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Abstract
We present results for the steady-state nonlinear response of a dx2−y2 superconducting film
connected to normal-metal reservoirs under voltage bias, allowing for a subdominant s-wave
component appearing near the interfaces. Our investigation is based on a current-conserving
theory that self-consistently includes the non-equilibrium distribution functions, charge
imbalance, and the voltage-dependencies of order parameters and scalar impurity self-energies.
For a pure d-wave superconductor with [110] orientation of the interfaces to the contacts, the
conductance contains a zero-bias peak reflecting the large density of zero-energy interface
Andreev bound states. Including a subdominant s-wave pairing channel, it is in equilibrium
energetically favorable for an s-wave order parameter component ∆s to appear near the
interfaces in the time-reversal symmetry breaking combination d+ is. The Andreev states
then shift to finite energies in the density of states. Under voltage bias, we find that the
non-equilibrium distribution in the contact area causes a rapid suppression of the s-wave
component to zero as the voltage eV→∆s. The resulting spectral rearrangements and
voltage-dependent scattering amplitudes lead to a pronounced non-thermally broadened split of
the zero-bias conductance peak that is not seen in a non-selfconsistent Landauer–Büttiker
scattering approach.

Keywords: tunneling spectroscopy, unconventional superconductivity, non-equilibrium theory

(Some figures may appear in colour only in the online journal)

1. Introduction

Tunneling spectroscopy was one of the early experimental
methods to extract information about the energy gap as pre-
dicted by the Bardeen–Cooper–Schrieffer theory of supercon-
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ductivity [1–3]. Following the generalization to point-contact
Andreev reflection spectroscopy by Blonder–Tinkham–
Klapwijk (BTK) [4], where higher order Andreev processes
are taken into account for more transparent point contacts,
it has also served as a tool to extract the spin-polarization
of ferromagnets [5–7] and probe the symmetry of the order
parameter of unconventional superconductors [8–14]. A chal-
lenge is that the complicated physics at the contact may play
a crucial role. This is particularly important when it comes
to applying the method to unconventional superconductors,
where the superconducting order parameter may be sensitive
to normal reflection at the contact. The pair breaking is accom-
panied by the formation of interface Andreev states, that have
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also been taken as fingerprints of the symmetry of the order
parameter [13–15].

For the high-temperature superconductors with dx2−y2 sym-
metry of the order parameter, tunneling and Andreev reflec-
tion spectroscopy typically show a large zero-bias conduct-
ance peak (ZBCP) [8–14]. The ZBCP appears due to the large
spectral weight of zero-energy Andreev bound states at sur-
faces oriented 45◦ relative to the crystal ab-axes, also denoted
[110] surfaces. These Andreev states are formed due to the
different signs of the dx2−y2 order parameter around the Fermi
surface [9]. In a magnetic field, these Andreev states are shif-
ted to finite energies by the screening supercurrents, leading
to a field-dependent split of the ZBCP, an effect that is well
established experimentally [11, 12]. A spontaneous split of
the ZBCP in the absence of magnetic field has been observed
in several experiments, but not all [11, 16–20]. Such a split
indicates the possibility of a subdominant component of the
order parameter of either dxy or s symmetry, combined with
the main dx2−y2 component in a time-reversal symmetry break-
ing dx2−y2 + idxy or dx2−y2 + is state, at least at the surface
[12, 21, 22]. Other experiments either support time-reversal
symmetry breaking or give severe size constraints on the sub-
dominant order parameter [23–27]. One possible explanation
for the absence of the split of the ZBCP that has been pro-
posed recently is the formation of an inhomogeneous state at
the edge with spontaneous circulating currents below a relat-
ively large transition temperature T∗ ≈ 0.18Tc0 [28, 29]. This
time-reversal symmetry broken state is referred to as phase
crystal [30] and is robust also in presence of strong correl-
ations and Anderson disorder [31]. If this state is formed it
also suppresses the nucleation of the subdominant component
if the criticial temperature for the formation of subdominant
order, Ts, is too low. On the other hand, if Ts is sufficiently
large, it will instead prevent the phase crystal to be formed
[28]. We note that the large spectral weight of Andreev sur-
face states could also lead to other instabilities, such as spon-
taneous magnetization [32, 33]. In conclusion, the breaking of
time-reversal symmetry remains a topic of high interest in this
research field.

In this paper we return to the problem of tunneling and
Andreev reflection spectroscopy of d-wave superconducting
surfaces including the possibility of a relatively large subdom-
inant s-wave component preventing the formation of the phase
crystal. We consider the case when the normal metal probe
is sufficiently invasive that the non-equilibrium distribution
function in the superconductor imposed by the voltage bias
has to be computed self-consistently with the order parameter
to guarantee current conservation. The voltage dependence of
the order parameter, in particular the subdominant compon-
ent, has a large effect on the spectral properties as well as
the transport processes (normal and Andreev reflection amp-
litudes). Surprisingly, the resulting split of the ZBCP in the
presence of the s-wave component can be greatly enhanced,
as we illustrate in figure 1. The blue dotted line shows the
split ZBCP. This non-thermally broadened split is due to the
voltage dependence of scattering amplitudes in the presence of
the non-equilibrium distribution function in the contact area.
As we will show in this paper, the voltage dependence stems

Figure 1. The zero-bias conductance peak (dashed orange line), is a
result of the formation of interface Andreev bound states at zero
energy. If there is a subdominant s-wave component present near the
surface, the peak is split due to shifting of the Andreev states to
finite energies (solid blue line with circles). The sharpness of the
split peak and the rapid fall down back to the pure d-wave result at
|eV|= 2|eVL| ≈ 0.2kBTc0 is a result of the suppression and
disappearance of the s-wave component when a non-equilibrium
distribution is enforced under finite voltage bias. In a
non-selfconsistent Landauer–Büttiker scattering approach, the split
is not visible due to thermal broadening (green dash-dotted line),
here at T= 0.1Tc0. The inset shows the quasiclassical closed loop of
Andreev reflections and normal reflections at the tunnel barrier that
leads to the zero-energy Andreev bound state.

from the suppression of the subdominant order under voltage
bias. In comparison, in a Landauer–Büttiker approach, where
the voltage dependence of scattering amplitudes is neglected,
the shift of the Andreev states to finite energy is not visible
in the conductance due to thermal broadening, see the dash-
dotted green line in figure 1. This physics becomes relevant
for geometries of the normal-metal–insulator–superconductor
(NIS) contact where the traditional point-contact assumption
can not be made due to the largeness of the contact, with
a diameter larger than the small superconducting coherence
length in the high-temperature superconductor, and relatively
high transparency of the tunnel barrier. In this case, the non-
equilibrium distribution has to be computed self-consistently
to guarantee current conservation. The superconducting order
parameters as well as impurity self-energies then render the
scattering amplitudes voltage-dependent, thus influencing the
conductance.

