
cluded in the training. However, this would require significantly more training
data to achieve satisfactory results and without a loss of generalization, the
study was reduced to include only the previously mentioned disturbances.

(3) Sample state st and action at from the policy and move to next state: The
state was then sampled from the system and passed to the actor network.
The actor network outputs parameters that form a current policy πθ(a|s) from
which an action is sampled. That action was then activated in the system and
the simulation continued to run until the next time step, which forms the state
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Figure 9.1: Flowchart showing the generation of training data and the training of
the actor and critic network.

transition from st → st+1. The time between each step in the simulation was 5
seconds (while the integration step size in the dynamical simulation in PSS®E
was 0.05 seconds). The states and actions are further discussed in section 9.2.2
and 9.2.3, respectively.

(4) Evaluate stability and compute rewards Rt: Once the dynamical simulation
reached the next time step, the stability of the system was evaluated. If any
transmission system bus voltage (VTS) were below 0.7 pu, the system was
assumed to be unstable and the episode was terminated. If any VTS at that
time point was below 0.90 pu, the system was also assumed to be unstable.
At every time step, a reward was also computed. The reward Rt at each time
step was a combination of the cost for the taken action (Ca); a smaller penalty
(-1) if any VTS were below 0.90 pu; or a larger penalty (-500) if the system
had become unstable. The action cost Ca is further discussed in Section 9.2.3.
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The reward at every time step was then computed as:

Rt =


Ca − (500 · 0.99t) if unstable
Ca, else if all VTS ≥ 0.90 pu
Ca − (1 · 0.99t), else if any VTS < 0.90 pu

(9.1)

The penalties were multiplied by a discounting factor of 0.99t, resulting in
lower negative penalties if instability and low system voltages occurred later
rather than early in an episode. In this study, the reward is unitless, but should
in real applications reflect the actual monetary cost of different actions and
the corresponding rewards when the control goal is either achieved or missed.

(5) End episode and save transitions: All episodes ran for a maximum of T = 1000
seconds unless the system become unstable and was terminated in advance. At
the end of all episodes, the transition data (st,at,Rt,...,(sT ,aT ,RT ) was stored
and later used during training.

9.2.2 States
The states were sampled from measurements taken from the dynamic simulation
and consisted of a vector of i) bus voltages magnitudes, ii) active power flows, and
iii) reactive power flows of all (and in between) buses in the system. While the
relatively slow sample rate would allow measurements to be sampled from SCADA
systems, the availability and use of phasor measurement units would ensure a higher
modeling accuracy through the time-synchronized measurements. To also capture
the dynamics of the system, previous observations from time step t-1 were stacked
and included in the state vector (thus doubling the length of the state vector). To
stabilize training, the state vectors were normalized by subtracting the mean value of
each state value by its mean and then dividing by the standard deviation. The mean
and standard deviation of each state value was computed from previously sampled
states and a list with a maximum of 10 000 sampled states was stored. Once 10 000
sampled states were added to the list, the mean and standard deviation used for
normalizing states became fixed.

9.2.3 Actions
To stabilize the system in case of instability, the DRL agent could activate load
curtailment resources that, for instance, ESS and DR could provide to system oper-
ators. ESS and DR can essentially be viewed as available load curtailment that has
been procured through a market system [129]. Using such services would allow sys-
tem operators to alleviate stress in a power system similar to that of load shedding.
The difference is mainly i) that a higher degree of flexibility is available, where the
activation level of the load curtailment based on ESS/DR can be typically be taken
in much smaller steps than load shedding, and ii) that the impact on the end-users
would be significantly less than when using forced load shedding.

The DR and ESS are modeled implicitly by allowing the DRL agent to adjust the
load levels at two participating load buses within a certain range. The two load
buses that participate are located at bus 1044 and bus 1045, see Fig. 9.2. The
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Figure 9.2: Zoomed in one-line diagram of the modified Nordic32 system (see
the original in Fig. 4.2). Load buses 1044 and 1045 that participate in the load
curtailment are marked in red.

availability and the price of market-based system services provided by DR and ESS
are typically varying; an uncertainty that needs to be included in the training of
the DRL agent. To model this, the level of load curtailment that is available at
each of the two participating buses is varied at the beginning of each disturbance
scenario. The capacity of load curtailment is determined by sampling from a random
uniform distribution with a lower level of 300 MW, and an upper level of 500 MW.
Furthermore, the price of activating the load curtailment is also varied between the
two participating buses which is achieved by randomly varying the price for each
bus at the beginning of each disturbance scenario. The price of activating load
curtailment at each bus is also determined by sampling from a random uniform
distribution with a lower cost of -0.1/MW, and an upper level of -0.2/MW.

