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The effects of cognitive load on driver behavior and traffic safety are unclear and in

need of further investigation. Reliable measures of cognitive load for use in research

and, subsequently, in the development and implementation of driver monitoring systems

are therefore sought. Physiological measures are of interest since they can provide

continuous recordings of driver state. Currently, however, a few issues related to their

use in this context are not usually taken into consideration, despite being well-known.

First, cognitive load is a multidimensional construct consisting of many mental responses

(cognitive load components) to added task demand. Yet, researchers treat it as

unidimensional. Second, cognitive load does not occur in isolation; rather, it is part of a

complex response to task demands in a specific operational setting. Third, physiological

measures typically correlate with more than one mental state, limiting the inferences

that can be made from them individually. We suggest that acknowledging these issues

and studying multiple mental responses using multiple physiological measures and

independent variables will lead to greatly improved measurability of cognitive load. To

demonstrate the potential of this approach, we used data from a driving simulator study

in which a number of physiological measures (heart rate, heart rate variability, breathing

rate, skin conductance, pupil diameter, eye blink rate, eye blink duration, EEG alpha

power, and EEG theta power) were analyzed. Participants performed a cognitively loading

n-back task at two levels of difficulty while driving through three different traffic scenarios,

each repeated four times. Cognitive load components and other coinciding mental

responses were assessed by considering response patterns of multiple physiological

measures in relation to multiple independent variables. With this approach, the construct

validity of cognitive load is improved, which is important for interpreting results accurately.

Also, the use of multiple measures and independent variables makes the measurements

(when analyzed jointly) more diagnostic—that is, better able to distinguish between

different cognitive load components. This in turn improves the overall external validity.

With more detailed, diagnostic, and valid measures of cognitive load, the effects of

cognitive load on traffic safety can be better understood, and hence possibly mitigated.

Keywords: physiological measures, cognitive load, driver distraction, psychophysiology, construct validity,

measurability
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INTRODUCTION

There are many driver states that can affect driving performance,
and their contribution to risk increase will remain a central
traffic safety study topic until all vehicles are fully automated.
For some of these states, such as visual distraction (eyes off
road) and drowsiness, the increase in risk is well-documented
(Horne and Reyner, 1999; Caird et al., 2014; Victor et al., 2015).
For some other states, the contribution to risk increase is less
clear. One such state where the effects on driving performance
are debated and further studies are needed is high cognitive
load, when drivers perform non-visual, cognitively demanding
activities while driving (Wijayaratna et al., 2019). (Note the
difference between cognitive demand, which is something that is
posed on the driver, and cognitive load, which is the resulting
mental response.) It is well-established that, during increased
cognitive load, response times to repeated stimuli and artificial
tasks increase (Engström et al., 2010; Stojmenova and Sodnik,
2018). In addition, processing of visual information decreases
(Strayer et al., 2006) and the gaze becomes more concentrated
on the road ahead (Reimer et al., 2012). These findings have
led to concerns about missed information and increased brake
response times in critical situations (Strayer and Fisher, 2016).
However, response times in unexpected critical lead-vehicle
braking scenarios appear unaffected by cognitive load (Nilsson
et al., 2018) and, in fact, a number of naturalistic driving studies
have not found increased crash or near-crash risks for drivers
talking on the phone (e.g., Fitch et al., 2013; Victor et al., 2015). It
thus still remains to be sorted out when and how cognitive load
poses a safety risk (see Engström et al., 2017, and Wijayaratna
et al., 2019, for recent reviews and theories).

In order to study the safety impact of cognitive load, we need
reliable measures that make it possible to conduct research in
more naturalistic settings. The level of cognitive load can then
be assessed from the measures instead of being strictly controlled
by experimental manipulations. Furthermore, if future studies
determine that cognitive load does indeed contribute to elevated
risk in certain traffic situations, reliable measures will also be
needed so that, for example, Advanced Driver Assistance Systems
can detect cognitive load during driving andmitigate its effects by
adapting accordingly.

A large number of studies have explored the feasibility of
using physiological measures to assess cognitive load (Tao et al.,
2019). Advantages of physiological measures are that they can
provide continuous recordings of driver states without altering
or disrupting the driving task. They can thus complement
subjective and behavioral measures (which can also be very
informative, but are not the focus of this article) to improve
driver state assessments, or be used in situations where subjective
or behavioral measures are not sensitive or appropriate (Lohani
et al., 2019).

In empirical driving studies today, the level of cognitive
load is usually varied systematically by having the participants
perform cognitively demanding tasks (from here on referred to
as cognitive tasks) while driving. It can, for example, be working
memory loading tasks (Heine et al., 2017) or mental arithmetic
tasks (Faure et al., 2016). The outcome (i.e., the physiological

response) is then typically interpreted as reflecting the level of
cognitive load. These studies might conclude, for example, that
cognitive load increases the heart rate (Mehler et al., 2012) or the
pupil diameter (Niezgoda et al., 2015).

This line of research has provided a great deal of
knowledge regarding physiological responses to cognitive
tasks. Nevertheless, there are a few well-known, yet commonly
disregarded, issues that risk leading to incorrect inferences and
generalizations if overlooked. In this article, we wish to bring
forward these “elephants in the room,” as we believe that the
state of knowledge today allows greater consideration to be given
to them.

Cognitive load (also often referred to as mental workload)
is commonly defined as the amount of cognitive resources
used to meet task demands (Engström et al., 2013; but see
Van Acker et al., 2018, for a review and concept analysis).
Cognitive resources enable cognitive control, which comprises
neurocognitive functions resulting in effortful, conscious,
and non-automatized actions (Engström et al., 2013). These
functions include, for example, attention, workingmemory, error
monitoring, and inhibitory control (Helfrich and Knight, 2016).
Further, cognitive control requires cortical arousal (Grueschow
et al., 2020), and can be enhanced (or degraded) by emotional
responses (Critchley et al., 2013).

The first issue is thus that cognitive load consists of numerous
cognitive and emotional responses that enable cognitive control
during increased cognitive demand. (Cognitive and emotional
responses will hereafter be jointly referred to as mental
responses.) This means that cognitive load is a multidimensional
construct and can take many different forms (Matthews et al.,
2015). Yet, researchers almost always treat it as unidimensional
when attempting to measure it.

The second issue is that task-induced cognitive load does not
occur in isolation. Rather, it is part of a complex adaptation to
task demands within a specific operational setting (Young et al.,
2015). This issue can be best explained in two parts. First, factors
other than cognitive task demand may also cause cognitive
load and other mental responses, or alter the mental responses
caused by the task demand (Van Acker et al., 2018). Such
factors can be situation- or human-specific. Situation-specific
factors characterize the context in which the task occurs and
can, for example, depend on the traffic environment complexity
(Törnros and Bolling, 2006; Di Flumeri et al., 2018), time pressure
(Loeches De La Fuente et al., 2019), and how many times the
task has been repeated (Belyusar et al., 2015). Human-specific
factors include the driver’s personality (Grassmann et al., 2017),
experience (Paxion et al., 2014), and current mental state, such as
his/her emotional state (Schoofs et al., 2008) and level of fatigue
(Tanaka et al., 2009). The cognitive task and the other influencing
factors together affect the driver’s mental state and, consequently,
his/her physiological responses and behaviors (Faure et al.,
2016; Dehais et al., 2020). Second, not all mental responses to
changes in cognitive demand are cognitive load components
(i.e., mental responses included in the cognitive load construct).
Unfortunately, it is often difficult to draw a line between those
mental responses that contribute to cognitive control—and are
thus to be considered cognitive load components—and those that
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do not. Mental fatigue is an example of a mental response to
(prolonged) cognitive demand that is not part of cognitive load.
Stress, on the other hand, is an example of a mental response that
is difficult to categorize, since it is beneficial for cognitive control
up to a certain limit, after which it has the opposite effect (Dehais
et al., 2020).

Lastly, the third issue is that all physiological measures (to the
best of our knowledge) correlate with multiple mental responses.
These one-to-many relationships limit the inferences that can be
made from the individual measures (Richter and Slade, 2017).
That is, although many physiological measures correlate with
cognitive load, they cannot always be considered measures of
cognitive load.

Also, correlation analyses show that physiological measures
that correlate with cognitive load are mostly independent of
each other, implying that different physiological measures reflect
different dimensions in the response to altered cognitive demand
(Matthews et al., 2015). There is thus not one physiological
response to cognitive load; instead, the physiological responses
depend on the mental responses occurring in the specific
situation at hand. Multiple physiological measures together can
therefore provide us with a more comprehensive idea of the
multidimensional cognitive load.

In summary, cognitive load is a complex response to cognitive
demands, consisting of multiple mental responses that enable
cognitive control. In empirical studies where the level of cognitive
demand is altered, many different mental responses occur,
depending on the cognitive task, the situation, and the individual.
The different mental responses (including the different cognitive
load components) have different physiological correlates, as
evidenced by the lack of correlation between the physiological
measures. Cognitive load can thus be neither measured, nor
understood, as a unidimensional and isolated construct, and
treating it as unidimensional entails a clear risk of making
incorrect inferences and generalizations.

We will suggest that acknowledging these three issues is
key to improving the measurability of cognitive load. Here
we consider three aspects of measurability: construct validity,
external validity, and diagnosticity, because of their relevance
in regard to the frequently overlooked issues described above.
Construct validity refers to how well a measure actually measures
what it claims to measure and encompasses both the measures
and the theory behind the construct (Strauss and Smith, 2009).
As noted by Strauss and Smith (2009), unidimensional measures
of multidimensional constructs are empirically and theoretically
imprecise if the construct’s components can vary independently,
as is the case with cognitive load. External validity addresses
the extent to which results from a study apply to other settings
(Campbell and Stanley, 1963). Since traffic safety is only relevant
in real life, while research on cognitive load is most often
conducted in artificial environments, understanding the external
validity of measures of cognitive load is highly relevant and
deserves more attention than it is usually given (Jiménez-Buedo
and Russo, 2021). Diagnosticity addresses a measure’s ability
to differentiate between different dimensions in the construct
it measures (O’Donnell and Eggemeier, 1986), in this case the
cognitive load components.

When designing experiments to look for physiological
measures of cognitive load, one should bear in mind that
the measures are typically sensitive to variations in cognitive
load only within certain levels and compositions of load (de
Waard, 1996), which vary for different measures and contexts.
To improve the chances of finding useful measures, it is thus
appropriate to look for physiological measures of cognitive load
in settings where there is also an interest in understanding, and
possibly mitigating, effects of cognitive load.