The paper is organized as follows. In section 2 we outline
the model assumptions we make for calculating the station-
ary conductance–voltage characteristics including current-
conservation. The details of the quasiclassical theory that
we use have been summarized in appendix. In the following
section 3 we go, step by step, through results for the current-
conserving theory for first the pure dx2−y2 case for two ori-
entations of the order parameter relative to the tunnel barrier
normal. In section 3.1 for zero misorientation (the [100] ori-
entation) there are no zero-energy Andreev bound states. In
this case we discuss the effect of charge imbalance in a d-
wave superconductor as compared to the more well studied
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conventional s-wave case [34–38]. In section 3.2 we turn to
the case of 45◦ misorientation (the [110] orientation), and dis-
cuss the influence of the zero-energy Andreev bound states
on charge imbalance and the influence of non-equilibrium on
the ZBCP. Lastly, in section 3.3 we include the subdominant
s-wave order parameter in the energetically favorable time-
reversal symmetry-breaking combination dx2−y2 + is. We then
study in more detail the conductance-voltage characteristics
shown in figure 1. The paper is summarized in section 4.

2. Model and methods

A sketch of the setup that we are considering is given in
figure 2. A d-wave superconductor (S) of length L and width
W≫ L is connected through tunnel barriers (I) to two normal
metal reservoirs (N) held at voltages ±eV/2, both at a base
temperature T. We assume a thin film superconductor, thin in
the perpendicular z-axis direction, with thickness t and trans-
port from left to right along the x-axis, which is parallel to the
normals of theNIS interfaces.We consider injection of carriers
into the superconducting film edges in the ab-plane direction,
corresponding to experiments where such high-transparency
contacts between YB2Cu3O7−δ and Au have been fabricated
[39, 40]. The film thickness t is assumed small compared with
the penetration depth λc in the c-axis direction (along film
normal), and contacts are assumed homogeneous. The current
density can then be assumed to be the same in all layers of
the film and we may consider a single two-dimensional layer
in the following. We consider relatively low temperatures, and
assume that the in-plane penetration depth λ is large compared
with the coherence length ξ0 = ℏvF/2πkBTc0, where ℏ is the
reduced Planck constant, kB is the Boltzmann constant, vF is
the normal state Fermi velocity, and Tc0 is the critical temper-
ature. In this case for a superconductor of width W fullfilling
ξ0 ≪W≪ λ, screening can be neglected and the charge cur-
rent can be considered to flow homogeneously as function of
the transverse y coordinate. The assumption of translational
invariance breaks down near the lower (y= 0) and upper edges
(y=W), but we assume that the contributions to the total cur-
rent from these edges are small compared to the large transla-
tionally invariant flow in the interior. In fact, the restriction on
system size is weaker since for the thin film of thickness t< λ
the pearl length λp = λ2/t≫ λ guarantees homogeneous flow
in the transverse y-direction as long as ξ0 ≪W≪ λp.

We utilize the non-equilibrium quasiclassical theory of
superconductivity. An overview over the relevant equations is
given in appendix, see also [38, 41] for more details. In short,
the Eilenberger–Larkin–Ovchinnikov equations [42–44] for
the Keldysh, retarded, and advanced quasiclassical Green’s
functions, equation (A2), are solved self-consistently with the
superconducting order parameter∆, impurity self-energies for
arbitrarymean free path ℓ, and the local electrochemical poten-
tial ϕ(x). The self-consistent treatment guarantees that the
charge current j is conserved from source to drain contacts,
i.e. it is independent of x.

The singlet d-wave order parameter is written as

∆(pF,R) = ∆d(R)ηd(pF), (1)

Figure 2. Principle setup of the model. A d-wave superconducting
film of thickness t (grey) is connected to two reservoirs at x= 0 and
x=L via barriers with transparencies DL and DR (black-hatched
surfaces). Translational invariance is assumed in the y-direction and
homogeneity is assumed in the perpendicular z-direction. The left
reservoir is at potential µL = eV/2 while the right reservoir is at
µR =−eV/2. Both are at temperature T. The angle α specifies the
crystal axis misalignment with respect to the main transport axis, x̂.
We will limit the discussion to a symmetric system with
DL = DR = D. The sideview corresponds to the experimental
techniques [39, 40] to contact the film in the ab-plane direction with
a protecting capping layer on top.

where the orbital basis function ηd(pF) =
√
2cos [2(φF −α)]

depends on φF, which is the angle between the Fermi
momentum pF and the x-axis, and the angle α giving the
orientation of the d-wave clover with respect to the x-axis,
see figure 2. The amplitude is in non-equilibrium a spatially
dependent complex quantity, ∆d(R) = |∆d(R)|exp[iχ(R)].
Through a local gauge transformation, one may transform
the order parameter to be real, and thereby obtain the super-
fluid momentum ps = ℏ

2∇χ which signals the presence of
superflow.

The superconductor is connected to the normal-metal
reservoirs via insulating barriers, which are assumed to be
symmetric, DL = DR = D. In this paper, we include a tun-
nel cone such that the interface transparency D depends
on the momentum angle φF. Explicitly, we use D(φF) =

D0(e−β sin2 φF − e−β)/(1− e−β). Here,D0 is the transparency
for perpendicular incidence on the surface, and the parameter
β determines the narrowness of the tunnel cone. Through-
out this paper, we use β= 1 corresponding to a wide tunnel
cone.

The impurity self-energies for a dilute concentration nimp of
impurities is computed using a self-consistent t-matrix approx-
imation, includingmultiple scattering off individual impurities
but neglecting crossing diagrams. As seen in equations (A14)
and (A15), the model contains two parameters, the impurity
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concentration Γu = nimp/πNF and the scattering phase
shift, δ0 = arctan(πNFu0), assuming an isotropic impurity
potential u0.