The DRL agent then controls the total level of load curtailment that is taken at each
time step. The bus with the lowest price is activated first, but if it has not sufficient
capacity in adjusting its load, the other bus (with a higher price) will be activated
as well. The range of load curtailment capacity was chosen to ensure that all of the
load and disturbance scenarios could be stabilized if sufficient load curtailment was
utilized, while still adding uncertainty in where the load curtailment was activated.
The price variation models the market-based system, where the price of ESS/DR
will typically vary depending on availability. Thus, the chosen approach ensures
that there will be an uncertainty in where the actions are activated, to what level
the actions are available, and also to what cost to the system. Depending on which
bus the load curtailment is activated may also impact the effectiveness of the control
action to mitigate instability, which is an additional uncertainty that the DRL agent
needs to account for.
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Figure 9.3: Architecture of the actor network.

9.2.4 Architecture of actor and critic network
The actor network, illustrated in Fig. 9.3 and further detailed in Table 9.1, forms
the mapping from states to the policy πθ(a|s), from which actions are sampled. The
network has two hidden layers followed by a final activation layer with two different
activation functions used to form the outputs. The network outputs parameters used
in defining a Normal distribution N from which the policy is defined and actions
are sampled:

πθ(a|s) = N
(
µθ(s), σ2

θ(s)
)

(9.2)

The Normal distribution is parametrized by a mean value µθ and a standard devia-
tion σθ, where the mean value µθ is computed using a linear activation function in
the final layer, while the standard deviation σθ is computed using a softplus activa-
tion function that ensures that the value never becomes negative. The critic network
is separate from the actor network and consists of a simple NN with a single hidden
layer and a linear final activation function, further detailed in Table 9.1.

9.2.5 Training of actor and critic networks
Once a total of N = 64 episodes were sampled, the actor and the critic networks
were trained. The critic network was first used to compute the value V̂ π

φ of each
state. Once the value of each state was computed, the estimated advantage of
each state was computed using (3.17). The cost function used to train the actor
network is computed using (3.20) on all samples for all N episodes. Once the cost
function for all samples was computed, the final J clip(θ) was computed by taking
the mean of those values. The cost function used to train the critic network, L(φ),
is computed by taking the mean squared error on all δ-errors from (3.17) for all
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Table 9.1: Design and hyperparameters used in training.
Parameter Values

Ar
ch
ite

ct
ur
e Cr

iti
c

Number of inputs 976
Neurons in hidden layer 128
Final activation function Linear
Hidden layer activation ReLU

Ac
to
r

Number of inputs 976
Neurons in 1st hidden layer 64
Neurons in 2nd hidden layer 32
Final activation for µcont Linear
Final activation for σcont Softplus
Hidden layer activation ReLU

Tr
ai
ni
ng

Epochs (K) 5
PPO clip parameter (ε) 0.2
Optimizer Adam [124]
Batch size (N) 64

samples and all N episodes, followed by computing the mean of those values. The
training was performed using the software Tensorflow in Python which automatically
computes the gradients on the defined cost functions. The training was performed
for K = 5 epochs on the whole batch of N episodes simultaneously. The values
of the learning rates and other hyperparameters used in the training are specified
in Table 9.1. Once the networks were trained on the stored transition data, new
training data were generated and the old data that were sampled with the old policy
were discarded.

9.3 Simulations and results
9.3.1 Training results
The DRL agent was trained for a total of 200 training iterations, corresponding to
a total of 12 800 episodes, after which the performance converged. The training
performance is shown in Fig. 9.4, where the episode rewards and whether the
episode resulted in a crash or a stable state at the end of the simulation, is shown.
The red line shows a centered moving average computed over the mean value over
250 episodes. The results in sub-figure (i) show that the performance improved
rapidly until around 4 000 episodes, after which the policy managed to avoid system
collapses completely. After this, the performance continued improving by mainly
optimizing the level of action activation for each of the scenarios.

