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Transport properties of vertical heterostructures under light irradiation
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Electronic and transport properties of bilayer heterostructure under light irradiation are of fundamental
interest to improve functionality of optoelectronic devices. We theoretically study the modification of transport
properties of bilayer graphene and bilayer heterostructures under a time-periodic external light field. The bulk
electronic and transport properties are studied in a Landauer-type configuration by using the nonequilibrium
Green’s function formalism. To illustrate the behavior of the differential conductance of a bilayer contact under
light illumination, we consider tight-binding models of bilayer graphene and graphene/hexagonal boron-nitride
heterostructures. The nonadiabatic driving induces sidebands of the original band structure and opening of
gaps in the quasienergy spectrum. In transport properties, the gap openings are manifested in a suppression
of the differential conductance. In addition to suppression, an external light field induces an enhancement of the
differential conductance if photoexcited electrons tunnel into or out of a Van Hove singularity.

DOI: 10.1103/PhysRevB.106.085409

I. INTRODUCTION

Two-dimensional materials have attracted enormous atten-
tion due to their unique mechanical, optical, and electronic
properties [1]. Out of the great variety of two-dimensional
materials, graphene is the most studied one owing to its high
electronic mobility [2], large tensile strength [3], and strong
light-matter interaction [4]. After isolation of graphene, the
attention gradually shifted toward other two-dimensional ma-
terials displaying diverse properties which complement those
of graphene. For example, in comparison to gapless graphene,
hexagonal boron-nitride is a wide-gap insulator [5,6].

Besides the study of monolayer materials, the large range
of different two-dimensional materials enables the study of
hybrid systems. Experimental techniques have been devel-
oped to stack two dimensional materials on top of one another
in an atomically precise sequence [7,8]. The resulting artificial
materials are named van der Waals (vdW) heterostructures
and are characterized by strong interatomic bonds in the
two-dimensional layer and weak interlayer coupling [9,10].
The weak vdW interactions allow the integration of different
two-dimensional materials without the constraints of lattice
matching imposed by conventional heterostructures.

The possibility to assemble different two-dimensional ma-
terials in vertical heterostructures enables the combination of
single-layer properties into one device. Combined with the
optical properties of two-dimensional materials [4], it makes
them an attractive building block for optoelectronic devices
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such as photodetectors [11–13]. At the core of enhanced func-
tionality lies the interaction of light and matter. It is hence
of fundamental interest to study the effects of light in bilayer
heterostructures.

Within the field of two-dimensional materials, the interac-
tion of light and matter has to not only be studied to enhance
or engineer unique functionalities of optoelectronic devices
but also to reveal physical properties in these materials. For
example, it has been experimentally shown that band gaps
open in the energy spectra by irradiating graphene with a time-
periodic potential [14–19]. It has also been suggested that
the opening of the gap is accompanied by a phase transition
from a topological trivial to a topological one [20–22]. The
topological nature of edge states in nanoribbons and signa-
tures in transport properties has been extensively studied in
Refs. [17–19,23–32] in the absence of dissipation. The effect
of dissipation on the transport properties can be studied by
coupling the electronic system to a bath of phonons similar
to the approaches in Refs. [33–38]. Electronic and transport
properties in bilayer graphene under light irradiation have
been discussed in Refs. [39–44]. Instead of a time-periodic
external light field, time-dependent modulation of gate or con-
tact potentials and the accompanied photo-assisted tunneling
of electrons lead to a great variety of interesting phenomena
[45–50].

Based on the growing interest in stacking 2D materials,
we study transport properties in bilayer heterostructures under
light irradiation as shown in Fig. 1. Previously, we considered
a vertical heterostructure in a quantum-point contact config-
uration in which the top layer is irradiated with light [51].
Compared to the study in Ref. [51], the objective of this
paper is to consider a Landauer-type configuration consisting
of a central region and reservoir leads. The leads remain
in equilibrium if the central region is illuminated with light
such the distribution functions in the leads are well-defined.
As particular examples, we consider bilayer graphene and
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FIG. 1. Bilayer heterostructure under light illumination close to
the overlap of the top and bottom layer. A voltage V is applied
between the two layers.

graphene/hBN heterostructures and discuss the modification
of bulk transport properties under light irradiation.