The cognitive control hypothesis by Engström et al. (2017)
offers a plausible explanation as to how cognitive load affects
driver behavior and traffic safety. It states that “[cognitive load]
selectively impairs driving subtasks that rely on cognitive control
but leaves automatic performance unaffected” (Engström et al.,
2017, p. 736). Effects of cognitive load are thus relevant when
exploring situations where cognitive control is required for a safe
outcome; that is, in situations where drivers cannot rely solely
on automated behaviors, but need to adapt their behavior using
cognitive control (Engström et al., 2017). For example, cognitive
load has been found to impair drivers’ ability to adapt their
behavior to traffic signs (Baumann et al., 2008) and downstream
traffic events (Muttart et al., 2007).

On the other hand, automatized driver behaviors should
not deteriorate under cognitive load, according to the cognitive
control hypothesis (Engström et al., 2017). These behaviors
are consistently mapped (i.e., a certain stimulus is consistently
followed by the same response) and extensively practiced;
one example is normal lane-keeping (Engström et al., 2017).
However, if lane-keeping is made more difficult, it can be
expected to require cognitive control and thus deteriorate under
cognitive load (Engström et al., 2017). In line with this theory,
Medeiros-Ward et al. (2014) found that when driving is made
less predictable by adding wind gusts, cognitive load led to
deteriorated lane-keeping. In contrast, He et al. (2014) found that
cognitive load improved lane-keeping also during unpredictable
wind gusts. These conflicting results call for further investigation.

As previously mentioned, a driver’s mental state, including
the loading on different cognitive load components, depends not
only on the cognitive task but also on situation- and human-
specific factors, one of which is duration. Drivers’ physiological
responses, behaviors, and mental states may be altered both by
prolonged periods of high cognitive demand, and by underload
during long-lasting tasks posing only a very low level of
cognitive demand, such as simple driving (Saxby et al., 2013;
Matthews et al., 2019). Desmond and Hancock (2001) named
the two conditions active fatigue and passive fatigue, respectively.
Although both fatigue conditions can have negative effects
on task performance (Saxby et al., 2013), these effects result
from different (and yet not well-understood) neurocognitive
mechanisms (Berberian et al., 2017; Hu and Lodewijks, 2020)
and thus require different countermeasures (Dehais et al.,
2020).

Another situational factor is repetition. In experimental
driving studies, tasks, and traffic scenarios are typically repeated,
to increase the number of data points to improve statistical
stability (Engström et al., 2010). But repeating the same cognitive
tasks and traffic scenarios can lead to learning effects, which
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reduce the level of cognitive load and may alter its composition
(Borghini et al., 2016).

Aim and Approach
The aim of this study is to demonstrate and exemplify how the
measurability of cognitive load can be improved by studying
multiplemental responses, usingmultiple physiologicalmeasures
and independent variables. Changes in mental state are to be
assessed based on drivers’ physiological responses in relation
to three independent variables, namely cognitive task demand,
repetition, and traffic scenario. Five analysis questions have
been defined:

Q1) How does cognitive task demand affect
physiological measures?

Q2) How does repetition affect physiological measures?
Q3) Do the effects of repetition differ when the participant

is just driving (baseline) compared to when also doing a
cognitive task?

Q4) How do different traffic scenarios affect
physiological measures?

Q5) Do the effects of traffic scenario differ when the participant
is just driving (baseline) compared to when also doing a
cognitive task?

Interpretations about the drivers’ mental responses are to be
made from answers to these questions in light of the three
issues described; (1) cognitive load consists of multiple mental
responses, (2) cognitive load does not occur in isolation, and (3)
physiological measures correlate with multiple mental responses.
The interpretations are to be based on state-of-the-art literature
on physiological measures, their mental state correlations, and
their neurological underpinnings. While some mental responses
are clear cognitive load components, others are relevant because
they affect the same physiological measures and could possibly
affect the responses to the cognitive demand (e.g., Do et al., 2021).

To pursue this aim, a driving simulator study was conducted
in which physiological measures were collected while cognitive
task demand was manipulated with a working-memory loading
n-back task at two levels of difficulty. The simulated drive
consisted of a rural road with three traffic scenarios repeated
four times each.When driving through these traffic scenarios, the
participants were either just driving (baseline condition), or were
concurrently performing the n-back task.

The following section is an overview of the physiological
measures that were studied, to facilitate a nuanced discussion on
the physiological responses observed in this study.

THEORY

Our bodily functions, and thus physiological responses, are
controlled by the endocrine (i.e., hormonal) system and the
more rapid nervous system (Tortora and Derrickson, 2007).
The nervous system is divided into the central nervous system
(CNS), consisting of the brain and spinal cord, and the peripheral
nervous system (PNS), which connects the CNS to the rest
of the body. Within the PNS, the somatic nervous system
controls voluntary movements, while the autonomic nervous

system (ANS) exerts involuntary, and often unconscious, control
over smooth muscles, cardiac muscles, and glands (Tortora and
Derrickson, 2007). The ANS is divided into the sympathetic
and parasympathetic nervous systems. In general, sympathetic
activation supports emergency reactions (the “fight-or-flight”
response), while parasympathetic activation supports activities
that occur when the body is at rest (“rest-and-digest” activities)
(Tortora and Derrickson, 2007). The two systems can be co-
active, reciprocally active, or independently active (Billman,
2013), and different parts of them can be activated separately
(Benarroch, 2011). Several interconnected areas in the CNS
integrate sensory information with emotional and cognitive
processing, control the sympathetic and parasympathetic activity
to maintain homeostasis, and facilitate cognitive functions and
behavioral responses (Benarroch, 2011). Activity in different
parts of the CNS and PNS can be observed through a variety of
physiological measures.

EEG Alpha and Theta Power
Electroencephalography (EEG) is the recording of the electrical
activity in the brain’s outer cortex. With spectral analysis, the
amount of activity (power) of different frequencies within the
EEG can be studied. Increased power can be caused by repeated
cycles of activation or an accumulation of transient activations
(Jones, 2016). The power spectrum is typically split into the
frequency bands delta (1–3Hz), theta (4–7Hz), alpha (8–12Hz),
beta (15–30Hz), and gamma (30–100Hz), although the precise
frequency ranges differ between studies (Choi and Kim, 2018).
The power in a certain frequency band can be studied either as
absolute power or as relative power (absolute power divided by
total power) (Choi and Kim, 2018). The two bands most clearly
associated with cognitive load are theta and alpha.

Increases in theta power over mid-frontal cortex are
frequently related to an increase in cognitive load (Cavanagh
and Frank, 2014). But theta power increases also during fatigue
caused by either prolonged cognitive performance (Clayton et al.,
2015; Tran et al., 2020) or sleepiness (Marzano et al., 2007). In
addition, surprising events give rise to transient responses within
the theta frequencies (Cavanagh and Frank, 2014). The function
of theta activity is not known with certainty, but it seems to
reflect a need for cognitive control (Cavanagh and Frank, 2014;
Cavanagh and Shackman, 2015). The need can be caused by, for
example, a cognitively demanding task or a mismatch between
the intended and actual level of attention—due to depleted
cognitive resources, as in the case of fatigue (Clayton et al., 2015).

During task execution, alpha power generally increases in
task-irrelevant sensory areas in the brain and decreases in
task-relevant sensory areas (Pfurtscheller et al., 1996). During
cognitive tasks, decrements in alpha power can be spread over
several scalp areas (Borghini et al., 2014). Alpha power increase
during mind wandering (Compton et al., 2019) and mental
fatigue (Borghini et al., 2014). Previously, alpha activity was
thought to represent an “idling” of the brain (Pfurtscheller et al.,
1996), but theories today attribute it more functions (Halgren
et al., 2019). For example, Sadaghiani and Kleinschmidt (2016)
suggest that spatially widespread alpha activity contributes to
tonic (i.e., slow-changing) alertness, while locally suppressed
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alpha activity contributes to selective attention by increasing
activity and information processing in the area. The alpha
band actually consists of several sub-bands, with overlapping
frequencies, which respond differently to different tasks and
activities (Barzegaran et al., 2017; Benwell et al., 2019).

In driving studies, cognitive task execution have led to both
increased theta (frontal) and alpha (frontal, as well as more
widespread) power (Sonnleitner et al., 2012; Almahasneh et al.,
2014; Wang et al., 2018; Zokaei et al., 2020). During increased
driving demand, alpha power has been found to decrease
(Wascher et al., 2018; Abd Rahman et al., 2020), while results on
theta are mixed (Wascher et al., 2018; Abd Rahman et al., 2020;
Diaz-Piedra et al., 2020). Alpha and theta power both tend to
increase with driver sleepiness (Simon et al., 2011; Perrier et al.,
2016), although not always significantly (Ahlström et al., 2021).
The effects of driving time on both bands are mixed (Perrier et al.,
2016; Wascher et al., 2018; Ahlström et al., 2021). Noteworthy
is that the effects of various activities or conditions can differ,
depending on whether absolute or relative power measures are
used (Wascher et al., 2018).

Pupil Diameter
The pupil reacts to the amount of light entering the eye by
changing its size (Joshi and Gold, 2020). Additionally, cognitive
and emotional states modulate the pupil size (Joshi and Gold,
2020). The pupil diameter (PD) is regulated by the sphincter
muscle, which is under parasympathetic control and causes
pupil constriction, and the weaker dilatory pupillary muscle,
which is under sympathetic control and causes pupil dilation
(Larsen and Waters, 2018). A brain area highly involved in the
control the pupil size is the locus coeruleus (LC) (Joshi and
Gold, 2020); the brain’s primary source of the arousal-promoting
neurotransmitter norepinephrine (NE) (Samuels and Szabadi,
2008). The LC-NE system plays a crucial role in cognitive
processes and task performance and its activity is closely reflected
by the PD (Aston-Jones and Cohen, 2005).

Pupillary responses can be studied as phasic responses and
tonic levels. Phasic responses are rapid transient dilations which
occur spontaneously or in response to an external stimulus (or to
the lack of an expected stimulus) (Joshi and Gold, 2020). Tonic
levels are studied by measuring averaged PDs, during either
baseline or task conditions. A small PD indicates low vigilance
or sleepiness (Zénon, 2019), while a large PD reflects high arousal
(Aston-Jones and Cohen, 2005) or high levels of cognitive activity
(Zénon, 2019). During task execution, a large PD indicates
greater effort and often correlates with good performance (van
der Wel and van Steenbergen, 2018).