We consider here two limits for the potential strength. In
the Born limit, u0 is small such that only the first diagram in
the t-matrix series is kept. In the second unitary limit, u0 is
considered very large and the t-matrix equation is summed to
infinite order for multiple scattering off a single impurity. In
both cases a single parameter Γ = Γu sin

2 δ0, related to the nor-
mal state mean free path ℓ= ℏvF/2Γ = (π/Γ)ξ0, characterizes
the impurities. In the Born limit we assume u0 small, but nimp

large, keeping Γ constant, while in the unitary limit u0 is large
such that δ0 → π/2. This homogeneous scattering model has
been widely studied in unconventional, in particular d-wave,
superconductors [38, 41, 45–51]. In the bulk superconductor,
the Born limit impurities simply broaden the density of states,
while the unitary limit impurities introduce a sizeable impur-
ity band of resonance states around the Fermi energy. This
low-energy band of quasiparticles influences transport. At the
surface, when there are Andreev bound states at zero energy
for misorientation angle α ̸= 0, the Born limit impurities heav-
ily broadens them, while the unitary limit impurities are less
effective in increasing their lifetime.

The ϕ(x)-potential, see equation (A28), quantifies charge
imbalance, i.e. the difference in chemical potential locally at
x between the condensate and the quasiparticle states. This
potential is determined through the assumption of local charge
neutrality [52]: excess charge due to injection of quasiparticles
is compensated by a local depletion of the condensate. This
also means that we neglect any charging effects: the charging
energy U of the central region is small compared with the
energy scale ℏ/τd (τd dwell time) due to escape to the leads.
The charge imbalance is induced at the interfaces when quasi-
particles are injected from the normal metals and decays into
the interior of the superconductor. The processes determin-
ing the decay away from the interfaces are Andreev reflection
and impurity scattering, which is particularly important for the
d-wave order parameter with gap nodes. We find that due to
the gap nodes, charge imbalance does not decay to zero for
any voltage |V|> 0. This is the case both for ballistic (ℓ > L)
and diffusive devices (ℓ < L). Experimentally, for sufficiently
long devices, inelastic processes will relax charge imbalance.
In our treatment, we assume that the inelastic mean free path
is large both compared to elastic mean free path ℓin ≫ ℓ and
system size ℓin ≫ L. Thus, the dwell time of non-equilibrium
quasiparticles in the superconductor is considered small com-
pared with inelastic relaxation times [38].

3. Results

3.1. Orientation α=0

In figure 3 we show an overview of the spatial dependencies of
all relevant physical quantities for the orientation α= 0 and a
large mean free path ℓ= 100ξ0 with impurity scattering in the
Born limit for one low and one high voltage, and for the unitary

limit at high voltage only. For high transparency of the inter-
face barriers, D0 = 1 and wide tunnel cones (β= 1), transport
in the contact regions are dominated by Andreev reflection at
low voltage. This leads to a conversion of quasiparticle flow
[anomalous component ja(x)] at the interfaces to a dominat-
ing superflow [local equilibrium component jle(x)] far from
the contacts, see figure 3(a). The main qualitative difference
from the conventional s-wave superconducting case [38] is
the presence of the d-wave gap nodes and the more strong
pair-breaking effect of elastic impurity scattering. This leads
to a charge imbalance throughout the system for all voltages
|V|> 0, characterized by a potential ϕ(x), see figure 3(b), as
well as a residual quasiparticle flow [anomalous component
ja(x)] in the interior of the superconductor, see figure 3(a). It
was shown for conventional but anisotropic s-wave supercon-
ductors that charge imbalancemay be relaxed by elastic impur-
ity scattering [35]. For the d-wave case, we find that after an
initial drop of ϕ(x) through Andreev processes in the contact
region, the gap nodes (absence of a true energy gap) and pair-
breaking elastic impurity scattering result in a residual charge
imbalance extending into the interior of the superconductor
for all system sizes L≲ 200ξ0 that we have considered. Note
however, that in our setup the potential profile necessarily is
antisymmetric with respect to the center of the system andϕ(x)
is forced to pass through zero at the center.

At higher bias, the superconducting phase gradient leads to
substantial Doppler shifts of the continuum states. As illus-
trated in the inset of figure 3(d), right-moving hole-like qua-
siparticle states are shifted down into the bias window, while
right-moving electron-like quasiparticle states are shifted up.
As a consequence, an electron- to hole-like quasiparticle trans-
mission process The becomes available in the interface region
[38, 53]. This effect leads to hole-like quasiparticle transport
from left to right in the figure and a negative quasiparticle cur-
rent ja(x)< 0 is induced in the interior of the superconductor,
see figure 3(e). An associated sign change in right- and left-
mover quasipotentials ϕ+(z) and ϕ−(z), see equation (A32),
also appears, see figure 3(g). The condition of current con-
servation then forces the condensate to compensate for this
through larger phase gradients and a resulting larger local-
equilibrium current, jle(x)> j, see figure 3(e). Eventually, at
higher voltage, but at a voltage below the maximum of the
d-wave superconducting gap, superconductivity in the meso-
scale device breaks down. The breakdown is due to the com-
bined effect of Doppler shifting superflow and the highly non-
equilibrium form of the distribution function f1(pF,R,ε) that
enters the gap equation (A26), see also figure 7 of [38] and the
discussion in [54]. As compared with the s-wave supercon-
ducting case, the break down is at a lower voltage, due to the
d-wave gap nodes. We also note that the breakdown appears
at a lower current compared with the usual critical current due
to pure superflow [55].

In figure 4 we show the distribution function f1(pF,x,ε)
for a voltage eV= 1.5kBTc0 below the maximum of the d-
wave gap. As defined in equation (A33), the Fermi sur-
face average has been divided into positive and negative
projections of the Fermi momenta on the transport x-axis,
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Figure 3. Spatial dependencies of main physical quantities and observables for high-transparency interfaces D0 = 1 with wide tunnel cones
(β= 1), orientation α= 0, mean free path ℓ= 100ξ0, and T= 0.1 Tc. The first and second row show results for the Born limit at applied
bias eV= 0.25kBTc0 (top row) and eV= 1.25kBTc0 (bottom row). The third row shows results at the larger bias for impurities scattering in
the unitary limit. First column: anomalous and local-equilibrium current densities, ja(x) and jle(x), see equation (A31). They add up to a
conserved total current j(x) = constant. Second column: local quasiparticle potential ϕ(x). Third column: left-mover and right-mover
electrochemical potentials, ϕ+(x) and ϕ−(x). Fourth column: superconducting phase drop χ(x). The inset in (d) shows a sketch of the
superconducting quasiparticle dispersion (black solid line), with the Doppler shifting effect of superflow as a dashed red line. The
right-pointing arrow indicates a hole-like quasiparticle state with positive group velocity.