As the main result, we obtain that the differential con-
ductance is suppressed or enhanced by interaction with the
light. The suppression occurs for voltages corresponding to
a gap opening in the quasienergy spectra of the bilayer het-
erostructure. The enhancement of the conductance is related
to the tunneling into or out of a Van Hove singularity which
provides a large density of states. Although various aspects of
gap opening and the suppression of the differential conduc-
tance has been discussed in literature [14–19], here we extend
previous results to bilayer graphene and bilayer heterostruc-
tures and discuss processes leading to an enhancement of the
differential conductance.

The paper is structured as follows. In Secs. II and III,
we introduce the model Hamiltonian and the nonequilibrium
transport formalism which is used to calculate the differ-
ential conductance. Section IV contains the results of the
paper: In Sec. IV A, we discuss a parameter regime which
can be achieved by state-of-the-art experiments in bilayer
heterostructures. Sections IV B and IV C investigate in detail
the signatures of the light-matter interaction in the differential
conductance and explain the features using the momentum-
and energy-dependent density of states. In Sec. V, we sum-
marize and conclude.

II. MODEL

We consider a bilayer heterostructure with a top and bot-
tom layer connected to a top and bottom lead as shown in
Fig. 2. An external electric field is applied perpendicular to the
central region consisting of the bilayer heterostructure. The
leads serve as reservoir leads and are assumed to remain in
equilibrium if the central region is irradiated with light. The
Hamiltonian can be composed of leads, a central region (c),
and tunneling between the regions as

Ĥ (t ) = Ĥleads + Ĥc(t ) + Ĥtun. (1)

The Hamiltonian of the central region can be further divided
into a top (T ) and bottom (B) layer under light irradiation (I)
and tunneling between the layers:

Ĥc(t ) = ĤT
0 + ĤB

0 + ĤT B
tun + ĤI (t ). (2)

FIG. 2. Setup for the calculation of the differential conductance
in a bilayer heterostructure consisting of a central region with a top
and a bottom layer. The central region is illuminated with light and
connected to leads which remain in equilibrium under light illumina-
tion. A voltage V is applied between the top and bottom layers and
the interlayer coupling is described by γ⊥.

ĤT,B
0 describes the bare top and bottom layers which we

model as graphene and hexagonal boron-nitride. In the sublat-
tice basis of the bilayer heterostructure, the Hamiltonian can
be written as

Ĥα
0 =

∑
k

εa
α â†

k,α
âk,α + εb

α b̂†
k,α

b̂k,α

+ [γ‖ f (k)â†
k,α

b̂k,α + H.c.], (3)

with α = (T, B), the in-plane overlap energy γ‖ of nearest-
neighbor atoms, and the operators âk,α and b̂k,α of sublattices
a and b, respectively.

The energies of the electrons in the 2pz orbitals are de-
noted as εa

α and εb
α . For next-nearest-neighbor coupling, the

factor f (k) is given by f (k) = ∑
i eikδi with the vectors δi

connecting neighboring carbon atoms. These vectors are given
by δ1 = a

2 (1,
√

3), δ2 = a
2 (1,−√

3), and δ3 = (−1, 0) and the
nearest-neighbor distance between atoms: a = 1.42 Å.

