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A B S T R A C T   

Buses and metros are two main public transit modes, and these modes are crucial components of sustainable 
transportation systems. Promoting reciprocal integration between bus and metro systems requires a deep un-
derstanding of the effects of multiple factors on transfers among integrated public transportation transfer modes, 
i.e., metro-to-bus and bus-to-metro. This study aims to reveal the determinants of the transfer ratio between bus 
and metro systems and quantify the associated impacts. The transfer ratio between buses and metros is identified 
based on large-scale transaction data from automated fare collection systems. Meanwhile, various influencing 
factors, including weather, socioeconomic, the intensity of business activities, and built environment factors, are 
obtained from multivariate sources. A multivariate regression model is used to investigate the associations be-
tween the transfer ratio and multiple factors. The results show that the transfer ratio of the two modes signifi-
cantly increases under high temperature, strong wind, rainfall, and low visibility. The morning peak hours attract 
a transfer ratio of up to 57.95%, and the average hourly transfer volume is 0.94 to 1.38 times higher at this time 
than in other periods. The intensity of business activities has the most significant impact on the transfer ratio, 
which is approximately 1.5 to 15 times that of the other independent variables. Moreover, an adaptative 
geographically weighted regression is utilized to investigate the spatial divergences of the influences of critical 
factors on the transfer ratio. The results indicate that the impact of a factor presents spatial heterogeneity and 
even shows opposite effects (in terms of positive and negative) on the transfer ratio in different urban contexts. 
For example, among the related socioeconomic variables, the impact of the housing price on the downtown 
transfer ratio is larger than that in the suburbs. Crowd density positively influences the transfer ratio at most 
stations in the northern region, whereas it shows negative results in the southern region. These findings provide 
valuable insights for public transportation management and promote the effective integration of bus and metro 
systems to provide enhanced transfer services.   

1. Introduction 

Developing high-quality public transportation systems is inevitable 
in metropolises with high population density (Gao et al., 2020). Trans-
fers between different transportation modes have also become an inte-
gral part of the public transportation system (Seaborn et al., 2009). 
Herein, transfers refer to those between different public transportation 
modes. The definition of the two transfer modes of metro-to-bus and 
bus-to-metro is available in reference (Seaborn et al., 2009). The topo-
logical structure of the transfer system connects a metro network with a 
feeder bus network. The metro network is generally more efficient and 

has a greater capacity (Wang et al., 2018; Yang et al., 2015). The feeder 
bus network is flexible, featuring multiple lines and directions. In the 
system, many travelers cannot directly reach their destinations. It is 
often necessary to transfer one or more times, especially for those who 
travel a medium-long distance (Huang et al., 2019). Unpleasant trans-
fers are potentially important factors that result in the negative experi-
ence of using public transit since they increase the travel time and 
reduce travel efficiency (Espino and Román, 2020; Schakenbos et al., 
2016). Consequently, it is crucial to identify which factors impact 
transfer travel and understand the relationship between these factors 
and the transfer ratio. This is significant to provide passengers with a 
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better transfer experience and subsequently increase the attractiveness 
of public transportation. 

The transfer ratio is affected by multiple factors (such as weather) in 
real-time. However, most studies focus on the transfer penalty during 
the morning peak hours (Espino and Román, 2020; Navarrete and de 
Ortúzar, 2013). Few have qualitatively and quantitatively reported the 
determinants of the transfer ratio (Allard and Moura, 2018; Yang et al., 
2015). Furthermore, none of these studies addresses weather factors, 
and they do not concentrate on the spatial variations in the transfer 
ratio. As a result, very little is known about how the impacts of various 
factors, such as the weather, on the transfer ratio vary in different urban 
contexts. The same factor probably has different effects on the transfer 
ratio in different regions. For example, the impact of rain on the transfer 
ratio downtown is weaker than that in the suburbs because there are 
more rain shelters in the city center than in remote areas. In addition, the 
transfer ratio and distribution of related factors in urban areas vary from 
station to station. It is necessary to consider spatial variations when 
exploring the transfer ratio explicitly. In the available literature, 
geographically weighted regression (GWR) analysis explicitly considers 
local effects, thus offering a reasonable explanation of spatial phenom-
ena (Warf, 2014) and a promising method to reveal the underlying 
factors of citywide transfer. 

Therefore, standing in the wake of existing research, this study aims 
to fill the above gaps by investigating the impacts of various factors on 
the transfer ratio between bus and metro systems based on multivariate 
data sources. First, the transfer ratio and transfer time are identified 
based on large-scale transaction data from automated fare collection 
systems in Shenzhen, China. Meanwhile, various influencing factors, 
including weather factors (e.g., rain, wind, visibility, and temperature), 
socioeconomic characteristics, the intensity of business activities, and 
built environment factors, are obtained from multivariate sources. Sec-
ond, the influences of different socioeconomic characteristics, weather 
conditions, the intensity of business activities related factors, built 
environmental attributes, and transfer-related factors on the transfer 
ratio are explored with a multiple linear regression, which best utilizes 
multivariate data from multiple sources. This paper aims to identify 
which factors significantly impact the transfer ratio and determine their 
underlying influence. However, the multiple linear regression method 
can only determine which factors have a more significant impact on the 
transfer ratio and cannot analyze and account for the spatial heteroge-
neity of the same factor on the transfer ratio. Third, an adaptative GWR 
is further performed to reveal the divergences in the effects of socio-
economic factors, the intensity of business activities related factors, built 
environment factors, and transfer-related factors on the transfer ratio 
and provides more accurate modeling concerning the transfer ratio in 
various contexts. These findings can be applied to expand short-term 
public transportation scheduling and for future transfer station 
planning. 

This paper is organized as follows. Section 2 gives a literature review 
of relevant studies. Section 3 mainly describes the study area and related 
data. Section 4 presents our models and elaborates on our analytical 
approaches. Section 5 discusses the analysis results and summarizes the 
significant findings of the research. Section 6 concludes the study and 
suggests future work. 

2. Literature review 

Transfers are considered a crucial part of public transportation that 
can concentrate ridership, serve passengers traveling medium-long 
distances and increase public transportation accessibility. However, 
transfers are inconvenient due to the extra travel time (Schakenbos 
et al., 2016). Accordingly, improving the performance of the transfer 
system and promoting the transfer experience is key to increasing the 
attractiveness of public transportation. It is essential to determine the 
influencing factors of transfer and their weights for further specific 
transfer system improvements. 

Existing studies have widely investigated transfer penalties and 
captured the effects of various factors on transfers (Garcia-Martinez 
et al., 2018; Yang et al., 2015). Most studies focus on a subjective 
analysis of transfer based on limited sample data obtained by manual 
surveys, and they lack a systematic large-scale quantitative analysis. 
Furthermore, few studies have attempted to untangle the relationships 
between the transfer ratio and the potential determining factors to 
provide a comprehensive understanding for decision-makers to promote 
the sustainable development of urban public transportation. This paper 
extracts large-scale transfer data from smartcard transaction data to fill 
the research gap from the perspective of multisource data. It collects 
potential influencing factors from multiple platforms to explore the 
impact of various factors on the transfer ratio and specifically considers 
the impact of weather on transfer. 

However, the impact of weather on transfer is rarely examined 
(Cascajo et al., 2019). In the current literature, the effect of weather on 
transfer is mentioned only by Iseki and Taylor (Iseki and Taylor, 2009). 
They conducted studies from a qualitative perspective, identified 
weather as one factor that impacts the transfer penalty, and pointed out 
that many passengers make transfers only in bad weather due to the 
extra waiting time. There is still no consensus on the impact of weather 
(such as rainfall, winds, and temperature) on transfer. In contrast, the 
impact of weather factors on travel demand for the public transportation 
system has been thoroughly studied. The impact of weather on the usage 
of public transportation is complex. Weather conditions have been re-
ported to significantly affect ridership and travel demand (Arana et al., 
2014; Singhal et al., 2014). For example, strong winds, rainfall, and 
temperature have a prominent effect on public transportation (Arana 
et al., 2014; Li et al., 2015; Miao et al., 2019; Singhal et al., 2014; Wei 
et al., 2019; Yang et al., 2021). Rainfall and low temperature are 
negatively correlated with ridership on weekends and leisure trips 
(Arana et al., 2014), which provides adequate references and inspires 
this article to explore the influence of weather factors on the transfer 
ratio. 

In addition, public transportation systems are also affected by many 
other factors (Chakour and Eluru, 2016; Cools et al., 2010; Gao et al., 
2021a, 2021b; Taylor et al., 2009). These pivotal factors are summarized 
in Table 1. Most studies have focused on the transfer time, weather, and 
built environment variables on public transit ridership (Garcia-Martinez 
et al., 2018), while few have concentrated on the effect of these factors 
on transfer. Furthermore, the estimation coefficients of various factors 
probably vary across space. For example, the impact of transfer time on 
the transfer ratio in the downtown area is lower than that in the suburbs. 
Because the well-developed public transportation network and dense 
stations are in the city center, the transfer passengers are not sensitive to 
variations in transfer time. Moreover, existing studies do not involve 
spatial analysis of these influencing factors associated with the transfer 
ratio. The related literature typically uses GWR models to analyze the 
spatial impact of various factors on ridership (Ma et al., 2018; Tu et al., 
2018). The results of relevant studies are summarized in Table 2. They 
mainly include the three aspects of the influence of factors on transfer, 
the impacts of weather on ridership, and the influence of various factors 
on public ridership based on GWR analysis. 

Table 2 shows that existing studies have mainly investigated the 
influence of average weather conditions on daily ridership (Guo et al., 
2007). Some have explored the relationship between real-time weather 
variables and ridership (Singhal et al., 2014), accounting for the varia-
tion in travel demand caused by hourly weather fluctuations. Moreover, 
weather impacts on ridership vary depending on public transportation 
modes, regions, weather conditions, and dates (weekends or workdays). 
These studies provide critical references for analyzing the impact of 
weather on the transfer ratio in this study. 