Numerous driving simulator studies have shown increased PD
during cognitively (Hammel et al., 2002; Niezgoda et al., 2015;
Cegovnik et al., 2018; He et al., 2019; Peruzzini et al., 2019)
and visually (Benedetto et al., 2011) demanding secondary tasks,
psychological stress (Pedrotti et al., 2014), and time pressure
(Rendon-Velez et al., 2016), as well as during increased driving
demand (Peruzzini et al., 2019; Xie et al., 2020). As task demands
increase, the PD typically shows a stepwise increase before it
plateaus or decreases again at high load levels when performance
can no longer be maintained (van der Wel and van Steenbergen,

2018). The plateau and decrease are likely due to a decrement in
motivation and effort (van der Wel and van Steenbergen, 2018).

Few studies have explored the effects of secondary tasks on
pupil diameter in real driving. Because the pupil is very sensitive
to lighting variations, task effects risk being masked in real-life
environments with fluctuating light levels. Nonetheless, Nunes
and Recarte (2002) and Recarte and Nunes (2000) found that
the PD increased during the execution of cognitive tasks on
real roads, except during simple conversation tasks (Nunes and
Recarte, 2002). Further, Ahlström et al. (2021) found a decrease
in PD with increased distance driven by sleep-deprived drivers
at nighttime.

Eye Blink Rate and Duration
Eye blinks are essential for lubricating the eyes, but characteristics
such as their frequency and timing depend on cognitive and
emotional factors as well (Cruz et al., 2011). The eye blink rate
(EBR) is positively related to the level of the neurotransmitter
dopamine in the brain (Eckstein et al., 2017), although the
precise relationship is unknown (Jongkees and Colzato, 2016;
Sescousse et al., 2018). Dopamine affects several brain functions,
including cognitive control, motivation, and learning (Jongkees
and Colzato, 2016). Levels of dopamine that are too low or
too high, reflected in low or high EBR, typically mean worse
performance (Jongkees and Colzato, 2016; Eckstein et al., 2017)
due to depressed prefrontal cortex activation (Dehais et al., 2020).

Brain activity studies have suggested that spontaneous eye
blinks provide brief moments of attentional disengagement from
an external stimulus in favor of internal processing (Nakano et al.,
2013). Blinks occur less frequently during visually demanding
tasks, probably to reduce the risk of missing relevant information
(Recarte et al., 2008). This reduction in frequency has been
demonstrated in laboratory studies (Recarte et al., 2008; Cardona
et al., 2011) and in driving studies investigating increased driving
demand (Wiberg et al., 2015; Faure et al., 2016; Lobjois et al.,
2021). In driving studies applying visually demanding secondary
tasks, the effect has not reached significance (Liang and Lee, 2010;
Benedetto et al., 2011). Unfortunately, because large saccades
(quick movements of both eyes) are often accompanied by blinks
(Fogarty and Stern, 1989), comparing EBR between different
traffic environments or tasks with different glance behaviors can
be problematic (Cardona and Quevedo, 2014).

During cognitive tasks, the EBR increases both in laboratory
(Recarte et al., 2008; Magliacano et al., 2020) and driving studies
(Nunes and Recarte, 2002; Liang and Lee, 2010; Niezgoda et al.,
2015; Faure et al., 2016; Cegovnik et al., 2018; He et al., 2019;
Chihara et al., 2020). Although these results are highly consistent,
EBR differences between levels of cognitive load are typically
small and rarely significant.

The effects of increased visual and cognitive demands on
eye blink duration (EBD) are less explored and less consistent.
Simulator studies have not found significant effects of either
traffic complexity (Faure et al., 2016) or cognitively (Faure et al.,
2016) or visually (Benedetto et al., 2011) demanding secondary
tasks on EBD. However, studies in real traffic have demonstrated
shorter EBDs in drivers compared to their passengers (Takeda
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et al., 2016), as well as during driving in more demanding traffic
situations (Wiberg et al., 2015).

During increased driver sleepiness, EBD increase consistently
(Ahlström et al., 2018; Cori et al., 2019). The studies are fewer
and results ambiguous regarding the effects of driver sleepiness
on EBR (Cori et al., 2019). On the contrary, during increased
fatigue due to prolonged task execution, the pattern is reversed:
studies consistently show increased EBR while the effects on EBD
are mixed (Bafna and Hansen, 2021).

Heart Rate and Heart Rate Variability
The heart is regulated through both the sympathetic and the
parasympathetic nervous systems. Sympathetic activity causes
the heart to beat faster and stronger, while parasympathetic
activity decelerates the heart rate (HR) (Tortora and
Derrickson, 2007). The systems can be activated individually
or simultaneously and in the same or opposite directions, but
parasympathetic activity is faster and stronger than sympathetic
activity (Billman, 2013). A healthy heart has a constantly
fluctuating HR (Park and Thayer, 2014), measured as heart rate
variability (HRV). The respiratory cycle has a major influence on
HRV, as inhalations accelerate the heart and exhalations slow it
down (Quintana and Heathers, 2014).

Cardiac activity is most often described by HR andHRV. HRV
is an umbrella term for different measures of the fluctuations
in the time intervals between adjacent heart beats (for an
overview, see Shaffer and Ginsberg, 2017). One common HRV
measure (used in this study) is the root mean square of
successive differences (RMSSD), which is supposed to reflect
parasympathetic activity without much respiratory influence
(Laborde et al., 2017).

Cognitive tasks lead to increased HR and decreased HRV
in laboratory environments (Hughes et al., 2019), as well as in
driving studies in simulators (Belyusar et al., 2015; Hidalgo-
Muñoz et al., 2019; Tejero and Roca, 2021) and on real roads
(Reimer and Mehler, 2011; Mehler et al., 2012). The effects of
driving demand on HR and HRV are however varying. For
example, simulator studies by Foy and Chapman (2018) and
Stuiver et al. (2014) didn’t find any effect of varying driving
demands onHR, whileWiberg et al. (2015) did find such an effect
in real city driving—but the result was less consistent in highway
driving. Further, Dussault et al. (2004) found increased HR in
pilots during active flight segments compared to in-flight rest
segments, but only during actual (not simulated) flights (Dussault
et al., 2005). In a driving simulator study by Beggiato et al.
(2019), participants’ HR typically decreased when approaching
traffic scenarios designed to evoke unease. This could be a
sign of attentional focusing and preparation for action as HR
decelerations are known to occur in aiming sports before an
athlete throws a dart or makes a golf putt, for example (Cooke,
2013).

The effects of prolonged task execution and increased mental
fatigue on HR and HRV are inconclusive; in fact, both increased
(Matuz et al., 2021) and decreased (Li et al., 2002; Mizuno et al.,
2011) parasympathetic activity has been suggested. In driving
studies, sleepiness due to sleep deprivation causes HR to decrease
and HRV to increase on a group level, but individual variation is

large (Buendia et al., 2019; Persson et al., 2020; Ahlström et al.,
2021).

In general, emotions characterized by passivity, such as
sadness, contentment, and suspense, cause a decrease in HR,
whereas the opposite is true for emotions characterized by
active coping responses, such as anger, embarrassment, and fear
(Kreibig, 2010). As an example, HR increases during emotional
stress caused by having one’s performance judged (Kelsey et al.,
2004). The effects of emotions on HRV are less consistent
(Kreibig, 2010). Responses to novel stimuli cause a temporary HR
deceleration (Bradley, 2009), due to co-activation of the slower
sympathetic and faster parasympathetic systems (Silvani et al.,
2016).

Breathing Rate
Breathing, which is under both voluntary and involuntary control
(Homma and Masaoka, 2008) both affects, and is affected by,
emotions and cognition (Homma and Masaoka, 2008; Del Negro
et al., 2018). Roughly every fifth minute, rhythmic breathing is
interrupted by a sigh (Del Negro et al., 2018). Sighs open up
collapsed alveoli (Del Negro et al., 2018) and reset the breathing
rhythm (Vlemincx et al., 2012). Sighs also occur in response to
emotions such as grief and happiness (Del Negro et al., 2018),
and cause emotional relief (Vlemincx et al., 2013).

The most frequently studied breathing measure in studies
of cognitive load is breathing rate (BrR), which consistently
increases during cognitive task execution (Grassmann et al.,
2016). In single task studies, BrR has also been successful in
discriminating between different levels of cognitive load (Backs
and Seljos, 1994; Brouwer et al., 2014; Hogervorst et al., 2014;
Hidalgo-Muñoz et al., 2019), but this load level sensitivity seems
to disappear in driving studies (Mehler et al., 2009; He et al., 2019;
Hidalgo-Muñoz et al., 2019). The effects of traffic complexity
on BrR appear inconsistent: Wiberg et al. (2015) found BrR
to increase during increased traffic complexity in real driving,
while Foy and Chapman (2018) found no such effect in a
simulator study.

When drivers are sleepy, BrR has been shown to decrease
(Kiashari et al., 2020) and become less regular (Rodrígue-Ibáñez
et al., 2011). The few studies that have looked at the effects of
prolonged execution of cognitive tasks on BrR show inconsistent
results (see Grassmann et al., 2016, for a review). BrR also
increases during time pressure (Rendon-Velez et al., 2016) and
as a result of emotions such as anxiety (Homma and Masaoka,
2008), fear (Stephens et al., 2010), and amusement (Stephens
et al., 2010), while it decreases as a result of calm and positive
emotions (Balters and Steinert, 2015).

Skin Conductance
Electrodermal activity is the change in the electrical properties of
the skin, typically measured as skin conductance (SC). As sweat
ducts fill with sweat, the resistance of the outer layer of the skin
decreases and the conductance increases (Dawson et al., 2016).
The sweat glands on the palms and soles are densely distributed
and primarily respond to emotional arousal in what is known as
psychological or emotional sweating (Baker, 2019). The function
of emotional sweating is likely to improve grasping as part of the
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body’s preparation to act or flee (Dawson et al., 2016). Sweating is
regulated by the sympathetic nervous system alone, making SC a
popular measure of general arousal (Posada-Quintero and Chon,
2020).

The SC is most often quantified as tonic changes of skin
conductance level (SCL) and phasic sweat bursts called skin
conductance responses (SCRs). SCRs occur as part of the
orienting response when attention is directed toward a novel,
significant stimulus (Bradley, 2009), and also follow deep breaths
and body movement (Dawson et al., 2016). In addition, they
occur spontaneously approximately one to three times per
minute during rest (Dawson et al., 2016).