The third term in Eq. (2) describes the coupling between
the top and bottom layers. We consider an AB-stacked het-
erostructure in which an atom in the top layer of sublattice
a is over an atom of sublattice b in the bottom layer and the
atom of the top layer is over the hollow site of the lower layer
[see Fig. 3(a)]. The Hamiltonian is

ĤT B
tun = γ⊥

∑
k

â†
k,T b̂k,B + H.c., (4)

with out-of-plane coupling between the layers γ⊥.
The last term in Eq. (2) describes the light-matter in-

teraction of the bilayer heterostructure which we take into
account by a minimal substitution k̂ → k̂ − eA(t ). In our
study, we model the light classically in the dipole approxima-
tion since the momentum of the photon is negligible compared
to the momentum of the electrons [52,53]. We are inter-
ested in the effects of circularly polarized light and take the
vector potential to be A(t ) = (Ax cos(ωt ), Ay sin(ωt ), 0) with
clockwise polarization. The vector potential can be rewritten
as A(t ) = (A0/2)(A+eiωt + A−e−iωt ) proportional to positive
A+ = (1,−i, 0) and negative A− = (1, i, 0) photon frequen-
cies ω, respectively. In the sublattice basis, the light-matter
interaction is

ĤI (t ) =
∑

k,α=T,B

γαMk,α â†
k,α

b̂k,α, (5)
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FIG. 3. (a) Bilayer heterostructure consisting of two hexagonal
lattices. Triangular sublattices A and B are illustrated with full and
empty circles. In the upper (lower) layer, we write the sublattices as
A1 (A2) and B1 (B2), respectively. The blue vectors δi (i = 1, 2, 3)
connect the in-plane neighboring atoms. We consider both bilayer
graphene and graphene/hBN heterostructures. (b) First Brillouin
zone of bilayer heterostructure with the symmetry points �, M, K,
and K ′. The red path close to the K point indicated the momentum
dependence of the density of states in Figs. 4 and 5.

with optical matrix elements separated into positive and neg-
ative frequencies as Mk,α (t ) = M+

k,α
eiωt + M−

k,α
e−iωt and the

coupling strength γα = (e/m)h̄KαA0/2 in units of energy.
The elements M±

k,α
are obtained from M±

k,α
= MkA± with

the in-plane vector Mk,α = ∇k f (k)/a [51,52]. The factor Kα

is Kα = ∫
dx �α (x)∂x�α (x − |δi|êx ) with the unit vector in

the x direction êx and the 2pz wave function �α (x). In the
following, we assume that KT = KB.

III. NONEQUILIBRIUM TRANSPORT FORMALISM

In this paper, we study the transport properties of a bilayer
heterostructure under light irradiation in a Landauer-type con-
figuration where the central region is attached to leads as
shown in Fig. 2. The irradiation is limited to the central region
and dissipation of excess energy takes place in the leads,
allowing one to apply a ballistic formulation of the transport
problem.

The dc current in a periodically driven systems can be
written in terms of the Floquet Green’s function Ĝn,R

k (ε) which
represent the Fourier transform of the retarded Green’s func-
tion. To define the retarded Green’s function, we introduce the
operator in sublattice space of the top and bottom layers as
ψ̂

†
k,α

= (â†
k,α

b̂†
k,α

) (α = (T, B)). The retarded Green’s func-
tion is given by

ǦR
k (t, t ′) =

(
ĜR

k,T,T (t, t ′) ĜR
k,T,B(t, t ′)

ĜR
k,B,T (t, t ′) ĜR

k,B,B(t, t ′)

)
, (6)

with ĜR
k,α,α′ (t, t ′) = −iθ (t − t ′)〈{ψ̂k,α (t ), ψ̂†

k,α′ (t ′)}〉 and the
anticommutator {. . . }. Since the Hamiltonian depends ex-
plicitly on time, we write the Floquet Green’s functions as
ĜR

k (t, t ′) = ∑
n

∫
dε
2π

Ĝn,R
k (ε)e−iετ e−inωT with the relative time

τ = t − t ′, the center-of-mass time T = (t + t ′)/2 [54], and
the index n corresponding to the number of absorbed and
emitted photons, respectively. We then derive the Dyson equa-

tion [54,55], which after transformation to Fourier space is
given by

Ĝn,R
k (ε) = ĝn,R

k (ε) + ĝn,R
k (ε)M̂+

k Ĝn+1,R
k (ε)