Furthermore, as shown in Table 2, transfer-related studies are usu-
ally based on survey data to characterize transfer behavior and conduct 
a subjective evaluation (Espino and Román, 2020; Schakenbos et al., 
2016). They discuss the impact of the transfer time and station facilities, 
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such as information availability and elevator availability, and evaluate 
the penalized factors (Navarrete and de Ortúzar, 2013; Schakenbos 
et al., 2016). However, the sample size obtained through surveys is 
relatively small. We can achieve only the average influence of these 
factors on transfers rather than the real-time impacts by mining survey 
data. Unlike these studies, this paper uses a high-quality multivariate 
dataset, including the real-time transfer ratio and transfer time extracted 
from smart data recorded by the automatic fare collection system. More 
importantly, the existing studies have discussed the spatial impact of the 
factors on transit ridership by using the GWR(Ma et al., 2018). However, 
they do not analyze the spatial impact of various factors on transfer ratio 
in different spaces. To fill this gap, this paper thoroughly analyzes the 
divergences of the influences of individual factors on the transfer in 
spatial regions using the GWR. In particular, the spatial difference in the 
impact of the same factor on the transfer ratio is revealed. 

Accordingly, this study contributes to the literature in the following 
aspects.  

• This study analyzes the factors influencing the transfer ratio using a 
massive smart card (SC) dataset and global positioning system (GPS) 
coordinate data at a fine-grained temporal scale. A comprehensive 
understanding of different factors that affect the transfer ratio at the 
station level is obtained.  

• We explore the impact of real-time weather on transfer, which is 
highly important for understanding the relationship between 
weather and the transfer ratio. We identify the incentive/disincen-
tive factors for transfer passengers, which can help decision-makers 
reduce the adverse effects of factors for the subsequent planning 
and construction of new metro stations.  

• An adaptative GWR is utilized to investigate the spatial divergences 
of the influences of key factors on the transfer ratio between bus and 
metro systems. This paper analyzes the difference in the spatial in-
fluence of the same factors on the transfer ratio, which can help 
better understand the spatial heterogeneity of the determinants of 
the transfer ratio. 

3. Study area and data 

This study utilizes multisource datasets, including smartcard data 
and meteorological data, socioeconomic data, the intensity of business 
activities related data, and built environment data in Shenzhen. All data 
were collected in 2017 so that the multisource data could be integrated. 
This section provides an overview of the geographical background of the 
study area, its public transportation systems, and the sources of the 
datasets. 

Table 1 
Summary of the factors considered in existing studies.  

Independent 
variables 

(Choi 
et al., 
2012) 

(Cardozo 
et al., 
2012) 

(Zhao 
et al., 
2013) 

(Singhal 
et al., 
2014) 

(Arana 
et al., 
2014) 

(Schakenbos 
et al., 2016) 

(Zhou 
et al., 
2017) 

(Chen 
et al., 
2019) 

(Wu 
and 
Liao, 
2020) 

(Li 
et al., 
2021) 

(Gao 
et al., 
2021a, 
2021b) 

This 
paper 

Transfer time – – – – – ● – – – – – ● 
Metro stations – – – – – ● – – – – ● – 
Access/egress time/ 
costs 

– – – – – ● – – – – – – 

Inbound/outbound 
ridership/points of 
interest (POIs) 

– – – – – – – – – ● – – 

Population ● ● ● – – – – – – ● ● ● 
Employment ● ● ● – – – – – – ● ● – 
Morning peak ● – – – – – ● – – – – ● 
Evening peak ● – – – – – ● – – – – ● 
Non-workdays ● – – ● ● – ● – ● – – ● 
House rent – – – – – – – – – – – ● 
Housing price – – – – – – – – – ● – ● 
Income – – – – – – – – ● – – – 
Temperature – – – – ● – ● – ● – – ● 
Wind speed – – – ● ● – ● – ● – – ● 
Relative humidity – – – – ● –  – ● – – – 
Visibility/fog – – – ● – – – – – – – ● 
Rainfall – – – ● ● – ● – ● – – ● 
Snow – – – ● – – – – – – – – 
Parking lots – – – – – – – ● – ● ● – 
Business buildings ● – – – – – – ● – – – – 
Restaurant – – ● – – – – ● – – – ● 
Entertainment – – ● – – – – – – – ● – 
Takeaway/average 
meal price of 
restaurants 

– – – – – – – – – – – ● 

Gross domestic 
product (GDP) 

– – – – – – – – – – – ● 

Schools – – ● – – – – ● – – ● ● 
Bus stops – – – – – – – ● ● ● ● – 
Feeder bus routes – – ● – – – – ● – – – ● 
Average feeder 
distance 

– – – – – – – – – – – ● 

Distance from the 
central business 
district (CBD) 

– – ● – – – – ● – ● – ● 

Road density/land 
mixture – – – – – – – – – ● ● – 

Fall/winter/spring – – – ● – – – – – – – – 

Note: “●” indicates that the parameter was used in the study, and “-” indicates that the parameter was not used in the study. 
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3.1. Study area 

Shenzhen is an appropriate study area because of the prevalent 
public transportation, the relatively high proportion of smartcard trips, 
and the dense public transportation network. Shenzhen includes ten 
administrative districts in 2017: Guangming District (GMD), Longhua 
District (LHAD), Baoan District (BAD), Nanshan District (NSD), Futian 
District (FTD), Luohu District (LHD), Yantian District (YTD), Longgang 
District (LGD), Pingshan District (PSD) and Dapeng District (DPD). Ac-
cording to the Shenzhen Statistical Yearbook 2018, at the end of 2017, 

the permanent population was 12.52 million, and the population density 
was 6234 persons per sq. km. The public transportation system consisted 
of nine metro lines with 166 stations and 992 bus routes with 17,430 
buses. The total number of bus trips was 1654.25 million, dropping 
11.44% compared with the previous year. In the past four years, the bus 
passenger volume has decreased continuously. In contrast, the total 
number of metro trips was 1655.45 million, 27.62% higher than the 
previous year. Metro ridership increased every year since some travelers 
may have moved from bus travel to metro travel. More importantly, 
most metro passengers are concentrated in some stations of metro lines 1 

Table 2 
Summary of previous studies on the relationship between various factors and transit travel.  

Author &year Subject of study Data collection Remarkable findings (important 
variables) 

Precision Period Models 

(1) Analysis of the influencing factors of public transportation transfer behavior 
(Espino and 

Román, 
2020) 

Transfers for bus 
users 

SP, data collected from 
bus trips, N = 2416 
observations 

The transfer waiting time is critical. – – 
Mixed logit models, 
latent class models 

(Allard and 
Moura, 
2018) 

Transportation 
transfer quality effect 
the mode choice 

SP survey, N = 9976 

The study presented a framework for 
determining how variables influence 
perceived transportation, determining the 
number of travelers. 

hourly 2014 Mixed logit models 

(Garcia- 
Martinez 
et al., 2018) 

Transfer penalties in 
multimodal public 
transportation 

RP and SP survey, N =
295 

Longer trips may be preferred over faster 
alternatives with transfers. 

– 
The morning peak 
period (7:00–10:00) 
for five days 

Multinomial logit 
model 

(Schakenbos 
et al., 2016) 

Transfer disutility 
between bus/tram/ 
metro and trains 

SP, total N = 1054 The transfer time has a significant 
influence on transfer disutility. 

– – Mixed logit models 

(Navarrete and 
de Ortúzar, 
2013) 

Transfers of the 
metro and bus 
systems 

A stated choice survey 
and data from 
Transantiago 

Walking time and the transfer wait time 
are the most penalized types of time. 20 min 

Peak hours, the 
months of July and 
August 2009 

Mixed logit models  

(2) Impacts of weather on transit ridership 

(Wu and Liao, 
2020) 

Weather and travel 
mode impact 
ridership 

Questionnaire survey, 
metro ridership, weather 
data 

Leisure travel is more affected by extreme 
weather. The weather has a significant 
influence on weekend travel. 

daily Jan. 1st, 2014, to Jun. 
30th, 2018 

Logit model 

(Zhou et al., 
2017) 

Weather impacts on 
public transportation 
ridership 

smartcard data, weather 
data (30 days) 

Weather affects public transportation 
more than other factors. hourly 

The entire month of 
September 2014 

Multivariate 
modeling approach 

(Arana et al., 
2014) 

Weather impacts on 
transit ridership 

Ridership data from a 
computer-aided dispatch 
system, weather data 

Wind and rain lead to fewer trips, an 
increase in temperature causes an 
increase in the number of trips, weather 
indicators have negative effects on 
ridership. 

daily 

All weekends in 2010 
and 2011, Oct. 1st, 
2011, to Sept. 30th, 
2012 

Multilinear 
regression models  

(3) Impacts of various variables on public ridership based on GWR analysis 

(Li et al., 2021) Transfer distance 
(egress and access) 

The Mobike trip dataset 
and metro smartcard 
dataset 

The GWR model outperforms the ordinary 
least squares (OLS). The transfer distances 
are correlated with ridership, population 
density and distance from the CBD. 

daily 
(6:00–23:00) on 23 
weekdays in August 
2016 

OLS, GWR 

(Ma et al., 
2018) Transit ridership 

Smartcard data, POI 
information 

There are time-dependent effects of the 
built environment on ridership, 
significantly better goodness of fit was 
observed for geographically and 
temporally weighted regression (GTWR). 

hourly One month OLS, GWR, GTWR 

(Yu and Peng, 
2019) 

Ridesourcing 
demand 

Ridesourcing trip data 
from transportation 
network 

Geographically weighted Poisson 
regressions (GWPRs) improve the 
modeling fit. Built environment factors 
significantly impact ridesourcing 
demand. 

daily 2016–2017 GWPR, spatial error 
(SER) 

(Chen et al., 
2019) 

Metro ridership Smartcard data, online 
POI data 

A GWR model using the Minkowski 
distance (MD-GWR) achieves better 
goodness of fit. POI data have a better 
statistical performance. 

hourly From Sept. 4th, 2017 
to Sept. 17th, 2017 

OLS, GWR model 
using the Euclidean 
distance (ED-GWR), 
MD-GWR 

(Tu et al., 
2018) 

Daily ridership of 
buses, the metro 
system, and taxis 

Vehicle global 
positioning system (GPS) 
trajectories, smartcard 
data, spatial data 

Employment, mixed land use, and road 
density significantly affect the ridership of 
each mode. 

daily 
From Sept. 24th to 
Sept. 30th, 2014 OLS, GWR 

(Zhao et al., 
2013) 

Metro ridership 
Annual average weekday 
station ridership, 2010 
census data provided 

Population, business/office floor area, the 
CBD, and the number of education 
buildings, entertainment venues, and 
shopping centers are related to ridership. 

daily 
Annual average 
weekday ridership at 
stations 

OLS 

Note: SP indicates a stated preference experiment, and RP indicates a revealed preference experiment. 
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to 5. Consequently, this study explores these five metro lines (i.e., metro 
lines 1, 2, 3, 4, and 5), 52 metro stations, their surrounding bus stops, 
and their bus routes to avoid biases. The study area, metro lines, and 
metro stations are shown in Fig. 1. 

