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H I G H L I G H T S  

• We analyze over 10,000 PHEV with a total of 4.3 million driving days. 
• We propose a new method to detect the frequency of individual charging behavior. 
• Users avoid high share of nights without charging. 
• Not charging overnight has a large effect on the share of electric driving. 
• Intense drivers have high electric km per year with low shares of electric driving.  
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A B S T R A C T   

Plug-in hybrid electric vehicles (PHEV) offer greenhouse gas emission reduction in car usage if charged 
frequently and driven mainly on electricity. However, little is known about the actual charging behavior of PHEV 
owners. Here, we investigate the daily charging of 10,488 Chevrolet Volt PHEV driven on a total of 4.3 million 
total driving days in the US and Canada. We propose a new method to detect the frequency of individual charging 
behavior from the daily utility factor and daily distance travelled. Our results show that no charging overnight 
occurs typically on 3–7% of the driving days per user and additional charging happens on 20–26% of the driving 
days. We also analyze the relation between charging frequency and utility factor for different user groups and 
days. Our results show that the utility factor should not be used as the only measure of environmental perfor-
mance of PHEVs.   

1. Introduction 

1.1. Motivation and background 

Plug-in hybrid electric vehicles (PHEVs) can play an important role 
in reducing greenhouse gas emissions in the transport sector if charged 
frequently enough to cover a major share of their driving on electricity 
from low-carbon sources [1]. Empirical studies on PHEV charging 
behavior thus can provide several policy insights related to the decar-
bonization of the energy systems related to the transport sector. First, 
charging behavior and patterns can help understand the impact of 
charging on the electricity system, e.g., increased peak loads due to 
charging [2,3,4,5]. In addition, charging patterns are also of interest 
from an energy systems perspective, for example in helping integrate 

intermittent renewable energy sources [6,7,8,9]. Second, it adds to the 
understanding of the environmental performance of PHEVs —reducing 
CO2 emissions and environmental pollutants— by giving an insight into 
how much driving is done on gasoline and electricity respectively 
[10,11,12,13,14,15]. Third, charging behavior provides input on how 
charging infrastructure policies should be developed [16,17]. Fourth, it 
adds to the understanding of the relationship between public charging 
infrastructure and users’ charging behavior [18,19,20]. Fifth, it clarifies 
the relation between battery size and charging behavior and the relation 
between vehicle choice and driving needs [21,22,23,24]. 

Despite its policy relevance, there is still a lack of empirical studies in 
the literature that analyze the charging behavior and driving for large 
samples of PHEV users (see Section 1.2 on previous literature for an 
overview of existing studies). The goal of this paper is to fill this gap by 
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being, to the authors’ best knowledge, the first study to quantify 
charging behavior through frequencies of overnight charging and 
additional charging and analyze this behavior with respect to different 
user groups and charging days. Moreover, we are the first to develop a 
method to identify charging frequencies based on daily driving distances 
on gasoline and electricity, which are easier to collect, compared to 
specific charging events. The paper also differs from previous research 
by using data containing a large number of users (10,488 users) with a 
long observation period, up to 8 years for some users, therefore 
providing a higher confidence level for our results. Our method is also 
relevant and can be used in studies for a variety of energy applications, 
from battery development to charging infrastructure and electricity 
systems, to integrating electric vehicles with intermittent renewable 
energy sources, such as vehicle-to-grid systems. 

More specifically this paper aims to answer the following research 
question: What are typical frequencies for additional charging and no- 
overnight charging with respect to different user groups and charging 
days? To answer this question, we use an online database (voltstats.net) 
that collects real-world fuel economy data of Chevrolet Volt, a popular 
North American PHEV. We develop a method to estimate charging 
behavior from observed daily electric and conventional km travelled. 
We thereafter analyze frequencies of additional charging and of no 
overnight charging for different days and user groups. We also study the 
utility factor (UF), i.e., the share of electric driving, and the distribution 
of driving distances to understand its relation to charging behavior. 

The outline of the paper is as follows. An overview of previous 
literature related to PHEV and charging is presented in Section 1.2. The 
data and methods are described in Section 2. Results are presented in 
Section 3, followed by the discussion in Section 4 and we close with the 
summary and policy implications in Section 5. 

1.2. Previous literature 

There are two main approaches to PHEV charging in the literature. 
The first approach uses a range of methods and data but no actual PHEV 
charging or driving data. Data and methods used in this approach 
include household travel surveys, simulation and optimization models, 
online questionnaires, stated preference surveys or data from conven-
tional vehicles applied to PHEVs or plug-in electric vehicles (PEVs) in 
general. Some studies focus solely on the impact of charging behavior on 
charging infrastructure. Dong and Lin [25] use a household travel sur-
vey in Austin, Texas, with recorded global positioning system (GPS) data 
for a single day, collected from 229 conventional vehicles. They analyze 
the impact of charger network coverage on PHEV energy consumption 
based on travel patterns. Xi et al. [20] develop a simulation-optimization 
model to determine the locations of charging points for electric vehicles 
and apply their model on a dataset from central-Ohio region with 
generated trip data based on a typical workday. Bi et al. [26] use an 
agent-based traffic simulation to analyze the impact of charging 
behavior on the performance of charging infrastructure in Singapore 
with the assumption that charging stations are placed at existing petrol 
stations and residential car parks. Pagani et al. [27] use an agent-based 
simulation to analyze the impact of individual charging behavior on 
charging infrastructure in a mid-sized city in Switzerland. Chakraborty 
et al. [28] and Chakraborty et al. [29] analyze the demand drivers for 
charging infrastructure by modelling the charging behavior of 3000 PEV 
drivers using survey data. Goebel and Plötz [30] compare machine 
learning methods and regression analysis to sample PHEV simulations 
using a full recharge overnight as assumption. They find machine 
learning methods to perform only slightly better than a simulation and 
their method does not directly estimate the user specific share of nights 

without charging or share of days with additional charging. 
Other studies within this group focus on charging patterns, envi-

ronmental impacts, share of electric driving and battery requirements 
rather than infrastructure. Axsen et al. [31] use survey data from 877 
respondents in California and address the relationship between charging 
behavior and total greenhouse gas emissions. Tal et al. [22] and Tal et al. 
[23] use data from an online survey that includes extensive data on 
driving and charging behavior from more than 3500 plug-in electric 
vehicle owners in California to analyze how charging behavior impacts 
electric vehicle miles travelled. They conclude that higher range PHEV 
and battery electric vehicle (BEV) users charge more often compared to 
lower range PHEV and BEV owners which further increases their share 
of electric driving. Björnsson and Karlsson [32] use GPS logged data for 
30 days or longer from 432 conventional vehicles in Sweden to analyze 
how individual driving and charging behavior impact battery re-
quirements for PHEVs. Philipsen et al. [33] conducted qualitative in-
terviews and a large-scale questionnaire with 1021 respondents in 
Germany to identify conventional refueling behavior and charging 
behavior and then make a comparison between the two regarding con-
ditions, frequencies and critical filling levels. They conclude that the 
perceived critical filling level is identical for fuel tanks and batteries, but 
in terms of behavioral patterns conventional vehicle users often run on 
empty and then refill tank completely while electric vehicle users charge 
in a timely manner. Tal et al. [34] provide a snapshot of charging 
behavior of PEV users in California based on self-reported data. Chak-
raborty et al. [35] analyze the 30-day charging behavior of 5418 PHEV 
users in California and investigate why some PHEV users do not charge 
their vehicles. They find that several factors play a role in the decision 
making of plugging in or not, such as high home electricity prices, low 
electric driving range and low potential cost savings from charging. 
Ashkrof et al. [36] use data from a stated preference survey with 505 
BEV drivers in the Netherlands to explore charging preferences and 
drivers’ route choices for BEVs. Zhou et al. [24] conduct an online stated 
preference survey with 132 respondents to study charging decision 
making of BEV users and then analyze the data using a latent class 
model. They apply their model to a case study in Beijing and conclude 
that to satisfy travel demand for 90% of drivers, a 354 km (220 US miles) 
battery range is needed for taxis, and a 482 km (300 US miles) battery 
range is needed for private vehicle owners. 

The second approach in the literature uses empirical PHEV or PEV 
charging or driving data. Some of these studies use data collected from 
charging stations. Gnann et al. [16] analyze the charging behavior in 
Norway and Sweden by using empirical fast charging data from charging 
points. They conclude that if battery size and charging power keep 
increasing, the ratio of PEVs and fast chargers can be similar to con-
ventional vehicles and refueling stations. Morrissey et al. [17] analyze 
the charging behavior in Ireland and Northern Ireland by using data 
from 711 charging points with mixed fast and standard chargers, of 
which 43 are household charging points. They find that majority of PEV 
users charge at home during peak demand times and incentivization 
may be necessary to encourage charging at other times. They also find 
that fast chargers have a much higher usage frequency compared to 
standard charging points. 