+ ĝn,R
k (ε)M̂−

k Ĝn−1,R
k (ε). (7)

The matrices in Eq. (7) have the same structure as the matrices
in Eq. (6). The unperturbed Green’s function ĝn,R

k (ε) is

ǧn,R
k (ε) =

⎛
⎜⎜⎝

εn,a
T − f (k) 0 −γ⊥

− f ∗(k) εn,b
T 0 0

0 0 εn,a
B − f (k)

−γ⊥ 0 − f ∗(k) εn,b
B

⎞
⎟⎟⎠

−1

, (8)

with εn,β
α = ε + nω − εβ

α and the index β referring to sublat-
tice a or b, respectively. The matrices M̂±

k in Eq. (7) are

M̂±
k,α,α

= γα

(
0 M±

k,α

M±
k,α

0

)
, (9)

with the elements M±
k,α

defined after Eq. (5) and M±
k,T,B =

M±
k,B,T = 0. Equation (7) constitutes a recursive equa-

tion which can be solved by matrix inversion in the space of
sidebands and sublattices or an iterative technique [51,56].

The time-averaged current I = (1/T )
∫ T

0 dt I (t ) between
the leads can be expressed as [48,57]

I = 2e2

h

∑
nk

∫
dε T n

k (ε)( fT (ε) − fB(ε)), (10)

with the transmission T n
k (ε) = T BTr|Ĝn,R

k,T,B(ε)|2. Since the
leads are nonirradiated, their occupation is well-defined by the
Fermi function of the top and bottom fα (ε) = {1 + exp[(ε −
μα )/kBT ]}−1 with the chemical potential on the top and bot-
tom layers μα at temperature T . The trace in the transmission
is calculated in sublattice space and we have modeled the
leads in the wide-band approximation. In this approximation,
the leads will induce a broadening of states in the central
region which is defined by α = ρ(εF )|tcα|2 with the density
of states ρα (εF ) at the Fermi energy of lead α and the coupling
tcα between the leads and the top and bottom layers, re-
spectively. The assumptions of energy-independent coupling
matrices and unitarity of the scattering matrix for incoming
and outgoing waves leads to a vanishing time-averaged cur-
rent in the absence of a voltage avoiding charge pumping
effects [19,32].

In this paper, we are interested in the bulk transport
properties and study the differential conductance at zero tem-
perature. Assuming the voltage to be applied on the top lead,
the differential conductance is

dI

dV
= 2e2

h

∑
nk

T n
k (eV) , (11)

with the transmission T n
k (ε) depending on the Green’s func-

tion connecting the top and bottom layers.

IV. RESULTS

In this section, we discuss the density of states and the
transport properties of the bilayer heterostructure under light
irradiation. We study two kinds of bilayer heterostructures:
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FIG. 4. Spectral density of states ρk(ε) in Eq. (12) for bilayer graphene without (a) and with (b) light-matter interaction as a function of
energy and momentum. The path (K − 0.7ŷ) → K → (K − 0.7K̂ ) in momentum space is illustrated in Fig. 3(b) as red line. The coupling of the
leads to layers is set to T,B = 5 × 10−3γ0 and the grey solid line shows the doping level which is εD = −0.2γ0. In (a), the quasienergies exhibit
the quadratic dispersion for bilayer graphene close to the K point and the two conduction/valence bands are separated by γ⊥ = 0.15γ0. In (b),
bilayer graphene is irradiated with frequency ω = 0.6γ0 and optical coupling strength γα = 0.1γ0 in top and bottom leads. The light-matter
interaction induces gaps in the density of states. On the right y axis, we label the energies of the dynamical gaps with εn = nω/2 + εD and
n = ±1, . . . , ±4. These gaps correspond to the resonant absorption of n photons between conductance and valence bands.

bilayer graphene and a graphene/hBN heterostructure. Our
model comprises several parameters that we take from DFT
calculations [5,58] or estimate from experimental results [59].