October 2017 is chosen as the study period in this paper for two main 
reasons. First, October contains multiple dates, including 16 workdays, 
eight holidays (including National Day and Mid-Autumn Festival), and 
six ordinary weekends. The period is from 7:00 to 22:59, consistent with 
the operation time of all metro stations. Second, the weather in October 
was hot and changed significantly. The average temperature was 
25.8 ◦C, with a temperature ranging from 17.6 ◦C to 34.2 ◦C. The total 
cumulative rainfall was 102.2 mm. Hence, the choice of this month 
makes it easier to capture the relationship between weather and 
transfer. 

3.2. Data sources and data processing 

This section describes the raw data sources, data processing, and 
statistical characteristics of the variables. The hierarchy of the variables 
and data sources are shown in Fig. 2. The six categories of independent 
variables consist of weather, socioeconomic, the intensity of business 
activities, built environment, transfer-related, and date variables. The 
spatial configuration and characteristics of the distribution of partially 
important variables regarding the weather, socioeconomic, intensity of 
business activities, and built environmental data are shown in Fig. 3. The 
weather variables change in real-time with temporal characteristics. The 
other variables vary from station to station, showing significant spatial 
variation in the study area. Therefore, it is imperative to discuss the 
spatial characteristics of these variables. 

The datasets from multiple sources include one month of meteoro-
logical data from all weather stations in Shenzhen, socioeconomic data 
from the Shenzhen Statistical Yearbook, and one month of public 
transportation smartcard transaction data covering all cardholders. 
Additional data include the location coordinates of all metro stations 
and bus stops, built environment data, the intensity of business activities 
related data, and vector maps of the districts in Shenzhen. All data were 
collected from 7:00 to 22:59 Oct. 1st to Oct. 30th, 2017. Since some 
metro stations and bus routes operated later than 6:00 and closed earlier 
than 23:59, to obtain stable and reliable results, we selected the avail-
able data from 7:00 to 22:59. 

The definitions of the variables are described in Table 3. The 

attributes considered in our analysis include dependent variables 
(transfer ratio) and independent variables. The independent variables 
mainly include weather, socioeconomic, intensity of business activities, 
built environment, transfer-related, and date variables. The detailed 
description of the independent variables and the dependent variables is 
as follows. 

3.2.1. Independent variables 

3.2.1.1. Weather variables. The weather data contained 480 records 
from the national meteorological administration of China, and raw data 
were collected at hourly intervals. The selected dataset includes tem-
perature, wind, visibility, and rainfall. The four weather variables were 
extracted from the meteorological observation values recorded by the 
National Meteorological Administration of China in October 2017. The 
temperature in this paper is the highest temperature value per hour. The 
wind is defined as the average value observed during a given hour. 
Similarly, visibility is the minimum value in an hour. The raw rainfall is 
the cumulative hourly precipitation, and the rainfall is represented by a 
dummy variable coded 0 or 1 in this paper. The distribution of the four 
weather variables over one month is shown in Fig. A.1 of Appendix A. 

3.2.1.2. Socioeconomic variables. The socioeconomic variables include 
house rent, housing price, and Geographical GDP. The Geographical 
GDP denotes the geographical gross domestic product (GDP) near each 
metro station, is calculated by the weighted average GDP in the adjacent 
administrative region and the distance from the metro station to the 
adjacent administrative region. The GDP of the administrative region 
came from the Shenzhen Statistical Yearbook 2018. The house rent and 
housing price were taken from the rental and housing prices published 
on major rental and housing sales websites (Lianjia.com, Anjuke) in 
October 2017. 

3.2.1.3. The intensity of business activities related variables. Multiple 
factors in this study characterize the intensity of business activities near 
the metro station. The number of restaurants, the average meal price of 
restaurants, and the monthly sales of takeaways near each metro station 
were obtained from the Meituan app, Eleme app, and Public Comments 
app. The crowd density of metro stations and distance from the central 
business district (CBD) came from the Baidu Map official website. 

Fig. 1. Geographical location, metro stations, and metro lines in Shenzhen, China.  
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3.2.1.4. Built environment variables. The built environment factors 
consist of multiple variables. The number of schools was collected from 
the Baidu Map official website. The number of feeder bus routes and 
feeder distances between bus stops and metro stations was calculated by 
smartcard data and GPS data from metro stations and bus stops. The 
calculation method was based on references (Huang et al., 2019). The 
selected smartcard data from the bus and metro systems recorded pas-
senger trips, including 2,026,230,715 swipe records. Every record con-
tained details about the identification card number, card type, metro 
station, bus line number, and transaction timestamp. The GPS data from 
the metro and bus stops contained 61,847 records. 

As shown in Table 3, bus routes 500 m denote the number of bus 
routes within 500 m of a metro station. Bus routes 500–1000 m repre-
sent the number of bus routes between 500 m and 1000 m near the 
metro station. Distance 500 m represents the average distance between 
bus stops and a metro station within 500 m of a metro station. Distance 
500–1000 m denotes the average distance between bus stops and a 
metro station within 500 to 1000 m of a metro station. Among the above 
four variables, bus routes 500 m and distance 500 m are aggregated 
within 500 m from a metro station, while bus routes 500–1000 m and 
distance 500–1000 m are aggregated within 500 to 1000 m from a metro 
station. Because existing studies show that the service radius of metro 
stations and bus stops is 500 to 1000 m (Chakour and Eluru, 2016; Wang 
et al., 2018), some researchers have proposed the use of 1000 m as a 
limit for walking distance (Munizaga et al., 2014; Munizaga and Palma, 
2012). Moreover, some related literature also considers the number of 
bus routes and the distance of bus stops from metro stations as inde-
pendent variables to explore their effects on public transit (Hadas and 
Ranjitkar, 2012). Furthermore, the variables are categorized and 
analyzed according to the buffer distance (Chakour and Eluru, 2016). 
Therefore, we chose the number of bus routes and distance in the service 
range of 500 and 1000 m near the metro station as independent vari-
ables, which can indicate the number of bus routes connected near the 
metro and the average distance between the metro station and bus stops 
without utilizing quartiles, standard deviations, etc. In addition, existing 
studies have shown that there are also linear effects between these 
variables and metro ridership (Chen et al., 2019), and spatial models 
have also been used to explore the spatial effects of these variables on 
metro ridership. The main purpose of this paper is to reveal the 

determinants of the intermodal transfer ratio between metro and bus 
systems and to explore the local spatial effects of these variables on the 
transfer ratio by using a GWR. The GWR model can reveal the global 
linear influence and local spatial effects of the independent variables on 
the transfer ratio, although there are also nonlinear effects between built 
environment variables (bus routes and distance) and a metro station. 
Given the limitation of the length of the manuscript, we did not explore 
in this paper the nonlinear effect of these independent variables on the 
transfer ratio. However, in future research work, we will further explore 
the nonlinear effects between these variables and a metro station to 
further understand the logical relationship behind this. 

3.2.1.5. Transfer-related variables. The transfer-related variables mainly 
include the transfer time (metro-to-bus mode) and revised transfer time 
(bus-to-metro mode). We mined passenger trip data and transfer data 
from smartcard and GPS data to understand passengers' travel behavior 
characteristics. The transfer process between the metro system and the 
bus system is shown in Fig. B.1 of Appendix B. The transfer identification 
method is based on references (Huang et al., 2019; Zhao et al., 2019, 
2017). This paper has made some improvements on this basis and 
adopted a dynamic identification method considering spatiotemporal 
information. First, we calculate the transfer time of all transfer passen-
gers for the metro-to-bus mode, which is the time difference between the 
time exiting the metro and the subsequent time boarding a bus. Second, 
the transfer time is calculated at an hourly scale with an upper bound of 
40 min. Third, similarly, we also calculate the revised transfer time of all 
transfer passengers for the bus-to-metro mode, which is the time dif-
ference between the time when passengers board a bus and then sub-
sequently enter the metro. Then, the transfer time is recorded at an 
hourly scale with an upper bound of 50 min. Finally, the 95th percentile 
of the filtered transfer time (revised transfer time) is regarded as the 
metro-to-bus (bus-to-metro) transfer time threshold. 

3.2.1.6. Date variables. Fig. C.1 to Fig. C.3 in Appendix C. show sig-
nificant differences in public transportation travel on different dates. It 
is meaningful to discuss the influence of different dates on the transfer 
ratio. As a result, based on the distribution characteristics of the transfer 
ratio, the dates are divided into four categories, namely, off-peak 

Fig. 2. The hierarchy of the variables in the models and data sources.  
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(baseline), morning peak, evening peak, and non-workdays, represented 
by a dummy variable taking the value of {0,1}. 

3.2.2. Dependent variables 
The hourly transfer ratio (dependent variables) equals the ratio of 

transfer volume to the number of inbound or outbound passengers. The 
number of hourly inbound and outbound passengers is derived from 
smartcard transaction data at metro stations. Furthermore, the transfer 
volume is filtered based on the transfer time (revised transfer time) 
threshold. There are two main reasons for choosing the transfer ratio as 
the dependent variable. First, the transfer ratio is more mobile and 
expandable than the transfer volume and can be used in studies related 
to transfer in all cities. Second, the transfer ratio can effectively reduce 
errors in the results caused by the transfer volume that is too large or too 
small at some metro stations. Therefore, the hourly transfer ratio of each 
metro station is chosen as the dependent variable in this paper. Fig. 4 

below shows the characteristics of the spatial distribution of the 
dependent variable. 

Accordingly, the definitions and descriptive statistics of the variables 
are described in Table 3. Most of the continuous variables are easy to 
understand and self-explanatory. However, the statistical characteristics 
of various variables are quite different. Most of the independent vari-
ables are continuous and have different dimensions. To eliminate the 
influence of different dimensions on the results, all continuous variables 
are standardized before performing the model analysis. 

