
Research Summary: Deterministic, Explainable and Efficient Stream
Processing

Downloaded from: https://research.chalmers.se, 2025-10-15 17:08 UTC

Citation for the original published paper (version of record):
Palyvos-Giannas, D., Papatriantafilou, M., Gulisano, V. (2022). Research Summary: Deterministic,
Explainable and Efficient Stream Processing. ApPLIED 2022 - Proceedings of the 2022 Workshop
on Advanced Tools, Programming Languages, and PLatforms for Implementing and Evaluating
Algorithms for Distributed Systems: 65-69. http://dx.doi.org/10.1145/3524053.3542750

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Research Summary: Deterministic, Explainable and Efficient
Stream Processing

Dimitris Palyvos-Giannas
Chalmers University of Technology

Gothenburg, Sweden
palyvos@chalmers.se

Marina Papatriantafilou
Chalmers University of Technology

Gothenburg, Sweden
ptrianta@chalmers.se

Vincenzo Gulisano
Chalmers University of Technology

Gothenburg, Sweden
vincenzo.gulisano@chalmers.se

ABSTRACT
The vast amounts of data collected and processed by technologies
such as Cyber-Physical Systems require new processing paradigms
that can keep up with the increasing data volumes. Edge comput-
ing and stream processing are two such paradigms that, combined,
allow users to process unbounded datasets in an online manner,
delivering high-throughput, low-latency insights. Moving stream
processing to the edge introduces challenges related to the hetero-
geneity and resource constraints of the processing infrastructure. In
this work, we present state-of-the-art research results that improve
the facilities of Stream Processing Engines (SPEs) with data prove-
nance, custom scheduling, and other techniques that can support
the usability and performance of streaming applications, spanning
through the edge-cloud contexts, as needed.

CCS CONCEPTS
• Information systems → Online analytical processing en-
gines; Data provenance; • Software and its engineering →
Scheduling.
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1 INTRODUCTION
The vast amounts of data we collect today have enabled novel ap-
plications such as advanced recommendation engines and image
recognition algorithms [19]. These data-driven advances are fueled
by the spread of technologies like social networks, the Internet of
Things (IoT), and Cyber-Physical Systems (CPSs), which caused a
dramatic “increase in the volume of data that are difficult to store,
process, and analyze through traditional database technologies” [16].
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Since data volumes (e.g., positional reports, environmental mea-
surements, health data) are expected to increase, how can we help
the data analysis infrastructures keep up?

Though cloud computing revolutionized data processing, it is not
always feasible or desirable to transfer all the raw data to the cloud,
i.e., due to bandwidth limitations or when data transfer introduces
non-trivial delays [17, 30] (e.g., an autonomous vehicle can gener-
ate 72 terabytes per day [30]). Also, in many applications, only a
tiny fraction of the raw data is important, so cloud processing can
waste network bandwidth for a minimal increase in the extracted
value [33, 36]. Lastly, privacy regulations might also prevent raw
data from being uploaded to the cloud [29].

Edge computing (also known as fog computing [6]) aims to miti-
gate such issues by utilizing additional processing nodes between
the user/sensor and the cloud, allowing applications to move (part
of) the processing closer to the data sources, taking advantage of
the increasing computational capacity of edge devices such as base
stations, switches or routers [36]. By being closer to data sources,
edge devices can reduce the response time and bandwidth usage
of data processing by either processing all the data locally or per-
forming initial filtering and aggregations of the data before sending
it to the cloud for further processing [33]. In turn, this can result
in taking timely decisions based on (processed) sensor data [26],
location awareness [6, 20, 32, 35], and stronger privacy and security
guarantees, compared to pure cloud computing [34, 35].

Challenges And Opportunities. To utilize the computational power
of cloud environments, paradigms such as stream processing (or
data streaming) have been introduced to continuously process un-
bounded datasets in an online manner, resulting in an ever-growing
ecosystem of Stream Processing Engines (SPEs) [1–3, 8]. SPEs offer
high-level programming models for the development of streaming
queries and can transparently handle challenging tasks such as
scaling and fault-tolerance, hiding such complexities from the user.

However, moving processing from the cloud to the edge comes
with new challenges that are not handled by modern SPEs. From a
model perspective, the distributed and parallel analysis offered by
SPEs supports applications whose computational power comes from
many devices in the cloud/edge spectrum. Nevertheless, in contrast
to cloud devices, edge devices can have limited computational and
storage resources and lack the homogeneity of a data center. Thus,
to take full advantage of edge devices, it is necessary to develop
processing systems designed around such heterogeneity and re-
source constraints. Such systems should be based on optimized
algorithms and techniques that run equally well on high-powered
servers and resource-constrained devices [36], as well as program-
ming paradigms that encourage parallel processing, allowing to
split the work into multiple processors and/or nodes [10, 22].
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Figure 1: Sample streaming query identifying stopped vehi-
cles in the Linear Road benchmark [4].