⟨ f1(pF,x,ε)⟩±, reflecting injection of electrons from the left
and right reservoirs. The distribution is modified from its equi-
librium form f eq1 (ε) = tanh(ε/2T) into a characteristic two-
step shape at the contact, where the step width is given by
the local potential, here eV/2. In the interior of the super-
conductor, the distribution remains highly non-equilibrium
and cannot be characterized by a local effective temperature,
since it does not have the shape of the tanh-function. Instead,
it can be understood in simplified terms as the result of a
superposition of a superconducting and a normal component
due to the d-wave gap nodes. The normal component would
be a constant through the superconductor, given by fN1 (ε) =
1
2 (tanh[(ε− eV/2)/(2T)]+ tanh[(ε+ eV/2)/2T)]), (red dot-
ted line in figure 4(b)) while the superconducting component
has a spatial dependence such that it relaxes back to the equi-
librium form tanh(ε/2T) away from the contacts onceAndreev
processes are complete. The self-consistently computed distri-
bution in figure 4 is a result of an interplay between these two
components. The finite quasiparticle flow in the interior of the
superconductor, the finite ja(x) in figure 3(a), is reflected in the
difference between the distributions with positive and negat-
ive projections. The superconductivity is weakened when the

distribution function f1(pF,x,ε) is reduced substantially in a
window of subgap energies, as marked by the grey shaded area
in figure 4. Superconductivity breaks down when the window
of reduced distribution reach the superconducting coherence
peaks.

Let us next consider strong impurity scattering. In the case
of unitary-limit scattering, there is an impurity band formed
around the Fermi energy of width ∼

√
π∆dΓ/2 [48, 56]. This

enhances charge imbalance as compared with the Born limit
for the same mean free path, since the superconductor is more
normal metal like. The residual potential ϕ(x) in the interior
superconductor is therefore enhanced, see figure 3(j).

The moving condensate of the superconductor is associated
with a superconducting phase gradient. An alternative view is
to use a gauge where the order parameter is real, in which case
there is a spatially dependent superfluid momentum ps(x) =
ℏ
2 ∂xχ(x). As a result, a phase difference ∆χ= χ(L)−χ(0)
is established across the structure, see the right-most column
of figure 3. For larger voltages, this phase difference can
grow large and surpass 2π. Since the superconductor is rather
long (L= 50ξ0 in figure 3), the supercurrent is still below
the bulk depairing current, ps < psc, where psc is the critical
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Figure 4. The energy-like mode f 1, see equation (A21), averaged
over the full Fermi surface, ⟨ f1(pF,x,ε)⟩FS, and over half the
Fermi-surface with positive momenta ⟨ f1(pF,x,ε)⟩+ and negative
momenta ⟨ f1(pF,x,ε)⟩− with respect to the x-axis, see also
equation (A33). In (a) at the N–S interface (x= 0), in (b) at the
center of the superconductor (x= L/2), the grey shaded area in both
figures indicates the voltage window of width eV= 1.5 kBTc0. In (c),
we show the energy-resolved spatial evolution of ⟨ f1(ε,x)⟩FS from
the surface to the center of the system. In all cases, we have D0 = 1,
β= 1, α= 0, Born limit impurities with ℓ= 100ξ0, and T= 0.1Tc.

superfluid momentum where superconductivity breaks down
due to superflow [55].

To further quantify the disequilibrium throughout the
superconductor we consider the local density of states (LDOS)
under voltage bias, see figure 5. Already in equilibrium, the
d-wave DOS is modified in a wide region near the contact
due the inverse proximity effect [50]. Under voltage bias, the
main changes in the LDOS are due to the Doppler shifts from
the moving condensate. In simplified terms, for a clean sys-
tem, the superconducting coherence peak at the maximum of
the d-wave gap is expected to split into two peaks, for qua-
siparticle states co-moving and counter-moving with the con-
densate flow [47]. The picture changes due to impurity scat-
tering, which mixes the co- and counter-moving quasiparticle
states present in a superclean system. For more dirty systems,
for instance ℓ∼ 10ξ0 (not shown in the figure), impurity

Figure 5. Fermi-surfaced averaged density of states ⟨N (ε,x)⟩
FS
, see

equation (A19), at the center of the superconductor for different
voltages for the same parameters as in figure 4.

scattering broadens the substructure into a wide peak around
the gap energy. At low energies there is an enhanced density of
states within a window |ε| ∼ vFps(x), which is also due to the
Doppler shifts.

3.2. Orientation α= π/4

At a surface of a d-wave superconductor, with the surface nor-
mal misaligned with the crystal main axes (α ̸= 0), Andreev
bound states at zero energy, the so-called midgap states,
are formed [9]. For the case of α= π/4, such zero-energy
states exist for all trajectory angles φF. For an interface to
a normal metal, the zero-energy peak in the interface LDOS
acquires a width determined by the interface transparency,
∼⟨∆(φF)D(φF)⟩FS. In the presence of impurity scattering,
the LDOS peak is broadened further [49]. A clear signature
of the zero-energy states is a peak in the differential con-
ductance around zero voltage in a point-contact geometry,
as also found experimentally [13]. Here, we go beyond the
point-contact assumption and investigate the influence of zero-
energy states on charge imbalance, as well as the influence of
a non-equilibrium distribution on the ZBCP.

In figure 6 we show the spatial dependencies of all relev-
ant physical quantities for the case of unitary impurity scat-
tering with ℓ= 100ξ0, low-transparency interfaces D0 = 0.2,
and a voltage bias of eV= 1.0kBTc0. In this case, there are
both zero-energy Andreev bound states at the interfaces to the
normal metals and an impurity band around zero energy in
the interior of the superconductor. The combination enhances
charge imbalance and the ϕ-potential, see figure 6(b). The
formation of the Andreev bound states is associated with a
suppression of the order parameter near the interfaces, see

6
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Figure 6. Spatial dependencies of main physical quantities for the orientation α= π/4 where zero-energy surface states are formed.
(a) Anomalous and local equilibrium current densities, ja(x) and jle(x). (b) Local quasiparticle potential ϕ(x). (c) Left-mover and
right-mover potentials, ϕ+(x) and ϕ−(x). (d) Superconducting phase drop χ(x). The interface transparency is D0 = 0.2 with a wide tunnel
cone (β= 1), scattering is in the unitary limit with a mean free path ℓ= 100ξ0, the applied bias eV= 1kBTc0, and T= 0.2 Tc.

Figure 7. (a) The density of states as functions of energy and spatial
coordinate for the same parameters as in figure 6 but in equilibrium.
(b) Cut of the density of states at the interface, x= 0 (blue line), and
in the center of the superconductor, x= L/2 (orange line). The inset
shows the suppression of the order parameter close to the surface.

inset in figure 7(b). This weakening of superconductivity
forces the condensate to produce a large phase gradient to
set up the necessary superflow, see figure 6(d). The resulting
superfluid momentum ps(x) = ps(x)x̂ with ps(x) = ℏ

2 ∂xχ(x)
grows large near the contacts.