Some of the studies within this second group use data collected 
directly from the vehicles. Ligterink et al. [12] analyze the charging 
behavior of more than 10% of the Dutch plug-in fleet using the charging 
data from plug-in vehicles collected through lease companies in the 
Netherlands. Davies and Kurani [13] use data from 25 converted Toyota 
Prius with recorded driving and charging data and explore the effects of 
assumptions regarding PHEV charging and driving behavior on the 
estimated emission impacts of PHEVs. Nicholas et al. [14] analyze the 
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charging behavior of 72 PEV households in California with recorded 
driving and charging behavior from onboard loggers for a full year. 
Srinivasa Raghavan and Tal [37] and Raghavan and Tal [38] use multi- 
year longitudinal data from 153 PHEVs in California, ranging from 18 to 
85 km (11 to 53 US miles) in all-electric-range and analyze their driving 
and charging patterns. They conclude that enhanced charging infra-
structure can improve the observed UF of short-range PHEVs, and 
increasing the frequency of home charging can improve the observed UF 
of long-range PHEVs. Fieltsch et al. [39] use recorded charging, driving 
and energy data from 160 commercial BEVs in Hamburg, Germany to 
analyze the charging behavior of BEVs in commercial transport. Their 
analysis focuses on temporal charging behavior and the initial and final 
state of charge. They conclude that longer charging events tend to occur 
after operating hours and that the BEVs in their dataset are predomi-
nantly fully charged since most charging events start at a high initial 
state of charge. Most recently, Plötz et al. [40] compare the actual mean 
real world UF as a function of all-electric range of 1385 PHEV in Ger-
many to the simulated mean UF of a large fleet of conventional vehicles. 
Using different scenarios for the share of days with charging, they 
conclude that the typical charging frequency of privately owned PHEV 
in Germany is about 75% of the days [40,41]. Tal et al. [42] examines 
vehicle usage in PEV households in California using a combination of 
vehicle logs supported with surveys and interviews with users. 

Different types of data have advantages and disadvantages. A short 
observation period may be easier to obtain and thus facilitates a higher 
resolution or more information on individual users; however, the results 
can be difficult to generalize and apply to different circumstances due to 
limitations of spatial and geographical scopes. Longer observation pe-
riods are more cumbersome to collect and usually result in lower reso-
lution due to higher data collection costs and can provide a better 
understanding of general trends. Similarly, non-empirical PHEV data 
collected through surveys, test cycles and simulation/optimization 
models can be less costly than installing monitors on actual PHEVs, 
therefore easier to obtain, however could be limited by assumptions and 
might not directly correspond to actual real-life usage. Empirical data on 
the other hand gives the advantage of shining a light on real-life usage, 
however installing monitors on vehicles comes at a cost, and thus there 
is usually a trade of between collecting short-period data with high 
resolution and small sample size, and collecting long-period data with 
low resolution and large sample size. The advantage of our dataset is the 
large sample size and long observation period; however, this comes at 
the cost of low resolution such as limited information on individual 
users, daily data instead of per second and individual charging events 
not being recorded. 

In summary, existing studies on PHEV charging are often based on 
conventional vehicles only or have either a limited PHEV sample or a 
short observation period. Here, we fill this gap in the literature with an 
analysis of a large sample and long observation period for one PHEV 
model in North America. 

2. Data and methods 

2.1. Data 

The data for our analysis is retrieved from voltsats.net, an online 
database with automatically collected (from an additional device) real- 
world fuel consumption data from 10,488 registered Chevrolet Volts in 
the United States and Canada. Every user profile on the website contains 
cumulative daily data on the electric and gasoline mileage including 
daily fuel consumption on gallons of gasoline per day. The data was pre- 

processed, cleaned and cumulative mileage values were converted to 
daily driven km. Data cleaning comprised the exclusion of values with 
daily vehicle kilometers travelled (VKT) greater than 1500 km and with 
higher electric VKT than total VKT per day. 

The data set comprises data from registered users with a set of user 
specific performance data from April 2011 to January 2020, with 4.3 
million driving days. After data cleaning, the average number of days 
observed per vehicle is 479 days with a median of 355, and maximum of 
2751 days; and average number of driving days per vehicle is 410 with a 
median of 303 and maximum of 2500 days. Only users with at least 28 
driving days were included in the analysis. 

Based on the available data, we calculated the following parameters: 
electric vehicle kilometers travelled (eVKT), gasoline vehicle kilometers 
travelled (gVKT) and total vehicle kilometers travelled (VKT). The 
average distance travelled was extrapolated to annual values. The in-
dividual observed UF per user is obtained by dividing all electric km by 
total km driven during the observation period. 

2.2. Methods 

2.2.1. Identification of charging 
Our data does not provide us directly with the charging behavior of 

the users and thus this has to be computed. Departing from the common 
assumption in drive cycles and simulations that the PHEVs are charged 
once during a 24 h cycle (referred to as overnight charging in the present 
paper), we develop a method to identify how real-life data deviates from 
this assumption through additional charging events and nights with no 
charging. We calibrate and demonstrate our method through a real- 
world dataset which included detailed charging and driving data for 
the same type of vehicle (Chevrolet Volt). We then analyze the frequency 
of additional charging and of no overnight charging using descriptive 
and inductive statistical methods. The frequency of additional charging 
is defined as the share of days with an additional charging event within 
the total number of driving days for a given user. Similarly, the fre-
quency of no overnight charging is defined as the share of days with no 
overnight charging within the total number of driving days. A charging 
event here refers to the driver plugging in the vehicle to the grid and 
charging the battery. 

For the first step in our analysis, we compute a calculated UF and an 
observed UF for each day and user. See Eqs. (1) and (2) respectively 
where AER stands for all-electric range. 

UFcal =

⎧
⎪⎨

⎪⎩

AER
daily VKT

, if daily VKT > AER

1, otherwise
(1)  

UFobs =
daily eVKT
daily VKT

(2) 

The calculation implicitly assumes a full charge once per day. This 
assumption is based on common practices in literature and analysis of 
empirical data on frequency of charging in literature [43,44]. To 
calculate the frequency of additional charging event and no overnight 
charging we look at the ratio of observed UF to calculated UF (UFobs/ 
UFcal). Intuitively, if the observed UF is much higher than the calculated 
UF, the vehicle must have had at least one additional charge during the 
day. We identify two thresholds to compare the ratio of UFobs/UFcal, X 
and Y. We assume an additional charging event occurs if the observed 
UF for a vehicle for that given day is at least X times higher than the 
calculated UF. Similarly, we assume the vehicle is not charged overnight 
if the ratio between observed UF and calculated UF is smaller than Y 
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times. These assumptions are summarized in Eqs. (3) and (4) below. 

additional charging =

⎧
⎨

⎩

true, if
UFobs

UFcal
> X

false, otherwise
(3)  

No overnight charging =

⎧
⎨

⎩

true, if
UFobs

UFcal
< Y

false, otherwise
(4) 

In order to estimate the two thresholds (X and Y), we use a real-world 
charging data for the Chevrolet Volt. The data comes from the Advanced 
Plug in Electric Vehicle Travel and Charging Behavior Project, initiated 

by the Plug-in Hybrid & Electric Vehicle Center at University of Cali-
fornia, Davis. In this study, we only use part of the dataset that includes 
detailed charging and driving data on Chevrolet Volt. We only use this 
data for calibration and demonstration of our method, the main results 
of the present work will use the much larger Chevrolet Volt data set 
without individual charging information. 

Data was collected from summer 2015 to spring 2019 and includes 
84 Chevrolet Volts. Monitors were placed on these 84 vehicles and their 
driving and charging data were recorded for the duration of a year. 
Model years of the vehicles vary from 2012 to 2017. See [45] for details 
on data collection and parameters. The driving and charging data were 
processed to clear discrepancies where the driving and charging data did 
not overlap timewise. (Start and end times for the collection of driving 

Fig. 1. ROC curve for the threshold of additional charging, varied from 1 to 2 with 0.1 increments. Evaluation metric of balanced accuracy is given inset.  

Fig. 2. ROC curve for the threshold of no overnight charging, varied from 0.1 to 1 with 0.1 increments. Evaluation metric of balanced accuracy is given inset.  
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and charging data do not always match for a given vehicle.) There are in 
total 19,679 days that contain driving and charging data for the 84 
vehicles, on average 234 days per vehicle. 

For a given day, we utilize the driving data for these 84 Chevrolet 
Volts, and through varying X and Y in Eqs. (3) and (4), we estimate the 
occurrence of additional charging and no overnight charging. Then we 
compare these estimations with the real-world charging data of the same 
vehicles to see how well our model performs. In Figs. 1 and 2, we pro-
vide the receiver operating characteristic (ROC) curves for additional 
charging and no overnight charging, which illustrates the performance 
of our model when the threshold is varied. The ROC curve shows the true 
positive rate (TPR), known as the probability of detection or sensitivity, 
as a function of the false positive rate (FPR), i.e., the probability of false 
alarm. For graphical interpretation, the point on the ROC curve that is 
closest to the (0,1) point on the coordinate (100% TPR and 0% FPR), 
also known as the perfect classification point, gives the best performance 
for the varied threshold. Aside from graphical interpretation, we also 
provide the balanced accuracy scores to evaluate the performance of the 
threshold levels. Balanced accuracy, the arithmetic mean of TPR and 
true negative rate (TNR), is one of the most common metrics used to 
evaluate how good a varied threshold is on a ROC curve [46]. 

