
Self-Stabilizing and Private Distributed Shared Atomic Memory in
Seldomly Fair Message Passing Networks

Downloaded from: https://research.chalmers.se, 2025-07-02 14:06 UTC

Citation for the original published paper (version of record):
Dolev, S., Petig, T., Schiller, E. (2023). Self-Stabilizing and Private Distributed Shared Atomic
Memory in Seldomly Fair Message Passing
Networks. Algorithmica, 85(1): 216-276. http://dx.doi.org/10.1007/s00453-022-01023-w

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Algorithmica (2023) 85:216–276
https://doi.org/10.1007/s00453-022-01023-w

Self-Stabilizing and Private Distributed Shared Atomic
Memory in Seldomly Fair Message Passing Networks

Shlomi Dolev1 · Thomas Petig2 · Elad M. Schiller2

Received: 29 July 2018 / Accepted: 4 August 2022 / Published online: 20 August 2022
© The Author(s) 2022

Abstract
We study the problem of privately emulating shared memory in message-passing
networks. The system includes clients that store and retrieve replicated information
on N servers, out of which e are data-corrupting malicious. When a client accesses
a data-corrupting malicious server, the data field of that server response might be
different from the value it originally stored. However, all other control variables in
the server reply and protocol actions are according to the server algorithm. For the
coded atomic storage algorithms by Cadambe et al., we present an enhancement that
ensures no information leakage and data-corruptingmalicious fault-tolerance.We also
consider recovery after the occurrence of transient faults that violate the assumptions
according to which the system was designed to operate. After their last occurrence,
transient faults leave the system in an arbitrary state (while the program code stays
intact). We present a self-stabilizing algorithm, which recovers after the occurrence
of transient faults. This addition to Cadambe et al. considers asynchronous settings
as long as no transient faults occur. The recovery from transient faults that bring the
system counters (close) to their maximal values may include the use of a global reset
procedure, which requires the system run to be controlled by a fair scheduler. After the
recovery period, the safety properties are provided for asynchronous system runs that
are not necessarily controlled by fair schedulers. Since the recovery period is bounded

An earlier version of this article appeared as a brief announcement in [26]. A technical report version of
this article can be found at [30].

B Elad M. Schiller
elad@chalmers.se

Shlomi Dolev
dolev@cs.bgu.ac.il

Thomas Petig
petig@chalmers.se

1 Department of Computer Science, Ben-Gurion University of the Negev, 84105 Beer-Sheva,
Israel

2 Department of Computer Science and Engineering, Chalmers University of Technology, 41296
Gothenburg, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01023-w&domain=pdf
http://orcid.org/0000-0003-3258-3696

Algorithmica (2023) 85:216–276 217

and the occurrence of transient faults is extremely rare, we call this design criteria self-
stabilization in the presence of seldom fairness. Our self-stabilizing algorithm uses a
bounded amount of storage during asynchronous executions (that are not necessarily
controlled by fair schedulers). To the best of our knowledge, we are the first to address
privacy, data-corrupting malicious behavior, and self-stabilization in the context of
emulating atomic shared memory in message-passing systems.

Keywords Shared memory emulation · Self-stabilization · Privacy

1 Introduction

The increasing availability of fast ubiquitous networking, the appearance of Cloud
and Fog computing, have offered computer users attractive opportunities for remotely
storingmassive amounts of data in decentralized storage systems. In such systems, pri-
vacy and dependability are imperative. We consider distributed fault-tolerant systems
that prevent information leakage, deal with data-corrupting malicious behavior and
can recover after the occurrence of transient faults, which cause an arbitrary corruption
of the system state, including the state of the mechanisms for storing information, so
long as the program’s code is still intact. To the best of our knowledge, we are the
first to show that the emulation of atomic shared memory in message-passing systems
can be done in a way that considers information privacy, resilience to data-corrupting
malicious behavior and recovery from transient-faults.

1.1 The Problem

A distributed storage system uses a decentralized set of servers for allowing clients
to access a shared object concurrently. Register emulation is a well-known method
for sharing objects. Among the three kinds of consistency requirements for registers,
atomicity is the strongest one, since it requires every sequence of concurrent access
to the register to appear sequential [45]. Another classification of register emulation
considers the number of clients that can read or write the shared register concurrently.
We consider the more general form of shared memory emulation of an atomic register
in which many clients can read and write concurrently.

1.1.1 Storage and Communication Costs

Early approaches [5, 47] provided fault-tolerance for distributed emulation of shared
registers via replication. That is, each server is to store an identical copy of the most
recent version of the shared object. These solutions require the read procedure to
include a propagation phase in which the reader updates the servers with the most
recent value they read; details appear in [47]. Since in these early approaches the
interaction between the clients and the servers includes sending of the entire replica,
high communication costs are implied. Recent advances in the area [15, 33] are less
costly than these early approaches [5, 47], because their propagation phase messages

123

218 Algorithmica (2023) 85:216–276

include only the control variables, rather than the entire replica, which includes also
the data field that encodes the user information whereas the control variables are just
a few counters related to the replicas’ bookkeeping. Moreover, using erasure coding,
the servers avoid storing the entire replica by storing at the data fields only the coded
elements, which are tailed individually to every server. This leads to further reduction
in the size of messages in all phases (see further details in [44, 56]).

1.1.2 Malicious Behavior and Privacy

The use of erasure coding facilitates, as we show in this paper, the satisfaction of
requirements related to data-corrupting malicious behavior and privacy. That is, when
a client accesses a data-corrupting malicious server, the data field of that server
response might be different from the value it originally stored (however, all other
control variables in the response and protocol actions follow the algorithm). Our pri-
vacy requirement is that the collective storage of any set of less than kthreshold servers
cannot leak information, where kthreshold is a number that we specify in Sect. 1.2.

1.1.3 Problem Description

The system has N ∈ Z
+ servers that emulate an atomic shared memory, which a set of

clients M ∈ Z
+ may access. The coded atomic storage CAS task addresses the prob-

lem of multi-writer, multi-reader (MWMR) emulation of atomic shared memory of
a single object. CAS’s safety requirement says that the algorithm’s external behavior
follows the ones of atomic memory, and CAS’s liveness requires the completion of all
(non-failing) operations independently of the node availability. From the communica-
tion and storage costs, we interpret the task of CAS to restrict the messages between
clients and server, as well as the storage records, to include only individualized coded
elements and control variables, as in [15].

1.2 Fault Model

Our message-passing system is asynchronous and it is prone to (a) crash failures of
nodes that may resume at any time in an undetectable manner, (b) packet failures, such
as omission, duplication, and reordering, and (c) data-corruptingmalicious servers can
reply with a message that its data field is different from the originally stored value.
However, all other control variables stay intact and in all other matters, data-corrupting
malicious servers do not deviate from the algorithm. Thus, the studied malicious
behavior that is corruptingdata does notmodel arbitrary (Byzantine) failures.However,
it fits cases in which the user data is very large and thus stored in memory segments
that are more prone to (soft) errors. This is relevant, for example, for approximate
memory [53], where the in-memory mechanisms for error correction are disabled in
order to save energy. Another example is when Software Guard Extension (SGE) [7,
58] protects the program code and control variables, however, the large data records
are not provided with the same enclave protection.

We assume that faulty nodes have an unlimited ability to coordinate their behavior.
However, we assume that the data-corrupting malicious adversity cannot impersonate

123

Algorithmica (2023) 85:216–276 219

non-faulty servers or clients (or modify their messages). For the sake of a simple pre-
sentation, we assume non-intersection between the data-corrupting malicious server
set and the set of servers that may crash.

The term quorum system, Q, refers to all subsets of the system nodes, such that
each quorum set Q ∈ Q satisfies the quorum system specifications. For example,
Attiya et al. [5] specify the criterion of � N

2 � < |Q|, Cadambe et al. [15] consider

kthreshold ∈ {1, . . . , N −2 f } and specify � N+kthreshold
2 � ≤ |Q|. We consider kthreshold ∈

{1 . . . , N − 2(f + e)} and specify � N+kthreshold+2e
2 � ≤ |Q| since the proposed solution

requires 2e more servers (in each quorum intersection) than the number of servers
required by Cadambe et al. We clarify that, in general, the number of faulty servers,
f + e, must be less than N/2, but, as explained above, this bound is not tight for the
case of the proposed solution.

We allow failing servers to resume operation at any time (from their last state
while possibility losing messages during their faulty period). I.e., we do not assume
detectable restarts. We assume that any failing client stops taking steps. Note that the
client identifiers are recyclable using incarnation numbers (aswe explain in Sect. 12.1).
Thus, althoughM bounds the number of clients that are concurrently active, the number
of client life cycles is unbounded for any practical purpose.