The effect of superflow for α= 0 considered above is best
understood in terms of Doppler shifts ε→ ε− vF ·ps of con-
tinuum quasiparticles propagating along trajectories charac-
terized by a distinct vF. For surface Andreev states this is not
the case when the superflow is along the surface normal ps ∥ x̂
as in our case, since the Andreev bound states are a super-
position of partial waves with both positive and negative pro-
jections of the Fermi momentum (and Fermi velocity) with
respect to the x-axis, see inset in figure 1. This leads to differ-
ent signs of the shifts vF ·ps for the partial waves with opposite
momentum projections on the x-axis, and there is no resulting
Doppler shift. Instead, the finite superflow only changes the
spectral weight of these states. For an illustration of this phys-
ics, we assume a clean d-wave superconductor with a perfectly
reflective interface at x= 0 and neglect the suppression of the
order parameter close to the surface. For a Fermi velocity with
angle φF ∈ (−π/2,π/2), specular scattering at the interface
connects the two velocities

voutF =

(
v xF
vyF

)
≡ vF

(
cosφF

sinφF

)
,vinF = vF

(
−cosφF

sinφF

)
. (2)

The order parameter with α= π/4 has opposite signs along
those two direciton, see equation (1). The resulting surface
retarded Green’s function reads

gR(z,φF)

−iπ
=

(vinF − voutF ) ·ps + i
[
Ω(voutF )+Ω(vinF )

]
2z− (vinF + voutF ) ·ps + i

[
Ω(voutF )−Ω(vinF )

] ,
(3)

where

Ω(vF)≡
√
∆2(pF)− (z− vF ·ps)2, (4)

and z= ε+ i0+ is the energy with an infinitesimal positive
imaginary part. In the absence of ps, it is straightforward to
show that equation (3) has only one first-order pole at z= 0
with a residue of π|∆(φF)|, which is the spectral weight of
the Andreev bound state for this trajectory angle. For a gen-
eral ps = (pxs ,p

y
s)

T, an identical analysis shows that as long as

7



J. Phys.: Condens. Matter 34 (2022) 425301 K M Seja and T Löfwander

Figure 8. Differential conductance dI/dV, normalized to the
normal-state interface resistance, in comparison to a
Landauer–Büttiker scattering approach in the spirit of [10]. The
interface transparencies are (a) D0 = 0.8, and (b) D0 = 0.2. In both
cases α= π/4, T= 0.1Tc0, and ℓ= 100ξ0 in the Born limit. Note
that all horizontal axes show eVL = eV/2 for our model system,
corresponding to the applied bias at the (single) interface in the
scattering approach.

|pxs |< |∆|, the pole is shifted to z= vyFp
y
s , while the residue is

reduced to

π
√
∆2(pF)− (v xFp

x
s)

2. (5)

Thus, we see that the two components of ps have very dif-
ferent influence on the Andreev bound state. The component
normal to the interface, pxs , reduces the spectral weight of the
Andreev state. This is compensated for by an enhanced spec-
tral weight of the continuum. In contrast, the component par-
allel to the surface, pys , shifts the state in energy according to
ε→ ε+ vyFp

y
s . As a result, the zero-energy states shift to pos-

itive (negative) energy for trajectories with positive (negative)
projection on the y-axis, and the single peak in the density of
states splits into two separate peaks. This is indeed the case
in the presence of an external magnetic field along the c-axis
direction perpendicular to the superconducting film, where the
induced screening currents Doppler shift and split the ZBCP
as found experimentally [11]. In our case, though, the voltage
bias only results in superflow along the x-axis and the Andreev
states stay at zero energy.

In figure 8 we show results for the conductance as function
of applied voltage for the orientation α= π/4 and two differ-
ent transparencies of the interface barriers. The conductance is
computed by numerical differentiation of the current defined
in equation (A16), and is independent of the coordinate x. For
an analysis of the current and conductance it is convenient to
also use the Riccati parameterization and study the resulting

current formula on the normal side of for instance the left NIS
interface [57]. This approach is also beneficial when we com-
pare our results with literature where a non-selfconsistent BTK
type of approach has been used [4, 10]. Thus lifting the result
of [57], the current calculated on the normal side of the left
NIS interface at x= 0 can be written as

jx(V) = 2eNF

εcˆ

−εc

dε
⟨
v xF
[
x1(V){1−Ree(V)+Rhe(V)}

+ x2(V){T̄he(V)− T̄ee(V)}
]⟩

+
, (6)

where the dependencies of all quantities within the brackets
on energy ε and trajectory angle φF is understood, while the
voltage dependence is emphasized. Here, x1 (x2) is the dis-
tribution incoming from the left (right) side of the interface,
⟨. . .⟩+ is the average over all momentawhere v xF ≡ vF cosφF >
0. The remaining four terms are the physical probabilities for
normal reflection (Ree) and Andreev reflection (Rhe) for elec-
trons incoming from the left normal metal reservoir, and sim-
ilarly normal transmission (T̄ee) and branch-conversion trans-
mission (T̄he) for electron-like quasiparticles incoming from
the superconducting device side. Equation (6) is a generaliza-
tion [57] of the well-known BTK current formula for the NIS
interface [4, 10]. It is a generalization since all four scatter-
ing probabilities and both distribution functions, all computed
within quasiclassical theory, are voltage dependent. Within
traditional BTK theory [4] and its generalization to the d-
wave case [10], only the incoming distribution from the normal
metal side is voltage dependent according to the reservoir and
point contact assumptions x1 = tanh[(ε− eV)/2kBTc0]. The
incoming distribution from the superconducting side, x2, as
well as the four scattering probabilities in equation (6), are
given by their equilibrium values at V = 0. The conductance
within this scattering approach is then simplified to

GLB(V) = 2eNF

εcˆ

−εc

dε

⟨
v xF

dx1(V)
dV

[1−Ree(0)+Rhe(0)]

⟩
+

.

(7)

In the normal state it reduces to GN = R−1
N = 2e2NFvF

⟨D(φF)cosφF⟩+, where RN is the normal state interface resist-
ance. We call in the following such an approach the Landauer–
Büttiker scattering approach, denoted with the superscript LB.