Contributions. In this research summary, we present state-of-the-
art techniques that tackle some challenges related to broadening
the processing to the edge too. More specifically, we discuss 1) how
to efficiently trace/select important data to explain unexpected
behaviors of streaming applications through data provenance, and
2) how to increase the efficiency of streaming applications and
allow users to optimize for specific performance goals through
custom scheduling. We also discuss other general techniques that
can improve the usability and performance of streaming queries
(e.g., deterministic processing and richer processing APIs).

Organization: we introduce background terms in § 2, we discuss
data provenance contributions in § 3, scheduling contributions in
§ 4, and other general contributions in § 5, before concluding in § 6.

2 STREAM PROCESSING BACKGROUND
Our work builds on the DataFlow model [2] that is adopted by
SPEs such as Apache Flink [8]. Streams are unbounded sequences
of tuples, each with a timestamp (i.e., its event-time, the time when
the event corresponding to the tuple happened) and a list of user-
defined attributes. A streaming query is a Directed Acyclic Graph
(DAG) of Sources, operators and Sinks. Sources generate source tuples
corresponding to events (e.g., from IoT sensors, mobile phones,
social network interactions) and send them through streams to one
or several operators. Operators process tuples with user-defined
functions and can discard and/or forward (potentially new) tuples
downstream in the query. Query results eventually reach the Sinks
as sink tuples and are sent to end-users or other applications.

SPEs come with native operators such as Filter, Map, Aggregate,
and Join, which are similar to their relational counterparts, and also
allow defining custom operators. Operators are either stateless, pro-
cessing one tuple at a time, or stateful, maintaining groups of tuples
as time windows and computing the results based on the contents of
the windows. SPEs ensure correctness even in parallel/distributed
executions with potentially out-of-order input data through mech-
anisms such as watermarks [2], that provide guarantees on the
degree of out-of-orderness present in each stream, or sorting the
input tuples of each operator, based on their timestamps [13].

Figure 1 shows an example query (originally presented in [23])
based on the Linear Road benchmark [4], which simulates vehicular
traffic on linear expressways. Each vehicle sends a position report
every 30 seconds, each of which is processed to identify stopped

vehicles, that is, vehicles whose latest four reports had zero speed
and the same position. The Aggregate’s window size (𝑊𝑆) and
window advance (𝑊𝐴) are set to 120 and 30 seconds, meaning that
the Aggregate produces a result every 30 seconds (for each vehicle),
based on the data of the last 120 seconds.

3 SMART DATA TRACING AND SELECTION
WITH DATA PROVENANCE

Data provenance refers to the process of tracing individual data
items (i.e., tuples) through an application, along with the operators
that process them [18], in order to provide detailed explanations
about the results of a streaming application, easing debugging and
making the system more explainable. Data provenance can prove
especially useful in Cyber-Physical Systems by explaining outputs
corresponding to critical events and allowing further investiga-
tion [12]. Additionally, as discussed in § 1, in many scenarios, it
might not be practical or desirable to store all the raw data, either
locally or by transmitting it to cloud storage. Instead, it might be
advantageous to employ edge processing techniques to preprocess,
filter, and aggregate the raw data and only keep sensitive raw data
points, e.g., inputs that led to an interesting output. Thus, for debug-
ging, testing, or legal reasons [29] analysts might want to identify
all outputs connected to a specific input, e.g., a privacy-sensitive
data point. Provenance can help users identify such important in-
puts and/or outputs, allowing applications to discard irrelevant data
that is essentially “noise” [31].

Efficient Streaming Backward Provenance. To track provenance in
streaming queries, each query output must be linked with all inputs
that led to its generation. This is an intrinsically heavy operation,
the overhead of which can be prohibitive when streaming queries
are deployed in resource-constrained edge devices [6, 12, 36].

In GeneaLog [23, 24],we present a state-of-the-art solution for
fine-grained backward data provenance in data streaming that im-
proves on previous works by significantly lowering the provenance
overheads. GeneaLog uses constant-size tuple annotations and
process-level memory management facilities to avoid maintaining
all input data. Instead, it distinguishes on-the-fly all source tuples

Figure 2: a) Two sample queries to monitor car location and
mean speed (all tuples up to time 8:21 are processed), and
their b) backward and c) live forward provenance graphs.
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that actually contribute to some result. Additionally, GeneaLog is
designed to work in parallel and distributed deployments, allowing
the query to scale with the processing load. Figure 2a (originally
presented in [26]) shows two example streaming queries monitor-
ing a vehicular network to identify cars that are in a specific area
(𝑄1) or are speeding (𝑄2). The backward provenance (GeneaLog’s
output) is shown in Figure 2b. Notice that, in this provenance graph,
input tuples that contribute to multiple results are repeated, an is-
sue that is handled by live forward provenance, discussed below. As
evaluated using real-world queries and two SPEs, GeneaLog results
in a small overhead, even in resource-constrained devices, showing
performance improvements of more than one order of magnitude
compared to the previous state-of-the-art.