9.3.2 Test sets
During training, the DRL agent used a stochastic policy which allowed it to au-
tomatically explore the available action space. However, when using it online it is
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Figure 9.4: Performance and development over episodes: Sub-figures showing (i)
episode rewards during all episodes; (ii) whether the episode resulted in a crash or
a stable state at the end of the simulation. The red line indicates a moving average
computed over the mean of 250 data points.

more suitable to transform the policy into a deterministic one and always pick the
actions that with the highest probability are optimal. When testing the algorithm,
the continuous action was thus not sampled from a normal distribution, but rather
controlled directly by the mean value µcont which was one of the outputs of the actor
network. The trained DRL agent was tested on three different test sets. A total of
100 test scenarios were computed for each test set. The test sets used were defined
as:

• Test set 1 : Data generated in the same way as for the training data, but using
a deterministic policy instead.

• Test set 2 : Introducing new unseen OCs by increasing the variation of the
generation and load configurations. Instead of randomly adjusting each load
between 95 % to 105 % as specified in Section 9.2.1, the OCs were adjusted
randomly between 90 % to 110 %.

• Test set 3 : Introducing new unseen OCs by introducing a disturbance that
was not used in training the DRL agent. The new disturbance is the tripping
of the line between the buses 4011 -4021. The same variation of generation
and load configuration as during training was used.

The performance of the developed DRL agent was also compared to that of a rule-
based load shedding protection scheme. The load shedding protection scheme acts
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Table 9.2: Average performance required for different test sets and control methods.

Mean episode reward Difference
DRL control Load shedding [%]

Test set 1 -37.9 -86.7 128.6 %
Test set 2 -36.5 -114.2 213.9 %
Test set 3 -16.7 -22.3 33.5 %

whenever any transmission system voltage is below 0.90 pu. In that case, a total
of 100 MW load is removed from the system, divided equally between the loads
located at bus 1044 and 1045. To allow a fair comparison, the cost for activating
the load shedding (Ca) was chosen to -0.15/MW, which is the mean value of the
varying price for activation of the DR/ESS resources used by the DRL agent.

9.3.3 Test performance
The average reward on the different test sets is presented in Table 9.2 and is com-
puted as the mean episode reward of all test scenarios. In the final column, the
relative difference between the DRL control and the load shedding scheme is pre-
sented. The results show that the DRL agent managed to get a significantly lower
negative average reward compared to the load shedding control scheme on all dif-
ferent test sets. For instance, in test set 1, the load shedding scheme resulted in a
128.6 % higher negative reward compared to when the DRL control was. Although
not being trained on the load and disturbance scenarios found in test set 2 and test
set 3, the DRL agent managed to generalize its learning to these scenarios and still
find a significantly more efficient control policy than for the load shedding scheme.
The improvement was smallest on test set 3 (33.5 %) when a new disturbance that
was not included in the training data was used to stress the system. It should be
noted that all test scenarios in each test set were successfully controlled to stable
states, both for the DRL control and the rule-based load shedding scheme.

In Table 9.3, the average required load curtailment for each test set and control
method is presented. This metric represents how much load each control method
required to be curtailed before the system stabilized. Once again, the relative differ-
ence between the two control methods is presented in the final column in the table.
The results show that the DRL agent required significantly less load curtailment to
stabilize the system compared to the load shedding scheme for all of the test sets.
For instance, for test set 2, the load shedding required 259.4 % more load in average
to be curtailed compared to what was used by the DRL control. The differences
between the DRL control and the control that is achieved with load shedding are
exemplified in Fig. 9.5 and Fig. 9.6. In Fig. 9.5 the voltage magnitude at bus 1041
is shown for one of the test scenarios in test set 1. The voltage magnitude over
time is presented for the cases i) when the DRL control is used, ii) when the load
shedding control is used, iii) and when no control is used. In Fig. 9.6, the load at
the controlled load buses 1044 and 1045 are also shown, which shows the difference
in how the load is controlled by the DRL control and when using a load shedding
control.
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Table 9.3: Average load curtailment required for different test sets and control
methods.

Average load curtailment [MW] Difference
DRL control Load shedding [%]

Test set 1 190.9 560.0 193.4 %
Test set 2 166.1 597.0 259.4 %
Test set 3 124.5 144.0 15.7 %

Figure 9.5: Voltage magnitude at bus 1041 over time for different control schemes.