In Fig. 1, the ROC curve for additional charging is given. The 
threshold (X in Eq. (3)) is varied between 1 and 2, with 0.1 increments 
and fitted with a power trendline. In the top-left corner of Fig. 1, we 
provide the direction of the threshold variation. We observe that as the 
threshold gets closer to 1, the estimates get more accurate (closer to the 
perfect classification point). We limited the variation of threshold be-
tween 1 and 2, because thresholds above 2 provide visibly worse esti-
mates (very low TPR and FPR) and thresholds below 1 provide 
extremely high FPR (the FPR instantly jumps from approx. 20% when 
the threshold is 1 to above 70% when the threshold is 0.99). The inset in 
Fig. 1 is the evaluation metric of balanced accuracy for additional 
charging, with a score of 0 to 1 for varied thresholds (higher is better), 
fitted with a polynomial trendline. Thus, both the ROC and balanced 
accuracy scores indicate a threshold of 1 as best estimate for our method 
of additional PHEV charging detection. 

Fig. 2 plots the ROC curve for no overnight charging. The threshold 
(Y in Eq. (4)) is varied between 0.1 and 1, with 0.1 increments and fitted 
with a power trendline. The direction of the threshold variation is pro-
vided in the top-left corner of Fig. 2. We limited the threshold variation 
between 0.1 and 1, because any threshold above 1 provides extremely 
high FPR (the FPR instantly jumps from around 20% when the threshold 
is 1 to above 70% when the threshold is 1.01). We observe that the 
closest point to the perfect classification point is around Y = 0.5. The 
balanced accuracy scores of the thresholds are shown in the inset, fitted 
with a polynomial trendline. The balanced accuracy scores and the ROC 

curve indicate 0.5 as best estimate for the Y parameter of no charging 
during the day. 

For the rest of our analysis, we use a threshold of 1 for additional 
charging and 0.5 for no overnight charging. Other evaluation metrics for 
the ROC curve are discussed in Section 3.4. 

With a threshold choice of 1 for additional charging, TPR is 44%, 
TNR is 90% and overall accuracy is 80% (see Table 1). This shows that 
our method is better at identifying days where additional charging did 
not happen (TNR) compared to the days where additional charging did 
happen (TPR). Given any random driving day, our method can identify 
that day as a day with additional charging or not with 80% accuracy. On 
the other hand, with a threshold of 0.5 for no overnight charging, TPR is 
23%, TNR is 93% and overall accuracy is 76%. Given any random 
driving day, our method can identify that day as a day with overnight 
charging or not with 76% accuracy. 

Our method to detect additional charging and no overnight charging 
is rather conservative, e.g., if a vehicle drives less than the AER on a 
given day and still charges that day, this charging event will not be 
captured. Thus, some additional charging will be missed, however, this 
additional charging will not contribute to increased UF and thus the 
environmental performance of the PHEV. In addition, we perform a 
sensitivity analysis and vary the thresholds used in Eqs. (3) and (4) for 
the ratio of UFobs/UFcal and this is addressed in section 3.4. 

The dataset does not contain the model year of the vehicle. To 
address this, we use the date of the first logged trip for the vehicles as the 
model year. Although each user id contains a year, this is not the model 
year of the vehicle but more likely the year of registration to the website. 
Based on our assumption, the following all-electric ranges (AER) are 
used: 56 km (35 US miles) for model years 2011–2012, 61 km (38 US 
miles) for model years 2013–2015 and 85 km (53 US miles) for model 
years from 2016 onwards. We also tested a single model year assumption 
of AER equal to 61 km (38 US miles) for all vehicles, to see the effect of 
our model year assumption on our results (see section 3.4). 

2.2.2. Analysis of users 
In our analysis regarding the frequency of additional charging and no 

overnight charging among users, we first aggregated each user over 
observed days. The following metrics were calculated based on the 
entire observation period for each user: daily eVKT, daily calculated 
eVKT, daily gVKT, daily VKT, total eVKT, total calculated eVKT, total 
gVKT, total VKT, annual VKT, frequency of additional charging and the 
frequency of no overnight charging. The daily calculated eVKT is 
computed by multiplying the daily calculated UF given in Eq. (1) with 
the daily VKT, meaning that if daily VKT is larger than AER, then daily 
calculated eVKT equals AER, otherwise daily calculated eVKT equals 
daily VKT. The frequency of additional charging is given by the number 
of days where additional charging occurs — as defined in Eq. (3) — 
divided by the total number of driving days per user during the entire 
observation period. Similarly, the frequency of no overnight charging is 
given by the number of days where no overnight charging occurs — as 
defined in Eq. (4) — divided by the total number of driving days per user 
during the entire observation period. 

Thereafter the aggregated observed UF was calculated for each user, 
which is given by total eVKT/total VKT. Note that the aggregated 
observed UF here is different from the mean of daily observed UF given 
in Eq. (2) which is used in estimating the occurrence of additional 
charging events. UF values shown in Fig. 5 and Tables A1 and A2 reflect 
the aggregated observed UF. (Note that our usage of UF throughout the 
text always refers to the observed aggregated UF, if not specified as 

Table 1 
True positive rate (TPR), true negative rate (TNR) and accuracy of additional 
charging and no overnight charging occurrences when the threshold choices are 
1 and 0.5 respectively.   

True positive rate 
(TPR) 

True negative rate 
(TNR) 

Accuracy 

Additional charging 44% 90% 80% 
No overnight 

charging 
23% 93% 76% 

Note: False positive rate (FPR) is 1-TNR and false negative rate (FNR) is 1-TPR. 
The share of real positives within total cases is 20% for additional charging and 
24% for no overnight charging. 
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Fig. 3. Distribution of additional charging frequency, normalized so maximum is 1. CDF given inset.  

Fig. 4. Distribution of frequency of no overnight charging, normalized so maximum is 1. CDF given inset.  
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‘daily’ or ‘calculated’.) Similarly, the aggregated calculated UF was 
computed for each user, which is given by total calculated eVKT/total 
VKT. Using the total eVKT and total VKT for the long-term UF calcu-

lation, we avoid the potential bias in UF calculation discussed by Lin and 
Greene [47]. 

To better understand the difference in driving and charging behavior 
among users, we look more specifically at certain user groups. The 
studied groups are top 10% and bottom 90% of additional chargers — 
top referring to more frequent and bottom to less frequent —, top 10% 
and bottom 90% of no overnight chargers, intense vehicle users (users 
with more than 30,000 km annual VKT) and non-intense vehicle users. 
Motivation for choosing these specific groups is provided in section 3.4 
under the sensitivity analysis. 

2.2.3. Analysis of days 
In our analysis regarding the characterization of charging days, a 

given day of the week (Monday to Sunday) or an observed holiday (New 
Year’s Eve, New Year’s Day, Easter Sunday, Memorial Day, Indepen-
dence Day, Labor Day, Thanksgiving, Christmas eve and Christmas Day) 
was aggregated for each user and we calculated the frequency of addi-
tional charging and the frequency of no overnight charging for a given 
day. Below the generic equation of the mean frequency of either addi-
tional charging or no overnight charging for a specific day is given. 

yij =
1
n
∑n

k=1
yijk (5)  

yijk =
Number of days j with i

total number of driving days that fall on j
for user k (6)  

y refers to the frequency of i on day j for user k  

i = {additional charging, no overnight charging}

Fig. 5. Distribution of observed utility factor (UF), daily VKT, frequency of additional charging and frequency of no overnight charging in different user groups. 
Means are indicated and the standard deviation is given in parentheses. 

Table 2 
Means of frequency of additional charging, no overnight charging, and daily 
VKT of weekdays, weekends and observed holidays.   

Mean frequency of 
additional charging 

Mean frequency of 
no overnight 
charging 

Mean 
daily 
VKT 

All driving days (N 
¼ 4,301,842) 

25.5% 6.6% 60.5 

Monday-Thursday  28.5%  5.6%  64.3 
Friday-Sunday  20.9%  8.0%  56.8 

Difference  7.6%***  2.5%***  7.5  

Monday  27.5%  5.4%  62.2 
Tuesday  29.0%  5.4%  63.8 
Wednesday  28.9%  5.5%  64.6 
Thursday  28.6%  6.0%  65.8 
Friday  22.1%  8.4%  59.9 
Saturday  17.6%  9.2%  50.1 
Sunday  22.1%  6.8%  57.7  

New Year’s Eve  9.8%  10.9%  39.6 
New Year’s Day  15.1%  7.8%  48.8 
Easter Sunday  21.9%  6.7%  60.7 
Memorial Day  25.2%  5.6%  60.9 
Independence Day  23.3%  6.9%  54.5 
Labor Day  24.6%  5.5%  60.5 
Thanksgiving  15.2%  11.2%  47.5 
Christmas Eve  12.6%  12.6%  40.6 
Christmas Day  12.7%  10.7%  45.8 

Note: Observation period is from April 2011 to January 2020. Difference in-
dicates the absolute difference between the means of two subgroups. Frequency 
of no overnight charging on a specific day reflects the night before, e.g. mean 
frequency of no overnight charging on Tuesday (5.4%) reflects the night con-
necting Monday to Tuesday. 
Sign. Codes: ‘***’: p < 0.001; ‘**’: p < 0.01; ‘*’: p < 0.05. 
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j = {monday, ..., sunday, new year’s eve, ..., christmas day}

k = {1, ..., 10, 488}

n = 10, 488 

Similarly, the daily VKT for each user on our days of interest was 
calculated and the means were aggregated over users to calculate the 
overall mean daily VKT for that specific day of interest. 