1.3 Self-Stabilization

In addition to the failures above, we also aim to recover after the occurrence of the last
arbitrary transient-fault [18]. A transient-fault can model any temporary violation of
assumptions according to which the systemwas designed to operate. This includes the
corruption of control variables, e.g., the program counter and bookkeeping counters,
as well as operational assumptions, e.g., � N+k+2e

2 � ≤ |Q|. Since the occurrence of
these failures can be arbitrarily combined, we assume these transient-faults can alter
the system state unpredictably. In particular, when modeling the system, Dijkstra [17]
assumes that these violations bring the system to an arbitrary state from which a self-
stabilizing system should recover, cf. [18]. I.e., Dijkstra requires recovery after the
last occurrence of a transient-fault and once the system has recovered, it must never
violate the task requirements.

Note that, in the presence of a transient-fault, an algorithm that is not self-stabilizing
cannot guarantee recovery within a finite time after the occurrence of the last transient-
fault. In addition, the ability to recover from transient-faults offers fault-tolerant
protection complementary to the assumption above that data-corrupting malicious
behavior cannot corrupt the control variable. Thus, in the event of corruption of a
control variable, eventual recovery is always guaranteed.

This paper assumes the following. (i) In the absence of transient faults, the scheduler
has no fairness guarantees. (ii) After the occurrence of the last transient fault, the
scheduler becomes fair for a period that is at least as long as the system recovery period.
Here, the scheduler refers to an adversarial entity that decides on the order in which
nodes take steps as well as send and receive messages. Also, the fairness property
guarantees that all non-faulty nodes can take steps as well as exchange messages
infinitely often. That is, after the recovery period, the scheduler returns to offer no

123

220 Algorithmica (2023) 85:216–276

fairness guarantees as in (i). The proposed design criteria are called self-stabilization in
the presence of seldom fairness. The motivation for assumption (i) is straightforward,
because imposing fairness can impact the system performance since there will be
a need to wait to the slowest node in the system. Note that assumption (ii) needs
to be applicable rarely (and for a bounded period) since transient faults are seldom
to occur. Note that such fairness assumptions can be facilitated by self-stabilizing
reconfiguration of the quorum system [28]. The advantage of the proposed designed
criteria is that self-stabilizing solutions for fair executions are much simpler than for
ones that have no fairness guarantees.

1.4 RelatedWork

1.4.1 Non-self-stabilizing Register Emulation in Message-Passing Systems

The literature on (non-self-stabilizing) register emulation in message-passing systems
includes single-writer multi-reader (SWMR) [5], and their multi-writer (MWMR)
counterparts [33, 47], as well as solutions that provide (non-self-stabilizing) quorum
reconfiguration [35, 38]. A review of related non-self-stabilizing solutions appears in
[4].

[26] The literature often considers either (i) unbounded storage during asyn-
chronous system runs that are not controlled by a fair scheduler, such as CASGC
[15], AWE [2], HGR [40] and ORCAS-B [31], (ii) store, during a write operation, the
entire value being written in each server, such as ORCAS-A [31], and by that incurs
a worst-case storage cost, as in [5, 47], or (iii) uses a message dispersal primitive and
a reliable broadcast primitive, such as [13], which during write operations, can let the
storage cost to become as large as the storage cost of replication, see [15] for details.
For a comprehensive review of the state-of-the-art, see [39].

In the context of self-stabilization, we cannot consider unbounded storage cost.
This paper, unlike [2, 15, 31, 40], presents a bound on the storage costs also in the
absence of a fair scheduler. Thus, our proposal goes beyond the state-of-the-art in the
case of (i) since we consider the context of self-stabilization and privacy. Moreover,
unlike [5, 13, 31, 47], during a single write operation, the added storage cost of the
proposed algorithm is similar to the ones of CASGC [15].

1.4.2 Self-Stabilizing Register Emulation in Message-Passing Systems

[26] To the best of our knowledge, there is no privacy-protecting self-stabilizing solu-
tion with write operations that do not replicate the new object version among all the
system servers.

Self-stabilizing emulation of shared registers exist [11, 19, 41]. But, they do not
consider atomicity. Dolev et al. [20] presented a self-stabilizing algorithm for emu-
lating atomic single-writer single-reader (SRSW) shared register in message-passing
systems. This work considers many-reader and many writer (MRMW) atomic regis-
ters.

123

Algorithmica (2023) 85:216–276 221

Recent solutions for shared memory emulation include practically-stabilizing emu-
lation of SWMR registers [1], and MRMW registers [10, 29]. Pseudo-self-stabilizing
emulation of atomic registers is considered in [23] for the case of SWMR.

During asynchronous system runs that are not controlled by fair schedulers, pseudo-
self-stabilizing and practically-self-stabilizing systems satisfy safety requirements
after an unbounded recovery period (yet finite in the former case). The case of asyn-
chronous system runs that are controlled by fair schedulers is not considered in [23,
26] for the case of SWMR and in [10, 29] for the case of MWMR.

We do not claim that, in the presence of a fair scheduler, the solutions in [10,
23, 26, 29] have (or have not) a bounded recovery period, but we do point out that
their message size is greater than the proposed algorithm by a multiplicative factor
of polynomial order in the number of system nodes (in addition to the fact that their
write operations replicate the new object among all servers).

Our self-stabilizing proposal has a bounded recovery period in the presence of
seldomly fair schedulers. Moreover, in the absence of transient faults (that corrupt
the control variables); our self-stabilizing solution works well in the absence of fair
schedulers. Furthermore, one can replace the type of control variables (tags) that we
use with one of the control variables in [1, 26] and abandon merely the part of our
proposal that appears in Sect. 3. This replacement is straightforward. The result will
be a practically-self-stabilizing variance of Cadambe et al. [15] that has a much better
use of storage compared to [10, 23, 26, 29] (at a costs of polynomial factor of the
message size and no bounded recovery period).

Spiegelman et al. [56] and Cadambe et al. [14] simultaneously discovered funda-
mental lower bounds on the storage cost of shared memory emulation that grow with
the degree of concurrency. Specifically, Spiegelman et al. considered data items of
D bits, concurrency degree if δ, and an upper bound on the number of storage node
failures t , they show a lower bound of Ω(min(t, δ)D) bits on the space complexity
of asynchronous distributed storage algorithms. This implies, for example, that the
asymptotic storage cost can be as high as O(δD). Note that Spiegelman et al. [56]
has some restrictions the coding structures that Cadambe et al. [14] does not have, yet
they allow a large number of rounds. Cadambe et al. [14] considers arbitrarily flexi-
ble coding structures, but restricts the number of rounds with respect to Spiegelman
et al. [56]. Our upper bound on the storage size (Sect. 11) does not contradict the
lower bound in [14, 56] and Spiegelman et al.’s Θ(min(t, δ)D) upper-bound does not
consider self-stabilization.

To the best of our knowledge, the literature in the area of coded atomic storage
[15, 16, 42–44] does not consider self-stabilization. In particular, ARES [16] supports
reconfigurable-shared atomic memory emulation that uses erasure coding with only
two rounds of message exchanges for a client operation. See [49] for a survey on (non-
self-stabilizing) reconfigurable solutions to memory emulation. We note the existence
of a self-stabilizing service for quorum reconfiguration [28] that can be combined with
the proposed solution as a possible extension.

123

222 Algorithmica (2023) 85:216–276

1.4.3 Privacy-Preservation

The CAS algorithm [15] uses erasure codes for splitting the data into different coded
elements that each server stores. As long as at least kthreshold coded-elements are
available, the algorithm can retrieve the original information. Cadambe et al. [15]
show how to use (N , kthreshold)-maximum distance separable (MDS) codes [51] for
improving communication and storage performances. (N , kthreshold)-MDS codes map
kthreshold-length vectors to an N -length ones. The CAS algorithm lets the writers to
store on N servers kthreshold-length vectors. Each of the N servers stores (uniquely) one
of the N coordinates of the (N , kthreshold)-MDS-coded information. When retrieving
the information, the algorithm can tolerate up to (N − kthreshold) erasures. We use a
variation on theCAS algorithm [15] that uses Reed-Solomon codes [48] for facilitating
a privacy-protection solution by storing on each server merely parts of the data, as in
Shamir’s secret sharing scheme [54], which we can implement by Reed-Solomon
codes [48] and a matching error correction algorithm (Berlekamp-Welch [57]).

From the point of view of privacy-protection, this work focuses on the content of
the records that users store in the system. We consider the case that a curious entity
has the power to compromise kthreshold − 1 servers, i.e., retrieve any information that
has ever arrived to them, where kthreshold is a known constant. Shamir’s secret sharing
scheme guarantees that the ability to compromise kthreshold − 1 servers does not allow
the curious entity to efficiently know anything about the content of the user records.

1.4.4 Proposed Techniques of Independent Interest

Note that our proposal enhances CASGC [15] from the privacy perspective, as well
as from the system robustness point-of-view. To that end, we use several techniques
of independent interest that facilitate this improvement.