For the given scenario, the system will collapse after around 330 seconds if no control
is initiated. For the case with load shedding, a total of 200 MW is shed from the
system. The load shedding is activated once at around 250 seconds, and then another
activation occurs at around 380 seconds, which can be seen from the relatively large
steps in load reduction in Fig. 9.6. After the second activation of the load shedding,
the system voltages are restored in the system, which can be seen in Fig. 9.5. For
the DRL control, the load curtailment is activated directly after the disturbance
and in smaller increments, with no need to wait for the system to degrade before
the control is activated. The load at bus 1045 is reduced by approximately 130
MW, after which the system is stabilized. The DRL control also manages to achieve
a more satisfactory post-disturbance voltage magnitude profile, where the voltage
magnitude is kept closer to the nominal pre-disturbance level. Thus, although the
DRL control required a smaller amount of load curtailment, it achieved both a
faster and more efficient control for the given scenario. The smoother control that is
possible when utilizing load curtailment resources from DR and/or ESS also provided
a more efficient way to mitigate voltage instability to a low system cost.

130



9. Deep reinforcement learning for long-term voltage stability control

Figure 9.6: Load development at bus 1044 and bus 1045 for the developed DRL
control and for a load shedding control scheme.

9.3.4 Performance with an action activation threshold
One of the advantages of the DRL control is that any level of load curtailment can
be activated at each time step, while typically a load shedding scheme is activated
in significantly larger blocks of load curtailment. However, while the DRL agent is
trained to minimize the control actions once the system has stabilized, it is difficult
to train the action (controlled by the mean value µcont) to fully converge to zero.
Furthermore, when evaluating the DRL agent’s performance on stable disturbance
scenarios (i.e. disturbance scenarios that would en up being stable despite no load
curtailment being activated), it was found that the DRL agent did (unnecessarily)
activate a small level of load curtailment. The reasons for this behaviour can mainly
be explained by the fact that the DRL agent was trained on a majority of cases that
were unsecure, which can be observed by noting the number of crashed scenarios at
the beginning of the training by the red line in sub-figure (ii) in Fig. 9.4.

Avoiding unnecessary activation of load curtailment will be important if the DRL
control is to included in any real control systems. The main solution would be to
train the DRL agent on more stable scenarios to make it more robust in handling such
scenarios. This could however be combined with an action activation threshold, to
make sure that only relatively significant action signals are activated in the system.
To test this feature, an activation threshold of ±10 MW of load curtailment was
applied for the DRL control. Thus, any control action from the DRL agent with a
lower magnitude than 10 MW resulted in no activation of load curtailment, while
any control action larger or equal 10 MW was activated.

The action activation threshold was tested on the same test sets that were developed
in Section 9.3.2. The results are presented in Table 9.4, where the mean episode
reward and the average required load curtailment is presented when the action acti-
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Table 9.4: Average performance and load curtailment when using an action activa-
tion threshold.

Mean episode reward Average load curtailment
[MW]

Test set 1 -50.3 (32.7 %) 171.6 (-10.1 %)
Test set 2 -41.3 (13.2 %) 114.2 (-29.1 %)
Test set 3 -12.4 (-25.8 %) 22.3 (-82.1 %)

vation threshold was activated. The percentage difference in performance compared
to case when no action activation threshold was implemented (while still using the
DRL control) is presented in parenthesis after each value. The level of average load
curtailment reduced significantly compared to the the case when no action activation
threshold was implemented, for all of the sets. The difference was most significant
for test set 3, where the average load curtailment was reduced by -82.1 %. However,
the mean episode reward worsened for test 1 and test 2, where the (negative) mean
episode reward increased by 32.7 % and 13.2 %, respectively. The higher negative
rewards were caused by the transmission system voltages remaining below 0.9 pu for
a longer time during the post-disturbance state, which resulted in a higher negative
reward for those scenarios.

In Fig. 9.7, the action activation threshold is exemplified for a test scenario when
both the action activation was used and when it was turned off. When the action
activation threshold was used, the load curtailment was activated only in a short
period after the disturbance, while in the case when no threshold was used, the
load curtailment continued (albeit with low low levels of activation) up to around
200 seconds after the disturbance occured in the system. In Fig. 9.8, the resulting
voltage magnitude at bus 1041 is shown for i) the case with no action threshold, ii)
with the action threshold used, and iii) when no control is used for the same test
scenario. The results show a significantly lower post-disturbance voltage magnitude
over time when the action activation threshold was used, but system still manages
to remain stable.
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Figure 9.7: Load curtailment activated for the DRL control with and without
action activation threshold implemented. Time axis limited for better visualization
or results.

Figure 9.8: Voltage magnitude at bus 1041 over time with or without an action
activation threshold.
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Chapter 10

Conclusions and future research

This chapter summarizes the conclusions and refers back to the developed research
questions and the aim of the thesis. Finally, a discussion of ideas and concepts for
future research work is presented.