In principle, the anticipation and performance of practically
any task invoke increased SC (in both SCL and SCRs) (Dawson
et al., 2016). Cognitive tasks cause increased SC in laboratory
settings (Brouwer et al., 2014; Visnovcova et al., 2016) as well
as in driving studies in simulators (He et al., 2019) and real cars
(Reimer and Mehler, 2011; Mehler et al., 2012, 2016). The effect
of performing a task (compared to a baseline condition) is often
greater than the differences between task load levels (Reimer
and Mehler, 2011; Mehler et al., 2016), and recovery to baseline
levels is rather slow (Mehler et al., 2012; Visnovcova et al., 2016).
Studies of driving demand demonstrate that increased traffic
complexity leads to increased SC in real (Wiberg et al., 2015) and
simulated driving (Foy and Chapman, 2018).

Few studies have been conducted on the effects of sleepiness
on SC. Although a decrease in SCR frequency (Michael et al.,
2012) and SCL (Miró et al., 2002) has been demonstrated due to
sleep deprivation, the effects are rather small and inconsistent—
and accompanied by stronger circadian oscillations. As for the
effects of emotions, SC typically increases in response to those
emotions high in arousal (Kreibig, 2010; Gomez et al., 2016).
It has been suggested that the increase in SC reflects motor
preparation, as many emotions call for action (Kreibig, 2010).
This interpretation explains why emotions related to passivity,
such as contentment, relief, and sadness, show decreased SC
(Kreibig, 2010).

METHOD

The study consisted of two similar test series, Test Series 1
and Test Series 2. Differences consisted of the cognitive tasks
employed, and in the design of one of the traffic scenarios
(see descriptions in Sections Cognitive Task and Driving
Scenarios). Otherwise, the test series were the same. Data
were collected at the Swedish National Road and Transport
Research Institute (VTI) in Linköping, Sweden. The experiment
was approved by the regional ethics vetting board (Regionala
etikprövningsnämnden) in Linköping.

Participants
Participants were recruited from a random selection of the
vehicle register over people living in the Linköping area. A total
of 70 males participated in the study, 36 in Test Series 1 and 34
in Test Series 2. They ranged in age from 35 to 51 years (M= 43,
SD = 4), drove between 50 and 1,200 km/week (M = 309, SD =

205), and had held a driver’s license for between 8 and 32 years

(M = 23, SD = 5). Additional requirements for participating in
the study were to: have normal hearing; have a BMI < 30; not
rate oneself as extreme in extraversion or introversion, stress-
sensitivity, and morning- or evening-type; not have bad health
or use medication regularly; not have sleep disorders; and be able
to abstain from nicotine for 3 h without withdrawal symptoms.
The requirements were there to create a fairly homogenous
group of participants to reduce the variance in both mental and
physiological responses to the experimental manipulations.

All participants were paid 1500 SEK for their participation.

Equipment
The experiments were carried out in an advanced moving-base
driving simulator. The car body consisted of the front part of
a SAAB 9-3 with automatic transmission mounted on a cradle
which allowed movement with four degrees of freedom. The
field of vision was 120◦, and three LCD displays were used to
simulate rear-view mirrors. A sound system simulated sounds
from the tires and engine. The test leader could communicate
with the participants through speakers, which were also used for
the cognitive tasks.

Electrooculography (EOG), electroencephalography (EEG),
electrocardiography (ECG), electromyography (EMG), skin
conductance (SC), and respiratory inductance plethysmography
(RIP) signals were recorded using a multi-channel amplifier
(g.HIamp, g.tec Medical Engineering GmbH, Austria). Thirty-
two EEG channels (Fp1, FpZ, Fp2, F7, F3, FZ, F4, F8, FC5, FC1,
FC2, FC6, T7, C3, CZ, C4, T8, CP5, CP1, CP2, CP6, P7, P3, PZ,
P4, P8, POZ, O1, OZ, O2, A1, A2) and four EOG channels were
recorded using active electrodes on a cap (g.tec g.GAMMAcap),
referenced to the right earlobe (A2), and with a ground electrode
at AFZ. The EEG electrodes were positioned according to the 10–
20 system. Two EOG electrodes were placed horizontally outside
the outer canthus of each eye, and two were placed vertically
across the left eye. The ECG was recorded with electrodes placed
on the right collarbone and a lower left rib. The SC was recorded
from the distal phalanges at the index and middle fingers at
the left hand, and the RIP with an elastic strap placed around
the participant’s chest, just below the armpits. The EMG was
recorded with electrodes placed on the trapezius (shoulder) and
masseter (jaw) muscles. The EMG data was collected for the
purpose of EEG artifact handling, but because it was not found to
be useful for that purpose, EMG was not included in the analysis
and will not be described further. All physiological signals were
recorded with a sampling rate of 256Hz. The EEG, EOG, and
ECG signals were band-pass filtered between 0.5 and 60Hz using
an 8th order Butterworth filter and notch filtered between 48 and
52Hz using a 4th order Butterworth filter. The SC and RIP signals
were band-pass filtered between 0 and 30Hz using an 8th order
Butterworth filter.

The pupil diameter was measured with a Smart Eye four-
camera system in Test Series 1, and with eye tracker glasses from
SensoMotoric Instuments (SMI) in Test Series 2.

Cognitive Task
The cognitive task was an auditory, non-verbal version of the n-
back task (see Mehler et al., 2011, for a similar verbal version).
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It is well-established that n-back tasks cause increased levels
of cognitive load (Jaeggi et al., 2010). A number between zero
and nine was orally presented to the participants every other
second. If the number just presented was the same as the number
presented n numbers ago, it was considered a target number.
All number series were unique, consisting of 30 numbers, with
six target numbers. The participants were instructed to press a
button mounted on their right index finger against the steering
wheel as soon as they detected a target number. In Test Series 1,
that task was only presented at the 1-back (n = 1) level, while in
Test Series 2, the task was presented at both the 1-back and 2-
back (n = 2) levels. Right before the task began, the participants
were informed through the speakers that the task would begin,
and which level it would be.

Driving Scenarios
The simulated driving environment consisted of a two-lane rural
road with a speed limit of 80 km/h. There was occasional traffic,
both oncoming and overtaking.

Measurements were collected during three traffic scenarios
(Hidden Exit, Intersection, and Wind), each repeated four times
during the drive: see Figure 1. In the Hidden Exit scenario, a
warning sign for a hidden exit was placed before a sharp right
curve with a high hedge on the right (inner) side. After the
curve was the exit on the right side. There was no other traffic
in the scenario. In the Intersection scenario, the participants
approached and drove through a four-way intersection, in
which they had the right of way. Another car approached the
intersection from the right, becoming visible as it drove past a
house when the participants were 180m from the intersection,
and came to a stop at the intersection 2 s before the participants
reached the intersection. A bus in the oncoming lane passed

the participant’s car 70m before the intersection. In the Wind
scenario, the otherwise present forest surroundings opened up
into a field with very limited road curvature. While driving
through the field, the participants were occasionally exposed to
crosswinds from the right. Wind speed was determined by three
overlaid sinusoidal winds with different frequencies, resulting in
a, for the participants, unpredictable crosswind.

During the measurement scenarios, the participants were
either engaged in the 1-back task or the 2-back task or they were
just driving (the baseline condition). In the Hidden Exit and
Intersection scenarios, the n-back task started ∼45 s before the
participants reached the hidden exit or intersection. In the Wind
scenario, the crosswinds started 30 s before the task onset and
blew for 1min and 40 s.

The two test series differed somewhat in their design. In
Test Series 1, the crosswinds were always active in the Wind
scenario. For two repetitions of each scenario the participants
were engaged in the 1-back task, and for the other two repetitions,
there was no task besides driving (baseline). In Test Series 2, the
crosswinds were only active in two of the four Wind scenario
repetitions. In each crosswind condition (Wind On and Wind
Off), the participants performed the 2-back task once and the
baseline condition once. In the Hidden Exit and Intersection
scenarios, the participants were engaged in the 1-back task once,
the 2-back task twice, and baseline once. The order of the tasks
was counterbalanced across participants in both series.

In addition to the measurement scenarios, there were some
other scenarios that only differed from the measurement
scenarios in terms of traffic, for the sake of variation. There were
two more hidden exits with a car standing still at the exit with
indicators on, two four-way intersections with a car approaching
from the left, and two four-way intersections with no other traffic.

FIGURE 1 | Illustration of the experimental drive. The rectangle in the middle of the figure represents the sequence of events. Each square is ∼1min of driving

(depending on vehicle speed). Measurement scenarios are colored in gray. HE, Hidden Exit; Int, Intersection; W, Wind. The final scenario, x, was an unexpected lead

vehicle braking scenario which is not included in this study (but see Nilsson et al., 2018). The five images show scenery examples from one of the positions where the

hidden exit warning sign became visible for the driver (A); the hidden exit became visible (B); 500m before the 4-way intersection (C); 80m before the 4-way

intersection (D); and the open field in the Wind scenario (E). Images are blurry due to poor camera resolution, but the participants experienced them in high resolution

in the driving simulator.
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Procedure
Prior to their participation in the study, participants were sent
a background questionnaire and a written description of the
study. They were asked to abstain from alcohol for 72 h and
nicotine and caffein for 1 h before the experiment. On arrival
at the laboratory, they handed in the questionnaire, and the
study was once again explained. After the participants gave their
written consent to participating in the study, the physiological
monitoring equipment was attached. They were then taken to
the simulator, the equipment was connected to the measurement
devices, and the eye tracker was calibrated.

The participants practiced the 1-back and 2-back (Test Series
2 only) tasks until they felt comfortable performing them. After
being informed about the simulator, the participants drove for
∼10min to practice driving. In Test Series 1, the practice drive
included two 1-back tasks. In Test Series 2, it included one 1-
back and two 2-back tasks. In both series, the practice drive also
included one hidden exit scenario with a car standing still at the
exit with its indicator on, and one four-way intersection scenario
identical to the Intersection scenario.

During the practice session, the participants were allowed to
speak to the test leader. Then followed the actual experiment,
which lasted ∼40min, during which the participants were asked
not to talk to the test leader unless it was urgent. After the drive,
participants filled out a questionnaire about their test experience.
The overall time, from when participants arrived until they left,
was∼3.5 h.