Such techniques are needed, for example,whenour solutiondealswith the following
interesting challenge. The rate in which clients complete write operations can be
much faster than the rate in which these clients can inform all the servers about these
operations. This rate can also exceed the rate in which the servers can inform each
other about such updates. The challenge here is imposed by the fact that self-stabilizing
end-to-end protocols must assume that the communication channels have bounded
capacities due to well-known impossibility results [18, Chapter 3.2]. Our solution
overcomes this challenge using techniques that resemble the ones for converting shared
memory models to message-passing ones [18, Chapter 4.2] and an extra phase in
the writer procedure. This part of the solution is another key difference between the
proposed algorithm and the one by Cadambe et al. [15].

To the end of bounding the number records that each server needs to store, at any
point of time, a given server record is considered to be relevant only as long as the
servers use it. We show that no server store more than N + δ + 3 relevant records
during asynchronous system runs that are not necessarily controlled by a fair scheduler,
where δ is a bound on the number of write operations that occur concurrently with any
read operation; this is similar to the δ parameter defined by Cadambe et al. [15]. The
proof technique serves as a self-stabilizing alternative to existing non-self-stabilizing
algorithms that provide bounds on the number of records at the server storage, such

123

Algorithmica (2023) 85:216–276 223

as [13, 31], in a way that does not require storage costs during write operations to be
the ones of a fully replicated solution.

Georgiou et al. [37] have implemented the algorithm proposed by Cadambe et al.
[15] and the one proposed here. Their experiments on PlanetLab show that our algo-
rithm scales very well with respect to the number of servers, the number of concurrent
clients, and the replicated object size. Furthermore, they claim that our algorithm has
only a constant overhead compared to the algorithm proposed by Cadambe et al. [15].
They also claim that their experiments demonstrated a rapid recovery period that is
proportional to just a few client operations. We note that Georgiou et al. [37] provide
a validation of the analysis presented here.

1.5 Our Contributions

We present the algorithmic design for an important component for dependable dis-
tributed systems: a robust shared storage that preserves privacy. In particular, we
provide a privacy-preserving and self-stabilizing algorithm for decentralized shared
memory emulation (over asynchronous message-passing systems) that is resilient to a
wide spectrum of node and communication failures, as well as data-corrupting mali-
cious behavior. Moreover, our self-stabilizing algorithm can automatically recover
after the occurrence of transient faults that violate the assumptions according to which
the system is to behave. Concretely, we present, to the best of our knowledge, the first
solution that provides:

1. Dependable and efficient emulationof atomic registers over asynchronousmessage-
passing systems.When starting from a legitimate state, our self-stabilizing solution
can:

– Deal with communication failures The communication channels that are prone
to packet failures, such as omission, duplication, reordering, but the resulted
communication delays are unbounded, yet finite since we assume communi-
cation fairness. (That is, it might take a finite number of retransmissions, but
packets are received eventually.)

– Deal with node failuresWe show that non-failing clients can retrieve informa-
tion stored privately by the N − f non-failing servers. We do not bound the
number of failing clients but we do assume a bound of M on the number of
concurrently active clients.

– Deal with data-corrupting malicious behavior We show that the client can
retrieve the originally stored object in the presence of at most e data-corrupting
malicious servers.

– Prevent information leakage We show that the collective storage of any set of
fewer than kthreshold − 1 servers cannot reveal (any version) of the object.

2. Recovering after the occurrence of transient failures We show that our algorithm
can recover even after the occurrence of transient failures in the following cases.
The solution presentation considers two ‘attempts’ to solve the problems until the
third attempt provides a self-stabilizing solution.

123

224 Algorithmica (2023) 85:216–276

– Unbounded control variables and number records at the server storage. We
show that starting from an arbitrary system state and within O(1) time of
fair execution, the system reaches a legitimate state after which the algorithm
satisfies the CAS’s task requirements even when the scheduler stops being fair
and the execution becomes asynchronous. This ‘first attempt’ solution assumes
that the servers can store all the object versions (in addition, stale information
originated from the system starting state).

– Unbounded control variables but a bounded number of records at the server
storage: We bound the number of relevant records that any server stores, at
any point of time, by N + δ + 3 during asynchronous system runs that are not
necessarily controlled by a fair scheduler, where δ, similar to Cadambe et al.
[15], is a bound on the number of write operations that occur concurrently with
any read operation.

– Bounded control variables and number of records at the server storage The
challenge here comes from the fact that any transient fault can bring the control
variables to their maximal values. The difficulty here is that there is a need to
allow the system to perform an unbounded number of write operations after this
overflow event. We address this challenge by using a safety-preserving global
restart of the control variables (in a way that may temporarily violate liveness
but will leave the most recent version of the object intact).

Another important contribution of thiswork is the proposal of a newdesign criterion
for self-stabilizing systems, that of self-stabilization in the presence of seldom fairness.
On the one hand, the proposed design criteria consider a greater set of algorithms that
can be considered self-stabilizing when compared to other design criteria [1, 12, 23,
29, 52] that do not consider execution fairness at all, not even seldomly. On the other
hand, it is much easier to design algorithms for the proposed design criteria than the
ones in [1, 12, 23, 29, 52].

1.6 Solution Outline and Document Organization

We bring our interpretation of the system in the self-stabilization context and the
CAS task (Sect. 2.1) before bringing Cadambe et al. [15] version of CAS (Sect. 3).
We present our privacy-preserving variation of Cadambe et al.’s algorithm as a basic
result (Sect. 4).

Our self-stabilizing algorithm requires the specification of a formal model
(Sect. 2.2) and external building blocks (Sect. 5). The presentation of this algorithm
starts by considering its unbounded version (Sect. 7) together with its correctness
proof (Sect. 8). Our proof also shows that there is a bounded set of relevant records
that the servers store (Sect. 9). This bound is the basis for the bounded variation of the
proposed self-stabilizing algorithm (Sect. 10) and its cost analysis (Sect. 11).

The transformation of the unbounded solution into its bounded variation is facil-
itated by a self-stabilizing global reset that requires the participation of all nodes.
Thus, the self-stabilizing and bounded part of our contribution fits systems in which
nodes can host three different kinds of services: server, client, and reset. For the sake
of a simple presentation, we assume each node hosts exactly one instance of each of

123

Algorithmica (2023) 85:216–276 225

the three services and that the total number of nodes is simply bounded by N and
that the number of clients and servers is the same, i.e., N = M . We clarify that, at
any time, each server could be accessed concurrently by any subset of the N client
services hosted by the nodes. In addition, an extension of the proposed solution in
which nodes host any predefined number server services and any predefined number
of client services is straightforward.

The discussion (Sect. 12) includes also an elegant extension that extends our set-
tings to consider the possible recovery of failing nodes. We present self-stabilizing
implementations (Sect. 6) of the gossip and quorum services (specified in Sect. 5).
We note that the use of gossip is borrowed from the studied algorithm by Cadambe et
al. Also, as Georgiou et al. [37] demonstrated empirically, there is a straightforward
trade-off between the rate in which the gossip messages are sent and the time it takes
the system to recover after the occurrence of the last transient-fault. Thus, one can
easily avoid saturating the network bandwidth by using a low gossip rate.

2 System Settings

This section describes the system and brings its related assumptions. Section 2.1
overviews the assumptions needed for understanding the solution by Cadambe et al.
[15] (which we review in Sect. 3) and our own (non-self-stabilizing) contribution pre-
sented in Sect. 4. Section 2.2 presents the assumptions needed for our self-stabilizing
solutions and proofs presented in Sects. 5 to 11.

2.1 SystemOverview

The design criteria of self-stabilization have considerations that must be taken into
account (in addition to the ones that exist for non-stabilizing systems). Therefore,
before describing the algorithm by Cadambe et al. [15] and proposing our variation
(Sects. 2.2 to 11), this section brings the studied task (Sect. 2.1.1) and our interpretation
of the system contexts that do (Fig. 1, right), and do not (Fig. 1, left) consider privacy
and self-stabilization. We note that in the context of self-stabilization, all system
components have to follow the self-stabilization criteria. Thus, some assumptions
are refined in Sect. 2.2 towards our self-stabilizing solution.

2.1.1 Emulating Shared Objects

The network includes nodes P = {p1, . . . , pN } (processors). Each node pi ∈ P has
access to a unique identifier i and hosts either (i) a server, (ii) a client or (iii) both a
server and a client. The server has access to a storage S, which is a set of records, and
the client requests the servers to use these records for updating and retrieving the latest
version of the emulated shared object. The coded atomic storage CAS(kthreshold) task
addresses the problem of multi-writer, multi-reader (MWMR) emulation of atomic
shared memory of a single object in the above settings. The system uses erasure
coding for the sake of tolerating crash failures of at most f servers (Sect. 3.1).