We are now ready to compare our self-consistent station-
ary non-equilibrium results, blue circles in figure 8, to the
LB scattering approach. The LB calculations include both
the original non-selfconsistent approach [10], here general-
ized to include impurity scattering, and a self-consistent cal-
culation of scattering amplitudes for zero voltage where the
suppression of the superconducting order parameter is taken
into account, as in [57]. The self-consistent LB scattering
approach (solid green lines in figure 8) always give a lower
conductance compared to the non-selfconsistent LB scatter-
ing approach (dashed orange lines in figure 8) because of the

8
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Figure 9. Spatial variation of the absolute value of subdominant
component, |∆s(x)|, for different voltages. Inset: largest value of
|∆s(x)| as function of bias voltage, where every second datapoint
has a marker. Other parameters are D0 = 0.5, β= 1, Ts = 0.2 Tc0,
T= 0.1 Tc0, and ℓ= 100ξ0 (Born limit).

gap suppression near the interface. The conductance in our
non-equilibrium calculation (blue filled circles) is similar in
shape to the self-consistent LB result, but they do not fully
agree. Corrections to the LB scattering approach are small
at small voltages and vanishes at zero voltage where a lin-
ear response calculation holds. For intermediate voltages and a
high-transparency interface, where the Andreev bound states
are substantially broadened, corrections are generally below
five percent in the given voltage range, while for low transpar-
ency, the difference between the two approaches is more sub-
stantial and of order 20 percent due to the voltage dependence
of the Andreev state spectral weight, which is also reflected in
the scattering amplitudes. At high voltage, where the d-wave
order parameter becomes more substantially affected by the
non-equilibrium distributions, the corrections grow, until rel-
atively abruptly for these system parameters superconductivity
disappears.

3.3. Subdominant order-parameter component

Even in the absence of an external magnetic field a split-
ting of the ZBCP has been observed in several experiments at
very low temperatures. One mechanism proposed and extens-
ively discussed in the literature [11, 19, 20] is the presence
of a subdominant order parameter of dxy or s symmetry, in
addition to the dx2−y2 order parameter, in a combination of
the form dx2−y2 + idxy or dx2−y2 + is. Such combinations res-
ult in a superconducting state with broken time-reversal sym-
metry close to the surface of the superconductor. As a res-
ult, the subdominant component becomes enhanced close to
the surface and induces a splitting of the ZBCP to finite
voltages [12]. Since the dxy subdominant component is very
sensitive to impurity scattering, we consider in the follow-
ing a subdominant s-wave order parameter with coupling con-
stant corresponding to a critical temperature of Ts = 0.2Tc0.

Figure 10. Energy shift of the interface Andreev states by the
subdominant order-parameter component as function of applied bias
voltage eV. Parameters are the same as in figure 9.

This subdominant component is zero in the bulk, ∆s = 0, but
reaches values of ∆s ∼ 0.2kBTc0 close to the surfaces, see the
equilibrium shape∆s(x) (solid blue line) in figure 9.

Under voltage bias, the injected nonequilibrium distribu-
tion reduces both components of the order parameter. Since
the subdominant component is smaller to begin with, it
becomes more strongly suppressed than the dominant com-
ponent already for small voltages. Figure 9 shows the sup-
pression of the magnitude of the subdominant component for
increasing bias voltage, as computed self-consistently through
equation (A26). At voltages above eV≈ 0.2kBTc0 the subdom-
inant component is fully suppressed, as seen in the inset in
figure 9. As a result, the Andreev bound states move back
towards the Fermi energy for increasing voltage, see figure 10.
This shift and the restoration of the zero-energy peak in the
surface LDOSwith increasing bias voltage also affects the dif-
ferential conductance.

As seen in figure 11, blue solid line with filled circles, the
conductance peak is shifted away from zero voltage due to
the equilibrium shift of the Andreev states to finite energy.
Once the subdominant component is suppressed at a voltage
eV≈ 0.2kBTc0, the conductance falls back to that of a pure
d-wave superconductor without any subdominant order para-
meter component (dashed orange line). As comparison we
have included in figure 11 the results of a LB calculation (green
dotted line). As seen, the ZBCP is not split and the voltage
dependence is smooth and similar to the case without s-wave
component. This is due to thermal broadening together with
the relatively large broadening of the Andreev states by impur-
ity scattering and the coupling to the normal metal through the
barrier with transparency D0 = 0.5. A weak split of the ZBCP
appears at very low temperature T= 0.01Tc0 (not shown in the
figure), but it is much weaker than our non-equilibrium result
at T= 0.1Tc0 (blue curve). Note that the self-consistent LB
approach and our non-equilibrium results coincide at V = 0
where the linear response approximation holds and all quant-
ities except the voltage perturbation of x1 in equation (6) take
their V = 0 equilibrium values.

9
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Figure 11. The low-voltage differential conductance, normalized to
the normal-state value, for a pure d-wave superconductor (dashed
orange line) and for the case of an s-wave subdominant order
parameter with Ts = 0.2Tc0 (solid blue line). Once eV= 2eVL →
0.2kBTc0 from below, the subdominant component∆s vanishes, see
also the inset of figure 9. The parameters are the same as in figure 9.
As comparison we also show results from a Landauer–Büttiker
scattering-approach (LB) calculation.

The main new ingredients in our fully selfconsistent cal-
culation are that also the right-side distribution x2, as well
as all scattering probabilities, depend on the applied voltage.
In contrast to the case without subdominant component con-
sidered above (figure 8), the correction to the LB approach is
qualitatively important and result in a dramatic enhancement
of the ZBCP split and a rapid drop in the conductance as the
s-wave component is suppressed by the non-equilibrium dis-
tributions. Thermal broadening is not important near the rapid
drop as is clearly seen in figure 11. By using the formula in
equation (6), we find that the dominant corrections to the LB
scattering approach are those due to self-consistent changes in
the amplitudes collected into the factor [1−Ree(V)+Rhe(V)]
in equation (6). The applied bias voltage leads to a quick sup-
pression of the subdominant order parameter component ∆s

through the highly non-equilibrium forms of the distribution
functions. As a consequence, the surface Andreev bound states
move back to zero energy, as seen in figure 10. The resonances
in the scattering amplitudes mirror this spectral rearrange-
ment. As a result the term proportional to the voltage derivat-
ive d[1−Ree(V)+Rhe(V)]/dV also gives a large contribution
of roughly 20 percent of the total conductance. In contrast,
the backflow contribution proportional to x2 in equation (6)
leads to small corrections of less than five percent. At a critical
voltage ∼0.2kBTc0, the subdominant component is fully sup-
pressed and a rapid drop of the conductance back to the pure
d-wave curve, the orange dashed line in figure 11), is visible.
We conclude that the voltage dependence of scattering prob-
abilities can be of great importance when the non-equilibrium

distributions couple back through the order parameter self-
consistency.