10.1 Conclusions
The main aim of this thesis has been to develop a new tool for real-time dynamic
stability assessment and control that can support system operators and allow more
efficient utilization of the transmission grid. The developed tool is comprised of two
new methods for use in stability and security assessment, as well as two methods
aimed at control to maintain a secure and stable power system. In Section 1.2, five
different research questions were identified based on the problem overview which
provided a scientific basis for the thesis. Each of the defined research questions and
how this thesis has attempted to address them are detailed below.

The purpose of the first research question was to examine the impact that higher
penetration of power electronic interfaced equipment has on methods for security
margin assessment. This was studied in the thesis both theoretically and numer-
ically, where the difference between the SOL and the simpler method PCLL was
evaluated. The theoretical difference between the SOL and the PCLL was first il-
lustrated using a method referred to as transient P -V curves. The results from the
numerical comparison showed that the PCLL typically overestimates the security
margin in scenarios when the system is dominated by loads with fast load restora-
tion dynamics, and that the SOL in these circumstances provides a more accurate
estimate of the actual security margin. The results further indicated that the dif-
ference between the methods is smaller for cases when a fast fault-clearing time is
possible.

The purpose of the second research question was to evaluate how current methods
for security margin can be improved, taking into account assessment speed, accu-
racy, and robustness. This was studied in the thesis by developing a methodology
for fast estimation of the DVSM to overcome the computational difficulties involved
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in its computation. The method uses a regression-based NN to provide a qualified
estimate of the actual DVSM. Thereafter, a second NN is used to classify which con-
tingency will be dimensioning for the system security margin. The estimates from
the NNs are used in a method referred to as dual binary search which is used to
validate the actual DVSM using time-domain simulations. The ML-based approach
is thus only proposed to support the estimation of the DVSM, while the actual
DVSM is always validated through actual time-domain simulations. This two-step
approach is proposed with the aim to overcome robustness issues and uncertainty
of using ML-based methods, while still allowing near real-time estimations of the
DVSM. The results are promising and the trained NNs provides good estimations
of both the DVSM and classifications for the dimensioning contingency. The accu-
rate estimations used in combination with the proposed dual binary search method
were found to successfully reduce the required number of time-domain simulations,
which would allow system operators to overcome the main practical difficulties of
estimating the DVSM.

The purpose of the third research question was to examine how future voltage in-
stability detection methods could be improved, taking into account the intricate
dynamics during a voltage collapse, while at the same time being fast enough to
be used in real-time. This has been addressed in the thesis by developing a new
approach for online VIP using an LSTM network capable of utilizing a sequence of
measurements to improve classification accuracy. Once trained, the LSTM network
can allow system operators to continuously assess and predict whether the present
system state is stable or if it will evolve into an alert or an emergency state in the
near future. The network is also adapted to be able to indicate where instability
emerges, allowing system operators to perform more cost-effective control measures.
The LSTM network was proposed to improve the available state signal by implicitly
learning the dynamical trajectories of a power system following a disturbance. The
results are encouraging and the proposed method is shown to have high accuracy in
predicting voltage instability. Almost all N -1 contingency test cases were predicted
correctly, and N-1-1 contingency test cases were predicted with over 95 % accuracy
only seconds after a disturbance. The impact of the sequence length of the LSTM
network was tested and it indicates that a longer sequence provided a significantly
better classification capability than both a feedforward NN and a network using a
shorter sequence.

The purpose of the fourth research question was to evaluate how future control sys-
tems could be designed, taking into account the non-linearity and the complexity
of electric power systems. To address this, a DRL framework was developed which
is based on training a DRL agent by having it interact with a simulated power
system and taking various actions to achieve the control goal. Through continuous
interactions with the power system, the DRL agent was trained to achieve an effec-
tive control policy that could be used to choose actions in real-time. Two different
approaches of the DRL control were developed: one preventive control aimed at
maintaining SOL and one emergency control aimed at mitigating long-term voltage
instability in the case of larger disturbances. Both of the developed DRL agents were
found to achieve a good performance on the developed test sets and outperformed
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the more conventional control schemes to which they were compared.

The purpose of the final research question was to examine how robustness issues and
inconsistencies in predictions and control could be mitigated when using data-driven
methods. This part has been separately examined in each of the developed studies.
In all of the different studies, the developed monitoring and control methods have
been tested on test scenarios that had not been included in the training set on
which the methods were trained. This could include test data where the inclusion of
measurement errors, new types of disturbances, new OCs, or combinations of these
aspects were tested. While some of the developed methods show robustness towards
these issues, others result in significantly reduced performances. An alternative
approach to using the direct estimates from the data-driven methods is to simply
use them as an aid in the estimation process. This was evaluated in Chapter 6,
where the DVSM estimations of the NNs were only used to support and speed up
the estimation process and actual time-domain simulations were always used to
validate the results.