4. Methodology 

A multivariate regression (MLR) is an effective method to estimate 
unknown factors, and the most widely used MLR method is ordinary 
least squares (OLS) (Tu et al., 2018). We use MLR to determine which 
factors significantly affect the transfer ratio and to identify the potential 

Fig. 3. The spatial configuration of the weather variables, socioeconomic variables, intensity of business activities related variables, and built environment variables 
in Shenzhen. 
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effects of various factors (including weather elements, socioeconomic 
variables, the intensity of business activities related variables, built 
environment variables, transfer-related variables, and date factors). 
However, MLR cannot analyze the spatial heterogeneity of various 

factors associated with the transfer ratio. GWR analysis explicitly con-
siders local effects in the available literature, explaining spatial phe-
nomena (Warf, 2014). Therefore, to further explore the disparity impact 
of significant variables on the transfer ratio in different regions, this 

Table 3 
Definitions and descriptive statistics of variables.  

Variables Definitions Unit Mean Sd. 

Dependent variables 

Transfer ratio 

The transfer ratio of the metro-to-bus mode is equal to the transfer volume divided by the number 
of outbound passengers.  

0.094 0.09 

The transfer ratio of the bus-to-metro mode is equal to the transfer volume divided by the number 
of inbound passengers.  0.096 0.09  

Independent variables 
Weather variables 
Temperature Highest temperature per hour. ◦C 27.01 3.45 
Wind Average wind speed per hour. m/s 2.42 1.16 
Visibility Minimum visibility per hour. m 32.02 10.89 
Rainfall (dummy variable) Rainfall exceeds 0.  0.073 0.26  

Socioeconomic variables 
House rent Average house rent near metro stations. $/m2 12.57 3.26 
Housing price Average housing price near metro stations. $/m2 8932.66 2585.91 
Geographical GDP Geographically weighted GDP near metro stations. $ 40,840,868,942 6,708,550,059  

The intensity of business activities related variables 
Restaurant The number of restaurants within 1000 m of a metro station.  1705.26 788.44 
Average meal price of 

restaurants 
Average meal price of restaurants within 1000 m of a metro station. $/person 11.86 3.58 

Takeaway Average monthly sales of takeaway food within 1000 m of a metro station.  331,106 203,747 
Crowd density The hourly density of pedestrian flow near a metro station.  5.62 1.19 
Distance from the CBD Distance of a metro station from the CBD. m 9600.29 6604.44  

Built environment variables 
Schools The total number of schools within 1000 m of a metro station.  8 3.36 
Bus routes 500 m The number of bus routes within 500 m of a metro station.  5.67 3.48 
Bus routes 500–1000 m The number of bus routes is between 500 m and 1000 m near the metro station.  17.93 8 
Distance 500 m Average distance between bus stops and metro stations within 500 m. m 328.20 91.65 
Distance 500–1000 m Average distance between bus stops and metro stations within 500 m–1000 m. m 791.85 34.43  

Transfer-related variables 
Transfer time Hourly difference time threshold from exiting the metro to boarding a bus. min 29.47 6.71 
Revised transfer time Hourly difference time threshold from boarding a bus to boarding the metro. min 40.42 8.18  

Date variables (dummy variable) 
Morning peak 7–9 a.m. on weekdays in October 2017.  0.096 0.29 
Evening peak 5–8 p.m. on weekdays in October 2017.  0.14 0.34 

Non-workdays 
Including ordinary weekends and national holidays, 1–8, 14, 15, 21, 22, 28, and 29 in October 
2017.  0.46 0.50 

Note:1. Sd. = standard deviation. 2. The rainfall and date variables are dummy variables, and the others are continuous variables. 3. For transfers from buses to the 
metro, the bus smartcard data contain only the bus boarding time and bus routes and lack the bus alighting time and stop information. The transfer time is revised for 
the bus-to-metro mode in this study, and defined as the time difference between boarding a bus and boarding the metro, including the previous trip's in-vehicle travel 
time. 

Fig. 4. Spatial distribution of the transfer ratio: (a1) the metro-to-bus mode and (a2) the bus-to-metro mode.  
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paper uses GWR to further model the transfer ratio and various factors 
(including weather elements, socioeconomic variables, the intensity of 
business activities related variables, built environment variables, and 
transfer-related variables). 

4.1. Global models 

Theoretically, there is probably some correlation between variables. 
Before calculating the MLR models, possible collinearity between in-
dependent variables is diagnosed. The variance inflation factors (VIFs) 
are calculated for all models. A VIF <10 is usually considered accept-
able, indicating almost no multicollinearity in the independent variables 
(Yan et al., 2019). Multilinear regression models based on OLS estima-
tion are used to examine the influence of various factors on the transfer 
ratio. The formula is shown in Eq. (1): 

yi = β0 +
∑p

j=1
βjϑij + εi (1)  

where yi denotes the dependent variable vector, representing the 
transfer ratio at metro station i ∈ {1,2,…n}. ϑij is the vector of inde-
pendent variable j at metro station i, βj denotes the estimated coefficient 
j ∈ {1,2,…p}, and εi is the residual term. Two MLR models are estab-
lished to model the effects of different variables on the transfer ratio. As 
reproducible research, this part of the work is mainly implemented with 
the RStudio tool (Zheng, 2021). 

4.2. Spatial autocorrelation test 

Before using the spatial regression model, the spatial autocorrelation 
of the independent variables should be tested. Moran's I index is widely 
used to assess the spatial autocorrelation of independent variables (Chen 
et al., 2019). 

Given the geographic locations of the metro stations (indexed by i or 
k), the Moran's I index of all independent variables ϑ can be calculated to 
determine the global spatial autocorrelation. Moran's I index is calcu-
lated in Eq. (2): 

I =
n

∑n

i=1

∑n

k=1
aik

•

∑n

i=1

∑n

k=1
aik(ϑi − ϑ)(ϑk − ϑ)

∑n

i=1
(ϑi − ϑ)2

(2)  

where n is the number of metro stations, ϑ is the mean value of the in-
dependent variable ϑ, and aik is the spatial weight between metro station 
i and metro station k∈{1,2,…n}. Moran's I index ranges from − 1 to 1. If 
I > 0, then the independent variable has a positive spatial autocorrela-
tion, if I < 0, then the independent variable has a negative spatial 
autocorrelation, and if I = 0, then the independent variable is spatially 
random. 

4.3. Geographically weighted regression 

Brunsdon et al. (1999) first proposed the GWR model to explore the 
spatial nonstationarity of spatial data. GWR is an extended form of linear 
regression used to model the spatially varying relationships of variables. 
A GWR model considers the spatial effects of independent variables and 
can adequately explain the variation in the variables across space. In this 
paper, to further explore the influence variability of the factor on the 
transfer ratio in different spaces, GWR is used to model the spatial 
relationship between the transfer ratio and various factors. The formula 
is as follows in Eq. (3): 

yi(ui, vi) = β0(ui, vi)+
∑p

j=1
βj(ui, vi)ϑij(ui, vi)+ εi(ui, vi) (3)  

where yi(ui,vi) is the dependent variable vector, representing the 

transfer ratio at location (ui,vi). ϑij(ui,vi) is an independent variable 
vector at location (ui,vi), βj(ui,vi)(j = 0,1,…,p) is the estimated coeffi-
cient at location (ui,vi), and εi(ui,vi) is the residual term at location (ui, 
vi). 

According to the first law of geography presented by Tobler (Taylor 
and Mahmassani, 1997), the closest metro stations have a more signif-
icant correlation with each other. For a given geographic location (ui,vi), 
locally weighted least squares can be used to estimate βj(ui,vi) in Eq. (4): 

min
∑n

i=1

[

yi(ui, vi) −
∑p

j=1
βj(ui, vi)ϑij

]2

wi(ui, vi) (4)  

where wi(ui,vi)i=1
n is a spatial weight at location (ui,vi). Let β (ui,vi) =

(β0(ui,vi),β1(ui,vi),…,βp(ui,vi))T. The local least squares estimate of β (ui, 
vi) at (ui,vi) is calculated based on Eq. (5): 

β̂(ui, vi) =
(
ϑT W(ui, vi)ϑ

)− 1ϑT W(ui, vi)Y (5)  

X =
(
X0,X1,…,Xp

)
,Xj =

(
x1j, x2j,…, xnj

)T  

Y = (y1, y2,…, yn)
T  

W(ui, vi) = Diag(w1(ui, vi) ,w2(ui, vi) ,…,wn(ui, vi) )

Based on reference (Li et al., 2021; Tu et al., 2018), the Gaussian 
kernel function is used to estimate the spatial effects of the variables in 
Eq. (6): 

wik =

⎧
⎪⎪⎨

⎪⎪⎩

exp

[

−

(
dik

r

)2
]

, dik < D

0, otherwise

(6)  

where dik denotes the distance between metro stations i and k, and r is 
the bandwidth. The Gaussian kernel function is the most frequently used 
since it best fits the irregular spatial distribution of observations. A large 
bandwidth may underestimate the spatial effects, while a small band-
width may result in overfitting. Accordingly, an adaptive bandwidth is 
used to mitigate the problem posed by the spatial variance. The optimal 
bandwidth is determined by finding the corresponding value that results 
in the minimum corrected Akaike information criterion (AICc), which 
can help avoid overfitting and obtain high-quality models. 

5. Results and discussion 

This section presents and discusses the impacts of various factors on 
the system-wide and station-level transfer ratio between different travel 
modes. 

5.1. Results of the global models 

Global models (MLR) were used to confirm which factors affected the 
transfer ratio for two separate transfer modes (metro-to-bus and bus-to- 
metro). In theory, different variables may be relevant. For example, a 
high wind speed might be associated with heavy rainfall (Zhou et al., 
2017). Therefore, before developing the multivariate analysis models, 
the possible collinearity between the independent variables was exam-
ined. The examination results are shown in Table 4. The level of the VIFs 
was calculated to be no >4.02, which suggests that no strong multi-
collinearity existed among the variables. 

To discriminate which factors significantly influenced the transfer 
ratio of the metro-to-bus mode and the bus-to-metro mode, this paper 
utilized MLR to explore the relationship between the transfer ratio and 
various factors. The results of the two modes perform well in the 
goodness of fit. Most independent variables are significant at the 0.01 
confidence level. The independent variables can explain 40.37% and 
34.03% of the variance in the transfer ratio. Therefore, the MLR model 
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provides a basic understanding of the variation in the transfer ratio. A 
detailed analysis is conducted below. 