4. Summary

In summary we have presented a comprehensive study
of the stationary non-equilibrium response of a d-wave
superconductor coupled to two normal-metal reservoirs under
a voltage bias, taking into account different orientations of
the order parameter relative to the interfaces to the reservoirs,
formation of interface zero-energy Andreev bound states,
scalar impurity scattering, and a possible s-wave subdomin-
ant component of the order parameter. In all cases we ensure
current conservation by computing all self-energies selfcon-
sistently taking into account the non-equilibrium distribution
functions. For the case of a pure d-wave order parameter, we
have found that charge imbalance extends into the bulk of the
superconductor due to the presence of the nodes of the d-wave
order parameter and the pair breaking effects of scalar impur-
ities. Charge imbalance is enhanced for orientations where
zero-energy interface Andreev bound states are formed and it
is also enhanced for unitary limit impurity scattering which
induce a low-energy band of quasiparticles states. The non-
equilibrium distribution function induced in the supercon-
ductor suppresses the d-wave order parameter and supercon-
ductivity disappears for voltages approaching the gap voltage.
Nevertheless, despite the induced non-equilibrium state, the
resulting conductance-voltage dependencies for the case of
pure dx2−y2 superconducting order resembles the results of a
non-selfconsistent Landauer–Büttiker approach, if the original
approach [10] is corrected for the zero-voltage (V = 0) equi-
librium suppression of the order parameter near the interfaces
and the broadening effect of impurities. This holds until super-
conductivity is suppressed at voltages approaching the gap
voltage.

When we allow for a subdominant component with s-wave
symmetry, forming the time-reversal symmetry breaking com-
bination dx2−y2 + is near the interfaces, the effects of the non-
equilibrium distribution is much more severe. In this case, the
ZBCP split is dramatically enhanced compared with the non-
selfconsistent Landauer–Büttiker approach. This effect is due
to the suppression of the subdominant s-wave order parameter
when the voltage is applied. This leads to spectral rearrange-
ments and corrections to the scattering amplitudes. As a result,
a non-thermally broadened split of the ZBCP appears.

The Landauer–Büttiker approach holds for point-contact
geometries, where the contact radius is smaller than the coher-
ence length ξ0. Since ξ0 is small in high-temperature super-
conductors such contacts are challenging to fabricate. Our
approach is applicable to the complementary geometry with
very wide and transparent contacts where the induced non-
equilibrium distribution is important. Such contacts to super-
conducting films are experimentally feasible [39, 40] and
could serve as an interesting probe of the rich surface physics
of unconventional superconductors, including the possibility
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of subdominant order parameters and time-reversal symmetry
breaking.
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Appendix. Quasiclassical theory

Here, we review the key set of equations of the quasiclassical
theory of superconductivity that we base our calculations on.
For further details we refer to [38, 41].

In the stationary non-equilibrium case under consideration
we need to calculate the retarded and advanced Green’s func-
tions as well as the Keldysh component. They are organized
into a matrix in Keldysh space as

ǧ(pF,R,ε) =
(
ĝR(pF,R,ε) ĝK(pF,R,ε)

0 ĝA(pF,R,ε)

)
. (A1)

For brevity we often drop the explicit references to the depend-
encies on momentum direction pF, coordinate R, and energy
ε. All three elements in equation (A1) are matrices in Nambu
space, as indicated by the .̂ In the steady-state, ǧ is time-
independent and obeys the so-called Eilenberger equation,

iℏvF ·∇ǧ+
[
ετ̂31̌− ȟ, ǧ

]
= 0, (A2)

where [Ǎ, B̌] denotes a commutator between matrices Ǎ and B̌,
as well as the normalization condition ǧ2 =−π2 1̌. These two
equations were first derived by Eilenberger [42], and separ-
ately Larkin and Ovchinnikov [43], and the generalization to
nonequilibrium is due to Eliashberg [44]. The quasiclassical
Hamiltonian ȟ has the same Keldysh structure as the propag-
ator in equation (A1). The components in Nambu space are

ĥR,A(R,ε) =
(
ΣR,A(R,ε) ∆R,A(R,ε)
∆̃R,A(R,ε) Σ̃R,A(R,ε)

)
, (A3)

and

ĥK(R,ε)≡
(

ΣK(R,ε) ∆K(R,ε)
−∆̃K(R,ε) −Σ̃K(R,ε)

)
. (A4)

These self-energies are defined below.

The elements of ǧ can be parametrized using coherence
amplitudes γ, γ̃ [58–60] and generalized distribution functions
x, x̃ [61, 62]. Using the definitions of GR ≡ (1− γRγ̃R)−1 and
FR ≡ GRγR, we have for the retarded element

ĝR =−2πi

(
G F
−F̃ −G̃

)R

+ iπτ̂3, (A5)

and an analogous expression for the advanced function ĝA. The
Keldysh component reads

ĝK =

(
g f
−f̃ −g̃

)K

=−2 πi

(
X Y
Ỹ X̃

)K

,

≡−2 πi

(
G F
−F̃ −G̃

)R(
x 0
0 x̃

)(
G F
−F̃ −G̃

)A

. (A6)

An important symmetry in the theory is particle-hole conjug-
ation, which can be expressed as

Ã(pF,R,ε) = A∗(−pF,R,−ε∗). (A7)

A set of coupled transport equations for the parametrizing
functions can be derived from equation (A2). The Riccati
equation for the coherence amplitude reads

(iℏvF ·∇+ 2 ε)γR,A=
(
γ∆̃γ+Σγ− γΣ̃−∆

)R,A
, (A8)

while the equation for the distribution function x is

iℏvF ·∇x−
[
γ∆̃+Σ

]R
x− x [∆γ̃−Σ]

A

=−γRΣ̃Kγ̃A +∆Kγ̃A + γR∆̃K −ΣK. (A9)

Application of equation (A7) to these two equations gives the
corresponding equations for γ̃R,A and x̃. Solutions to both
transport equations are found by propagating from a start
point to an end point on a trajectory determined by the Fermi
momentum vF, in our case fully determined by the momentum
orientation angle φF. At interfaces between the supercon-
ductor and the normal-metal reservoirs, both the coherence
and distribution functions have to be connected by boundary
conditions. The latter are derived from the scattering matrices
for an insulating barrier between a normal metal and a super-
conductor, see [61–63].