3. Results 

3.1. Frequency of charging 

In this section, we analyze frequency of additional charging and no 
overnight charging. Distributions of these charging frequencies are 
shown in Figs. 3 and 4 and detailed summary statistics of daily driving, 
UF, annual VKT and charging behavior for different user groups are 
given in Table A1 in the appendix. We also analyze charging behavior 
for different days of the week and observed holidays. We use a two- 
sample t-test to check for any statistically significant difference be-
tween average charging frequencies on Monday to Thursday and Friday 
to Sunday. 

Fig. 3 and Fig. 4 show the normalized distributions of driving days 

with additional charging and no overnight charging frequency among 
all users, respectively. From Fig. 3, we observe that the average share of 
days with additional charging is typically 20–26% and most commonly 
less than 40% of the days with a mean of 25.5% and a median of 20.3%. 

The typical share of days without overnight charging, shown in 
Fig. 4, is 3–7% and almost always below 25% of the days with a mean of 
6.6% and a median of 3.3%. Accordingly, the observed Chevrolet Volts 
are commonly charged overnight, and users avoid high shares of nights 
without charging. This implies that the PHEV in our sample are, on 
average, almost daily charged. Detailed summary statistics are given in 
Table A1 in the appendix. 

Looking at the different days of the week, we find a difference in both 
driving behavior and charging frequency between weekdays and 
weekends. Table 2 provides a comparison of weekdays, weekends and 
observed holidays in terms of frequency of additional charging, no 
overnight charging and daily VKT. Users charge additionally on average 
more frequently on Monday to Thursday with an average frequency of 
28.5%, while the average for Friday to Sunday is 20.9%, meaning 
additional charging is more common on working days. They also have 
nights without charging less frequently on the nights before weekends, 
with an average frequency of 8.0% compared to 5.6% on Monday to 
Thursday, meaning that not charging overnight is more common on 
weekends. A two-sample t-test shows that there is a statistically signif-
icant difference between Monday to Thursday and Friday to Saturday in 
charging frequencies both additionally and overnight. 

There is also a difference in daily driving distances. On average, the 
vehicles are driven less on weekends with Saturday having the lowest 
average VKT of 50.1 km. 

Given the large number of users and long average observation time, 
our sample allowed us to investigate specific days such as holidays. 
Generally, we observe that the vehicles are charged less during these 
days and that the driving distances are shorter (it’s possible that longer 
driving distances occur on the days around the holidays). New Year’s 
Eve sees the lowest frequency of additional charging, with only 9.8% of 
users charging on New Year’s Eve on average, this is followed by 
Christmas Eve, Christmas Day, New Year’s Day, and Thanksgiving. 
These five days also have the lowest mean daily VKT among holidays, 
ranging from 39.6 km on New Year’s Eve to 48.8 km on New Year’s Day, 
and the highest mean frequency of no overnight charging, ranging from 
7.8% the night before New Year’s Day, to 12.6% the night before 
Christmas Eve. On the other hand, Easter Sunday, Memorial Day, In-
dependence Day, and Labor Day are comparable to a weekend with 
mean frequency of additional charging between 21.9% and 25.2%, and 
no overnight charging between 5.5% and 6.9%. 

Table 3 
Comparison of mean daily VKT statistics for different user groups.   

Daily VKT (km) N (users in the sample)  

Median Mean SD Std. error CV Gini 

Top 10% of additional chargers 83.90 89.55 29.89 0.92 0.33 0.17 1049 
Bottom 90% of additional chargers 52.81 57.32 26.18 0.27 0.46 0.24 9439 

Difference 31.10*** 32.23*** 3.71 0.65 0.12*** 0.07*** –  

Top 10% of no overnight chargers 72.27 78.60 39.15 1.21 0.50 0.27 1049 
Bottom 90% of no overnight chargers 54.20 58.53 26.04 0.27 0.44 0.24 9439 

Difference 18.07*** 20.07*** 13.11 0.94 0.05*** 0.03*** –  

Users above 30k annual VKT 98.80 106.75 26.32 0.61 0.25 0.12 1861 
Users below 30k annual VKT 50.55 50.57 16.20 0.17 0.32 0.18 8627 

Difference 48.25*** 56.18*** 10.12 0.44 0.07*** 0.06*** – 

Note: Difference indicates the absolute difference between the means of two subgroups. 
Sign. Codes: ‘***’: p < 0.001; ‘**’: p < 0.01; ‘*’: p < 0.05. 

Table 4 
Share of days with long-distance driving within driving days and annual VKT 
among different user groups.   

Mean share of days where N (users in 
the 
sample)  Daily VKT > 100 km Daily VKT > 200 km  

Driving 
days 

Annual 
VKT 

Driving 
days 

Annual 
VKT 

All users  19.7%  41.3%  4.3%  15.9% 10,488 
Top 10% of 

additional 
chargers  

41.8%  60.3%  6.7%  15.0% 1049 

Bottom 90% of 
additional 
chargers  

17.3%  39.2%  4.0%  16.0% 9439 

Top 10% of no 
overnight 
chargers  

31.4%  58.9%  9.5%  28.0% 1049 

Bottom 90% of 
no overnight 
chargers  

18.4%  39.3%  3.7%  14.6% 9439 

Users above 30 k 
annual VKT  

48.3%  73.5%  12.3%  29.8% 1861 

Users below 30 k 
annual VKT  

13.6%  34.4%  2.5%  12.9% 8627  
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3.2. Charging frequency in different user groups 

In this section, we analyze charging frequency, daily VKT and 
observed utility factor for different user groups (top 10% and bottom 
90% of additional chargers, top 10% and bottom 90% of no overnight 
chargers, intense vehicle users and non-intense vehicle users). We pro-
vide a box plot distribution in Fig. 5 for a visual representation of the 
differences in user groups. A further comparison is given in Table A2 in 
the appendix. We use a rank-sum test to compare the medians and two 
sample t-test to compare the means to check if the UF, frequency of 
additional charging and no overnight charging in different groups sta-
tistically significantly differ from each other. 

Fig. 5 summarizes the observed utility factor, daily VKT, frequency of 
additional charging and frequency of no overnight charging for all users 
and all subgroups (top 10% and bottom 90% of additional chargers, top 
10% and bottom 90% of no overnight chargers, intense vehicle users and 
non-intense vehicle users). Top 10% of additional chargers have a mean 
frequency of additional charging of 67.2%, whereas the bottom 90% is 
at 20.9%. There are on average 410 driving days recorded per user and 
the observed average UF for all users is 73.6%. Detailed summary sta-
tistics for all user groups are given in Table A1 in the appendix. 

We find that not charging overnight has a larger effect on the utility 
factor than more frequent additional charging. The change in UF from 
not charging overnight is typically larger than charging additionally. 
The top 10% of no overnight chargers have an average UF of 43.5% 
compared to the average UF of 73.6% for all users and the average UF of 
77% for the bottom 90% of no overnight chargers. In comparison the top 
10% of additional chargers have a UF of 79.7% compared to the average 
UF of 73.0% for the bottom 90% of additional chargers. The top 10% of 
no overnight chargers seem to charge less in general since their average 
frequency of additional charging is also lower (13.2%) compared to all 
users (25.5%). 

The intense vehicle users (users above 30,000 km annual VKT) have 
an average frequency of additional charging of 42.3% compared to 
average of the whole sample of 25.5% and 21.9% for the non-intensive 
users. However, their average UF is lower (58.8% compared to 73.6% 
for all users) meaning their increased additional charging behavior falls 
short of matching their increased total VKT. It should also be noted that 
they also have a higher frequency of no overnight charging. 

A further comparison of UF, frequency of additional charging, and no 
overnight charging is given in Table A2 in the appendix. To check if the 
UF, frequency of additional charging and no overnight charging of the 
two groups significantly differ, we used a rank-sum test to compare the 
medians and two sample t-test to compare the means. The difference in 
UF between the top 10% additional chargers and the bottom 90% is 
statistically significant both for the mean UF and median UF at the 0.1% 

level. The same holds for the difference in mean of no overnight 
charging for these groups. 

When analyzing the differences between the top 10% of no overnight 
chargers and the bottom 90% for the various frequencies we also find 
that these are statistically significant at the 0.1% level. 

The results of the statistical tests we performed regarding the dif-
ference in daily VKT and UF, between (1) the top 10% of most frequent 
additional chargers and their respective bottom 90% and (2) top 10% of 
most frequent no overnight chargers and their respective bottom 90%, 
indicates an apparent, statistically significant difference in the charging 
behavior of these user groups. 

3.3. Daily and annual VKT within different user groups 

In this section, we analyze daily and annual VKT within different 
user groups. We provide mean daily VKT statistics for different user 
groups in Table 3. We check if the difference between two user groups is 
statistically significant by using a rank-sum test for the medians, a two- 
sample t-test for the means, Levene’s test for the variances (not shown in 
the Table 3), and bootstrap hypothesis testing for the CV and the Gini 
coefficients. We also analyze the share of days with long-distance 
driving within driving days and annual VKT among different users, 
shown in Table 4. 