Physiological Measures
In each measurement scenario, each physiological measure was
derived as one averaged value and one continuous vector. The
averaged values were computed over 50 s, starting 10 s after task
onset. The first 10 s were excluded to reduce the effects of the
surprise reaction at task onset. The continuous vectors were
initially derived with constant time steps (described for each
measure below). The vectors were then transformed to having
constant distance steps instead, so that they could be visualized
in relation to the traffic environment. The data processing was
done in MATLAB R2015b and MATLAB R2019b.

All signals and derived measures in each analyzed segment
were visually inspected to ensure adequate data quality before
being included in the analysis (a slightly different procedure for
the EEG measures is described below). For each measure and
scenario, participants were included in the analysis only if they
had a complete dataset of all four repetitions.

For EEG data processing, the MATLAB toolbox EEGLAB vs
2020.0 (Delorme and Makeig, 2004) was used. Ninety-second
EEG segments, starting 10 s before task onset and ending 20 s
after task end (or corresponding segments in the baseline
conditions), were extracted. For each segment, all EEG channels
were visually inspected. Channels with poor signal quality (either
high levels of high frequency noise throughout the recording, or
that contained large or frequent signal deviations) were removed.
The average number of remaining channels was 27.7 (std 1.5).
Also, epochs that contained large movement or muscle artifacts
were removed (Tatum, 2014). The remaining channels were then
re-referenced to linked ears. To suppress remaining artifacts,

which were primarily caused by eye blinks and eye movements,
independent component analysis (ICA) was performed on the
data, using Infomax ICA (runica, Makeig et al., 1996). The
resultant independent components (ICs) were classified into
seven categories, including “brain activity” and “eye activity,”
using the default classifier in ICLabel (Pion-Tonachini et al.,
2019). ICs that were classified as having <20% brain activity
or >70% eye activity were removed. The average number of
removed ICs was 12.4 (std 3.4). After testing different thresholds
on a randomly selected subset of EEG segments, we chose values
that led to the exclusion of evident artifacts while retaining as
much data as possible. The remaining ICs were subsequently
transformed back to the EEG channels. For the averaged values,
power spectra were then calculated using Welch’s power spectral
density estimate with a 2-s window, 50% overlap, and windowing
using a Hamming window. The average power was derived
for channels F3, FZ, and F4 in the 4–7.5Hz theta frequency
range and for channels P3, PZ, and P4 in the 8–13Hz alpha
frequency range. These averaged power values were then divided
by the sum of the total power in the 4–25Hz frequency range
in the same channels, resulting in a relative frontal-midline theta
power (Theta) value, and a relative parietal-midline alpha power
(Alpha) value. Because artifacts were handled for each segment
separately, what ICs were derived and which ones were removed
differed between segments. This caused some added variation in
absolute power in the processed channels between the segments.
Relative, rather than absolute, measures were therefore used as
they were less affected by these segment variations. Continuous
Theta and Alpha were derived using the same method, but
for one 2-s segment at a time, moving in 1/8-s steps, to
make continuous vectors. The Alpha vectors were transformed
with the natural logarithm to achieve an approximately normal
distribution. Alpha and Theta were only derived for the segments
in Test Series 2 due to lack of time.

R-peaks were detected in the ECG signals using the qrsdetect
function in the Biosig toolbox (Vidaurre et al., 2011), and the
R-R-intervals (RRIs) were derived as the time between adjacent
heart beats. To remove abnormal or artifactual heart beats, RRIs
that differed more than 30% from the surrounding six RRIs were
removed (Karlsson et al., 2012). The RRIs were then converted
to heart rate (HR; beats/min). The continuous HR vectors were
derived by linearly interpolating the discrete HR values. Finally,
the continuous HR vectors were normalized by subtracting
the entire drive’s median HR value to reduce between-subject
variance in the continuous plots.

The HRV was computed as the root mean square of the
successive differences in RRIs after artifact removal (RMSSD)
for each 50-s analysis segment (Shaffer and Ginsberg, 2017).
The RMSSD values were then log transformed using the natural
logarithm to make the distribution more normal (Laborde et al.,
2017). No continuous HRV vector was made.

Breaths were detected in the RIP signal using an in-house
algorithm based on local peaks and thresholds, and the mean
breathing rate (BrR; breaths/min) was derived by counting the
number of breaths in the segment. For the continuous BrR
vectors, the time between adjacent breaths was derived and
converted to breaths per minute. The discrete BrR values were
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interpolated with next-neighbor interpolation and the vector
was normalized by subtracting the entire recording’s median
BrR value.

In driving studies, SC is commonly studied by averaging of
the signal (sometimes after artifact removal or normalization)
over relevant segments in time (Mehler et al., 2010; e.g., Loeches
De La Fuente et al., 2019). Here, the SC data required some
additional signal processing to achieve normal distributions and
remove effects of signal drift (which was evident from visual
inspection of the signals, as advised by Braithwaite et al., 2015).
The following processing steps were conducted. The SC signals
were first smoothed with a function, wsmooth, based on the
Whittaker’s smoother (Eilers, 2003), and then filtered using
a 2nd order Butterworth lowpass filter with cutoff frequency
0.001Hz. By subtracting the filtered signal from the SC vector,
an SCR vector was derived. The SC vector was then divided by the
SCR vector’s 99th percentile value (representing that participant’s
SCR amplitude). The 99th percentile and not the maximum value
was used to avoid influence of any rare extreme values or artifacts.
This individual response amplitude normalization was necessary
to achieve normal distributions. Finally, to compensate for the
drift, the vector’s average value in the interval 70–10 s before
task onset was subtracted from the analysis segment (principle
described in Geršak, 2020).

Eye blinks were detected in the vertical EOG signal with an
algorithm based on derivatives and thresholds (Jammes et al.,
2008). The mean eye blink rate (EBR; blinks/min) was derived
by counting the number of eye blinks in the segment. For the
continuous EBR vectors, the time between adjacent eye blinks
was derived and converted to blinks per minute. The entire
recording’s median EBR was then subtracted from all EBR data
points to reduce interindividual differences. Next, a constant
was added to all the data points to make them ≥1, after which
they were transformed using the natural logarithm to make
them more normally distributed (as suggested by Cruz et al.,
2011). Finally, the discrete EBR values were interpolated using
next-neighbor interpolation.

Eye blink duration (EBD; ms) was defined as the time
between the eye blink’s half rise amplitude and half fall
amplitude to reduce the problem with otherwise hard-to-
define start and end times (as e.g., Ahlström et al., 2018).
Eye closures with a duration >500ms (considered non-blink
closures in International Organization of Standardization, 2014)
were excluded from the analysis to avoid extreme outliers. The
continuous EBD vectors were derived with the same procedure
as the continuous EBR vectors.

The pupil diameter (PD; mm) was obtained from the
eye trackers. Sudden drops in the PD vector were removed
through linear interpolation, to reduce the effects of eye blinks
and other tracking issues (Klingner, 2010). In Test Series 2,
one PD vector was obtained for each eye and the one with
the best signal quality, assessed through visual inspection,
was used in the analysis (unless they were both excluded
due to poor signal quality). In Test Series 1, only one PD
vector was obtained for each subject. The absolute PD values
differed between the series, due to the different eye trackers.
Both the averaged PD values and the continuous PD vectors

were thus normalized by subtracting the entire recording’s
median PD value. After this normalization, there were no
longer any statistically significant differences in absolute PD
values between the two series for the same scenarios and
task conditions.

Statistical Analysis
Each physiological measure was analyzed using a mixed
model ANOVA with task (baseline, 1-back, and 2-back)
and traffic scenario (Hidden Exit, Intersection, and Wind)
as categorical fixed-effect variables, scenario repetition (1–
4) as a quantitative fixed-effect variable, and test participant
as a categorical random-effect variable. Two-way interactions
between task and traffic scenario and between task and
repetition were included in the model. The significance level
was set to 0.05 and Bonferroni correction was used to
compensate for the multiple tests. The normality assumption
of each ANOVA was confirmed by controlling that its
residuals followed an approximately normal distribution (see
Supplementary Material; Appendix 1).

In addition, using data from the Wind scenario in Test
Series 2, the effects of the crosswinds were tested separately
for the task conditions baseline and 2-back (recall that
there was no 1-back condition in the Wind scenario in
Test Series 2). A mixed model ANOVA was used, with
crosswind (Wind on, Wind off) as a categorical fixed-
effect variable and test participant as a categorical random-
effect variable.

Effects of traffic scenarios were further explored with
continuous plots of mean values and their corresponding 95%
confidence intervals (CIs), similar to Beggiato et al. (2019). The
distributions of the data samples were approximately normally
distributed around the means. Note, however, that because the
data samples in a continuous plot are not independent from each
other, non-overlapping confidence intervals does not necessarily
imply a statistically significant difference between two points
(Cumming and Finch, 2005). Therefore, paired t-tests were
made between two points in time (Wind scenario), or position
(Hidden Exit and Intersection scenario), for each task condition.
The points were chosen so that the level of demand from the
traffic scenario was assumed to differ between them, and so
that most of the related responses that were visible in the plots
took place between them. In the Wind scenario, two tests were
made between the point in time where the two greatest wind
bursts occurred, compared to 7 s earlier, where the wind was
low. In the Hidden Exit scenario, one test was made between
the position where the warning sign first became visible to the
participant, and the position where the hidden exit first became
visible. In the Intersection scenario, one test was made between
the position 80m before the intersection, where the approaching
car had slowed down and was approximately one car length
from the stopping point, and the position 500m before the
intersection. The position 500m before the intersection was
chosen because it was not clear at what position the participants
recognized the scenario, and so a rather large distance to the
more demanding part of the scenario was chosen. Examples
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of what these analysis positions could look like can be seen
in Figure 1.

At these points, the average value for each of the
physiological measures’ continuous vectors in a 2.1 s (Wind
scenario), or 42m (Hidden Exit and Intersection scenario),
interval, centered around the analysis point, was derived
for each participant and repetition. These averaged values
were then used in the paired t-tests. Because multiple t-
tests were made, and the points for testing were selected
after the data had been visualized, results need to be
interpreted with caution as the risk of type 1 errors is
inflated (Forstmeier et al., 2017). Because we want to
avoid inflating the risk of type 2 errors and missing actual
effects, correction for multiple testing has not been made
(Forstmeier et al., 2017). Instead, consistency and effect sizes of
visualized and statistically tested effects are considered in the
result interpretations.