123

226 Algorithmica (2023) 85:216–276

Fig. 1 A possible deployment of the CAS(kthreshold) algorithm by Cadambe et al. [15] (on the left) and the
proposed self-stabilizing variation (on the right); our contribution appears in bold

The object value is a member of a finite set V , which �log2 |V|� bits can represent.
We refer to v0 ∈ V as the default (initial) state of the emulated object. A local source
commands its client to run the reader or writer procedures, sequentially. A call to a
reader returns the current version of the object value. A call to a writer includes the
new version of the object value and returns upon completion. A writer associates each
write request with a unique tag, t ∈ T , where T = Z

+ × P and Z
+ is the set of all

positive integers. Note that T is a set for which the relation <≡ (z1 < z2) ∨ ((z1 =
z2) ∧ (i < j)) can order totally any pair of tags, (z1, pi) and (z2, p j). We denote the
default tag value, t0 < min T , as a tag that is not in T and yet it is smaller than any
other tag in T .

The detailed specification of task CAS(kthreshold) [15] and [46, Chapter 13] consid-
ers each version of the object and requires the algorithm’s external behavior to follow
the ones of atomic (linearizable) memory. An atomic shared memory object is one
where the commands to the clients and the returned values from these calls appear
as if the object is being accessed sequentially rather than via concurrent calls to the
client procedure. The detailed task specification requires the possibility to include in
the system execution serialization points, so that the trace of the complete operation
corresponds to the one of a read-write variable type. CAS(kthreshold) also requires
liveness with respect to the completion of all (non-failing) operations in any (not nec-
essarily always fair) execution in which the number of server failures is at most f ,
where kthreshold ∈ {1, . . . , N − 2 f }.

2.1.2 External Building Blocks

We handle node and communication failures, as well as transient faults using common
external building blocks.

• End-to-end protocols The implementation of the system services requires the
availability of an end-to-end protocol. Our self-stabilizing implementation of the
services below assumes the availability of self-stabilizing end-to-end protocols,
such as the ones in [22, 24]. Note that self-stabilizing end-to-end protocols assume

123

Algorithmica (2023) 85:216–276 227

that the channel has a bounded capacity due to well-known impossibility results
[18, Chapter 3.2].

• Gossip services Cadambe et al. assume the availability of a reliable gossip service.
They use this non-self-stabilizing service to propagate reliably among the servers
the tag of every object version.We consider a self-stabilizing gossip service (which
we specify in Sect. 5.1 and propose an implementation in Sect. 6). This service
lets each gossip message to overwrite the previous gossip message that is stored
in the buffers (without considering whether the previous message was delivered
to all receivers).

Our specifications are motivated by the fact that self-stabilizing end-to-end pro-
tocols must consider communication channels with bounded capacities [18, Chapter
3.2]. Therefore, due to the asynchronous nature of the system, a specific quorum
of servers might process write operations much faster than the rate in which gossip
messages arrive reliably to servers that are not part of that quorum. Since the commu-
nication channels are assumed to be bounded, it is not clear how can the writer avoid
blocking (and still deliver all gossip messages).

• Quorum services Quorum systems can be used for ensuring transaction atomicity
in a replica system despite the presence of network failures [55]. As explained in
Sect. 1.2, a quorum system, Q, refers to all subsets of P , such that each quorum
set Q ∈ Q satisfies the quorum system specifications. We consider a quorum
system that has a parameter, kthreshold ∈ {1 . . . , N − 2(f + e)}. We require that
� N+kthreshold+2e

2 � ≤ |Q|, where e is the maximal number of data-corrupting mali-
cious servers and f is a bound on the ones that can crash.

Cadambe et al. [15] assume that the operations at a given client followa “handshake”
discipline, where a new invocation awaits the response of a preceding invocation. In the
context of self-stabilization, this synchronization between clients and servers is subject
to transient faults. Thus, we specify a service that provides this “handshake” discipline
in a self-stabilizing manner (Sect. 5.1). (We offer a self-stabilizing implementation of
the service in Sect. 6).

• Reset services In the absence of transient-faults, one can safely assume that all tags
used by the algorithm are unbounded. This assumption can be made valid for any
practical setting by letting each tag use a sufficient number of bits, say, 64, because
counting (using sequential steps) from zero to maximum value of the tag will take
longer than the time during which the system is required to remind operational.
Specifically, assuming that each quorum access requires at least one nanosecond,
it would take at least 584 years until the maximum value can be reached. However,
in the context of self-stabilization, a single transient-fault can set the tag value into
one that is close to the maximum value, which we denote by zmax, regardless of
how many finite number of bits the tag can have, where zmax ∈ Z

+ is a predefined
positive integer. Thus, the proposed self-stabilizing solution uses bounded set of
tag values, i.e., T = {1, . . . , zmax} × P . (We use the same notation of T for
both variations whenever it is clear from the context whether the system considers
self-stabilization.)

123

228 Algorithmica (2023) 85:216–276

As mentioned, a single transient fault can introduce a tag value that is (close to)
the maximum of T . Therefore, there is a need to recycle obsolete tag numbers. Thus,
the proposed self-stabilizing algorithm uses a self-stabilizing global reset mechanism
that resembles the one considered in [6]. It helps the algorithm to overcome the case in
which the system state includes a tag that is (close to) the maximum value in T . This
reset mechanism leaves the storage of every server only with the most recent version
of the object and replaces its tag value with a tag that is slightly above t0. We specify
the interface between the proposed algorithm and the self-stabilizing global reset
mechanism (Sect. 5.2) and note that its liveness property requires schedule fairness.

2.2 Models

Towards a self-stabilizing solution, we refine our system assumptions. Consider an
asynchronous message-passing network in which the nodes can be modeled as finite
state-machines that exchangemessages via communication links (with bounded capac-
ity).

2.2.1 Communication Model

The network topology is of a fully-connected graph, KN , and any pair of nodes
has access to a bidirectional communication channel that, at any time, has at most
capacity ∈ N packets. Every two nodes exchange (low-level messages called) packets
to permit delivery of (high level) messages. When node pi ∈ P sends a packet, m,
to node p j ∈ P\{pi }, the operation send inserts a copy of m to channeli, j , while
respecting the upper bound capacity on the number of packets in the channel. In case
channeli, j is full, i.e., |channeli, j | = capacity, the sending-side simply overwrites
any message in channeli, j . When p j receives m from pi , the system removes m from
channeli, j . As long as that there is an m ∈ channeli, j , we say that m’s message is
in transit from pi to p j . Recall that we assume access to a self-stabilizing end-to-
end protocol [22, 24] that provides reliable (FIFO) message delivery (over unreliable
non-FIFO channels that are subject to packet omissions, reordering and duplication).

2.2.2 Execution Model

Our analysis considers the interleaving model [18], in which the node’s program is
a sequence of (atomic) steps. Each step starts with an internal computation and ends
with a single communication operation, i.e., message send or receive.

The state, si , of pi ∈ P includes all of pi ’s variables, as well as the set of all
incoming communication channels.Note that pi ’s step can change si , aswell as remove
a message from channel j,i (upon message arrival) or add a message in channeli, j
(when a message is sent). The term system state refers to a tuple of the form c =
(s1, s2, . . . , sN) (systemconfiguration),where each si is pi ’s state (includingmessages
in transit to pi).Wedefine an execution (or run) R = c0, a0, c1, a1, . . . as an alternating
sequence of system states cx and steps ax , such that each system state cx+1, except for
the starting one, c0, is obtained from the preceding system state cx by the execution
of step ax .

123

Algorithmica (2023) 85:216–276 229

Fig. 2 The fault model and liveness assumptions during the system execution

Let R′ and R′′ be a prefix, and respectively, a suffix of R, such that R′ is a finite
sequence, which starts with a system state and ends with a step ax ∈ R′, and R′′ is an
unbounded sequence, which starts in the system state that immediately follows step ax
in R. In this case, we can use ◦ as the operator to denote that R = R′ ◦R′′ concatenates
R′ with R′′.

2.2.3 Fault Model

We model a failure as a step that the environment takes rather than the algorithm. We
consider failures that can and cannot cause the system to deviate from fulfilling its
task (Fig. 2). The set of legal executions (LE) refers to all the executions in which
the requirements of the task T hold. For example, TCAS(kthreshold) denotes our studied
task of shared memory emulation and LECAS(kthreshold) denotes the set of executions
in which the system fulfills TCAS(kthreshold)’s requirements. We say that a system state
c is legitimate when every execution R that starts from c is in LE . When a failure
cannot cause the system execution (that starts in a legitimate state) to leave the set
LE , we refer to that failure as a benign one. We refer to any temporary violation of
the assumptions according to which the system was designed to operate (as long as
program code remains intact) as transient faults.We note that transient faults can cause
the system execution to leave the set LE . Self-stabilizing algorithms deal with benign
failures (while fulfilling the task requirements), and they can also recover after the
occurrence of transient faults within a bounded period.

• Benign failures The algorithmic solutions that we consider are for asynchronous
(message-passing) systems and thus they are oblivious to the time in which the
packets arrive and depart (and require no explicit access to clock-based mecha-
nisms, which may or may not be used by the system underlying mechanisms, say,
for congestion control at the end-to-end protocol).