Live Forward Provenance. Backward provenance provides valuable
insights to e.g., debug applications. Since it focuses on tracing how
each individual result is built, such insights are nonetheless of little
help in answering questions such as “which output depends on raw
data that could contribute to new results?” or “which input data con-
tributed to at least 5 results?” Forward provenance can answer such
questions by tracing all results linked to specific inputs. Forward
provenance can be produced by traversing the backward prove-
nance graph (e.g., as it is produced by GeneaLog) in reverse, but
that can include duplicates (when inputs contribute to multiple
outputs), and it is not live, i.e., it cannot answer whether an input
can contribute to more results in the future. A general live forward
provenance solution requires deduplication of the backward prove-
nance, which, in the context of stream processing, requires finding
a point in time after which a source tuple will not contribute to
any more results. This problem has not been explored by previous
works, which, instead, focus on specialized solutions for debugging
or visualization of subsets of the query’s operators and data [18].

To address the above issues, we develop a framework, called
Ananke [26], that efficiently records live forward provenance in data
streaming queries. Ananke can use metadata from any backward
provenance tool, such as GeneaLog, to produce a (streaming) bipar-
tite graph of live forward provenance. The live forward provenance
graph’s vertices are the deduplicated input tuples that contributed
to some output as well as the outputs themselves. Input vertices
contain live metadata indicating if that input can contribute to more
results in the future. An input and an output vertex are connected
in the graph if the input is part of the specific output’s backward
provenance. An example of such a live forward provenance graph
is shown in Figure 2c (for the queries of Figure 2a), with tuples
being included in the graph exactly once and some of them marked
with a green check-mark if the respective tuple has expired and
will not have any vertices added to it in the future. We propose two
implementations of Ananke that balance simplicity with scalability,
and we prove their correctness.

Ananke’s extensive evaluation, using Apache Flink and real-
world use cases, shows that Ananke’s overheads are small and close
to the overheads of backward provenance. Figure 3, taken from
the evaluation of Ananke, shows the performance overheads of
GeneaLog and Ananke for a vehicular tracking query running on
a resource-constrained device, which is similar to those deployed
at the edge of Cyber-Physical Systems. As shown in the figure,
both GeneaLog (GL) and the different implementations of Ananke
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Figure 3: Performance overheads of backward (GeneaLog -
GL) and live-forward provenance (Ananke - ANK) compared
to the original query (NP) for a vehicular tracking query
running on a resource-constrained edge-like device.

(ANK-) have low overheads compared to the original streaming
query without provenance (NP): less than 8% impact in throughput
and latency for the best performing implementations (GL, ANK-1).

4 CUSTOMIZING PERFORMANCE GOALS
WITH THREAD SCHEDULING

When data streaming applications are deployed on edge nodes, it
is crucial to efficiently utilize all available computational resources.
Additionally, when cloud and edge nodes have multi-tenancy i.e.,
are concurrently executing applications with different performance
goals and Quality-Of-Service requirements, it is important for users
to be able to control the resource allocation of each application and
balance their combined performance requirements. One way to
achieve such fine-grained efficiency and control is through custom
scheduling, i.e., by controlling how much CPU time is given to
each streaming operator and the priority of the executions [27].
Scheduling decisions can either be controlled at the user-space by
treating streaming operators as user-level threads or at the OS-level,
where each operator is assigned to a dedicated Operating System
(OS) thread and is scheduled by the OS scheduler (as is the default
case in SPEs such as Apache Flink [8] and Apache Storm [3]).

Custom User-Level Scheduling. Our work in Haren [25] eases the
transition of SPEs to custom user-level scheduling through a general
scheduling framework that controls the allocation of CPU time to
the operators with the goal of optimizing user-defined performance
goals such as latency, throughput, and fairness [28]. Differently
from previous works, Haren defines high-level abstractions that de-
scribe the runtime of an SPE and custom scheduling policies, hiding
implementation details and allowing for code reuse. Haren controls
resource allocation by running operators as user-level threads that
are scheduled in an application-aware manner, following a custom
user-defined scheduling policy. We design and implement Haren as
a standalone framework that can be integrated into an SPE to offer
such custom scheduling with minimal effort from the user com-
pared to previous ad-hoc approaches. Haren’s detailed evaluation
shows that it can outperform the default OS scheduling in a variety
of scenarios, achieving user-defined goals in resource-constrained
devices where custom scheduling can be essential [28].
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Figure 4: Performance benefits of custom scheduling with
Lachesis for a streaming query from the Linear Road bench-
mark [4], for increasing input rates.