The UF is determined by the charging frequency and driving dis-
tance. We therefore take a closer look at overall values of VKT and the 
distribution of daily VKT in the observed groups. Mean annual VKT for 
all users is 22,113 km; mean daily eVKT and mean daily VKT are 42.2 
km and 60.5 km, respectively (see Table A1 in the appendix). We 
observe that top 10% of most frequent additional chargers have a higher 
average daily VKT, daily eVKT, UF and annual VKT compared to the 
bottom 90%. The top 10% most frequent no overnight chargers have a 
lower average number of driving days, lower daily eVKT, but a higher 
daily VKT which results in a lower UF compared to the bottom 90%. 

A comparison of summary statistics for the daily VKT for different 
user groups is given in Table 3. We calculate the median, mean, standard 
deviation (SD), standard error (SE = SD/√N), coefficient of variance 
(CV = SD / mean), and Gini coefficient for each user group. Table 3 
shows the mean of these values within the specific groups. We used the 
following statistical tests to check if the difference between two groups is 
statistically significant: rank-sum test for the median, two-sample t-test 
for the mean, Levene’s test for the variance (not shown in the table), and 
bootstrap hypothesis testing for the CV and the Gini coefficient. For all 
test statistics, and for both the comparison of additional charging and no 
overnight charging, the differences are statistically significant at the 
0.1% level. 

For additional charging, we observe that the top 10% of most 
frequent chargers have a higher mean daily VKT with a slightly larger 
standard deviation. CV and the Gini coefficient are both smaller for the 
top 10% compared to the bottom 90% indicating less dispersion within 
the group. 

For no overnight charging, we observe that top 10% of most frequent 
no overnight chargers have on average a higher daily VKT with a larger 
standard deviation. Coefficient of variation and the Gini coefficient are 
both higher for the top 10% compared to the bottom 90% indicating 
more dispersion within the group. This shows that users who often don’t 
charge overnight, do not do it because they drive less, instead they drive 
more on average, thus they have a potential to electrify more kilometers 
but choose not to do so. 

As expected, intense vehicle users (users above 30,000 km annual 
VKT) have a higher average daily VKT of 106.8 km with a larger stan-
dard deviation, compared to the average daily VKT of 50.6 km of non- 
intense vehicle users (see Table 3). The coefficient of variation and 
Gini coefficient are slightly lower for intense vehicle users indicating less 
dispersion within the group. Intense vehicle users total at 1861 in-
dividuals in our sample, making up 17.7% of all users in the dataset. The 
differences regarding daily VKT for the median, mean, coefficient of 

Table 5 
Comparison of mean and median of frequency of additional charging and no 
overnight charging among all users under different threshold conditions.   

Frequency of 
additional 
charging (all 
users)  

Frequency of no 
overnight 
charging (all 
users) 

Mean Median  Mean Median 

Base model (additional charging 
occurrence threshold: 1.0, no 
overnight charging occurrence 
threshold: 0.5) 

25.5%  20.3%  6.6%  3.3% 

Additional charging occurrence 
threshold: 1.3 

12.6%  6.8%  Same as base 
model 

Additional charging occurrence 
threshold: 1.5 

7.9%  3.1%  Same as base 
model 

No overnight charging occurrence 
threshold: 0.3 

Same as base 
model   

4.4% 1.9% 

No overnight charging occurrence 
threshold: 0.7 

Same as base 
model   

10.5% 6.1%  
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variation and Gini coefficient are all statistically significant at the 0.1% 
level. The statistically significant difference in daily VKT between 
intense vehicle users and the rest of the users indicates that there is an 
existing distinct difference in driving behavior between the two groups. 
Intense vehicle users on average have a daily eVKT of 60.7 km compared 
to the 38.2 km of non-intense vehicle users, as can be seen in Table A1 in 
the appendix. Thus, even if their UF is lower than the average they 
electrify more kilometers than the average user and are an important 
group to target when it comes to charging availability and behavior. 

Within the total 4.3 million driving days in our dataset, the share of 
days where the daily VKT is larger than the AER is 36%. This shows that 
more than one third of the time users drive beyond the AER, which 
makes the impact of long-distance driving worth looking into. Table 4 
shows the share of days with long-distance driving, i.e., days with daily 
VKT over 100 km or 200 km, within driving days and annual VKT among 
different user groups. We observe that daily VKT larger than 100 km 
happens on 19.7% of the driving days for all users, but accounts for 
41.3% of the annual VKT. This indicates that long distance driving, 
although occurring only once in five days on average, accounts for close 
to half of the annual VKT. A threshold of 200 km for long distance 
driving highlights this impact even more and we observe that days with 
daily VKT larger than 200 km make up 4.3% of the driving days but 
15.9% of the annual VKT on average. The vehicles in our sample appear 
to drive a lot, but please note the average annual driving distance in our 
sample is comparable to the US national average (22,113 km annual 
driving distance for our sample compared to 21,700 km US average) 
[48]. 

For intense vehicle users and top 10% of the most frequent additional 
chargers, daily long-distance driving of 100 km occurs almost every 
second driving day and accounts for nearly three quarters (60% to 75%) 
of the annual VKT. Long distance driving can be a limiting factor for the 
effect of additional charging on achievable electric driving share; we 
observe this especially for intense vehicle users who have a higher fre-
quency of additional charging on average but lower UF. This is sup-
ported with the findings of Plötz et al. [11] where they conclude that 
tendency for long distance trips results in a lower PHEV fuel economy 
and thus a lower electric driving share. 

3.4. Sensitivity analysis 

In this section, we test how different model parameter assumptions 
change our results. We test different threshold choices for additional 
charging and no overnight charging. Our base model uses thresholds 
based on the metric of balanced accuracy scores; however, we also 
compute other metrics that are common evaluation metrics for ROC 
curves: basic accuracy, F1-score, Matthews correlation coefficient 
(MCC) and Fowlkes-Mallows index (FM). We explain how our choice of 
thresholds in our base model are robust and were suggested by the 
majority of these evaluation metrics. We also show that even with 
slightly different threshold choices, all of the statistical tests performed 
remain significant at the same significance level, thus the overall 
interpretation of our results does not change. We test a single model year 
assumption for all vehicles instead of a multiple model year assumption 
in our base model. For different groups of users, we use the distinction 
between top 10% and bottom 90% (regards to frequency of charging) 
which is arbitrary. In this section, we also perform a k-means clustering 
analysis to check for the presence of highly varying charging behavior in 
users, which supports our choice of distinguishing very frequent char-
gers from the rest. 

We tested different model parameters to check how our assumptions 
affect the results. The results are shown in Table A2 in the appendix. In 
our base model, we use multiple model years for the vehicles and a 
threshold of UFobs/UFcal > 1 for the occurrence of additional charging 
and UFobs/UFcal < 0.5 for the occurrence of no overnight charging. For 
the occurrence of additional charging, we tested a continuous threshold 
between 1 and 1.5 with increments of 0.01 to observe the rate of 

decrease in mean frequency of additional charging. We observe that the 
decrease in the mean frequency of additional charging gets increasingly 
smaller, from 0.6% at 1 to 0.3% at 1.3 and 0.2% at 1.5 at every 0.01 
increment in the threshold. As expected for the higher thresholds 1.3 
and 1.5, the average share of additional charging is lower than our base 
model and in the range of 7–13% for 1.3 and 3–8% for 1.5 with respect 
to the mean and median values. 

For the occurrence of no overnight charging, we also tested a 
continuous threshold between 0.3 and 0.7 with increments of 0.01 to 
observe the rate of increase in mean frequency of no overnight charging. 
We find that the increase in mean frequency of no overnight charging 
gets increasingly larger, from 0.1% at 0.3 to 0.25% at 0.7 at every 0.01 
increment in the threshold. In this case the higher threshold (0.7) 
resulted in an average share of days without overnight charging in the 
range of 6–11% and the lower threshold of 0.3 decreases the average 
share of days without overnight charging to the range of 2–4%. The 
changes in frequency of additional charging and no overnight charging 
based on different thresholds are summarized in Table 5. More detailed 
results are shown in Table A2 in the appendix. We observe that the 
estimated range for the charging frequencies are more robust for days 
with no overnight charging against parameter variations than for the 
days with additional charging. 

We also observe that the mean daily VKT and mean UF show very 
little difference among different user groups and all the tests remain 
significant at the same significance level as in our base model when 
changing the threshold levels. 

True positive rates (TPR) that we show in Figs. 1 and 2 and explain in 
Section 2.2.1. is not a measure of accuracy on its own and does not tell if 
the model is good at predicting occurrences. A good model balances TPR 
and TNR by taking into account the real class ratio (actual positives to 
actual negatives) and the four confusion matrix categories (true posi-
tives, true negatives, false positives and false negatives) [49,50]. For 
overall model predictability, we need to take into account the class ratio 
and pick a threshold that performs well overall. We use balanced ac-
curacy scores for a precise interpretation of the best threshold in ROC 
curves. In addition, we also computed the following evaluation metrics: 
basic accuracy, F1-score, Matthews correlation coefficient (MCC) and 
Fowlkes-Mallows index (FM). For additional charging, all evaluation 
metrics with the exception of basic accuracy indicate that a threshold of 
1 will give the best performance, same as the balanced accuracy metric, 
whereas basic accuracy suggests a threshold of 1.2 for best performance. 
For no overnight charging, FM index indicates a threshold of 0.5 for the 
best performance, same as the balanced accuracy metric; whereas F1- 
score indicates a slightly higher threshold and, MCC and basic accu-
racy indicates a slightly lower threshold than 0.5 for best performance, 
yet a threshold of 0.5 comes in a close second in F1-score, MCC and basic 
accuracy. These metrics slightly differ in how they evaluate a threshold 
level; for a detailed read on ROC curves and how these evaluation 
metrics differ, see [51,52]. We conclude that the choice of 1 for the 
threshold of additional charging (X in Eq. (3)) is robust since it is indi-
cated as the threshold to give the best performance from a majority of 
the evaluation metrics; and the choice of 0.5 for the choice of no over-
night charging (Y in Eq. (4)) is also robust since it is either indicated as 
the threshold to give the best performance or comes in a close second in 
all of the evaluation metrics. 