The mixed model ANOVAs were performed using SAS
Enterprise Guide 8.2 and continuous plots and t-test with
MATLAB R2019b.

RESULTS

Four of the 70 participants aborted the experiment due to
simulator sickness and 3 were excluded from the analysis due to
data loss in the logging system. A total of 63 participants were
hence included in the analysis. Of these, 9 lacked a complete PD
dataset due to logging issues. For one participant in Test Series 2,
the n-back task did not start as intended in one Wind scenario,

so this participant has three occasions of baseline and only one
occasion of 2-back in the four Wind scenarios.

Crosswind
The mixed model ANOVAs revealed no significant effect
of crosswinds in any of the physiological measures,
either in the baseline condition or in the 2-back
condition: see Table 1. The two crosswind conditions
(Wind On and Wind Off) were therefore merged in the
remaining analyses.

Q1) How Does Cognitive Task Demand
Affect Physiological Measures?
The mean values, standard deviations, and the number of
samples included are presented for each measure in each
task condition (all repetitions and scenarios are merged)
in Table 2.

Detailed results from the mixed model ANOVAs of the effects
of task, repetition, and scenario are presented in Table 3. The
task had a significant effect on HR, RMSSD, BrR, SC, PD,
and EBR in the form of a stepwise increase (or decrease) with
increasing level of cognitive demand in all measures. Only in
EBR was the difference between 1-back and 2-back tasks not
significant. There was no significant effect of task in EBD, Alpha,
or Theta.

Q2) How Does Repetition Affect
Physiological Measures?
Repetition had a significant effect on HR, BrR, PD, EBR, EBD,
and Alpha, but not on RMSSD, SC, and Theta (see Table 3).

TABLE 1 | Effects of crosswinds on each physiological measure and task condition.

Baseline 2-back

Wind On

m (sd)

Wind Off

m (sd)

Main effect Wind On

m (sd)

Wind Off

m (sd)

Main effect

HR (beats/min) 65.18

(9.34)

65.69

(9.47)

F (1, 30) = 1.47,

p = 0.23

68.79

(9.61)

68.55

(10.01)

F (1, 28) = 0.68,

p = 0.42

RMSSD (-) 3.57

(0.51)

3.53

(0.48)

F (1, 30) = 0.40,

p = 0.53

3.18

(0.48)

3.19

(0.46)

F (1, 28) = 0.03,

p = 0.87

BrR (breaths/min) 15.41

(3.35)

15.60

(3.83)

F (1, 19) = 0.15,

p = 0.70

19.14

(3.45)

19.27

(4.36)

F (1, 17) = 0.02,

p = 0.90

SC (–) −0.119

(0.143)

−0.011

(0.221)

F (1, 22) = 3.81,

p = 0.06

0.105

(0.314)

0.089

(0.355)

F (1, 20) = 0.01,

p = 0.91

PD (mm) −0.343

(0.123)

−0.410

(0.171)

F (1, 18) = 3.26,

p = 0.09

0.090

(0.193)

0.036

(0.245)

F (1, 18) = 1.84,

p = 0.19

EBR (blinks/min) 32.66

(13.97)

34.85

(13.02)

F (1, 22) = 2.97,

p = 0.10

36.26

(19.01)

38.19

(19.35)

F (1, 22) = 1.44,

p = 0.24

EBD (ms) 123.9

(23.4)

130.6

(25.2)

F (1, 22) = 3.50,

p = 0.07

123.7

(33.3)

125.4

(35.7)

F (1, 22) = 0.15,

p = 0.70

Alpha (–) 0.0325

(0.0096)

0.0321

(0.0087)

F (1, 23) = 0.07,

p = 0.79

0.0324

(0.0117)

0.0320

(0.0095)

F (1, 21) = 0.22,

p = 0.65

Theta (–) 0.0510

(0.0121)

0.0491

(0.0116)

F (1, 23) = 1.30,

p = 0.26

0.0559

(0.0130)

0.0554

(0.0129)

F (1, 21) = 0.07,

p = 0.79

No correction has been done to compensate for multiple tests to reduce the risk of type 2 errors. HR, heart rate; RMSSD, root mean square of successive differences between heart

beats; BrR, breathing rate; SC, skin conductance; PD, pupil diameter; EBR, eye blink rate; EBD, eye blink duration; Alpha, relative EEG alpha power; Theta, relative EEG theta power;

m, mean; sd, standard deviation.
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TABLE 2 | Measure statistics.

Baseline 1-back 2-back

HR (beats/min) m = 64.87

sd = 9.37

n = 312

m = 67.30

sd = 10.22

n = 251

m = 69.04

sd = 10.31

n = 177

RMSSD (–) m = 3.56

sd = 0.48

n = 312

m = 3.39

sd = 0.51

n = 251

m = 3.20

sd = 0.49

n = 177

BrR (breaths/min) m = 16.96

sd = 3.71

n = 219

m = 19.06

sd = 3.06

n = 180

m = 19.16

sd = 3.42

n = 117

SC (–) m = −0.030

sd = 0.241

n = 270

m = 0.068

sd = 0.249

n = 225

m = 0.176

sd = 0.302

n = 133

PD (mm) m = −0.141

sd = 0.246

n = 188

m = 0.147

sd = 0.272

n = 150

m = 0.334

sd = 0.293

n = 114

EBR (blinks/min) m = 29.21

sd = 12.41

n = 244

m = 31.97

sd = 14.27

n = 198

m = 35.35

sd = 18.54

n = 142

EBD (ms) m = 122.0

sd = 26.5

n = 244

m = 123.9

sd = 32.9

n = 198

m = 117.2

sd = 30.0

n = 141

Alpha (–) m = 0.0317

sd = 0.0091

n = 92

m = 0.0302

sd = 0.0082

n = 45

m = 0.0308

sd = 0.0093

n = 135

Theta (–) m = 0.0515

sd = 0.0121

n = 92

m = 0.0549

sd = 0.0117

n = 45

m = 0.0556

sd = 0.0121

n = 135

HR, heart rate; RMSSD, root mean square of successive differences between heart beats;

BrR, breathing rate; SC, skin conductance; PD, pupil diameter; EBR, eye blink rate; EBD,

eye blink duration; Alpha, relative EEG alpha power; Theta, relative EEG theta power; m,

mean; sd, standard deviation; n, number of samples.

Q3) Do the Effects of Repetition Differ
When the Participant Is Just Driving
Compared to When Also Doing a Cognitive
Task?
BrR and PD decreased significantly with increasing repetition
in all task conditions, and the size of the decrease differed
slightly between the task conditions for PD (demonstrated by
the significant interaction effect between task and repetition;
see Table 3). EBR, EBD, and Alpha showed an increasing trend
with repetition in all task conditions, but only in EBD did
these effects reach significance level in all task conditions.
There were no significant interaction effects between task
and repetition in EBR, EBD, or Alpha. For HR, the effect
of repetition differed between task conditions. While HR
decreased significantly with increasing repetition in the 1-back
and 2-back tasks, there was no effect of repetition in the
baseline condition.

Q4) How Do the Different Traffic Scenarios
Affect Physiological Measures?
The mixed model ANOVAs revealed a significant effect of
scenario on PD, EBR, and EBD (see Table 3). Their values
for the Wind scenario consistently differed from those of

the Intersection and Hidden Exit scenarios (except for EBR
which did not differ significantly between Hidden Exit and
Wind), while the latter two scenarios did not differ from
each other.

Figure 2 shows the measures’ continuous vectors for each
scenario and task condition. For theHidden Exit and Intersection
scenarios, the measures are plotted in relation to the traffic
environment: the x-axes represent distance driven. The plots
are marked where the cognitive task begins and where the
participants reach the hidden exit or intersection (depending
on the scenario). There is no common position where the tasks
end, since that depends on the vehicle speed. The average time
between the task onset and the vehicle passing the hidden exit or
intersection was ∼47 s. In the Wind scenario, the measures are
plotted in relation to time, since the wind bursts were controlled
by time, not position. Since the tasks’ start and end depended
on the vehicle speed (both the crosswind and the tasks began
at a certain location in the simulated environment), there is
neither a common task onset nor end in the plots. On average,
the tasks began ∼10 s before the first large crosswind (first
vertical line).

When the participants approached the hidden exit and
intersection, EBR and EBD decreased consistently (except that
the EBD decrease in the 2-back condition in the Intersection
scenario did not reach significance), while SC and PD
increased consistently. Some statistically significant results were
found in HR, BrR, and Alpha, but they were inconsistent
and small in relation to the signals’ overall variability in
the segments and are thus less likely to be actual and/or
relevant effects.

Q5) Do the Effects of Traffic Scenario Differ
When the Participant Is Just Driving
Compared to When Also Doing a Cognitive
Task?
The mixed model ANOVAs revealed no significant interaction
effects between task and scenario in any measure (see Table 3).
However, effect sizes appear to differ between task conditions
when approaching and passing the hidden exit and intersection.
The increase and decrease in the PD and EBD, respectively, were
greater in the baseline and 1-back conditions compared to the 2-
back condition. Note that to avoid excessive testing, no statistical
testing has been done to compare these effect sizes.

DISCUSSION

The aim of this simulator study was to demonstrate and
exemplify how the measurability of cognitive load can be
improved by studying multiple mental responses, using multiple
physiological measures and independent variables. We will refer
to this as the multidimensional approach as it incorporates
more than one mental response, measure, and independent
variable. With this approach, the three aforementioned issues—
(1) cognitive load consists of multiple mental responses, (2)
cognitive load does not occur in isolation, and (3) physiological
measures respond to multiple mental states—can be taken into
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TABLE 3 | Results from Mixed Model ANOVAs of effects of task, repetition, and scenario for each measure.

Main effect task Post-hoc test: Bonferroni corrected p Main effect

repetition

Solution: estimate (se), p Interaction

effect

repetition*task

Main effect

scenario

Post-hoc test: Bonferroni corrected p Interaction

effect

task*scenarioBaseline vs.

1-back

Baseline vs.

2-back

1-back vs.

2-back

Repetition*

baseline

Repetition*

1-back

Repetition*

2-back

Hidden exit vs.