Weather factors are found to influence the transfer ratio signifi-
cantly. Temperature, wind, and rainfall positively impact the transfer 
ratio, whereas visibility shows the opposite effect. The temperature has 
the largest impact on the transfer ratio among the weather variables and 
is approximately 1.66 to 4 times that of the other weather factors. 
Moreover, travelers are more willing to transfer under high tempera-
tures, rainy conditions, low visibility, or strong wind weather since it is 
inconvenient and unsafe to ride a bicycle or electric bicycle. Thus, many 
people will choose feeder buses connected to the metro. 

Socioeconomic factors have significant impacts on the transfer ratio. 
Housing price negatively influences the transfer ratio, whereas 
geographical GDP and house rent show the opposite effect. Among the 
related socioeconomic factors, housing price has the most significant 
impact on the transfer ratio, which is approximately 3.6 to 7.5 times that 

of the other socioeconomic factors, because housing price reflects the 
economic level of a region. If the housing price near metro stations is 
low, the metro station is usually far from the city center, or the trans-
portation network is not convenient. Many residents need to travel 
medium-long distances. Consequently, the metro station has a higher 
transfer ratio. 

The intensity of business activities related variables significantly 
influences the transfer ratio. The average meal price of restaurants and 
takeaway negatively impact the transfer ratio, whereas the crowd den-
sity and distance from the CBD show positive effects. Among the in-
tensity of business activities related variables, the average meal price of 
restaurants has the largest impact on the transfer ratio, which is 
approximately 1.875 to 15 times that of the other intensity of business 
activities related factors. Moreover, among all the independent vari-
ables, the average meal price of restaurants has the most significant 
impact on the transfer ratio, approximately 1.5 to 31 times that of the 

Table 4 
The results of MLR models.  

Variables The metro-to-bus mode The bus-to-metro mode 

Coefficient t statistics p-value VIF Coefficient t statistics p-value VIF 

Intercept 0.42 *** 48.14 <0.0001  0.25 *** 26.25 <0.0001   

Weather variables 
Temperature 0.05 *** 11.84 <0.0001 1.72 0.04 *** 8.85 <0.0001 1.69 
Wind 0.03 *** 5.01 <0.0001 1.39 0.03 *** 5.24 <0.0001 1.39 
Visibility − 0.02 *** − 4.12 <0.0001 1.70 − 0.03 *** − 6.65 <0.0001 1.69 
Rainfall 0.02 *** 4.24 <0.0001 1.46 0.01 ** 3.13 0.002 1.46  

Socioeconomic variables 
House rent 0.03 *** 4.48 <0.0001 3.18 0.02 ** 2.62 0.009 3.15 
Housing price − 0.18 *** − 30.21 <0.0001 1.79 − 0.15 *** − 22.45 <0.0001 1.82 
Geographical GDP 0.05 *** 12.04 <0.0001 2.14 0.04 *** 9.87 <0.0001 2.15  

The intensity of business activities related variables 
Restaurant 0.02 *** 4.39 <0.0001 2.53 0.003 0.51 0.613 2.60 
Average meal price of restaurants − 0.30 *** − 46.58 <0.0001 4.02 − 0.31 *** − 43.54 <0.0001 3.91 
Takeaway − 0.09 *** − 19.79 <0.0001 2.13 − 0.07 *** − 13.36 <0.0001 2.16 
Crowd density 0.07 *** 14.84 <0.0001 1.22 0.13 *** 26.52 <0.0001 1.25 
Distance from the CBD 0.16 *** 27.83 <0.0001 2.39 0.15 *** 23.79 <0.0001 2.37  

Built environment variables 
Schools − 0.02 ** − 2.78 0.005 1.83 − 0.01 * − 2.30 0.022 1.81 
Bus routes 500 m − 0.03 *** − 7.80 <0.0001 1.38 -0.09 *** − 19.49 <0.0001 1.36 
Bus routes 500–1000 m 0.12 *** 24.47 <0.0001 2.42 0.13 *** 23.14 <0.0001 2.38 
Distance 500 m − 0.09 *** − 17.14 <0.0001 1.34 − 0.15 *** − 26.87 <0.0001 1.41 
Distance 500–1000 m − 0.11 *** − 24.08 <0.0001 1.28 − 0.08 *** − 15.75 <0.0001 1.31  

Transfer-related variables 
Transfer time − 0.20 *** − 40.90 <0.0001 1.21 / / / / 
Revised transfer time / / / / 0.03 *** 5.33 <0.0001 1.28  

Date variables 
Morning peak 0.02 *** 5.32 <0.0001 1.42 0.05 *** 14.74 <0.0001 1.45 
Evening peak − 0.01** − 3.08 0.002 1.32 - 0.004 − 1.41 0.159 1.30 
Non-workdays − 0.01*** − 4.05 <0.0001 1.39 0.004 * 2.06 0.039 1.40  

Diagnostic statistics 
Observations 23,817 22,787 
Multiple R-squared 0.4042 0.3409 
Adjusted R-squared 0.4037 0.3403 
Residual sum of squares 359.33 396.7 
F-statistic 768.7 560.7 
p-value <0.0001 <0.0001 
AIC − 32,250.76 − 27,591.91 
AICc − 32,250.71 − 27,591.86 

Note: *, **, and *** denote significance at confidence levels of 95%, 99%, and 99.9%, respectively. ‘/’ indicates that the variables are not considered in models. The 
rainfall and date variables in the above table are dummy variables, and the other variables are continuous. The continuous variables were normalized before the 
regression analysis. 
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other independent variables. Usually, a metro station that meets one of 
the following conditions will attract many transfer passengers and have 
a large transfer ratio. The metro station is far away from the CBD. 
Alternatively, the average meal price of restaurants near the metro 
station is low or the monthly sales of takeaways near the metro station 
are low. The outcome shows that the intensity of business activities has a 
nonnegligible impact on the transfer ratio, which should be considered 
in the subsequent planning of new metro stations. 

The built environment variables are found to impact the transfer 
ratio significantly. Bus routes 500–1000 m positively impact the transfer 
ratio, whereas the other variables show the opposite effect. It is observed 
that the feeder distance and feeder bus routes within 500 to 1000 m of a 
metro station have a large impact on the transfer ratio, which is 
approximately 1.67 to 6 times that of the other built environment var-
iables. More importantly, when the feeder distance between bus stops 
and the metro station is closer or when there are more feeder buses 
within 500 to 1000 m of the metro station, the transfer ratio is greater at 
the metro station. 

The transfer-related variables significantly influence the transfer 
ratio. The transfer time negatively impacts the transfer ratio, whereas 
the revised transfer time shows the opposite effect. Moreover, the 
transfer time has a larger impact on the transfer ratio and is approxi-
mately 6.66 times the revised transfer time. For the metro-to-bus mode, 
shortening the transfer time at metro stations could effectively increase 
the transfer ridership. For the bus-to-metro mode, properly extending 
the revised transfer time will increase the number of transfer passengers. 
Because the revised transfer time includes the in-vehicle travel time of 
the bus, the transfer behavior occurs in the second half of the revised 
transfer time. 

The date-related factors are found to influence the transfer ratio 
significantly. For the metro-to-bus mode, the morning peak hours 
positively affect the transfer ratio, whereas the evening peak and non- 
workdays show the opposite impact. For the bus-to-metro mode, the 
morning peak and non-workdays have a positive effect on the transfer 
ratio. Furthermore, the morning peak has an impact on the transfer 
ratio, which is approximately 2 to 12.5 times that of the other two date 
factors, because commuters are most concentrated during the morning 
peak hours. In contrast, during evenings and non-workdays, travelers 
have temporal flexibility. Consequently, the transfer ratio at metro sta-
tions is larger during morning peak hours and relatively smaller during 
other hours. 

5.2. Results of the GWR models 

Although we have determined which factors significantly impact the 
transfer ratio through the MLR model, MLR does not consider the 
different spatial effects of the factors associated with the transfer ratio. 
Therefore, GWR is further used to explore the different effects on the 
transfer ratio in space. Before the GWR analysis, we have examined the 
spatial autocorrelation correlation of the independent variables using 
the global Moran's I test. Since the weather and date variables did not 
show variability in the spatial distribution in the same city, the Moran's I 
indices of the weather and date variables are equal to 0, which is not 
listed in Table D1. The Moran's I test results of the other independent 
variables are shown in Table D1 of Appendix D. The Moran's I indices are 
not equal to 0. The p-values are <0.01. The above results indicate that 
the selected independent variables have significant spatial autocorre-
lation. Thus, it is essential to analyze the effects of these independent 
variables on the transfer ratio in spaces. 

This paper used GWR to model the spatially varying relationships 
between the independent variables and the transfer ratio, as GWR 
analysis has performed very well in other related studies. Table D2 re-
ports the estimated coefficients and their descriptive statistics for the 
two GWR models in Appendix D. 

The indicators in the GWR models are compared with those in the 
MLR models in Table 5. The adjusted R2 in the GWR models is 1.1 to 1.41 

times higher than that in the MLR model. The AICc values in the GWR 
models are 1.0 times lower than those in the MLR models, which in-
dicates that the GWR models outperform the traditional MLR models in 
the study, which is consistent with previous studies (Cardozo et al., 
2012). The GWR results reveal that the actual effects of the factors 
associated with the transfer ratio are susceptible to the underlying 
spatial background. Details are discussed in the following section. 

5.3. Discussion on spatially varying effects 

In the GWR models, the estimated coefficients of the independent 
variables vary among metro stations. The studied metro stations are 
colored in Fig. 5 to Fig. 8 based on their estimated coefficients to better 
understand the spatially varying effects of the independent variables. 
These variables have significant effects on the transfer ratio. The vari-
ances in the influences of some important independent variables and the 
potential underlying reasons are discussed below. 