10.2 Observations and future research
Data-driven methods, and especially methods based on DRL, are relatively new
concepts in power system monitoring and control. Practical implementations are
few and if they do exist they typically take the form of research work rather than
actual systems used in practical operations. In this section, identified challenges and
future research directions are discussed.

• A first challenge concerns the acceptance of data-driven methods by system
operators and planners in the electric power system industry. Traditional
approaches in monitoring and control are typically model-based and they ex-
plicitly account for well-known physical laws. Considering the practical conse-
quences of failure of data-driven methods, transitioning toward systems fully
depending on such methods will be a challenge and there is a need to demon-
strate and assure system operators and field experts that these methods are
efficient and reliable. A reasonable first step would be to use data-driven meth-
ods in parallel with more traditional approaches, which would allow system
operators to assess their accuracy while still relying on conventional moni-
toring and control systems. A second step would be to only use traditional
methods when the data-driven methods are not confident enough in their pre-
dictions/estimations. The development and testing of such prototype methods
where real systems and real system data are used is a necessary step for the
future adoption of data-driven methods.

• One of the major barriers to practically applying NNs and DRL in safety-
critical systems (such as electric power systems) is the inability to anticipate
the behavior of NNs [130]. While NNs might have high prediction accuracy
on unseen test data, they can be highly vulnerable to so-called adversarial
examples, where small input perturbations may lead to poor performance.
A possibility to strengthen the confidence of system operators in data-driven
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methods is to use verification methods of the NN behavior, such as the meth-
ods proposed in [130–132]. Such methods can provide performance guarantees
of when the NN-based methods are reliable to use, bridging the robustness
issues and removing a major barrier toward their adoption in actual power
systems. Another approach includes the use of physics-informed neural net-
works, in which NNs are trained to solve supervised learning tasks while still
respecting given physical laws that are described by nonlinear partial differen-
tial equations [133–135]. This approach allows the use of prior knowledge of
the system dynamics and physical relationships which can compensate for the
deficiency of limited training data.

• The demand for robust data-driven methods in monitoring and control are
typically less critical for preventive applications compared to emergency ap-
plications. For instance, if a preventive control action is sub-optimal and does
not instantaneously restore the system’s security, the result is that the system
will remain unsecure for a slightly longer time. Only in the (very unlikely)
event of a disturbance occurring at the same time as the system is temporarily
unsecure will there be any significant consequences to the system itself. This
impact can be compared to an emergency event, where a misclassification of
the system’s stability, or a poorly chosen action to stabilize the system, could
have disastrous results on the system with possible major blackouts as a con-
sequence. Hence, the robustness requirements of the developed methods will
typically vary and preventive methods based on ML can be assumed to have
fewer barriers to practical implementation.

• All the developed methods in this thesis require simulation models to generate
the training data. Even though simulation models are continuously improving,
they do arguably not always provide the right answer to how a system would
actually behave during an adverse event. A method that is based solely on
simulated data and disturbance scenarios can never be more accurate than the
model itself. That is, if a system model is not accurate, it is impossible for
a control that is based on that system model to be fully accurate. Thus, it
is imperative to continue verifying the dynamic behavior of existing models,
especially as the power system is now transitioning into a system further dom-
inated by distributed generation and new types of loads. Finally, it should be
noted that this is a challenge for any method that uses simulation models and
is not exclusively a problem for data-driven methods.

• The generation of training data is an imperative part of any data-driven
method. The methods presented in this thesis have mainly been developed
using full dynamic simulations, which are time-consuming despite that rela-
tively small test systems have been used. If the developed methods are to be
scaled up, the computational cost and time in generating training data may
become a challenge even if significant computational resources are available.
Furthermore, the performance of the presented methods is also heavily rely-
ing on the quality of the underlying data. While historical data and system
states can be used as a large part of the training data, it will also be necessary
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to include forecasted and generated data. To ensure a good performance in
any state the system might be operating in, the developed datasets must be
balanced between secure/stable and insecure/unstable operating points and
take into consideration all possible combinations of loads, generations, and
topology variations that can be expected. Methods for efficient and represen-
tative database generation, examples including [33,126,136,137], will thus be
important to overcome such challenges.
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