A. Discussion of parameters

The stacking of the bilayer heterostructure has the low-
est energy when one carbon atom of sublattice a is over
a carbon (boron) atom and the carbon atom of sublat-
tice b is over the hollow site of the lower layer [5,58]
[Fig. 3(a)]. The lattice constants of graphene and hBN differ
by a small distance, justifying consideration of commensurate
geometries [60,61]. Different values for the in-plane next-
nearest-neighbor coupling γ‖ and the out-of plane coupling
γ⊥ have been reported in bilayer graphene and graphene/hBN
heterostructures [58,61,62]. We set the in-plane and out-plane
coupling for both graphene and hBN to γ‖ = 2.6 eV and
γ⊥ = 0.4 eV, respectively. The energies of the 2pz level in
the carbon atom (C) are set to εC,α = 0 and the energies of
boron and nitride atoms are set to εB,α = 3.3 eV and εN,α =
−1.4 eV [58]. Since typical heterostructures are doped, we
set a doping energy to εD = −0.2γ0 such that states both
above and below the K point are occupied in an equilibrium
state.

To get an estimate of the magnitude of the vector potential,
we convert the vector potential A(t ) to an electric field by
E(t ) = ∂A(t )/∂t . In Ref. [59], a graphene sample was illu-
minated with an electric field amplitude E = 4.0 × 107V/m
[59] and a photon energy h̄ω ≈ 191 meV. Introducing the in-
teraction energy of next-nearest-neighbor carbon atoms γ‖ =
2.6 eV, the photon energy corresponds to h̄ω ≈ 0.07γ0. The
light-matter coupling strength then is of the order γα ≈ 0.02γ0

with the factor Kα � 3.0 nm−1 [53]. For the purpose of
presentation, we show in the following sections the results
for slightly larger electric fields and photon energies. For

example, we assume an electric field amplitude of the order of
E = 0.1 V/Å and a photon energy h̄ω ≈ 1.7 eV correspond-
ing to γα ≈ 0.1γ0 and h̄ω ≈ 0.6γ0.

B. Spectral density of states

The energy and momentum-dependent spectral density of
states ρk(ε) of graphene under light irradiation is given by

ρk(ε) = − 1

4π
Im Tr Ĝ0,R

k (ε), (12)

with the retarded Floquet Green’s function Ĝ0,R
k (ε) at n = 0

photons [16]. Figure 4 shows the spectral density of states of
bilayer graphene and graphene/hBN close to the K point. The
path along which we show the density of states is illustrated in
Fig. 3(b) as a red line. It stretches from (K − 0.7ŷ) → K →
(K − 0.7K̂ ) in the first Brillouin zone with the unit vectors ŷ
and K̂ in y and K directions, respectively.

Comparing Figs. 4(a) and 4(b), the light-matter interaction
induces sidebands that are shifted by nh̄ω from the origi-
nal band without light-matter interaction. For the parameters
in Fig. 4(b), only sidebands with ±1 shifted from the bare
quasienergy spectra are visible in the spectral density of states.
The effect of light on the quasienergy spectrum decreases with
the number of sidebands and we restrict the calculation to
n = 4 sidebands. We also tested that higher orders will not
change the results.

Besides the introduction of sidebands, the interaction of
light with the bilayer heterostructures causes opening of gaps
in the quasienergy spectra. In literature, these gaps have been
separated into gaps that occur at doping energy εD and at
energies away from εD. For example, it has been discussed
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FIG. 5. Spectral density of states ρk(ε) in Eq. (12) for graphene/hBN heterostructure without (a) and with (b) light-matter interaction as a
function of energy and momentum. The path (K − 0.7ŷ) → K → (K − 0.7K̂ ) in momentum space is illustrated in Fig. 3(b) as red line. The
coupling of the leads to layers is set to T,B = 5 × 10−3γ0 and the grey solid line shows the doping level, which is εD = −0.2γ0. In (a), the
quasienergies are decomposed of a linear dispersion close to the K point which is mainly due to graphene, and two bands originating mainly
from boron and nitrogen atoms. In (b), the graphene/hBN heterostructure is irradiated with frequency ω = 0.6γ0 and optical coupling strength
γα = 0.1γ0 in top and bottom leads. The light-matter interaction induces gaps in the density of states. On the right y axis, we label the energies
of the dynamical gaps with εn = nω/2 + εD and n = ±1, . . . , ±4. These gaps correspond to the resonant absorption of n photons between
conductance and valence bands.