Communication fairness. Recall that we assume that the communication channel han-
dles packet failures, such as omission, duplication, reordering (Sect. 2.2.1).We assume
that if pi sends amessage infinitely often to p j , node p j receives thatmessage infinitely
often. We call the latter the fair communication assumption. Note that fair communi-
cation provides no bound on the channel communication delays. It merely says that a
message is received within some finite time if its sender does not stop sending it (until
it receives the acknowledgment message).

123

230 Algorithmica (2023) 85:216–276

Node failure.We assume that the failure of node pi ∈ P implies that its hosted client
and server stops sending and receiving messages (and it also stops executing all other
steps). We assume that the number of failing nodes that host servers is bounded by f
and that 2 f < N ; for the sake of guaranteeing correctness [46]. We bound only by N
the number of nodes that host clients and fail. Moreover, failing nodes that host servers
resume (without detection) within some unknown finite time and reset the server state
machines by removing all stored records. However, nodes that host clients do not
resume (or allow the invocation) any client process until they call a procedure that we
name localReset(). (We specify how a global reset mechanism uses this procedure in
Sect. 5.2. Moreover, Sect. 12.1 provides an elegant extension that lets nodes to recycle
their client identifiers and thus the above assumption is not restrictive.)

• Transient faults We consider arbitrary violations of the assumptions according to
which the system and the communication network design to operate. We refer to
these violations and deviations as transient faults and assume that they can corrupt
the system state arbitrarily (while keeping the program code intact). We preserve
the occurrence of a transient fault as a rare event. Thus, our model assumes that the
last transient fault occurred before the system execution started. Moreover, it left
the system to start in an arbitrary state (while keeping the program code intact).

2.2.4 Dijkstra’s Self-Stabilization Criterion

An algorithm is self-stabilizingwith relation to the task LE , when every (unbounded)
execution R of the algorithm reacheswithin a bounded period a suffix Rlegal ∈ LE that
is legal. That is, Dijkstra [17] requires that ∀R : ∃R′ : R = R′ ◦ Rlegal ∧ Rlegal ∈ LE ,
where the length of R′ is polynomial in n. We say that a system execution is fair
when every step that is applicable infinitely often is executed infinitely often, and
fair communication is kept. Self-stabilizing algorithms often assume that R is a fair
execution. Wait-free algorithms guarantee that non-failing operations always become
(within a finite number of steps) complete even in the presence of benign failures.
Note that fair executions do not consider crash failures (that were not detected by the
system who then excluded these failing nodes from reentering the system). Therefore,
we cannot demonstrate that an algorithm is wait-free by assuming that the system
execution is always fair.

2.2.5 Self-Stabilization in the Presence of Seldom Fairness

As a variation of Dijkstra’s self-stabilization criterion, we propose design criteria
in which (i) any execution R = RrecoveryPeriod ◦ R′ : R′ ∈ LE , which starts in an
arbitrary system state and has a prefix (RrecoveryPeriod) that is fair, reaches a legitimate
system state within a bounded prefix RrecoveryPeriod . (Note that the legal suffix R′ is
not required to be fair.) Moreover, (ii) any execution R = R′′ ◦ Rglobal Reset ◦ R′′′ ◦
Rglobal Reset ◦ . . . : R′′, R′′′, . . . ∈ LE in which the prefix of R is legal, and not
necessarily fair but includes at most O(N · zmax) (Sect. 2.1.2) write operations, has a
suffix, Rglobal Reset ◦R′′′ ◦Rglobal Reset ◦ . . ., such that Rglobal Reset is required to be fair
and bounded in length but might permit the violation of liveness requirements, i.e.,

123

Algorithmica (2023) 85:216–276 231

a bounded number of operations might be aborted (as long as the safety requirement
holds). Furthermore, R′′′ is legal and not necessarily fair but includes at least zmax
write operations before the system reaches another Rglobal Reset . Since we can choose
zmax ∈ Z

+ to be a very large value, say 264, and the occurrence of transient faults
is very rare, we refer to the proposed criteria as one for self-stabilizing systems that
their executions fairness is unrequited except for seldom periods. Next, we define how
we bound the length of RrecoveryPeriod and Rglobal Reset , which are the complexity
measures.

2.2.6 Complexity Measures

Themain complexitymeasure of self-stabilizing systems is the time it takes the system
to recover after the occurrence of the last transient fault. In detail, in the presence of
seldom fairness this complexity measure considers the maximum of two values: (i)
the maximum length of RrecoveryPeriod , which is the period during which the system
recovers after the occurrence of transient failures, and (ii) the maximum length of
Rglobal Reset . We consider systems that use a bounded among of memory and thus as
a secondary complexity measure, we bound the memory that each node needs to have
(after considering a version that does not consider such bounds, as in Cadambe et al.
[15]). However, the number of messages sent during an execution does not have an
immediate relevance in the context of self-stabilization, because self-stabilizing sys-
tems never stop sending messages [18, Chapter 3.3]. Next, we present the definitions,
notations and assumptions related to the main complexity measure.

• Message round-trips Let c ∈ R be a state, such that immediately after c, node
pi sends a message m to p j . Moreover, immediately after c′ (that follows c), p j

receives message m (or a message that was sent from pi to p j after m) and sends
a response message rm back to pi . Then, immediately after state c′′ ∈ R (that
appears after c′ in R), pi receives p j ’s response, rm (or a response that was sent
from p j to pi after rm). If c, c′ and c′′ do appear in R, we say that pi has completed
with p j a round-trip of message m.

• Completing client roundsAcall to a client procedure results in a number of requests
that the client sends to all servers and then waits for the server responses. The
client may decide not to wait for responses from all servers; instead, it can decide
to continue with the next phase or to reach the end of the procedure execution.
We say that a client starts a new round when, after a finite period of internal
computation, it sends the first request (of any phase) to the servers. Moreover,
this client ends this round when it finished waiting for the server responses (and
perhaps also reaches the procedure end; regardless of whether it enters branches).
The client at node pi performs a complete round when it starts a new round in
cstart ∈ R and ends it in cend ∈ R.

We are also interested in the cases of incomplete operations, which do not have
necessarily a proper start to their first round. In this case, we say that the client at
node pi completes a round when it reaches cend ∈ R. Note that whenever pi does not
fail, cend is well-defined, because it refers to the case in which pi stops waiting for
the server responses and moves on (to the next phase or reaching the end of the client

123

232 Algorithmica (2023) 85:216–276

procedure). For the case in which pi fails, we define cend to be the system state that
immediately follows the step in which pi fails.

• Complete node and server iterationsRecall the fact that self-stabilizing algorithms
can never stop communicating [18, Chapter 3.3]. The program of a self-stabilizing
algorithm often includes a do-forever loop or, as in case of the proposed algorithm,
a repeated gossip exchange among the servers. Next, we define the term complete
iteration, which refers to such gossip exchanges.

Node complete iterations. Let P(i) ⊆ P be the set of nodes with whom pi completes
a message round trip infinitely often in R. Suppose that immediately after the system
state cstart ∈ R, node pi takes a step that includes the execution of the first line
of the do forever loop (or of the gossip procedure), and immediately after system
state cend ∈ R, it holds that: (i) pi had finished the iteration that it had started in
cbegin (regardless of whether it enters branches), and (ii) the message m j completes
its round trip, where m j refers to any message that pi sends during that iteration to
node p j ∈ P(i). In this case, we say that pi ’s iteration starts at cbegin and ends at cend .
Server complete iterations. The servers repeatedly receive messages from all other
non-failing servers and then, after some internal processing, send messages to all
other servers. The successful arrival of such a message to any server results again in
some internal processing and then sending messages to all other servers. We say that:
(i) the iteration of the server at pi ∈ P starts when pi first gets a message from another
server, (ii) after some internal processing, pi sends a message to every other server at
p j , (iii) this iteration continues toward letting p j to receive that message (or a later
message) from pi ; at least once, and then (iv) letting p j ’s response (or a later message
from p j) to arrive at pi and by that ending this server iteration. Given an execution
R, we say that its prefix R′ includes a complete iteration of the server at pi ∈ P if R′
includes pi ’s iteration start and then (after that start) and pi ’s iteration end appears in
R′.

• Asynchronous cycles We measure the time between two system states in a fair
execution by the number of (asynchronous) cycles between them. The definition
of (asynchronous) cycles considers the term of complete iterations. The first (asyn-
chronous) cycle (with round-trips) of fair execution R = R′′ ◦ R′′′ is the shortest
prefix R′′ of R, such that each non-failing node and server in the network executes
at least one complete iteration in R′′ (which requires the exchange of messages,
as specified above), where ◦ is the concatenation operator (Sect. 2.2.2). Moreover,
each node that runs a client procedure during R′′ must complete within R′′ at least
one client round. The second cycle in execution R is the first cycle in execution
R′′, and so on.