We also tested a single model year assumption where all vehicles 
have an AER of 61 km (38 US miles) instead of a multiple model year 
assumption. Under a single model year assumption, average share of 
additional charging is in the range of 27–31%, which is higher compared 
to our base model (20–26%); and average share of days without over-
night charging is in the range of 3–6%, which is similar to our base 
model (3–7%). All statistical differences between different user groups 
remain significant at the same significance level. 

Testing different model parameters shifts the frequencies for addi-
tional and no overnight charging to the upper and lower ranges of our 
base model, which does not affect our results qualitatively. In all cases, 
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share of days with additional charging is close to or less than 10% and 
users avoid high share of nights without charging. Our calculation of 
UFcal uses the all-electric range of the vehicle based on U.S. Environ-
mental Protection Agency (EPA) labels which is based on a certain ef-
ficiency; however, it should be noted that real world range is also 
affected by driving style and weather conditions, for which we don’t 
have data on to incorporate into our calculations. Yet, our thresholds 
estimates are estimated and tested based on real world driving condi-
tions. In addition, difference in charging behavior between our studied 
groups are statistically significant in all cases. 

In our analysis of charging by different groups of users, we use the 
distinction between top 10% and bottom 90% which is arbitrary. 
However, we also performed a k-means clustering analysis to check for 
the presence of highly varying charging behavior in users. We used the 
following two variables as the basis for our clustering: (1) mean fre-
quency of additional charging and mean frequency of no overnight 
charging. To determine the optimal number of clusters, we used the 
traditional elbow method, the silhouette method and the gap statistic 
[53,54]; of which the first two suggested four and the latter seven 
clusters. Testing with different number of clusters produces similar cases 
where there is an extreme cluster with high additional charging 
compared to the rest of the group and an extreme cluster with high no 
overnight charging compared to the rest of the group. Thus, the cluster 
analysis supports our approach to distinguish a group of very frequent 
additional chargers and a group of very frequent no overnight chargers. 
Accordingly, our distinction between top 10% and bottom 90% for both 
additional charging and no overnight charging are confirmed by the 
cluster analysis. 

4. Discussion 

Our results are based on analysis of a large data set, however there 
are some drawbacks. First, our data only covers one PHEV model and 
specific group of users that may create some biases and thus the results 
may not be generalizable to other PHEVs with different electric range or 
other characteristics. Chakraborty et al. [28] e.g., show that the all- 
electric range influences charging behavior. Because voltstats.net users 
enter fuel consumption data on a voluntary basis, there is a risk of self- 
selection bias in the data for consumers who are particularly concerned 
about fuel economy. It can be assumed, that mainly those PHEV users 
who are sensitive to their fuel economy register on these platforms. 
Furthermore, all users can be considered as early adopters, especially 
those from the first years of data collection. It is not sure that the early 
majority users will have the same behavior. However, the average 
annual VKT of our sample is close to the US average, indicating not too 
strong deviation from other vehicle with respect to total distance trav-
elled. Furthermore, access to charging infrastructure might change over 
time and influence charging behavior. PHEV charging behavior in the 
literature, as given in section 1.2., spans from early 2010s to 2021. 
However, charging infrastructure and charging station density has 
changed significantly within this time frame, and the availability of 
choices can have an impact on PHEV charging behavior. This makes it 
difficult to use early studies for comparison. In addition, the users are 
most likely almost all private vehicle owners, and our results are not 
directly transferable to company cars or fleet vehicles. 

Our own study also spans a long time period, from 2011 to 2020, 
which implies that our results give an overall picture of PHEV charging 
behavior in this period. However, we do not delve into how de-
velopments in charging infrastructure change this behavior over time, 
since this requires higher resolution data (e.g. GPS data) with more in-
formation on individual users, which were not available to us, thus 
falling outside of the scope of our paper. A shorter observation period 
with a large sample, high resolution data and detailed information on 
individual users could be more useful to analyze how developments in 
charging infrastructure impacted the most recent PHEV charging 
behavior. However, this type of empirical, real-life data is difficult to 

obtain and has high collection costs, and therefore not widely available 
and more importantly could not be generalized to larger populations due 
to geographical limitations and different states of charging 
infrastructure. 

Second, while the data are rich when it comes to number of users and 
observation time, they are sparse when it comes to additional infor-
mation about the users and the actual charging behavior. Factors that 
might affect charging behavior are access to workplace charging, 
dwelling type, commute distance and number of vehicles in the house-
hold [55]. Lee et al. [55] also find that gender and age influence the 
preference for home vs non-home charging. Similarly, all drivers are 
from North America (Canada and the US) with a high availability of 
home charging in garages comparable to Europe [56]. Accordingly, the 
same vehicles might be charged and used differently in other parts of the 
world with less home charging, such as China or Japan. As Plötz et al. 
[41] show utility factors of PHEV differ between countries and if they 
are private or company vehicles. In their sample the US & Canada has 
the highest compliance compared to the driving cycle. This thus limits 
the transferability of our results regarding the frequency of charging to 
other regions and countries. 

Furthermore, we assume that the year of the first entry in the data-
base corresponds to the model year, which would be incorrect for resold 
vehicles. However, our general results are stable against dropping this 
assumption and assuming the all-electric range for all vehicles. 

Our method implicitly assumes a full charge once a day. Yet, in 
practice some users might not fully charge the battery to 100% or have a 
partial charge one day and second full charge, e.g., for free at work, the 
following day. Our method is not able to detect such cases. However, as 
PHEV batteries and charged within a few hours and vehicles are typi-
cally standing many hours at the most common locations such as home 
or work, the share of these cases is likely limited. Furthermore, our 
conclusions are on a more aggregated level about the overall share of no 
charging and charging twice per day that this uncertainty in the method 
will not qualitatively affect our conclusions. Our method might also 
wrongly assign certain charging events, for instance if the daily VKT is 
very small and the vehicle on that day is used on electric mode only; 
however, these cases account for less than 1% of the dataset and do not 
impact our overall results. Thus, despite its limitations, our method is far 
easier to use for large samples than comprehensive technical in-vehicle 
measurement or surveys. 

Our calculation method has a certain bias for users with long driving 
distances, i.e., there is a risk we do not capture the additional charging of 
those driving shorter daily distances. This means our results are rather 
conservative, i.e., actual additional charging or no overnight charging 
should occur slightly more frequently than indicated by our results. Yet, 
our analysis of long-distance drivers shows that there is a heterogeneity 
in this group and thus our results are not only a function of long-distance 
driving. Lee et al. [55] find that PHEV owners with longer commute 
distances tend to seek out additional charging opportunities. From an 
environmental perspective, it is beneficial if those that charge more 
often are also the long-distance drivers because then more kilometers 
will be electrified. 

Future studies could collect larger samples of PHEV users to study 
empirical charging behavior in different PHEV populations and user 
groups. Furthermore, more emphasis could be given on reasons for not 
charging to improve policies that aim to increase the electric driving 
share of PHEV and thus their environmental benefit. 

5. Summary and policy implications 

In this paper, we used empirical data of 10,488 Chevrolet Volt PHEV 
and analyzed the frequency of additional charging and of no overnight 
charging in general, for specific days, and for specific user groups. Our 
results indicate that the average share of driving days with additional 
charging is typically in the range of 20–26% of the driving days, and the 
typical share of days without overnight charging is 3–7% of the driving 
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days, indicating users avoid high shares of night without charging. This 
implies that the PHEV in our sample are, on average, charged roughly 
once per 24 h. Additional charging is more common on working days 
and no overnight charging is more common on weekends and holidays. 

The most frequent chargers drive more km per day but still have a 
higher electric driving share than the average user. Yet, not charging at 
all per 24 h has a larger effect on the utility factor for longed-ranged 
PHEV as in our sample than more frequent additional charging, i.e., 
the change in UF from not charging overnight is typically larger than 
charging additionally. Looking at daily driving distances alone, intense 
vehicle users with high annual VKT show a higher additional charging 
frequency but not enough to compensate for their longer driving dis-
tances. However, in absolute terms the intense vehicle users drive more 
km on electricity per year (e.g., 60% *30,000 km = 18,000 km compared 
to 80% * 15,000 km = 12,000 km). This implies that even for intense 
vehicle users driving a PHEV might be more advantageous from a fuel 
consumption perspective compared to a modern diesel, especially if it is 
charged daily. 