that the gap for undoped graphene at zero energy leads to a
Hall current without a magnetic field for circularly polarized
light [20]. Gaps away from the doping energy are also called
dynamical gaps [63] and occur at energies εn = nω/2 + εD

with the number of sidebands n = ±1, . . . ,±4. These gaps
correspond to a resonant absorption/emission of n photons
with energy h̄ω between the conduction and valence band.
Here, we focus the discussion on the dynamical gaps since
the dominant signatures of the light-matter interaction in the
differential conductance (see Sec. IV C) are related to those
gaps.

The energies εn of the dynamical gaps are indicated on the
right axis in Fig. 4(b). The largest gap opens at a resonant
absorption of a single photon and occurs at energies ε±1 =
±ω/2 + εD. For these energies, the quasienergy spectra be-
comes fully gapped close to the K point. However, further
away from the K point, copies of the bare spectra of the bilayer
heterostructure intersect energies at ε1. These states at energy
ε1 will be responsible for a finite differential conductance at
voltages eV � ε1 as we will discuss in Sec. IV C.

Figure 5 shows the spectral density of states for a
graphene/hBN heterostructure. Without the light-matter in-
teraction, the band structure consists of linear dispersion due
to the graphene layer two bands due to hBN. The valence
band with K-point energy of ε = −0.7γ0 is mainly constituted
by the nitrogen sublattice while the conduction band with K-
point energy of ε = 1.1γ0 originates from boron atoms. Under
light irradiation, gaps open at energies εn similar to the case of
bilayer graphene. The bands which are mainly due to nitrogen
and boron show a weaker dependence on momenta near the
K point in comparison to the linear dispersion of graphene.
Such behavior implies a large density of states at energies
ε = 1.1γ0 and ε = −0.7γ0, suggesting that coupling to light
induces additional features in the differential conductance as

discussed in Sec. IV C. Such features also appear in bilayer
graphene at larger energies.

It is interesting to note that the size of the gaps in both
Figs. 4 and 5 depend on the direction from which the K
point is approached. The different gaps sizes are due to the
momentum-dependence of the optical matrix elements Mk,α in
Eq. (5). As an example, when changing the momentum from
(K − 0.7ŷ) to the K point, the gap at energy ε1 in Fig. 4(b)
is slightly smaller compared to the gap at energy ε1 and
momenta between K and (K − 0.7K̂ ).

C. Differential conductance

In this section, we discuss the differential conductance of
Eq. (11) for both bilayer graphene and graphene/hBN. We
can separate signatures of the light-matter interaction into
processes which are related to the opening of gaps as dis-
cussed in Sec. IV B, and into processes that are related to
the tunneling into and out of a Van Hove singularity. The first
kind of process leads to a suppression of the conductance, the
second kind to an enhancement. We discuss the behavior of
the differential conductance at zero temperature and assume
that the voltage is applied to the top lead.