Fig. 5 shows the spatially varying effects of the socioeconomic var-
iables on the transfer ratio. Fig. 5(a1) and Fig. 5(a2) show the spatial 
variation in house rent on the transfer ratio. House rent is significantly 
associated with the transfer ratio in the two transfer modes. For the 
metro-to-bus mode, the effect of house rent on the transfer ratio is large 
in the LGD and BAD, with absolute coefficients ranging from 0.60 to 
2.34. For the bus-to-metro mode, the negative effect of house rent on the 
transfer ratio is large in the LGD, with estimated coefficients ranging 
from − 2.49 to − 0.67. The outcome suggests that most metro stations 
with high house rent attract many transfer passengers in the central and 
southern areas, whereas some metro stations in the northern area show 
the opposite results. Because for most metro stations with high house 
rent, the public transportation network is usually well developed, which 
can gather many passengers and has high transfer ratio. 

Fig. 5(b1) and b2) show the influence of the spatially varying 
housing price on the transfer ratio. The housing price is negatively 
correlated with the transfer ratio at most metro stations, while 
geographical GDP and house rent show the opposite effects. This may be 
ascribed to the fact that the housing price usually reflects the economic 
level of a region and the income of residents. Areas with higher housing 
prices are usually more economically developed and have a dense metro 
network with high accessibility. Most people can arrive at their desti-
nations through the metro without transfer trips. Therefore, the transfer 
ratio in the area is smaller. Moreover, among the socioeconomic vari-
ables, the impact of housing price on the transfer ratio is the largest, with 
its maximum coefficient being approximately 3 to 12 times that of the 
other socioeconomic variables. The metro stations with large estimated 
coefficients of housing price that range from 5.11 to 14.29 are clustered 
in the city center. The results reveal that the transfer ratio in downtown 
areas is more susceptible to housing price fluctuations than the transfer 
ratio in suburban areas. The difference may be ascribed to the areas in 
the suburbs under a development stage with less dense commercial 
services. The public transportation network is less dense with low 
accessibility. Residents in the suburbs rely mainly on private cars to 
commute to various places and reduce the likeliness of using public 
transportation for long trips. Thus, the effect of housing price on the 
transfer ratio is greater in the city center than in the suburbs. 

Table 5 
Performance comparison between the MLR and GWR models.  

Indicator The metro-to-bus mode The bus-to-metro mode 

MLR GWR MLR GWR 

AIC − 32,250.76 − 65,236.94 − 27,591.91 − 57,340.02 
AICc − 32,250.71 − 64,976.14 − 27,591.86 − 57,073.61 
R2 0.4042 0.8521 0.3409 0.8230 
AdjustedR2 0.4037 0.8502 0.3403 0.8205 
Residual sum of 

squares 359.33 89.17 396.70 106.53  
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Fig. 5(c1) and (c2) show the spatially varying effect of geographical 
GDP on the transfer ratio. Geographical GDP is positively correlated 
with the transfer ratio at most metro stations because metro stations 
with a high GDP can attract more passengers far away from the stations, 
which ultimately increases the transfer ratio. For the two modes, the 
positive effect of geographical GDP is more significant in the BAD, with 
estimated coefficients ranging from 0.30 to 2.24. Moreover, the negative 
effect of geographical GDP is more financially beneficial in the LHD than 
in the other districts, with estimated coefficients ranging from − 2.78 to 
− 1.01. The results reveal that increasing the economic level in remote 
areas can increase the transfer ratio. Although the metro stations in the 
city center have different results, when the housing price near stations is 
higher, the transfer ratio is lower. A possible explanation is that down-
town areas with high housing prices usually have convenient trans-
portation and prosperous businesses, and people have less travel and 
transfer using public transportation. 

Fig. 6 shows the spatially varying effects of the intensity of business 
activities related variables on the transfer ratio. Among them, restau-
rant, crowd density, and distance from the CBD are positively correlated 
with the transfer ratio at most metro stations. In contrast, the average 
meal price of restaurants and takeaways show the opposite effects. 
Moreover, the impact of the average meal price of restaurants on the 
transfer ratio is the largest in all independent variables. 

Fig. 6(a1) and (a2) show the spatially varying effects of restaurants 
on the transfer ratio. Restaurants and the transfer ratio are positively 
correlated for most stations, with the estimated coefficients ranging 

from 0.05 to 1.57. They are negatively correlated at a few stations, with 
estimated coefficients ranging from − 1.45 to − 0.28. The restaurant has 
a more significant impact on the transfer ratio in the western and central 
regions, with the absolute values of the estimated coefficients ranging 
from 0.98 to 1.45. The results show that an increase in the number of 
restaurants can increase the transfer ratio for most stations, which may 
be because an increase in the number of restaurants attracts more 
population flow near the metro stations. A high flow of customer traffic 
is paramount for restaurants. Most restaurants will be concentrated in 
areas with high traffic flow. Usually, such areas have a well-developed 
transportation network with convenient transfer facilities, which at-
tracts more transfer passengers and thus increases the transfer ratio. 

Fig. 6(b1) and (b2) show the spatially varying effects of the average 
meal price of restaurants on the transfer ratio. The estimated coefficients 
have similar spatial distributions for the two modes. For most stations, 
the average meal price of restaurants and the transfer ratio are nega-
tively correlated, with estimated coefficients ranging from − 5.16 to 
− 0.19. They are positively correlated at some metro stations in NSD and 
LGD, with estimated coefficients ranging from 0.14 to 3.27. The average 
meal price of restaurants has a more significant impact on the transfer 
ratio in the western and central regions, with the absolute values of the 
estimated coefficients ranging from 0.98 to 5.16. These results show that 
most stations with low average meal prices in restaurants can attract 
more transfer passengers because restaurants with lower prices usually 
attract more diners. The area where these restaurants are located can 
usually gather a large number of people with low-medium purchasing 

Fig. 5. Spatial distribution of the estimated coefficients of socioeconomic variables. (a1), (b1) and (c1) indicate the metro-to-bus mode; (a2), (b2) and (c2) indicate 
the bus-to-metro mode. 
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Fig. 6. Spatial distribution of the estimated coefficients of the intensity of business activities related variables. (a1), (b1), (c1), (d1) and (e1) indicate the metro-to- 
bus mode; (a2), (b2), (c2), (d2) and (e2) indicate the bus-to-metro mode. 
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power. Moreover, these people usually rely on public transportation for 
their daily travel. Thus, the metro station in the area has a larger transfer 
ratio. These may be the potential explanations for the larger effects of 
the average meal price of restaurants on the transfer ratio at these 
stations. 

Fig. 6(c1) and (c2) show the spatially varying effects of takeaway on 
the transfer ratio. The estimated coefficients of takeaway have similar 
spatial distributions for the two modes. For most stations, takeaway and 
transfer ratio are negatively correlated, with estimated coefficients 
ranging from − 3.51 to − 0.20. In contrast, they are positively correlated 
at a few stations in the NSD and LHD, with estimated coefficients 
ranging from 0.13 to 1.53. The takeaway has a large impact on the 
transfer ratio in the western and central regions, with the absolute 
values of the estimated coefficients ranging from 0.52 to 3.51. The 
outcome shows that most stations with high monthly takeaway sales 

have a small transfer ratio since passengers have less travel demand. 
This may be ascribed to the fact that the areas with high monthly 
takeaway sales may be office areas, residential areas, or schools, where 
passengers have less travel demand and a smaller range of activities. The 
metro stations in areas with high takeaway sales attract relatively small 
passenger flows that use public transportation, which results in a smaller 
transfer ratio. 

Fig. 6(d1) and (d2) show the spatially varying effects of the crowd 
density on the transfer ratio. The estimated coefficients have similar 
spatial distributions in the two modes. For most stations, crowd density 
positively impacts the transfer ratio, with estimated coefficients ranging 
from 0.04 to 0.36. However, it negatively impacts the transfer ratio at a 
few stations in the NSD and FTD, with estimated coefficients ranging 
from − 0.65 to − 0.02. Crowd density significantly impacts the transfer 
ratio in the northern and eastern regions, with the absolute values of the 

Fig. 7. Spatial distribution of estimated coefficients of built environment factors. (a1), (a3), (b1) and (b3) indicate the metro-to-bus mode; (a2), (a4), (b2) and (b4) 
indicate the bus-to-metro mode. 
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estimated coefficients ranging from 0.10 to 0.64. The results show that 
the transfer ratio is large for some stations with higher crowd density in 
the LHAD and LGD, and the opposite results are found at some stations 
in the NSD and FTD. The difference may be ascribed to the differential 
distribution of economic development levels. In the LHAD and LGD, the 
level of economic development has not been as good as that in the NSD 
and FTD in previous years. In the LHAD and LGD, the greater population 
density is usually concentrated in the less economically developed areas, 
where the transportation network is not sufficiently developed, a large 
number of passengers need to transfer to reach their destinations, and 
resulting in increased the transfer ratio. In contrast, the NSD and FTD 
have developed economic levels and high accessibility to the metro 
network. This is also true in areas with higher crowd density, where 
people can usually reach their destinations directly through the metro 
with fewer transfer trips, and thus there is a smaller transfer ratio. 

Fig. 6(e1) and (e2) show the spatially varying effects of distance from 
the CBD on the transfer ratio. For most stations, the distance from the 
CBD positively impacts the transfer ratio, with estimated coefficients 
ranging from 0.31 to 8.80. However, it negatively impacts the transfer 
ratio at a few stations in the NSD and BAD, with estimated coefficients 
ranging from − 31.55 to − 0.08. Moreover, the estimated coefficients 
have similar spatial distributions in the two modes. The results reveal 
that transfer passengers living far from the CBD are more sensitive to 
fluctuations in the transfer ratio. For most metro stations, when the 
distance from the CBD is farther away, the transfer ratio is greater. This 
is because areas close to the CBD are usually economically developed, 
with a large population flow and high accessibility to the metro network. 
Therefore, people can usually take the metro to their destination, which 
results in less transfer passenger flow and a small transfer ratio. In 
contrast, areas farther away from the CBD usually have a lower eco-
nomic level, and people usually cannot reach their destinations directly 
through the metro and need one or two transfer trips to reach their 
destinations. Therefore, there are more transfer passengers and a large 
transfer ratio. 

Fig. 7 shows the spatial distribution of the coefficients of the built 
environment variables on the transfer ratio. Based on the variable co-
efficients, we find similar spatial distributions in the two modes. 