3 Background

Cadambe et al. [15] use erasure codes for emulating shared memory and use quorums
to distinguish among writer, server, and reader nodes. Their algorithm allows multiple
writers, using a (N , kthreshold)maximum distance separable [51] (MDS) code, to write

123

Algorithmica (2023) 85:216–276 233

data concurrently to the group of servers while ensuring atomicity and liveness. This
section reviews the definition of (N , kthreshold) MDS code before explaining how to
use them for secret sharing in a slightly adapted variation of Cadambe et al. [15].

Cadambe et al. [15] divide the data into a number of coded elements. Each server
stores at most one coded element. Cadambe et al. guarantee that the reader client can
fetch the necessary number of coded elements, such that the reader can retrieve the
original data. Given two positive integersm, kthreshold ∈ Z

+ : kthreshold < m, Cadambe
et al. consider an (m, kthreshold) Maximum Distance Separable (MDS) code that maps
a kthreshold-length vector (the input) to an m-length vector (the output). The aim is that
after altering arbitrarily kthreshold coordinates of the output vector, a decoding algorithm
can still retrieve the input vector. This way, Cadambe et al. use an (m, kthreshold) code
for storing the input vector on m servers, i.e., the server at pi stores the output’s
i-th coordinate, because the decoding algorithm is resilient to (m − kthreshold) node
failures. We bring the definition of (m, kthreshold) MDS code (Sect. 1) before proving
the Cadambe et al.’s CAS(kthreshold) algorithm (Sect. 3.2).

3.1 MaximumDistance Separable (MDS) Codes

Let A be an arbitrary finite set and S ⊆ {1, 2, . . . ,m}. Denote byπS the natural projec-
tion mapping from Am onto S’s corresponding coordinates, i.e., S = {s1, s2, . . . , s|S|},
where s1 < s2 . . . < s|S|, and define πS : Am → A|S| as πS(x1, x2, . . . , xm) =
(xs1 , xs2 , . . . , xs|S|).

Definition 1 (Maximum Distance Separable (MDS) code) Let A be a finite set and
m, kthreshold ∈ Z

+ : kthreshold < m two positive integers. An (m, kthreshold) code over A
is a mapΦ : Akthreshold → Am . An (m, kthreshold) codeΦ over A is said to beMaximum
Distance Separable (MDS) if, for every S ⊆ {1, 2, . . . ,m}, such that |S| = kthreshold ,
there is a function Φ−1

S : Akthreshold → Akthreshold , such that Φ−1
S (πS(Φ(x)) = x for

every x ∈ Akthreshold , where πS is the natural projection mapping.

Cadambe et al. [15] refer to each of the coordinates of the output of an (m, kthreshold)
code Φ as a coded element. Further details about Φ and erasure code appear in [15].
We extend the use of (m, kthreshold) MDS code to secret sharing (Sect. 4.1).

3.2 Cadambe et al.’s CAS(kthreshold) Algorithm

Cadambe et al. [15] present a quorum-based algorithm for implementing the
CAS(kthreshold) task. Algorithm 1 is our interpretation of the non-self-stabilizing
CAS(kthreshold) algorithm by Cadambe et al. [15] with slight adaptations for the pro-
posed secret sharing scheme.

3.2.1 External Building Blocks: Quorum and Gossip Communications

Cadambe et al. [15] specify � N+kthreshold
2 � ≤ |Q| for any kthreshold ∈ {1, . . . , N − 2 f }

and show Lemma 1.

123

234 Algorithmica (2023) 85:216–276

Algorithm 1:Anon-self-stabilizingCAS(kthreshold) algorithm (that is based onCadambe et al.with adaptations

for the proposed secret sharing scheme), code for pi ’s client and server.

1 The client: // At any time, pi ’s client is a writer, a reader, or none but not both wri ter(s): ; /* The writer
stores secret s as the new version of the shared object */
/* Query for finalized tags and after hearing from a quorum get the maximal

tag */
2 let (z, j) := max({t ′ : (t ′, •) ∈ qrmAccess((⊥, ⊥, ‘qry’))}); /* Obtain coded elements

w1, w2, . . . , wN, such that pi ∈ P has a server, by applying the Φ to the secret
s. Then, send (t, wi , ‘pre

′) to every server and wait for a quorum of replies. */
3 qrmAccess(((z + 1, i), {Φp j (s)}p j∈P , ‘pre’)); /* The prewrite phase */

/* For each server, send (t, ‘null′,‘fin’) and wait for a quorum of replies. */
4 qrmAccess(((z + 1, i),⊥, ‘fin’)); /* The finalize phase */
5 return;

6 reader(): ; /* The reader retrieves the current object version, or ⊥ upon
failure */

7 let t := max({t ′ : (t ′, •) ∈ qrmAccess((⊥, ⊥, ‘qry’))}) ; /* Query as in line 67 */
/* For each server, send (t,⊥,‘fin’) and wait for a quorum of replies with

the requested coded elements, which are associated with tag t. */
8 let Q := qrmAccess((t,⊥, ‘fin’)) // Ask and wait for finalized records from a quorum /* Test whether at

least kthreshold replies include coded elements so that Φ−1 can decode the
secret before returning it. If the test fails, return ⊥. */

9 if |{(t, w, ‘fin’) ∈ Q : w �= ⊥}| ≥ kthreshold then return(Φ−1(w : {(t, w, s) ∈ Q : w �= ⊥}));
10 else return ⊥;

11 The server: S ⊂ T × (W ∪ {⊥}) × D is a record set, where T = Z
+ × P is the set of tags, W the set of coded

words and D = {‘pre’, ‘fin’} the set of phases. When S = ∅, we use the default triple (t0, wt0,i , ‘fin’) when

reporting on the triple with the highest locally known tag;

12 upon query arrival from p j ’s client to pi ’s server do {Reply with (max Phase(‘fin’),⊥, ‘qry’), where
max Phase(‘fin’) refers to the highest tag in any record in S that has a label ‘fin’ (whether that record includes a
coded element or not)}

13 upon pre-write m := (t, w, ‘pre’) arrival from the p j ’s writer to pi ’s server do
14 if �(t, •) ∈ S then S ← S ∪ {(t, w, ‘pre’)}; /* add the arriving record to S */
15 Moreover, acknowledge the arriving record by calling reply(j ,m).

16 upon finalize m = 〈t, ⊥, ‘fin’〉 arrival from p j ’s writer to pi ’s server do
17 if ∃(t, w, ‘pre’) ∈ S then /* update the record (t, w,‘pre’) to (t, w,‘fin’) in S */
18 S ← (S \ {(t, w, ‘pre’)}) ∪ (t, w, ‘fin’)
19 else add (t,⊥, ‘fin’) to S;
20 Moreover, acknowledge to the writer by calling reply(j ,m) and gossip the message (t) to all other servers by

calling gossip(t).

21 upon finalize m := (t, ⊥, ‘fin’) arrival from p j ’s reader to pi ’s server do
22 if ∃(t, wi , •) ∈ S then
23 S ← (S \ {(t, w, •)}) ∪ {(t, w, ‘fin’)} ; /* update the record (t, wi , •) to (t, wi ,‘fin’) in

S */
24 acknowledge the reader with (t, wi , ‘fin’);
25 else
26 S ← S ∪ {(t,⊥, ‘fin’)} ; /* add (t,⊥,‘fin’) to S */
27 acknowledge to the reader by calling reply(j ,m);

28 Moreover, gossip the message (t) to all other servers by calling gossip(t).

29 upon gossip (t) arrival from p j ’s server to pi ’s server do {if ∃(t, •) ∈ S then update the record (t, •) to
(t, •, ‘fin’) in S else add (t, ⊥, ‘fin’) to S}

Lemma 1 (Lemma 1 in [15]) Suppose that kthreshold ∈ {1 . . . , N−2 f }. (i) If Q1, Q2 ∈
Q, then |Q1 ∩ Q2| ≥ kthreshold . (ii) If the number of failed servers is at most f , then
Q contains at least one quorum set Q of non-failed servers.

123

Algorithmica (2023) 85:216–276 235

Algorithm 1 accesses the servers via a call to the function qrmAccess(), which
returns a set of replies (records) from at least a quorum of servers. Algorithm 1 also
assumes the availability of a reliable gossip service, which allows the servers to send
their most recent finalized tags t ∈ T .

3.2.2 Local Variables

The state of the server includes a set of records (t, w, label) ∈ S ⊂ T ×(W∪{⊥})×D
(line 11), where the term label d ∈ {‘pre’, ‘fin’} refers to metadata that records the
phases of the shared-object updates. The clients carry these updates sequentially; in
each phase, they access the quorum system and do not end the phase before getting
replies from at least a quorum. Algorithm 1 assumes that when S = ∅, the default
triple (t0, wt0,i , ‘fin’) is included in S when reporting on the triple with the highest
locally known tag.