Figure 6 shows the differential conductance of bilayer
graphene when light is turned on (blue line) and off (black
dashed line), respectively. As expected, the conductance is
suppressed near voltages corresponding to energies εn of the
gaps in the quasienergy spectra of bilayer graphene. The en-
ergies εn are shown in Figs. 4(b) and 6 as dashed red lines.
For the voltage range of Fig. 6, gaps occur at ±ε1, ±ε2,
and ε3. The width of the gaps decreases with an increasing
number n of sidebands. Although in Fig. 4(b) a gap with width
� 0.1γ0 opens near energy ε1, the conductance has a small
but finite value. As we discussed in Sec. IV B, the gap at ε1
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FIG. 6. Differential conductance for bilayer graphene. The pa-
rameters are the same as in Fig. 4. The voltage is applied on the
top lead and the dashed black line shows the conductance without
light. Gaps in the quasienergy spectra suppress the current at volt-
ages eV = εn. The parameters are ω = 0.6γ0, T = 0, n = 4, T,B =
5 × 10−3γ0. For the parameters shown in the figure, gaps occur at
voltages ε1, ε2, and ε3 indicated as red dashed line and also shown in
Fig. 4(b).

opens close to the K point. However, away from the K point
along paths (K − 0.7ŷ) → K and K → (K − 0.7K̂ ), copies
of the conductance band intersect the gap at energy ε1 [see
Fig. 4(b)]. The copies of the conductance band are the reason
for the finite conductance close to voltages eV � ε1. The same
argument holds for eV � −ε1.

In addition to the suppression of the conductance at volt-
ages ε1, ε2, and ε3, smaller modifications of the conductance
occur at other voltages. For example, close to the voltage

eV � ε2, two small dips appear at slightly larger and smaller
voltages than eV � ε2. These dips can be understood by con-
sidering the quasienergy spectra in Fig. 4(b) close to energy
ε2. Slightly above and below the energy ε2 in Fig. 4(b),
there are additional avoided crossing stemming from the two
conductance bands of bilayer graphene. These gaps are re-
sponsible for the small dips close to ε2.

We now turn to the differential conductance in
graphene/hBN heterostructures, which is shown in Fig. 7(a).
To explain some features in the differential conductance,
it is instructive to discuss the total density of states in
Fig. 7(b). The total density of states is obtained from
ρ(ε) = (1/Nk)

∑
k ρk(ε) with the total number of k-point Nk

in the Brillouin zone.
Similar to Fig. 6, the differential conductance is suppressed

at energies εn with the width decreasing with an increasing
number of sidebands. Additional features originate from tun-
neling into or out of a Van Hove singularity. The Van Hove
singularities provide a large number of states resulting in an
enhancement of the differential conductance.

Similar to the gaps that occur due to absorption/emission
of n photons, the signatures due to tunneling in or out of a Van
Hove singularity can be divided into n-photon processes. The
most dominant feature in Fig. 7(a) occurs due to a two-photon
process and is sketched in Fig. 7(a) as a green arrow. At
eV � 0.31γ0, electrons can tunnel to the Van Hove singularity
at energies eV � 0.31γ0 + 2ω by absorption of two photons.
In addition to the two-photon tunneling process, an electron
can also be absorbed and tunnel to the same Van Hove sin-
gularity via a three-photon tunneling process. In this case,
the differential conductance shows a small peak at negative
voltages eV � −0.31γ0.

A similar process occurs at voltages eV � 0.7γ0 near the
gap opening at energy ε3. Although the opening of a gap
implies the suppression of the differential conductance, near
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FIG. 7. Differential conductance (a) and density of states (b) for a graphene/hBN heterostructure. The parameters in (a) and (b) are same as
in Fig. 5. The voltage is applied at the top lead and the dashed black line shows the conductance without light. Gaps in the quasienergy spectra
suppress the current at voltages eV = εn. At certain voltages [indicated as green vertical arrows in (a)], an enhancement of the conductance
occurs which is related to the tunneling in and out-of a Van Hove singularity. The processes giving rise to the peaks indicated with green arrow
in (a) are sketched in (b) as green arrows. As example, the peak at eV � 0.31γ0 originated from two-photon absorption and tunneling into the
Van Hove singularity at eV � 1.51γ0. The parameters are ω = 0.6γ0, T = 0, n = 4, T,B = 5 × 10−3γ0.
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voltages eV � ε3 the dominant process is related to tunneling
out of a Van Hove singularity, resulting in an enhancement of
the conductance. The corresponding three-photon process is
sketched in Fig. 7(b). In this case the Van Hove singularities at
eV � −1.2γ0 which are separated by � 0.1γ0 provide a large
density of states resulting in two peaks at eV � 0.7γ0 via a
three-photon tunneling process.