Our findings have a number of policy implications. First, PHEVs are 
charged during most nights, but no overnight charging is a common yet 
infrequent behavior. This implies that any future policy making should 
take into account the increased load on the electricity system during 
nighttime and thus the possibility to even the load curve. This can be a 
preparation for increased load from pure EVs that are also expected to be 
charged on a regular basis during the night [57]. Given the larger bat-
tery capacity of pure EVs it is possible that they will have a higher 
impact on the design of the electricity system [58] especially since 
PHEVs most probably only will be an interim solution. 

The possibility to charge overnight has a bigger effect than addi-
tional charging during the day, thus, to support the advantages of 
PHEVs, policies should prioritize easy access to home charging, e.g., 
through support for installation of charging in multi-dwelling buildings, 
above public and workplace charging infrastructure. Second, the UF 
should not be used as the only measure of environmental performance of 
PHEVs since users with below average UF can drive above average km 
on electricity per year. Third, the effect of additional charging is limited 
with respect to achievable electric driving share as even intense chargers 
with long-ranged PHEV such as analyzed here can hardly achieve more 
than 90% of electric driving. The main reason is that long-distance 
driving has a noteworthy impact. Fourth, to incentivize a high share 

of electric driving in the long-term, purchase or tax incentives for private 
as well as company car users could also be coupled to reaching a suffi-
ciently high electric driving share. For example, the tax benefit of PHEVs 
could depend on reaching a significant share of the test-cycle UF even in 
real life driving. Charging frequency can further be increased through 
pushing for performance-based policies that credit the OEM based on 
road performance of their vehicles and thus pushing for more involve-
ment from OEMs in charging behavior, which could result in OEMs 
taking active roles in making it easier to charge and install or subsidize 
chargers. 
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Appendix 

See the Table A1 and A2. 

Table A1 
Summary statistics of daily driving, UF, annual VKT and charging behavior for different user groups.   

Min 0.25-quantile Median Mean 0.75-quantile Max 

All users (N = 10,488)       
Number of driving days 29 138.75 303 410.17 581 2500 
Daily eVKT 0.0 30.6 40.6 42.2 51.9 149.1 
Daily VKT 4.5 41.6 55.4 60.5 73.8 307.6 
UF 0.0% 63.0% 77.1% 73.6% 87.4% 100.0% 
Annual VKT 1654 15,189 20,246 22,113 26,944 112,342 
Frequency of additional charging 0.0% 8.0% 20.3% 25.5% 39.5% 92.5% 
Frequency of no overnight charging 0.0% 1.4% 3.3% 6.6% 7.5% 100.0%  

Top 10% of additional chargers (N = 1049)      
Number of driving days 29 117 263 403.97 582 2280 
Daily eVKT 28.6 57.6 65.9 68.8 77.6 149.1 
Daily VKT 31.7 69.8 83.9 89.5 102.5 307.6 
UF 29.8% 71.7% 82.6% 79.7% 89.5% 100.0% 
Annual VKT 11,563 25,502 30,646 32,708 37,425 112,342 
Frequency of additional charging 57.5% 61.3% 65.7% 67.2% 71.9% 92.5% 
Frequency of no overnight charging 0.0% 0.7% 1.8% 2.7% 3.6% 21.3%  

Bottom 90% of additional chargers (N = 9439)    
Number of driving days 29 141 307 410.86 580.50 2500 
Daily eVKT 0.0 29.3 38.8 39.3 48.3 103.8 

(continued on next page) 
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Table A1 (continued )  

Min 0.25-quantile Median Mean 0.75-quantile Max 

Daily VKT 4.5 40.1 52.8 57.3 69.2 293.7 
UF 0.0% 61.9% 76.4% 73.0% 87.0% 100.0% 
Annual VKT 1654 14,645 19,287 20,935 25,271 107,274 
Frequency of additional charging 0.0% 7.1% 17.4% 20.9% 32.7% 57.5% 
Frequency of no overnight charging 0.0% 1.6% 3.5% 7.0% 8.1% 100.0%  

Top 10% of no overnight chargers (N = 1049)      
Number of driving days 29 114 250 323.57 469 1649 
Daily eVKT 0.0 21.0 30.9 31.5 41.1 91.5 
Daily VKT 4.5 51.0 72.3 78.6 99.1 293.7 
UF 0.0% 33.2% 43.6% 43.5% 55.0% 93.3% 
Annual VKT 1654 18,617 26,397 28,710 36,206 107,274 
Frequency of additional charging 0.0% 2.2% 7.8% 13.2% 19.9% 74.5% 
Frequency of no overnight charging 15.3% 18.2% 23.3% 30.0% 35.8% 100.0%  

Bottom 90% of no overnight chargers (N = 9439)     
Number of driving days 29 141 311 419.79 596 2500 
Daily eVKT 5.6 31.9 41.6 43.4 53.0 149.1 
Daily VKT 7.0 41.0 54.2 58.5 71.3 307.6 
UF 23.2% 67.6% 79.2% 77.0% 88.5% 100.0% 
Annual VKT 2553 14,969 19,796 21,380 26,025 112,342 
Frequency of additional charging 0.0% 9.2% 22.0% 26.9% 41.4% 92.5% 
Frequency of no overnight charging 0.0% 1.3% 2.8% 4.0% 5.6% 15.3%  

Users above 30 k annual VKT (N = 1861)      
Number of driving days 29 115 279 378.08 544 2405 
Daily eVKT 0.0 48.1 60.1 60.7 73.3 149.1 
Daily VKT 82.1 89.0 98.8 106.8 115.6 307.6 
UF 0.0% 45.2% 59.4% 58.8% 73.7% 99.8% 
Annual VKT 30,004 32,510 36,085 38,992 42,219 112,342 
Frequency of additional charging 0.0% 23.9% 43.0% 42.3% 60.5% 92.5% 
Frequency of no overnight charging 0.0% 2.9% 6.8% 11.2% 14.1% 100.0%  

Users below 30 k annual VKT (N = 8627)      
Number of driving days 29 143 309 417.09 590 2500 
Daily eVKT 0.4 28.7 37.9 38.2 47.3 79.3 
Daily VKT 4.5 38.8 50.5 50.6 62.9 82.1 
UF 1.7% 67.8% 79.7% 76.8% 88.9% 100.0% 
Annual VKT 1654 14,175 18,462 18,471 22,990 29,985 
Frequency of additional charging 0.0% 6.8% 17.0% 21.9% 33.2% 90.5% 
Frequency of no overnight charging 0.0% 1.3% 2.9% 5.6% 6.1% 97.5% 

Note: UF refers to the observed aggregated UF. 

Table A2 
Comparison of means of daily VKT, UF, frequency of additional charging, and no overnight charging in different user groups under different assumptions.    

Mean 
Daily 
VKT 

Utility Factor (UF) Frequency of additional 
charging 

Frequency of no overnight 
charging 

N (users in 
the sample) 

Mean  Median  Mean  Median  Mean  Median 

Base model All users 60.5 73.6%  77.1%  25.5%  20.3%  6.6%  3.3%  10,488 
Top 10% of 
additional chargers 

89.5 79.7%  82.6%  67.2%  65.7%  2.7%  1.8%  1049 

Bottom 90% of 
additional chargers 

57.3 73.0%  76.4%  20.9%  17.4%  7.0%  3.5%  9439 

Difference 32.2 6.7% 
***  

6.2% 
***  

46.3%  48.3%  4.3% 
***  

1.7% 
***  

– 

Top 10% of no 
overnight chargers 

78.6 43.5%  43.6%  13.2%  7.8%  30.0%  23.3%  1049 

Bottom 90% of no 
overnight chargers 

58.5 77.0%  79.2%  26.9%  22.0%  4.0%  2.8%  9439 

Difference 20.1 33.4% 
***  

35.6% 
***  

13.7% 
***  

14.2% 
***  

26.1%  20.5%  – 

Users above 30 k 
annual VKT 

106.8 58.8%  59.4%  42.3%  43.0%  11.2%  6.8%  1861 

Users below 30 k 
annual VKT 

50.6 76.8%  79.7%  21.9%  17.0%  5.6%  2.9%  8627 

Difference 56.2 18.0% 
***  

20.2% 
***  

20.4% 
***  

26.1% 
***  

5.7% 
***  

3.9% 
***  

– 

(continued on next page) 
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Table A2 (continued )   

Mean 
Daily 
VKT 

Utility Factor (UF) Frequency of additional 
charging 

Frequency of no overnight 
charging 

N (users in 
the sample) 

Mean  Median  Mean  Median  Mean  Median  

Higher additional charging 
occurrence threshold 
(UFobs/UFcal > 1.3) 

All users 60.5 73.6%  77.1%  12.6%  6.8%  6.6%  3.3%  10,488 
Top 10% of 
additional chargers 