3.2.3 Protocol Phases

Both the writer and reader protocols use the query phase for discovering a recent
record with the label ‘fin’ as its metadata (line 12). During the pre-write phase of write
operations (line 13), the writer makes sure that at least a quorum of servers, say Qpw,
store each a coded element with the tag t ′ and label ‘pre’. Note that immediately at
the end of the prewrite phase, the stored record cannot be accessed by the readers,
because when a server replies to queries it only considers records with finalized tags
(line 12). However, after the prewrite phase, the writer starts the finalize phase (lines 4
and 16), which diffuses the records with the label ‘fin’ and the tag t ′ and then waits
for a quorum of servers, say Q f w, to reply. Immediately after this finalized phase,
any query phase (of any read or write operation) will retrieve a tag that is at least as
high as t ′ (because by Lemma 1 it holds that Qpw and Q f w must interest) and in that
sense, tag t ′ is viable to all clients. Moreover, the existence of a stored record with
the label ‘fin’ implies that the coded elements associated with tag t ′ are stored by at
least a quorum of servers, which is Qpw. This property allows the reader to retrieve at
least kthreshold unique coded elements (line 67 to 10), which are stored at the servers of
Qpw. Cadambe et al. [15] set the value of kthreshold to kthreshold (whereas we consider
another value in Sect. 4). We also note that the reader further facilitates the diffusion
of finalized tags to a quorum (line 8). This and the gossip messages (line 29) allow the
system to complete the diffusion of finalized records in the presence of crash failures
of writers.

Corollary 1 ([15], Theorem 1) Algorithm 1 emulates a shared atomic memory for
multi-writer and multi-reader.

4 Basic Results

We present a variance that adds privacy provision to the implementation proposed by
Cadambe et al. [15]. Our variation allows at most e data-corrupting malicious servers

123

236 Algorithmica (2023) 85:216–276

and at most f failures in an asynchronous message-passing system. In this section,
we consider data-corrupting malicious servers that can send corrupted secret shares to
readers, but not corrupted tags or labels, i.e., when a data-corrupting malicious server
replies with a tuple (t, w, d), only w might be corrupted. Writers divide secrets and
submit the resulting secret shares to the servers. Servers store their secret shares and
deliver them to the readers upon request. In Sects. 2.2 to 11, we extend our proposal
to withstand crash failures and server-side data-corrupting malicious behavior to also
consider recovery after the occurrence of transient faults.

4.1 Using (m, kthreshold)MDS Codes for Secret Sharing

The (N , kthreshold)-MDS code enables the reader to restore the data under the presence
of N−kthreshold

2 stop-failed servers. The (N , kthreshold)-threshold scheme for integers
kthreshold and N , such that 0 < kthreshold ≤ N , is defined by Shamir [54] and splits
a secret s into N secret shares {si }i∈{1,...,N }. This scheme requires that there exists
a mapping from any S ⊆ {si }i∈{1,...,N } with |S| ≥ kthreshold to the secret s, but it is
impossible to determine s from a set of less than kthreshold secret shares.

Let K be a finite field, such that its size |K | is a prime number. The (N , kthreshold)-
Reed-Solomon code, Φ : S → W , transforms the input data, i.e., one element of
a kthreshold dimensional vector space, S, over K , into N dimensional vector space,
W , over the same field, K , where kthreshold and N are as above. We call N the
block length. We denote by kthreshold the message length. The Berlekamp-Welch algo-
rithm, Φ−1, can correct (N , kthreshold)-Reed-Solomon codes within O(N 3) time in
the presence of e errors and f erasures, as long as 2e + f < N − kthreshold + 1
[57], as described by Gemmell and Sudan [34]. Note that (N , kthreshold)-Reed-
Solomon codes are a (N , kthreshold)-threshold scheme [48]. To that end, the input
vector (σ1, . . . , σkthreshold) ∈ S consists of the secret σ1 and randomly chosen
values σ2, . . . , σkthreshold from a uniform distribution over S. We use Φ to map
(σ1, . . . , σkthreshold) to the secret shares (w1, . . . , wN) ∈ W .

4.2 Quorums of (kthreshold + 2e)-Overlap

We require that any quorum Q ∈ Q has at least � N+kthreshold+2e
2 � servers. Lemma 2

uses the quorum definition to show that any two different quorums share at least
kthreshold + 2e servers, rather than just kthreshold of them as in Cadambe et al. [15].
These quorums guarantee that once a writer finishes its write operation, any reader
can retrieve at least kthreshold + 2e secret shares and reconstruct the secret. The lemma
also shows, similar to Cadambe et al. [15], that any two different quorums share at
least kthreshold + 2e servers. This guarantees that after a writer wrote to a quorum, the
readers can read a set of coded elements that allows the secret reconstruction.

Lemma 2 (Variation of [15], Lemma1) Suppose that kthreshold ∈ {1 . . . , N−2(f +e)}.
(1) If Q1, Q2 ∈ Q, then |Q1∩Q2| ≥ kthreshold+2e. (2)The existence of such a kthreshold
implies the existence of Q ∈ Q such that Q has no crashed servers.

123

Algorithmica (2023) 85:216–276 237

Proof (1) Let Q1, Q2 ∈ Q, then |Q1 ∩ Q2| = |Q1| + |Q2| − |Q1 ∪ Q2| ≥
2

⌈
N+kthreshold+2e

2

⌉
−N ≥ kthreshold +2e. (2) Since there are at most f crashed servers,

we can show that without such f servers, there are still enough servers alive for a quo-

rum. It follows that N − f ≥ N −
⌊
N−kthreshold−2e

2

⌋
=

⌈
N+kthreshold+2e

2

⌉
.

By Lemma 2, the atomicity and liveness analysis in [15, Theorem 5.2 to Lemma
5.9] also holds when Algorithm 1 uses (kthreshold + 2e)-overlap quorums rather than
kthreshold , as Cadambe et al. [15] indented.

4.3 Privacy-PreservingVariation of Cadambe et al.

We say that a secret sharing protocol is t-privatewhen a set of at most t servers cannot
compute the secret, as in [8]. Note that a 0-private protocol preserves no privacy.When
the presence of at most s failing servers (which do not deviate from the algorithm
behavior) and at most t data-corrupting malicious servers (which deviate from the
algorithm behavior only by modifying the data field of their replies to the clients), we
say that the protocol is (s, t)-robust. This notion is similar to t-resilience [8].

In order to tolerate at most e (secret share corruptions made by) data-corrupting
malicious servers, we propose Algorithm 1 as a variation of Cadambe et al. [15]
CAS algorithm that uses (kthreshold + 2e)-overlap quorums and (N , kthreshold)-Reed-
Solomon codes [50], which is an (N , kthreshold)-MDS [51] code that Cadambe et al.
[15] use. By the atomicity and liveness analysis for the case of (kthreshold +2e)-overlap
quorums (the remark after Lemma 2), the reader retrieves kthreshold + 2e unique secret
shares with at most e manipulated shares.

4.3.1 Robustness

Robustness is added by the ability of the Berlekamp-Welch algorithm to correct errors
in theReed-Solomon codes.Note that data-corruptingmalicious servers only introduce
corrupted secret shares. Lemma 3 shows Algorithm 1’s resilience against up to e data-
corrupting malicious servers and up to f stop-failed servers.

Lemma 3 For kthreshold ∈ {1 . . . , N − 2(f + e)}, Algorithm 1 is (f , e)-robust.

Proof If a writer issues a query, pre-write, and finalize operations it does not retrieve
the secret from the server. Thus, writers are immune to data-corrupting malicious
servers. Servers do not exchange secrets with other servers and, thus, are not directly
affected by data-corrupting malicious servers.

The rest of the proof focuses on showing that when reconstructing the secret, the
read operation πr is able to be resilient against corrupted secret shares that data-
corrupting malicious nodes may send. To do this, the reader queries all the servers
about the maximal finalized tags and waits for a response from at least a quorum of
servers. Algorithm 1 selects the maximum tag, t , for the returned set of tags. This
tag t is uniquely associated with a write that reached the finalize phase before πr ’s
query. The read operation πr then sends a finalize command on its own and waits for a
quorum of servers to respond. Note that the reader merely collects secret shares from

123

238 Algorithmica (2023) 85:216–276

a quorum of servers, but never updates coded elements that the servers store, since
πr ’s query and finalize records only contain a ⊥-value in place of the coded elements,
which are the secret shares. By Lemma 2 and Corollary 1, it follows that any reader
pi receives at least kthreshold + 2e secret shares from the finalize phase. Out of these
kthreshold +2e secret shares, at most emight be corrupted. This is the case even if up to
f servers are failing. Therefore, the reader can decode the secret from this collection of
kthreshold +2e responses by applying the Berlekamp-Welch error-correction algorithm
[57].