Having obtained solutions to equations (A8) and (A9), we
can update all self-energies. They consist of the mean field
order parameter and scalar impurity self energy as

ȟ(pF,R,ε) = ȟmf(pF,R)+ ȟs(R,ε). (A10)

The Keldysh matrix structure of the mean field order para-
meter is simple, ȟmf = ∆̂1̌, while the Nambu structure is ∆̂ =
ℜ(∆)τ̂1 −ℑ(∆)τ̂2. The order parameter consists of a sum over
the d-wave and subdominant s-wave components. Each com-
ponent satisfies a gap equation

∆Γ(R)=NFλΓ

εcˆ

−εc

dε
8πi

⟨
Tr
[
iσ2ηΓ(pF)fK(pF ,R,ε)

]⟩
FS
,

(A11)
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where Γ = d, s. The basis functions are ηd(pF) =√
2cos[2(φF −α)] and ηs(pF) = 1. The pairing interactions

λΓ are eliminated in favor of the clean-limit critical temperat-
ures for each channel by the replacement

1
NFλΓ

→ ln

(
T
TcΓ

)
+

ˆ εc

εc

dε
2
1
ε
tanh

(
ε

2kBT

)
. (A12)

In the main text, since the d-wave is the dominant compon-
ent, we let Tc0 = Tcd and use kBTc0 as the natural energy scale.
The critical temperature of the subdominant s-wave is for short
denoted Ts < Tc0.

The impurity self-energies are calculated in the non-
crossing approximation for the t-matrix equation [45], dis-
cussed in detail in [41]. The matrix structure is

ȟs = nǐt≡ ni

(̂
tR t̂K

0 t̂A

)
. (A13)

For scattering that is isotropic in momentum space with an
s-wave scattering potential u0 the elements of ť satisfy the
equations

t̂R,A =
u0 1̂+ u20 NF

⟨
ĝR,A

⟩
FS

1̂−
[
u0 NF ⟨ĝR,A⟩FS

]2 , (A14)

t̂K =NF̂t
R
⟨
ĝK
⟩
FS
t̂A. (A15)

This procedure of solving equations (A8) and (A9) and
updating the selfenergies is iterated until a fully self-consistent
solution is found and current is conserved throughout the
structure. In the present paper, we allow for a maximum relat-
ive error |j(x)− jI|/|jI|< 5× 10−3, so the current everywhere
deviates less than half a percent from jI, the current at the
interface to the normal-metal reservoirs. The charge current
is determined by the Keldysh component ĝK,

j(R) = eNF

∞̂

−∞

dε
8πi

⟨
Tr
[
vFτ̂3 ĝK(pF,R,ε)

]⟩
FS
, (A16)

as is the local electrochemical potential

ϕ(R) =
1
2e

∞̂

−∞

dε
8 πi

⟨
Tr ĝK(pF,R,ε)

⟩
FS
. (A17)

The retarded component ĝR determines the normalized,
momentum-resolved local density of states per spin

N (pF,R,ε) =− 1
4π

Im Tr
[
τ̂3 ĝ

R(pF,R,ε)
]
, (A18)

and thus the full density of states

N(R,ε) = 2NF ⟨N (pF,R,ε)⟩FS . (A19)

The Keldysh component ĝK can, in addition to equation (A6),
also be parametrized as

ĝK = ĝR f̂− f̂ ĝA, (A20)

where the distribution matrix f̂ reads

f̂=

(
h 0
0 −h̃

)
= f1 1̂+ f3 τ̂3. (A21)

The non-equilibrium electron distribution function is then
given by

fe = 1
2 (1− h) = 1

2 (1− f1 − f3) , (A22)

which becomes a Fermi–Dirac distribution function in equi-
librium. We refer to f 1 (f 3) as the energy-like (charge-like)
mode, connecting to the nomenclature established for diffus-
ive superconductors [64]. After Fermi-surface averaging, they
have different symmetries as function of energy, namely

⟨ f1 ⟩FS (ε) =−⟨ f1 ⟩FS (−ε), (A23)

⟨ f3 ⟩FS (ε) = ⟨ f3 ⟩FS (−ε), (A24)

which corresponds to the symmetries obtained in the diffusive
case. The function h can be related to x by

x = h+ γRh̃γ̃A. (A25)

The equation of motion for x and x̃ is easier to solve, while the
final results can be easier to interpret in terms of h, or fe/1/3.
As an example, we can write the gap equations in (A11) as

∆Γ(R)
NFλΓ/2

=

εcˆ

−εc

dε
⟨
ηΓ(pF)

[
f1(FR +FA)− f3(FR −FA)

]⟩
FS
,

(A26)
and the charge current, equation (A16), as

j(R)=−eNF

∞̂

−∞

dε⟨vFf1(pF,R,ε)N (pF,R,ε)⟩FS . (A27)

The natural unit for charge current is then j0 = evFNFkBTc0.
The electrochemical potential, equation (A17), can similarly
be written as

ϕ(R) =− 1
2e

∞̂

−∞

dε⟨ f3(pF,R,ε)N (pF,R,ε)⟩FS . (A28)

The distribution function h can be split into a local-
equilibrium function hle, and an anomalous function ha,

h= hle +(h− hle)≡ hle + ha, (A29)

where hle is given by

hle(R,ε) = tanh
ε− eϕ(R)

2T
. (A30)

The splitting introduced in equation (A29) directly trans-
late to an analogous splitting of the function x by using
equation (A25), and for the two modes f 1 and f 3 by using
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equation (A21). As a consequence observables such as the
charge current can be similarly split,

j(R) = jle(R)+ ja(R). (A31)

Since hle, and hence f le1,3, are independent of pF, equation
(A27) shows that the local-equilibrium current jle can only be
non-zero if there is an asymmetry in the angle-resolved spec-
trum N (pF,R,ε). In our case, this asymmetry is created by
the self-consistently determined superflow ps in the supercon-
ductor. The anomalous current ja, due to the distribution ha,
then contains all current flow due to differences in occupation
of left-moving and right-moving quasiparticles.

A measure of this difference in occupation are the right-
mover (left-mover) quasipotential ϕ+ (ϕ−), defined as

ϕ± := ϕ− 1
2e

∞̂

−∞

dε
2

(
⟨X a⟩± + ⟨X̃ a⟩∓

)
, (A32)

where X a is obtained by using xa in equation (A6). In
equation (A32), the ⟨. . .⟩± denotes a partial Fermi-surface
average

⟨A⟩± ≡
2πˆ

0

dφF

π
A(φF)Θ(±cosφF), (A33)

where the Heaviside step function Θ(±cosφF) gives unity
if v xF, as defined in equation (2), is positive (+) or negative
(−), and zero otherwise. In the normal state, the left-mover
and right-mover quasipotentials satisfy ϕ= (ϕ+ +ϕ−)/2,
which connects to the concepts used in normal-state ballistic
systems [65].
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