Intersection

Intersection

vs. Wind

Hidden exit

vs. Wind

HR

(beats/min)

F (2, 666) = 51.48,

p < 0.0001

<0.0001 <0.0001 0.0002 F (1, 666) = 36.84,

p < 0.0001

0.06 (0.15),

p = 0.71

−0.97 (0.17),

p < 0.0001

−0.92 (0.20),

p < 0.0001

F (2, 666) = 12.26,

p < 0.0001

F (2, 666) = 1.57,

p = 0.21

0.34 1.0 0.41 F (4, 666) = 1.69,

p = 0.15

RMSSD (–) F (2, 666) = 20.60,

p < 0.0001

<0.0001 <0.0001 <0.0001 F (1, 666) = 4.63,

p = 0.03

0.0184 (0.0109),

p = 0.09

0.0124 (0.0121),

p = 0.31

0.0155 (0.0144),

p = 0.28

F (2, 666) = 0.07,

p = 0.94

F (2, 666) = 0.08,

p = 0.92

1.0 1.0 1.0 F (4, 666) = 1.33,

p = 0.26

BrR

(breaths/min)

F (2, 454) = 13.74,

p < 0.0001

<0.0001 <0.0001 0.0001 F (1, 454) = 37.45,

p < 0.0001

−0.56 (0.11),

p < 0.0001

−0.39 (0.12),

p = 0.002

−0.42 (0.15),

p = 0.006

F (2, 454) = 0.56,

p = 0.57

F (2, 454) = 2.56,

p = 0.08

0.78 0.81 0.07 F (4, 454) = 0.57,

p = 0.69

SC (–) F (2, 564) = 13.46,

p < 0.0001

<0.0001 <0.0001 0.004 F (1, 564) = 0.07,

p = 0.79

0.026 (0.013),

p = 0.05

0.012 (0.015),

p = 0.40

−0.031 (0.019),

p = 0.10

F (2, 564) = 3.07,

p = 0.05

F (2, 564) = 4.07,

p = 0.02

1.0 0.10 0.02 F (4, 564) = 2.57,

p = 0.04

PD (mm) F (2, 398) = 36.77,

p < 0.0001

<0.0001 <0.0001 <0.0001 F (1, 398) = 124.78,

p < 0.0001

−0.081 (0.011),

p < 0.0001

−0.112 (0.012),

p < 0.0001

−0.046 (0.014),

p = 0.001

F (2, 398) = 6.29,

p = 0.002

F (2, 398) =

238.19,

p < 0.0001

0.27 <0.0001 <0.0001 F (4, 398) = 1.69,

p = 0.15

EBR

(blinks/min)

F (2, 514) = 11.61,

p < 0.0001

<0.0001 <0.0001 0.09 F (1, 514) = 12.75,

p = 0.0004

1.32 (0.36),

p = 0.0003

0.55 (0.40),

p = 0.16

0.63 (0.47),

p = 0.18

F (2, 514) = 1.19,

p = 0.30

F (2, 514) = 9.78,

p < 0.0001

0.13 <0.0001 0.04 F (4, 514) = 0.94,

p = 0.44

EBD (ms) F (2, 513) = 1.42,

p = 0.24

0.12 0.10 0.002 F (1, 513) = 118.13,

p < 0.0001

4.68 (0.84),

p < 0.0001

7.68 (0.93),

p < 0.0001

5.47 (1.09),

p < 0.0001

F (2, 513) = 2.89,

p = 0.06

F (2, 513) = 13.45,

p < 0.0001

1.0 <0.0001 <0.0001 F (4, 513) = 1.27,

p = 0.28

Alpha (–) F (2, 239) = 0.25,

p = 0.78

0.09 F (1, 239) = 10.45,

p = 0.001

0.0008 (0.0004),

p = 0.02

0.0005 (0.0005),

p = 0.35

0.0008 (0.0003),

p = 0.004

F (2, 239) = 0.19,

p = 0.82

F (2, 239) = 3.16,

p = 0.04

0.74 F (3, 239) = 0.88,

p = 0.45

Theta (–) F (2, 239) = 0.62,

p = 0.54

<0.0001 F (1, 239) = 6.14,

p = 0.01

−0.0011

(0.0006),

p = 0.04

−0.0011

(0.0008),

p = 0.18

−0.0004

(0.0005),

p = 0.40

F (2, 239) = 0.67,

p = 0.51

F (2, 239) = 1.11,

p = 0.33

0.70 F (3, 239) = 1.57,

p = 0.20

p-values are reported before Bonferroni correction for multiple tests. A significance level of 0.05 corresponds to 0.006 after Bonferroni correction. Green cells demark a p < 0.006. For consistency, results from post-hoc tests of

differences between tasks and scenarios are included even where there is no significant main effect, although these effects are not color-coded. Since Alpha and Theta were only derived in Test Series 2, they lack the condition with the

1-back task in the Wind scenario. Thus, it was not possible to derive post-hoc results for all conditions for them. HR, heart rate; RMSSD, root mean square of successive differences between heart beats; BrR, breathing rate; SC, skin

conductance; PD, pupil diameter; EBR, eye blink rate; EBD, eye blink duration; Alpha, relative EEG alpha power, and Theta, relative EEG theta power.
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account. In this discussion section, the results from the five
analysis questions will be interpreted using this multidimensional
approach. Some alternative interpretations that overlook the
issues will also be provided for the purpose of comparison.
This alternative approach will be referred to as a unidimensional
approach, since it views cognitive load as a unidimensional
mental response.

Effects of Cognitive Tasks
The cognitive tasks had a significant effect on most physiological
measures, namely HR, RMSSD, BrR, SC, PD, and EBR, in line
with previous research (e.g., Mehler et al., 2009; Faure et al., 2016;
Cegovnik et al., 2018). With a unidimensional approach that
overlooks the three issues, one could stop the analysis here and
conclude that these measures can therefore serve as indicators of
cognitive load. We will, off course, not do that.

Note that contrary to what was expected, we saw no effect
of the cognitive tasks on the EEG measures Theta and Alpha.
One reason could be that we studied relative power instead
of the more commonly used absolute power, which (as noted)
sometimes show different effects (Wascher et al., 2018). The use
of individually adapted frequency bands, instead of fixed bands
as was used here, might also improve results (Klimesch, 1999).
In addition, the equipment and methods used when deriving
alpha and theta power differ a great deal between driving studies,
making it difficult to compare results (Choi and Kim, 2018).
Thus, the measures’ limitations and possibilities in a driving
context are still to be determined.

Including Effects of Repetition
When including the effects of repetition in the mental state
assessment through a joint interpretation of HR, PD and RMSSD,
the multidimensionality of cognitive load becomes evident.
Recall that HR is a frequently used measure of cognitive load
(Mehler et al., 2016; Hughes et al., 2019). In line with previous
studies, increased cognitive task demand caused a stepwise
increase in HR (e.g., Mehler et al., 2010). However, while the HR
remained constant in the baseline condition, it decreased with
repetition in both task conditions. In other words, the increase in
HR caused by the cognitive tasks became smaller over time.

With a unidimensional approach in which cognitive load is
viewed as a unidimensional construct whose level is reflected
by HR, the decrease in HR would indicate that the level of
cognitive load decreased over time. One could then assume, for
example, that participants learned the tasks or gradually put
less effort into doing them. However, the effects of repetition
on PD and RMSSD speak against that interpretation. Increased
cognitive task demand caused a stepwise increase in PD and
a stepwise decrease in RMSSD, and, importantly, these effects
were not attenuated with repetition. (To be precise, there was a
significant interaction effect between task and repetition in PD,
where the effect of 1-back attenuated slightly and the effect of 2-
back increased slightly with increasing repetition. But for the sake
of reasonable article length, we will not discuss this further.)

As explained, PD has a close neurological relation to cortical
arousal and effort (van der Wel and van Steenbergen, 2018; Joshi
and Gold, 2020), whereas the effect of cognitive demand on HR

is more complex (Billman, 2013). In studies of mental workload,
HR appears more driven by stress and negative emotion than
cortical arousal, as the mentioned research on pilots have shown
HR to be sensitive to workload alterations in real flying (Dussault
et al., 2004) but not in simulated environments, where there is no
physical risk involved (Dussault et al., 2005). Furthermore, it has
been suggested that HRV has a closer relation to workload than
HR (de Waard, 1996).

With the multidimensional approach that acknowledges that
cognitive load has multiple components, the combined effects of
the cognitive tasks and repetition suggest that different cognitive
load components were differently affected by repetition. While
the task-induced psychological stress decreased, the increase
in cortical arousal and effort remained high throughout the
experiment. This indicates that there was no learning or decrease
in engagement effects after all.

Effects of repetition are not only seen as changes over
time in the mental responses to the cognitive tasks, but also
as changes in the participants’ baseline state. As the baseline
condition was repeated, EBR and EBD increased and BrR and
PD decreased. With a unidimensional approach where only the
level of cognitive load is of interest, effects of repetition (or time-
on-task) are typically rendered insignificant as they are dealt with
by employing a randomized or balanced test design. However,
employing a multidimensional approach suggests incorporating
these effects into the mental state interpretations rather than
balancing them out.

The effects of repetition strongly suggest a decline in
baseline level of arousal and attention. It seems that the drivers
became less engaged with the driving task over time and
became more fatigued. Also, HR and RMSSD in the baseline
condition remained at relatively low and high levels, respectively,
throughout the drive. It thus appears that the level of stress and
effort related to the driving task was already relatively low at
the first scenario repetition (recall that the participants had first
practiced driving before the experimental session began), and
that HR and RMSSD are not sensitive to further reductions in
driving effort.

The participant’s mental state can affect his/her physiological
(Conway et al., 2013; Do et al., 2021), behavioral (Schoofs
et al., 2008), and mental (Jimmieson et al., 2017; Hidalgo-Muñoz
et al., 2018) responses to cognitive demand, so incorporating
the baseline mental state when interpreting results improves the
external validity and enables better comparisons between studies
and environments.

Including Effects of Traffic Scenario
Here, effects on SC, PD, EBR, and EBD from the cognitive
tasks and traffic scenarios are interpreted together. As the
drivers approached the intersections and hidden exits, the SC
and PD increased and the EBR and EBD decreased. With
a unidimensional approach where only the level of cognitive
load is assessed, these results appear conflicting. With a
multidimensional approach that acknowledges multiple mental
responses, these differences are instead informative. Remember
that, unlike PD, which increases with increased attention
regardless of attention modality, the eye blink measures decrease
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FIGURE 2 | Physiological measures plotted against the specific traffic events for each scenario and task condition. The thick colored lines are the means, and the

shaded areas are the 95% confidence intervals. All measures, except Alpha and Theta, are normalized to reduce differences in absolute levels between participants.