Fig. 7(a1) to (a4) show the spatially varying effects of bus routes on 
the transfer ratio. Fig. 7(a1) and (a2) show the influence of bus routes 
500 m on the transfer ratio. The figure indicates that bus routes 500 m 
are negatively associated with the transfer ratio at most metro stations, 
with the estimated coefficients ranging from − 0.88 to − 0.28. Because 
the metro station with many feeder bus routes within 500 m are usually 
located in commercial centers or public transportation hubs, where 
there is a well-developed transportation network, passengers can often 
arrive at their destinations directly through the metro or bus without 
transfer trips. Therefore, a metro station with more bus routes within 
500 m has a smaller transfer ratio. Moreover, the impact of bus routes 
within 500 m on the transfer ratio is smaller for the metro-to-bus mode 
than for the bus-to-metro mode. This is attributed to the different ride 
order between the two transfer modes. The transfer passengers of the 
bus-to-metro mode are mainly from bus ridership; therefore, when there 
are more bus routes and more bus ridership, this results in a greater 
transfer ratio of the bus-to-metro mode. Because the transfer passengers 
of the metro-to-bus mode are mainly from metro ridership, the transfer 
ratio is less affected by fluctuations in bus routes 500 m. Additionally, 
bus routes 500 m are positively associated with the transfer ratio at a few 
stations in the NSD and FTD, with estimated coefficients ranging from 
0.03 to 3.18. Compared to Fig. 7(a1) and (a2), (a3) and (a4) show the 
opposite results. The impact of bus routes 500–1000 m on the transfer 
ratio is overall much higher than that of bus routes 500 m, with the 
maximum coefficient of bus routes 500–1000 m being approximately 
1.41 to 4.03 times that of bus routes 500 m. In addition, bus routes 
500–1000 m are positively associated with the transfer ratio at most 
metro stations in the NSD, FTD, and LHAD, with estimated coefficients 
ranging from 0.06 to 4.48. Because transfer passengers within 

500–1000 m from the metro station have a stronger transfer demand 
than those within 500 m from the metro station, these passengers have 
also a longer transfer distance to the metro stations. Moreover, the 
public transportation network is less dense, which is not convenient for 
people to travel by using the metro or bus. Passengers often need to 
transfer to reach their destinations. Therefore, an increase in the number 
of bus routes within 500–1000 m can increase the attractiveness of 
public transportation and thus increase the transfer ratio. 

Fig. 7(b1) to (b4) show the spatially varying effects of feeder dis-
tance. The spatial distribution of the coefficients is very similar in the 
four figures. The distance is negatively associated with the transfer ratio 
at most stations, with estimated coefficients ranging from − 7.61 to 
− 0.05. This may be ascribed to the longer transfer distance, whereby the 
passengers' willingness to transfer is lower, thus the smaller the transfer 
ratio is. Furthermore, the impact of distance 500 m on the transfer ratio 
is much higher than that of distance 500–1000 m, with the maximum 
coefficient of distance 500 m being two times higher than that of dis-
tance 500–1000 m. The results show that when the feeder distance that 
connects metro stations and bus stops is longer, the transfer ratio at most 
stations is lower. Because most passengers transfer within 500 m from 
the metro station, especially in downtown and commercial areas, there 
are few transfer trips beyond 500 m from the metro station. Therefore, a 
metro station with a short transfer distance has a large transfer ratio. 

Fig. 8(a1) and (a2) show the influence of the spatial variation in the 
transfer time and revised transfer time on the transfer ratio. For the 
metro-to-bus mode, the effect of the transfer time on the transfer ratio is 
negative for most metro stations in remote areas, with estimated co-
efficients ranging from − 0.31 to − 0.01. The positive effect of the 
transfer time on the transfer ratio occurs at a few stations in the center 
city, with estimated coefficients ranging from 0.01 to 0.04. Because the 
well-developed transportation networks are located in the city center 
with a high economic level and large passenger flow. A metro station 
with a longer transfer time has a greater transfer ratio. Meanwhile, most 
metro stations in remote areas have long transfer times, transportation 
networks that are not developed, longer bus headway, and fewer pas-
sengers who choose to transfer. Many passengers choose to travel by 
electric car or bicycle instead of the bus; thus, there is a lower transfer 
ratio. For the bus-to-metro mode, the positive coefficients of the revised 
transfer time are mainly distributed in LGD, FTD, and BAD and range 
from 0.04 to 0.29. The negative coefficients are mainly distributed in the 
LHAD, LHD, and NSD, ranging from − 0.18 to − 0.003. The outcome 
shows that the transfer time and the revised transfer time positively 
affect the transfer ratio at most stations in the central and western re-
gions. This is because, unlike the transfer time of the metro-to-bus mode, 
the transfer time of the bus-to-metro mode includes the passenger's ride 
time on the first bus and the walking time from the bus stop to the metro 
station. Therefore, a metro station with a longer transfer time has a 
greater transfer ratio, which indicates that a metro station with a longer 
transfer time threshold in the downtown area can gather more transfer 
passengers. 

Accordingly, the GWR models further reveal that the spatial pattern 
of the effects of given factors on the transfer ratio differs from a global 
view, which results in a complex spatial variation in the transfer ratio. 
The results indicate the spatial heterogeneity of the influence of the 
associated factors on the transfer ratio in the two modes. Furthermore, 
these factors significantly impact the transfer ratio because of the spatial 
heterogeneity of Shenzhen, China's spatial and socioeconomic structure, 
cooperation, and multimodal public transportation competition. In 
particular, the built environment variables and the intensity of business 
activities significantly affect the transfer ratio in the two modes. More 
importantly, this study provides a comprehensive understanding of the 
spatial variation in the transfer ratio that can help allocate available 
transportation resources and thus encourage a massive number of 
travelers to use the public transportation system. In addition, incorpo-
rating significant independent variables with the characteristics of the 
urban area can produce more robust quantifications of the transfer ratio 
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to thus help regulate the supply of buses and metro stations. 

6. Conclusion and implications 

Understanding the transfer ratio of different travel modes is benefi-
cial for pursuing a low-carbon comprehensive urban transportation 
system. However, limited efforts have been made to investigate the 
spatial variations in the transfer ratio between metro and bus systems 
and identify their influencing factors. This study endeavors to fill the 
gaps in relevant research by deciphering the spatial heterogeneity of the 
transfer ratio and their relationships with the various variables based on 
empirical analysis in Shenzhen, China. First, the transfer ratio and 
transfer-related factors are identified based on large-scale transaction 
data from automated fare collection systems. Meanwhile, various 
influencing factors, including weather, socioeconomic, the intensity of 
business activities, and built environment factors, are obtained from 
multivariate sources. Second, the influences of socioeconomic charac-
teristics, weather conditions, the intensity of business activities, built 
environment attributes, date factors, and transfer-related factors on the 
transfer ratio are explored through MLR model. Third, an adaptative 
GWR is further performed to reveal the divergences in the effects of 
these factors on the transfer ratio and provide more accurate modeling 
concerning the transfer ratio in various contexts. The main contributions 
and findings can be summarized as follows:  

• We extract the hourly transfer ratio distributions of different transfer 
modes from large-scale smartcard data and GPS data. We find 
notable spatial heterogeneity in the transfer ratio in different con-
texts. The transfer ratio is discussed from statistical and spatial 
perspectives.  

• By leveraging multisource data, we obtain various weather data, 
transfer-related factors, socioeconomic factors, the intensity of 
business activities, and built environment factors in different urban 
areas and metro stations. MLR is utilized to model the associations of 
these factors with the transfer ratio for a global view. The results 
indicate that various factors indeed have significant effects on the 
transfer ratio. The intensity of business activities has the largest 
impact on the transfer ratio. The crowd density and distance from the 
CBD are positively related to the transfer ratio, which indicates that 
metro stations with higher degrees of these factors have a large 
transfer ratio. In contrast, the average meal price of restaurants and 
takeaway are found to be negatively associated with the transfer 
ratio. Socioeconomic factors including geographical GDP and house 
rent show a positive effect on the transfer ratio, whereas housing 
price negatively influences the transfer ratio, which suggests that 
metro stations with higher geographical GDP, house rent, and a 
lower housing price have a large transfer ratio. Built environment 
variables including bus routes within 500 m, distance 500 m, and 
distance 500–1000 m negatively impact the transfer ratio, whereas 
bus routes within 500–1000 m show the opposite effect. This in-
dicates that metro stations with higher degrees of bus routes within 

500 m, distance 500 m, and distance 500–1000 m have a smaller 
transfer ratio. Weather factors including temperature, wind, and 
rainfall positively impact the transfer ratio, whereas visibility shows 
the opposite effect, which implies that metro stations with a higher 
temperature, wind speed, and rainfall have a greater transfer ratio. 
Importantly, we find that the effects of some factors (e.g., crowd 
density) on the transfer ratio vary with different transfer modes.  

• Last, GWR is employed to further investigate the spatial variations in 
the influences of various factors on the transfer ratio. The results 
demonstrate that notable variations exist in the influences of the 
built environment factors, transfer-related factors, intensity of busi-
ness activities, and socioeconomic factors, whereas some factors such 
as the housing price, house rent, and geographical GDP present 
opposite effects on the transfer ratio in different spatial contexts. The 
results imply the necessity of considering the divergent effect of these 
factors in different geographical contexts. Comprehensive discus-
sions are conducted to provide empirical explanations concerning 
the varying effects of transfer-related, socioeconomic, the intensity 
of business activities, and built environment factors on the transfer 
ratio. The GWR offers more accurate modeling of the transfer ratio 
and various associated variables from a local spatial perspective. 