Further interesting features of the light-matter interac-
tion occur at negative voltages in the range −0.8γ0 � eV �
−0.2γ0. In this range, the differential conductance without
light is much smaller than the differential conductance un-
der light-irradiation. This can be understood by the spectral
density in Fig. 5. At eV = −0.2γ0, the two upper bands in
Fig. 5(a) are empty while the two lower bands are occu-
pied. If the voltage is reduced to eV � −0.2γ0, a further
band is emptied close to the K point. Under light irradiation,
electrons in the lowest energy band can then be absorbed
and tunnel into the empty band. Such processes can occur
for −0.8γ0 � eV � −0.2γ0. For voltages eV < −0.8γ0, the
lowest-lying energy band is also emptied and electrons can’t
be absorbed. Hence, in the range −0.8γ0 � eV � −0.2γ0, the
differential conductance is offset from the conductance with-
out light.

For the parameter regime that we discussed in this pa-
per, tunneling in and out of a Van Hove singularity is
more dominant in a graphene/hBN heterostructure than in
bilayer graphene. The reason for this is that the conduc-
tance of bilayer graphene is an order of magnitude smaller
than the conductance of the graphene/hBN heterostructure.
Since the light-matter coupling parameters are the same in
both cases, the light-matter interaction is more pronounced
in the graphene/hBN heterostructure. Another reason is that
the opening of gaps suppresses the process of tunneling
into a Van Hove singularity. For example, a one-photon
process corresponding to the tunneling into the Van Hove
singularity at eV � 0.72γ0 in Fig. 6 is suppressed by the
gap near voltages eV � ε1. However, a tiny peak appears
at eV � 0.28γ0, corresponding to the absorption of a sin-
gle photon and the tunneling into the Van Hove singularity
at eV � 0.88γ0. The peak eV � 0.88γ0 is barely visible
due to the two bands of bilayer graphene giving rise to a
larger conductance without light compared to graphene/hBN
heterostructures.

V. CONCLUSION

We studied the transport properties of vertical heterostruc-
tures under light irradiation in a Landauer-type configuration.
The vertical heterostructure is connected to leads which are
assumed to be in equilibrium if the central region is irradiated
with light. As particular examples for a central region, we
considered bilayer graphene and hexagonal boron-nitride het-
erostructures. In such contact, we calculated the differential
conductance by using the nonequilibrium Green’s function
formalism.

The external light field induces sidebands of the origi-
nal band structure and opening of gaps which correspond
to a resonant absorption or emission n photons between the
conductance and valence band. These gaps occur at energies
ε = nω/2 + εD with the frequency ω of the photons and the
doping energy εD. In transport properties, the gaps are man-
ifested in a strong suppression of the conductance. Although
gaps open close to the K point, at momenta further away from
the K point, sidebands intersect the gaps. These sidebands
give rise to a finite conductance even when a gap occurs
close to the K point. Besides the suppression, light-matter
interaction can also lead to an enhancement in the differential
conductance. The enhancement of the differential conduc-
tance is related to the tunneling of photoexcited electrons
into or out of Van Hove singularities of the vertical het-
erostructure.

Processes originating from tunneling into or out of a Van
Hove singularity prevail in graphene/hBN heterostructures
compared to bilayer graphene due to the smaller conductance
in graphene/hBN heterostructures. In general, suppression of
conductance due to opening of gaps compete with processes
due to tunneling into or out of Van Hove singularities. For
example, the absorption of two-photon and the accompanied
tunneling into the Van Hove singularity of graphene/hBN
heterostructures is larger than the suppression due to opening
of gaps.
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