(Continued)
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FIGURE 2 | Curves are slightly smoothed to improve visibility. In the Hidden Exit scenario, the vertical lines show where the task begins (a); the hidden exit warning

sign becomes visible (b); the warning sign is (c); the hidden exit becomes visible (d); and the exit is (e). In the Intersection scenario, vertical lines show where the task

begins (f); the car approaching the intersection from the right becomes visible (g); the participant’s car passes the oncoming bus (h); and the intersection is (i). In the

Wind scenario, the three vertical lines mark the peaks of the three strongest crosswinds (the first and third are stronger than the second). Vertical gray lines show

between which two points t-tests have been done, and the stars above the lines represent the results from the t-tests; ***p < 0.001, **p < 0.01, *p < 0.05.

with increased visual attention, while non-visual attention (such
as cognitive tasks) causes an increase in EBR (and sometimes
also in EBD) (Recarte et al., 2008). It thus appears that when
the participants approached the hidden exits and intersections,
their cortical arousal increased due to increased visual attention,
together with an increase in general arousal (as reflected in SC;
Posada-Quintero and Chon, 2020).

In the case of the wind scenario, any effects of the
crosswinds were less pronounced compared with the effects of
the environmental demands in the other two scenarios. As noted,
previous research employing crosswinds has suggested that the
wind poses an additional cognitive demand (Medeiros-Ward
et al., 2014), supported by physiological findings: a decrease
in Alpha and an increase in Theta (Wascher et al., 2018). In
contrast to Wascher et al.’s (2018) findings, there was no effect
of crosswind on Alpha or Theta in our study. Recall, though, that
there was no effect of the cognitive tasks (which we know cause an
increase in cognitive load) on Alpha or Theta in our study, either.
These EEG measures do thus not appear sensitive to cognitive
load variations in this setting. However, the other physiological
measures (which have proven sensitive to variations in several
cognitive load components) improve our chances of registering
a mental response, if there is one. The mixed model ANOVAs
revealed no statistically significant effect of the crosswind on
any of the measures, while the effects of individual wind bursts,
visualized and statistically tested in Figure 2, showed mixed
results. Since no correction for multiple testing has been done on
these tests, they should be interpreted with extra consideration
of response consistency to avoid type 1 errors. Only PD showed
a fairly consistent effect of crosswinds with a significant effect
in four out of six tests. It is thus plausible that the participants
had brief increases in cortical arousal following the unpredictable
crosswinds. But the combined results suggest that the crosswind
posed only a very small cognitive load on the participants. Rather,
the challenge of driving in a crosswind appears to have been
dealt with quite automatically, without the driver having to assert
much cognitive control (Schneider and Shiffrin, 1977). Although
we employed similar crosswinds to those in Wascher et al.’s
(2018) work, our study thus seems to have induced different
mental responses. Although the reason is not known at this
time, such differences in mental responses between studies could
explain observed differences in behaviors between studies (see,
e.g,. the different results in He et al., 2014, and Medeiros-Ward
et al., 2014).

Implications of a Multidimensional
Approach to Measuring Cognitive Load
The examples above demonstrate how the measurability
of cognitive load can be improved by studying multiple

mental responses using multiple physiological measures and
independent variables. First, acknowledging that cognitive load
is a multidimensional construct and measuring (some of) its
components individually improves the construct validity of
the study, compared to performing a unidimensional analysis
(Strauss and Smith, 2009). It is clear from the examples above
that several different mental responses occurred during the
course of the experiment. For example, the psychological stress
that the cognitive tasks gave rise to diminished over time,
and visual attention increased with traffic complexity. Until we
know how to weight different cognitive load components, it
is thus not possible to assess the level of cognitive load on a
unidimensional scale.

Having acknowledged that cognitive load is multidimensional
and that its components need to be measured individually,
the concurrent analysis of multiple physiological measures
in relation to multiple independent variables improves the
measures’ diagnosticity. Making use of the different measures’
similarities and differences makes it possible to look at multi-
measure response patterns rather than single-measure responses.
For example, changes in visual and non-visual attention could be
distinguished from each other when PD and EBR or EBD were
analyzed together.

At the same time, considering multi-measure response
patterns instead of single-measure responses reduces the number
of correlations to different mental states. The measurements’
context dependence is thus reduced as fewer factors affect the
same measurements. This means that the external validity is
improved and the risk of making incorrect inferences from
observed responses is reduced.

Most research seeking physiological indicators of cognitive
load, especially if it employs machine learning, does indeed
include multiple measures in the analyses (e.g., Putze et al.,
2010; Murphey et al., 2019; Chihara et al., 2020). The use of
multiple measures has also been encouraged for a long time (de
Waard, 1996). Sometimes, the multiple measures are regarded as
“backups” for each other (Tran et al., 2020) to mitigate issues
with recording failures (Halverson et al., 2012) or individual
response variability (Mehler et al., 2012), but often, multiple
measure are indeed combined to improve classification accuracy
(i.e., measurability) (e.g., Hogervorst et al., 2014; Prabhakar et al.,
2020). However, if cognitive load is not acknowledged as a
multidimensional construct, the issue of construct validity and
the risk of making inaccurate inferences remain.

One could end up with measures that correlate only with
certain cognitive load components that frequently occur in
experiments (if that is where the training data are collected)—
for example, measures reflecting psychological stress. There
is a risk then that these cognitive load components do
not occur as frequently in less controlled settings, such as
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self-initiated cognitive tasks in real-life driving (deWaard, 1996).
Consequently, such a measure might fail to detect cognitive load
under less stressful circumstances, even if the loading on other
cognitive load components is significant.

By measuring and studying cognitive load components
separately, researchers can assess the components’ individual and
combined effects. They can, for example, explore the effects of
cognitive effort and psychological stress, separately and together,
on driver behavior and traffic safety. Car manufacturers can then
use the information gained to prioritize thosemental states which
are most relevant to detect in Driver Monitoring Systems (DMS),
for example. However, there are several challenges when going
from group-level studies to continuous monitoring of drivers’
mental states.

One great challenge for DMS systems is that between-
subject variance in physiological responses to cognitive load
(and other mental states) is large (Mehler et al., 2012).
Individualized algorithms have therefore been suggested for
accurate tracking (Noh et al., 2021). One advantage of tracking
multiple mental responses is that the between-subject differences
in the physiological responses to changes in individual cognitive
load components should be smaller than the differences in
physiological responses to cognitive load as a whole (i.e., when
it is studied as a unidimensional construct). This is due to
the fact that not all drivers have the same mental responses,
such as increased psychological stress, during increased cognitive
demands (Szalma, 2008). DMS development might thus be
somewhat less complicated if cognitive load assessment is
made multidimensional.

Still, variability will remain an issue since not all drivers
have the same physiological responses to the same mental state
changes (e.g., not all individuals display frontal-midline theta
activity; Mitchell et al., 2008). While some of this variability
could possibly be reduced by breaking down mental responses
further, that may render the analysis overly complex. Also, not
all cognitive functions can be continuously measured in car
drivers. In the end, the appropriate level of detail is one that
enables researchers and car manufacturers to understand and,
when needed, mitigate any negative effects of cognitive tasks
on traffic safety, without making the mental state assessment
overly complicated.

It should also be noted that effects seen on a group-level
are not necessarily detectable at an individual level because of
the multiple factors concurrently influencing the physiological
measures. This is especially true where effect sizes are small.
For example, the size of mentally driven changes in the PD
are typically below 0.5mm (Beatty, 1982), while alterations in
lightening can change the PD several millimeters (Winn et al.,
1994).

Study Limitations
This experiment was designed for many purposes (Nilsson et al.,
2018; see also Nilsson et al., 2020), which limited the design
possibilities somewhat. Priority was given to achieving a realistic
driving task with a low level of interference, which prevented the
use of subjective estimates while driving.

The aim of this study was to use multiple physiological
measures and independent variables to assess multiple mental
responses and, by that, improve the cognitive load measurability.
However, only a limited set of physiological measures was
included. The measurability can likely be improved using more,
and/or other, physiological signals and measures. It may also
be that some of the measures are less sensitive in other
environments, such as real driving.

The physiological data came from a fairly homogenous group
of participants. The variability in responses to the experimental
manipulations may therefore be smaller than would have been
the case in a more heterogenous group.

Finally, multiple statistical tests were conducted (which is hard
to avoid when interpreting multiple measures and independent
variables). Bonferroni corrections were made on the ANOVA
results to decrease the risk of type 1 errors, while no correction
for multiple tests were made for the t-test results to avoid
inflating the risk of type 2 errors and disregarding actual effects
(Forstmeier et al., 2017). To deal with the increased risk of type
1 errors, consistency in results and effect sizes were considered
in the interpretations. Still, effects seen in the continuous plots
and t-tests should be considered exploratory and in need of
verification in future studies.

Overall, as the complex relationships between coexisting
mental states and physiological responses are still largely
unknown, the inferences we made from the physiological
measures are, to some extent, speculative. There are also no
established “ground truth” measures of mental states to validate
our interpretations. Using non-physiological measures, such as
questionnaires and performance metrics, could improve the
validity of the interpretations (Hancock and Matthews, 2019),
although all measures have their own limitations. For example,
questionnaires can interfere with the driving task andmake it less
realistic (O’Donnell and Eggemeier, 1986); people are sometimes
not very good at self-assessing their mental state (Schmidt et al.,
2009); and performance measures typically have a limited range
of sensitivity, since performance can be modulated with effort
(Reimer et al., 2012).

CONCLUSIONS

In conclusion, when cognitive load is understood as a
multidimensional construct, and (some of) its components are
assessed separately usingmultiple physiological measures studied
in relation to multiple independent variables, its measurability
can be improved in several ways. For one, the construct validity
of cognitive load is improved, which facilitates more accurate and
useful result interpretations. Also, studied together and related
to multiple mental states, the measures are more diagnostic,
in that they are better able to distinguish between changes in
different cognitive load components. With multiple measures,
multi-measure response patterns can be analyzed instead of
single-measure responses. Since the patterns correlate with fewer
mental responses, the measurements’ external validity is also
improved, and the risk of making incorrect inferences from
observed responses is reduced.
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Improved measurability of cognitive load has the potential
to enable more detailed and accurate inferences regarding the
effects of cognitive task execution in less controlled settings. As
a result, the effects of cognitive load on traffic safety can be better
understood and more effectively mitigated.
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