The above findings provide practical implications for the improve-
ment, management, and planning of metro stations and buses. The 
spatial heterogeneity in the transfer ratio suggests that it is implausible 
to apply a spatially homogeneous transfer ratio to predict the intensity of 
spatial interactions between the metro and buses. In forecasting the 
spatial transfer ratio, it is necessary to develop customized models based 
on the specific characteristics of different urban spaces to obtain accu-
rate results. Moreover, the results in MLR and GWR decipher the vari-
ations in the transfer ratio from a global perspective and a local 
geographical perspective. The obtained quantitative results such as the 
effects of different built environment factors, socioeconomic factors, and 
intensity of business activities could provide scientific support and 
referential values for the prediction of the transfer ratio, especially for 
areas where the metro station does not yet exist, whereby it is in its early 
stage or needs improvement. For instance, the MLR and GWR can be 
utilized to predict the transfer ratio of different areas based on their 
known built environment, socioeconomic factors, the intensity of busi-
ness activities, and other statistics. This would serve accurate transfer 
ratio forecasting and thus supply allocations of buses and metro, which 
would be useful for achieving supply-demand balances of public trans-
portation in different urban areas. These are also great practical con-
siderations for bus companies to allocate and schedule buses to fulfill the 
transfer demand and thus realize a high coupling performance between 
buses and the metro system. This is particularly crucial for bus com-
panies that have limited buses and need to improve utilization rates of a 
bus to reduce budgets. Moreover, insights into the effects of the intensity 
of business activities, socioeconomic factors, and built environment 
factors, such as the transfer distance and bus routes, offer empirical and 
quantitative instruments for evaluating the accessibility of transfer trips 

Fig. 8. Spatial distribution of the estimated coefficients of transfer-related variables: (a1) the metro-to-bus mode and (a2) the bus-to-metro mode.  
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in different urban contexts. These explanations produce implications 
and directions for the planning of bus routes and bus stops that are 
aimed to enhance transfer ratio and promote establishment of an envi-
ronmentally friendly and sustainable public transportation system. 

However, there are still some limitations that need to be further 
explored. First, we only select Shenzhen as the study area. Although this 
study represents China, these variables may have different effects on the 
transfer ratio in other cities of the world. Subsequent similar studies will 
be conducted in other cities. Second, the sample size is limited to one 
month, which fails to consider seasonality for longitudinal analyses. 
Therefore, in future research, we will obtain a dataset with a longer 
available data period to further determine the relationship between the 
transfer ratio and seasonal weather conditions. Third, we discuss only 
the linear relationship between the independent variables and the 
transfer ratio, which may have a nonlinear relationship. Moreover, the 
interaction between various factors is not considered. Therefore, follow- 
up studies are suggested to explore the linear and nonlinear relationship 
between the independent variable and the transfer ratio, investigate the 
interaction between different factors simultaneously, and provide a 
deeper understanding of the impact of various factors on the transfer 
ratio. Fourth, the individual characteristics of transfer passengers, such 
as gender, age, income, etc., are not considered in the study. In a follow- 
up study, we will further investigate the effects of these factors on the 

transfer ratio. Last, as weather is timely, and hence, a spatiotemporal 
model will be used in a future study to explore the effects of weather 
factors on the transfer ratio. 
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Appendix A

Fig. A.1. Distribution of the weather variables: (A) temperature, (B) wind, (C) visibility, and (D) rainfall (dummy variable).  
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Appendix B

Fig. B.1. Schematic diagram of the transfer process between the metro and the bus systems: (a1) the metro-to-bus mode and (a2) the bus-to-metro mode.  

Appendix C 

See Fig. C.1, Fig. C.2, and Fig. C.3.  

(1) Distribution of travel variables in the metro station 
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Taking Wuhe station (a typical metro station in Shenzhen) as an example, we analyze the real-time characteristics of the distribution of the travel 
variables on different dates.

Fig. C.1. Distribution of metro travel data during holidays, weekends, and weekdays at Wuhe station: (a1), (a2), and (a3) the station volume; (b1), (b2), and (b3) the 
number of inbound passengers; and (c1), (c2), and (c3) the number of outbound passengers. 

Fig. C.1 shows that the distribution of the station volume, the number of inbound, and the number of outbound passengers at Wuhe station differ 
enormously on weekdays, weekends, and holidays. Additionally, the characteristics of the daily distribution of the three variables on weekends and 
holidays are quite different. The distribution of the three variables on weekdays shows obvious peaks and flats, with the peak hours including the 
morning peak and evening peak.  

(2) Distribution of transfer variables in the metro station 

Taking Wuhe station as an example, we analyze the characteristics of the real-time distribution of the transfer indicators on different dates. Fig. C.2 
shows that the transfer time, transfer volume, and transfer ratio at metro stations are distributed differently on weekends, holidays, and workdays for 
the metro-to-bus mode. Additionally, the distribution of the transfer time, transfer volume, and transfer ratio on workdays shows an obvious morning 
peak and evening peak. The characteristics of the distribution on weekdays are the same and consistent. 

Fig. C.3 shows that the revised transfer time, transfer volume, and transfer ratio at the metro stations are distributed differently on weekends, 
holidays, and workdays for the bus-to-metro mode. When analyzing the revised transfer time, transfer volume, and transfer ratio, it is found that the 
distribution of workdays shows an obvious morning peak and evening peak. Moreover, the characteristics of the distribution of workdays are the same 
with good consistency. Therefore, the date variables are divided into the four categories of off-peak workdays, morning peak, evening peak, and non- 
workdays in this study. 
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Fig. C.2. Distribution of transfer data on holidays, weekends, and weekdays for the metro-to-bus mode at Wuhe station: (a1), (a2), and (a3) the transfer time; (b1), 
(b2), and (b3) the transfer volume; and (c1), (c2), and (c3) the transfer ratio.  
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Fig. C.3. Distribution of transfer variables on holidays, weekends, and workdays for the bus-to-metro mode at Wuhe station: (a1), (a2), and (a3) the revised transfer 
time; (b1), (b2), and (b3) the transfer volume; and (c1), (c2), and (c3) the transfer ratio. 

Appendix D  

Table D1 
Results of Moran's I test.  

Variables The bus-to-metro mode The metro-to-bus mode 

Moran's I index Expected index Sd. p-value Moran's I index Expected index Sd. p-value 

House rent 0.664 0 0.0002 0.001 0.666 0 0.0002 0.001 
Housing price 0.612 0 0.0002 0.001 0.613 0 0.0002 0.001 
Geographical GDP 0.55 0 0.0002 0.001 0.548 0 0.0002 0.001 
Restaurant 0.233 0 0.0002 0.001 0.221 0 0.0002 0.001 
Average meal price of restaurants 0.566 0 0.0002 0.001 0.573 0 0.0002 0.001 
Takeaway 0.231 0 0.0002 0.001 0.229 0 0.0002 0.001 
Crowd density 0.077 0 0.0002 0.001 0.072 0 0.0002 0.001 
Distance from the CBD 0.852 0 0.0002 0.001 0.847 0 0.0002 0.001 
Schools 0.321 0 0.0002 0.001 0.326 0 0.0002 0.001 
Bus route 500 m 0.278 0 0.0002 0.001 0.258 0 0.0002 0.001 
Bus route 500–1000 m 0.213 0 0.0002 0.001 0.182 0 0.0002 0.001 
Distance 500 m 0.062 0 0.0002 0.001 0.08 0 0.0002 0.001 
Distance 500–1000 m 0.1645 0 0.0002 0.001 0.169 0 0.0002 0.001 
Transfer time 0.088 0 0.0002 0.001 / / / / 
Revised transfer time / / / / 0.143 0 0.0002 0.001   

Table D2 
Estimation of the GWR models.  

Variables The metro-to-bus mode The bus-to-metro mode 

Min. 25% Median 75% Max. Min. 25% Median 75% Max. 

(Intercept) -1.31 0.04 0.41 0.57 2.50 -1.45 − 1.01 0.10 0.6 4.03 
(continued on next page) 
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Table D2 (continued ) 

Variables The metro-to-bus mode The bus-to-metro mode 

Min. 25% Median 75% Max. Min. 25% Median 75% Max. 

Temperature − 0.02 − 0.01 0.02 0.04 0.11 − 0.04 0.01 0.04 0.07 0.14 
Wind − 0.04 − 0.02 − 0.01 0.03 0.08 − 0.03 − 0.001 0.02 0.07 0.15 
Visibility − 0.08 − 0.03 − 0.003 0.01 0.02 − 0.12 − 0.04 − 0.02 − 0.01 − 0.001 
Rainfall − 0.01 0.01 0.014 0.02 0.07 − 0.003 0.004 0.01 0.02 0.04 
House rent − 1.95 − 0.19 0.02 0.41 2.34 − 2.49 − 0.12 0.06 0.47 7.66 
Housing price − 3.95 − 0.40 − 0.08 0.62 10.9 − 24.27 − 0.54 0.08 0.55 14.29 
Geographical GDP − 2.09 -0.38 − 0.12 0.06 1.21 − 2.78 − 0.31 − 0.11 0.04 2.24 
Restaurant − 1.02 0.06 0.52 0.82 1.46 − 1.45 0.02 0.15 0.87 1.57 
Average meal price of restaurants − 2.77 − 0.71 − 0.35 0.09 3.27 − 5.16 − 0.73 − 0.40 0.11 1.10 
Takeaway − 1.28 − 0.63 − 0.21 − 0.01 1.36 − 3.51 − 0.46 − 0.10 0.43 1.53 
Crowd density − 0.65 − 0.01 0.02 0.09 0.29 − 0.28 0.05 0.10 0.17 0.36 
Distance from the CBD − 4.45 − 0.03 0.48 2.23 7.79 − 31.55 0.03 0.70 2.87 8.80 
Schools − 2.32 − 0.45 0.01 0.21 0.86 − 3.11 − 0.56 0.06 0.20 3.60 
Bus routes 500 m − 0.75 − 0.21 − 0.05 0.11 1.02 − 0.88 − 0.33 − 0.13 0.04 3.18 
Bus routes 500–1000 m − 3.66 − 0.12 0.23 1.10 4.11 − 3.69 − 0.13 0.23 0.60 4.48 
Distance 500 m − 5.75 − 0.39 0.06 0.18 2.23 − 7.61 − 0.37 0.08 0.21 9.12 
Distance 500–1000 m − 1.90 − 0.38 − 0.20 − 0.04 0.70 − 2.62 − 0.36 − 0.14 0.01 1.46 
Transfer time − 0.31 − 0.06 − 0.02 0.0002 0.04 / / / / / 
Revised transfer time / / / / / − 0.17 − 0.03 0.001 0.02 0.29 
Morning peak − 0.05 − 0.02 0.01 0.05 0.15 − 0.05 0.02 0.03 0.07 0.23 
Evening peak − 0.11 − 0.03 − 0.001 0.02 0.18 − 0.06 − 0.03 − 0.01 0.004 0.10 
Non-workdays − 0.04 − 0.01 − 0.004 0.002 0.05 − 0.03 − 0.01 0.002 0.01 0.05  
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