91.9 79.5%  82.1%  49.2%  47.5%  2.9%  2.0%  1049 

Bottom 90% of 
additional chargers 

57.1 73.0%  76.4%  8.6%  5.6%  7.0%  3.5%  9439 

Difference 34.8 6.5% 
***  

5.7% 
***  

40.6%  42.0%  4.0% 
***  

1.5% 
***  

– 

Top 10% of no 
overnight chargers 

78.6 43.5%  43.6%  5.3%  1.8%  30.0%  23.3%  1049 

Bottom 90% of no 
overnight chargers 

58.5 77.0%  79.2%  13.4%  7.6%  4.0%  2.8%  9439 

Difference 20.1 33.4% 
***  

35.6% 
***  

8.1% 
***  

5.8% 
***  

26.1%  20.5%  – 

Users above 30 k 
annual VKT 

106.8 58.8%  59.4%  25.6%  20.7%  11.2%  6.8%  1861 

Users below 30 k 
annual VKT 

50.6 76.8%  79.7%  9.8%  5.5%  5.6%  2.9%  8627 

Difference 56.2 18.0% 
***  

20.2% 
***  

15.7% 
***  

15.3% 
***  

5.7% 
***  

3.9% 
***  

–  

All users 60.5 73.6%  77.1%  7.9%  3.1%  6.6%  3.3%  10,488  

Higher additional charging 
occurrence threshold 
(UFobs/UFcal > 1.5) 

Top 10% of 
additional chargers 

92.1 78.5%  81.2%  38.2%  35.2%  3.3%  2.2%  1049 

Bottom 90% of 
additional chargers 

57.0 73.1%  76.5%  4.6%  2.4%  6.9%  3.5%  9439 

Difference 35.0 5.4% 
***  

4.7% 
***  

33.7%  32.8%  3.6% 
***  

1.3% 
***  

– 

Top 10% of no 
overnight chargers 

78.6 43.5%  43.6%  3.0%  0.5%  30.0%  23.3%  1049 

Bottom 90% of no 
overnight chargers 

58.5 77.0%  79.2%  8.5%  3.6%  4.0%  2.8%  9439 

Difference 20.1 33.4% 
***  

35.6% 
***  

5.4% 
***  

3.1% 
***  

26.1%  20.5%  – 

Users above 30 k 
annual VKT 

106.8 58.8%  59.4%  18.2%  11.6%  11.2%  6.8%  1861 

Users below 30 k 
annual VKT 

50.6 76.8%  79.7%  5.7%  2.4%  5.6%  2.9%  8627 

Difference 56.2 18.0% 
***  

20.2% 
***  

12.4% 
***  

9.2% 
***  

5.7% 
***  

3.9% 
***  

–  

All users 60.5 73.6%  77.1%  25.5%  20.3%  4.4%  1.9%  10,488  

Lower no overnight charging 
occurrence threshold 
(UFobs/UFcal < 0.3) 

Top 10% of 
additional chargers 

89.5 79.7%  82.6%  67.2%  65.7%  1.8%  1.1%  1049 

Bottom 90% of 
additional chargers 

57.3 73.0%  76.4%  20.9%  17.4%  4.7%  2.0%  9439 

Difference 32.2 6.7% 
***  

6.2% 
***  

46.3%  48.3%  2.9% 
***  

0.9% 
***  

– 

Top 10% of no 
overnight chargers 

76.7 44.2%  43.9%  14.5%  8.5%  23.2%  16.8%  1049 

Bottom 90% of no 
overnight chargers 

58.8 76.9%  79.2%  26.8%  21.7%  2.3%  1.6%  9439 

Difference 17.9 32.7% 
***  

35.3% 
***  

12.3% 
***  

13.2% 
***  

20.9%  15.2%  – 

Users above 30 k 
annual VKT 

106.8 58.8%  59.4%  42.3%  43.0%  7.6%  3.8%  1861 

Users below 30 k 
annual VKT 

50.6 76.8%  79.7%  21.9%  17.0%  3.7%  1.6%  8627 

Difference 56.2 18.0% 
***  

20.2% 
***  

20.4% 
***  

26.1% 
***  

3.8% 
***  

2.2% 
***  

–  

All users 60.5 73.6%  77.1%  25.5%  20.3%  10.5%  6.1%  10,488  

89.5 79.7%  82.6%  67.2%  65.7%  4.3%  3.2%  1049 

(continued on next page) 
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Table A2 (continued )   

Mean 
Daily 
VKT 

Utility Factor (UF) Frequency of additional 
charging 

Frequency of no overnight 
charging 

N (users in 
the sample) 

Mean  Median  Mean  Median  Mean  Median 

Higher no overnight charging 
occurrence threshold 
(UFobs/UFcal < 0.7) 

Top 10% of 
additional chargers 
Bottom 90% of 
additional chargers 

57.3 73.0%  76.4%  20.9%  17.4%  11.1%  6.6%  9439 

Difference 32.2 6.7% 
***  

6.2% 
***  

46.3%  48.3%  6.8% 
***  

3.3% 
***  

– 

Top 10% of no 
overnight chargers 

80.9 43.8%  44.4%  11.7%  7.6%  41.5%  35.9%  1049 

Bottom 90% of no 
overnight chargers 

58.3 76.9%  79.2%  27.1%  22.2%  7.0%  5.3%  9439 

Difference 22.6 33.1% 
***  

34.8% 
***  

15.4% 
***  

14.7% 
***  

34.5%  30.6%  – 

Users above 30 k 
annual VKT 

106.8 58.8%  59.4%  42.3%  43.0%  17.8%  11.9%  1861 

Users below 30 k 
annual VKT 

50.6 76.8%  79.7%  21.9%  17.0%  8.9%  5.4%  8627 

Difference 56.2 18.0% 
***  

20.2% 
***  

20.4% 
***  

26.1% 
***  

8.9% 
***  

6.6% 
***  

–  

All users 60.5 73.6%  77.1%  31.0%  27.1%  6.0%  3.0%  10,488  

Single model year Top 10% of 
additional chargers 

95.0 79.9%  82.7%  70.1%  68.5%  2.7%  1.8%  1049 

Bottom 90% of 
additional chargers 

56.7 72.9%  76.4%  26.7%  24.1%  6.4%  3.2%  9439 

Difference 38.3 7.0% 
***  

6.3% 
***  

43.4%  44.4%  3.6% 
***  

1.4% 
***  

– 

Top 10% of no 
overnight chargers 

76.1 44.3%  44.3%  20.9%  17.6%  27.7%  21.2%  1049 

Bottom 90% of no 
overnight chargers 

58.8 76.9%  79.2%  32.2%  28.4%  3.6%  2.6%  9439 

Difference 17.3 32.5% 
***  

34.9% 
***  

11.3% 
***  

10.8% 
***  

24.1%  18.5%  – 

Users above 30 k 
annual VKT 

106.8 58.8%  59.4%  51.5%  54.2%  9.8%  5.9%  1861 

Users below 30 k 
annual VKT 

50.6 76.8%  79.7%  26.6%  22.9%  5.2%  2.7%  8627 

Difference 56.2 18.0% 
***  

20.2% 
***  

24.9% 
***  

31.3% 
***  

4.7% 
***  

3.2% 
***  

–  
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[41] Plötz P, Moll C, Bieker G, Mock P. From lab-to-road: real-world fuel consumption 
and CO2 emissions of plug-in hybrid electric vehicles. Environ Res Lett 2021;16: 
054078. 

[42] Tal G, Karanam VC, Favetti MP, Sutton KM, Ogunmayin JM, Raghavan SS, et al. 
Emerging Technology Zero Emission Vehicle Household Travel and Refueling 
Behavior. UC Davis, Plug-in Hybrid & Electric Vehicle Research Center; 2021. 

[43] Committee H-E. Utility Factor Definitions for Plug-In Hybrid Electric Vehicles 
Using Travel Survey Data. SAE International; 2010. 

[44] Mandev A, Sprei F, Tal G. Electrification of vehicle miles travelled within the 
household context. Transportation Research Board 99th Annual Meeting. Washington 
DC, USA; 2020. 

[45] Tal G, Raghavan SS, Karanam VC, Favetti MP, Sutton KM, Ogunmayin JM et al. 
Advanced Plug-in Electric Vehicle Travel and Charging Behavior Final Report. UC 
Davis, Plug-in Hybrid & Electric Vehicle Research Center; 2020. 

[46] Carrillo H, Brodersen KH, Castellanos JA. Probabilistic performance evaluation for 
multiclass classification using the posterior balanced accuracy. In: ROBOT2013: 
First Iberian Robotics Conference. Springer; 2014. p. 347–61. 

[47] Lin Z, Greene DL. Significance of daily VMT variation over time and among drivers 
on assessment of PHEV energy impact. Proceedings of the 90th Annual Meeting of 
the Transportation Research Board, Washington, DC, USA; 2011. p. 23–7. 

[48] FHWA. Average Annual Miles per Driver by Age Group [Online]; 2020. Available: 
https://www.fhwa.dot.gov/ohim/onh00/bar8.htm [accessed June 21, 2020]. 

[49] Chicco D. Ten quick tips for machine learning in computational biology. BioData 
Mining 2017;10:35. 

[50] Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) 
over F1 score and accuracy in binary classification evaluation. BMC Genomics 
2020;21:6. 

[51] Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett 2006;27:861–74. 
[52] Tharwat A. Classification assessment methods. Appl Comput Inform 2021;17: 

168–92. 
[53] Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set 

via the gap statistic. J Roy Statist Soc: Ser B (Statist Methodol) 2001;63:411–23. 
[54] Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster 

analysis. John Wiley & Sons; 2009. 
[55] Lee JH, Chakraborty D, Hardman SJ, Tal G. Exploring electric vehicle charging 

patterns: Mixed usage of charging infrastructure. Transport Res Part D: Transport 
Environ 2020;79:102249. 
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