CustomOperating System Scheduling. State-of-the-art custom sched-
uling solutions for data streaming require alterations to the core
runtime of the SPE [9] to be able to schedule the query operators
as user-level threads. While these alterations allow for fine-grained
control of the scheduling decisions, the tight coupling in the imple-
mentation of the SPE and the scheduler can introduce implementa-
tion and compatibility risks. Modern SPEs [3, 8] usually delegate
the scheduling decisions to the underlying Operating System (OS).
However, while OS schedulers are sophisticated and comprehen-
sively tested on a wide range of workloads, they are not aware of
the particular goals of data streaming applications.

Our work in Lachesis [27] explores an alternative approach to
custom scheduling that does not require changes to the SPE. It
proposes a standalone middleware that controls the scheduling
decisions of the OS through mechanisms such as nice and cgroup
to enforce custom scheduling policies in streaming queries running
on one or several nodes and even on multiple SPEs. Lachesis is
modular and easily extensible to support more SPEs, scheduling
policies, and OS mechanisms. The extensive evaluation of Lachesis,
with three SPEs, real-world and synthetic workloads, and differ-
ent deployments, shows that it can bring significant performance
improvements over the default OS scheduling and state-of-the-art
user-level schedulers (up to +75% throughput and -1130x latency).

Figure 4, from Lachesis’ evaluation, shows the average through-
put and latency of a streaming query from the Linear Road bench-
mark [4] running on a resource-constrained device using Apache
Storm [3], scheduled either using Lachesis or the default OS schedul-
ing. As shown in the figure, as the input rate of the query increases,
custom scheduling with Lachesis achieves significantly better aver-
age throughput and latency compared to the default OS scheduling.

5 OTHER TECHNIQUES TO SUPPORT
CLOUD/EDGE STREAMING APPLICATIONS

Besides the support for edge to cloud analysis through provenance
(see § 3) and custom scheduling (see § 4), other complementary
approaches are worth mentioning.

One such approach is that of supporting efficient scaling of appli-
cations. Focusing on efficient parallel execution, for instance, one
can notice that parallelization performs best when there is minimal
synchronization and the parallel instances of the operators work
independently as much as possible. The usual case is for such syn-
chronization to be in place to support correct execution [5, 15, 38],

ensuring results are produced by operators only when all the tu-
ples contributing to a certain result have been processed. While
SPEs commonly support correct and deterministic execution for
order-insensitive analysis, they rely on users themselves to define
deterministic order-sensitive analysis [21]. In this context, modules
such as Viper [37] and STRETCH [21] introduce transparent meth-
ods to guarantee determinism in parallel stream processing (for
both order-insensitive and order-sensitive analysis) without sacri-
ficing efficiency and helping applications scale up before they scale
out [11]. Both solutions rely on the ScaleGate [14] data structure
which, in contrast with previous approaches, relies on lock-free
synchronization to merge-sort the parallel streams.

A second aspect is to provide richer APIs than those of tradi-
tional SPEs. Besides the common native operators provided by most
SPEs (§ 2), SPEs allow general-purpose operators whose semantics
can be defined by the users. If, on the one hand, it is easier for users
to express complex semantics through ad-hoc operators rather than
a composition of native ones, this results, on the other hand, in
two major downsides [26]. First, it requires users to define such
ad-hoc operators so that their distributed and parallel execution
can still be achieved with the same API offered by the underlying
SPEs. Second, it hinders the portability of such ad-hoc operators
across SPEs, as each SPE defines its own APIs for the custom oper-
ators it offers to users. As shown in [7], rich semantics like those
offered by Spatio-Temporal Logics can be indeed enforced by au-
tomatically composing native operators, allowing users to express
complex monitoring queries with compact notations and avoiding
the manual and error-prone composition of large data pipelines.

6 CONCLUSIONS
We presented state-of-art techniques to address challenges that
arise when deploying streaming queries at the edge. We presented
two data provenance frameworks, GeneaLog and Ananke, that allow
users to maintain backward and live forward provenance to identify
important data items in stream processing while incurring only
small overheads, even in resource-constrained devices. We also
introduced two custom schedulers for SPEs: Haren, which allows
users to control the scheduling decisions at the user level, and
Lachesis, which guides the scheduling decisions through OS-level
mechanisms. Both schedulers can improve the resource utilization
of streaming queries and allow to optimize for custom performance
goals. Lastly, we outlined other general solutions that improve the
usability of stream processing by guaranteeing determinism and
enriching the development APIs provided by modern SPEs.
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