4.3.2 Privacy

Our approach ensures the privacy of the secret among servers. Lemma 4 shows that a
group of less than kthreshold servers are not able to reconstruct the secret by combining
the secret shares they have stored locally.

Lemma 4 For kthreshold ∈ {1 . . . , N−2(f +e)}, Algorithm 1 is (kthreshold−1)-private.

Proof Let t be a tag and kthreshold > 1. A set of kthreshold − 1 servers store together
kthreshold − 1 secret shares associated with the tag t . Since the secret shares encode a
secret using Reed-Solomon codes, it is impossible to compute the original secret with
less than kthreshold secret shares [48]. The case of kthreshold = 1 implies that the secret
shares are the secret itself and, thus, privacy is compromised, i.e., it is 0-private. It
follows that Algorithm 1 is (kthreshold − 1)-private.

Note that in the case of kthreshold = 1, even if privacy is not protected, it is still possible
to decipher correctly corrupted secret shares. This holds because the reader blocks until
it reads at least 1 + 2e secret shares and, thus, the additional 2e secret shares contain
redundant information that allows the success of the Berlekamp-Welch code for error
correction.

5 External Building Blocks

The proposed algorithm uses a number of external building blocks, which we specify
next.

5.1 Specifications of Gossip and Quorum Services

We consider a gossip functionality that has the following interface. Servers can send
gossip messages msg by calling gossip(msg). When a gossip message arrives, the
receiving server raises the gossip arrival event with a set {gossip[k]}pk∈P that includes
the most recently received message from every server. For the sake of simple presen-
tation, we allow the server at node pi to use the item gossip[i] for aggregating the
gossip information that it later gossips to all other servers. The gossip functionality
that we consider guarantees the following: (a) every gossip message that the receiver
delivers to its upper layer was indeed sent by the sender, and (b) such deliveries occur

123

Algorithmica (2023) 85:216–276 239

according to the communication fairness guarantees (Sect. 2.2.3). That is, our gossip
service is unreliable, as opposed to the one used by Cadambe et al. [15].

We consider a system in which the clients and servers behave according to the
following terms of service. At any time, any node runs only at most one client (that
is either a writer or a reader). That client calls the function qrmAccess() sequentially.
Moreover, the server algorithm acknowledges (by calling reply()) every request. For
this client-server behavior, the quorum-based communication functionality guarantees
the following. (a) At least a quorum of servers receive, deliver, and acknowledge every
request. (b) The (non-failing) requesting client receives at least a quorum of these
acknowledgments. (c) Immediately before the call to qrmAccess() returns, the client-
side of this service clears its state from information related to the request. For the sake
of simple presentation, we allow the client to call qrmAccess(msg) with two kinds of
parameters; msg is either a single message to be sent to all servers, such as in the case
of a query request, or a vector that includes an individual message for each server,
such as in the case of a prewrite request.

We detail the above requirements in Definition 2 and use Theorem 1 (Sect. 6) in
the correctness proof of the proposed algorithm.

Definition 2 (Legal executionof the gossip andquorumservices) Let R be an execution
of the algorithm that provides gossip and quorum services in which there is a client at
pi ∈ P , a server at p j ∈ P and another server at pk ∈ P .

– Correct behavior of the gossip functionality. Suppose that (1) every message that
pk delivers to the upper layer as a gossip from p j was indeed sent by p j earlier in
R. Moreover, (2) such deliveries occur infinitely often in R. In this case, we say
that the behavior of the gossip functionality from the server at p j to the one at pk
is correct.

– Terms of service for the quorum-based communication functionality. Suppose that
in R, at any time, any node runs only at most one client (that is either a writer or
a reader). Moreover, that client calls the function qrmAccess() sequentially, i.e.,
only after the return from the call to qrmAccess() may the client call qrmAccess()
again. Furthermore, suppose that the server algorithm acknowledges (by calling
reply()) every request that was delivered to it. In this case, we say that R satisfies
the terms of service of the quorum-based communication functionality.

– Correct behavior of the quorum-based communication functionality. Suppose that
the client at pi sends a request, i.e., pi calls the function qrmAccess() in step
aqrmAccess ∈ R. Moreover, after aqrmAccess , execution R includes steps (i) to (v),
where (i) refers to the steps in R in which at least a quorum of servers receive
aqrmAccess’s request, (ii) refers to steps in R in which at least a quorum delivers
aqrmAccess’s request, (iii) refers to steps in R in which at least a quorum acknowl-
edges aqrmAccess’s request and (iv) refers to steps in R in which the client at pi
receives at least a quorumof these acknowledgments toaqrmAccess ’s request,which
results in (v) a step in R in which pi lets the function (which pi had previously
called in step aqrmAccess) to return. Furthermore, any such return is only the result
of the above sequence of steps (i) to (v). In this case, we say that the function-
ality of quorum-based communication is correct. In addition, immediately before

123

240 Algorithmica (2023) 85:216–276

the call to qrmAccess() returns, the client-side of this service clear its state from
information related to the request.

– A legal execution of gossip and quorum services. Let R′ and R′′ be a prefix, and
respectively, a suffix of R, such that R = R′ ◦ R′′ is an execution of gossip and
quorum services that satisfies the terms of service of the quorum-based communi-
cation functionality. We say that R′′ is legal when it presents: (1) a correct gossip
functionality from the server at p j to the server at pk , and (2) a correct functionality
of quorum-based communication with respect to the client at p j .

Section 6 presents a self-stabilizing gossip and quorum services that implements
that above requirements (Definition 2).

5.2 Self-Stabilizing Global Reset

The proposed algorithm uses the reset mechanism for dealing with the case in which
the system includes a tag of (zmax, j) : p j ∈ P (Sect. 2.1.2). We note that the
reset mechanism requires the participation of all the nodes in the network, i.e., they
require execution fairness (Sect. 2.2.4).We specify the interface between the proposed
algorithm and the self-stabilizing global reset mechanism.

5.2.1 The localReset() and globalReset() Functions

During an execution that is legal (with respect to the reset mechanism), the self-
stabilizing global reset process starts when any node, which we refer to as the (reset)
initiator, calls the globalReset(t) function; concurrent calls are allowed. The reset
mechanism lets every pair of nodes exchange messages infinitely often so that it can
make sure that all nodes complete the different phases of the reset process, which starts
immediately after the first call to globalReset(). In the first phase, all client and server
processes are disabled, and each node calls the function localReset(). In the second
phase, these processes are enabled, the reset process ends, and the system resumes
normal operation.

We assume that every machine, such as a server or a client, implements the function
localReset(t). For the case of the servers, this local reset procedure removes any record
from the server storage other than the ones with the tag t and then replaces the tag
t = (z, k) in that record with the tag (1, k). Note that when t = t0 (Sect. 2.1.1), no
record is kept in the server storage. For the case of clients, the call to localReset(t)
simply stops any client operation and ignores the argument t . The requirements below
specify the set of legal executions. Note that the system has to reach a safe system
state even when no global reset was (properly) initialized, e.g., no node has called
globalReset(), but still, some nodes are performing reset due to transient faults.

5.2.2 Requirements

Within a bounded number of asynchronous cycles from the first step in R that includes
a call to globalReset(t), the reset service disables all hosted processes, which are the
servers and clients, and resets these processes by calling their localReset(t) functions,

123

Algorithmica (2023) 85:216–276 241

which abort all read and write operations. Moreover, every node cleans its incoming
and outgoing channels, e.g., it fills these channels with reset messages so that non-
reset-related messages are absent from these channels, as in [18, Chapter 3.2]. (By
reset messages wemeanmessages that their type is only used by the reset mechanism.)
Then, the reset mechanism enables every (local) machine.

We further require the following.We say that a given system state is reset-freewhen
all communication channels do not include reset-related messages, and all machines
(clients and servers) are enabled. Given execution R of the system, we say that R does
not include an explicit reset when throughout R no node pi ∈ P calls globalReset().
Suppose that execution R does not include an explicit reset and that all of its system
states are reset-free. In this case, we say that R does not include a spontaneous reset.
An execution R that neither contains a spontaneous reset, nor an explicit reset, is
reset-free. When execution R does include (a spontaneous or an explicit) reset, we
require R to be done with reset within a bounded number of Ψ asynchronous cycles.
Namely, (starting from an arbitrary system state) within Ψ asynchronous cycles, the
system reaches a system state after which the execution is reset-free.

5.2.3 Possible Implementations

The proposed algorithm uses a self-stabilizing global reset mechanism that resembles
the one by Awerbuch et al. [6], which assume fair scheduling throughout the execution
of the procedure. Another way to go is to use a self-stabilizing consensus algorithm
[9], which consider a weaker design criteria for practically-self-stabilizing systems.
Since similar mechanisms exist and they are not hard to extend, so that the above
specifications aremet, we do not consider the algorithm for implementing the specified
mechanism for self-stabilizing global reset to be within the scope of this work. The
interested reader can find more details about the procedure in [36, 37], which consider
self-stabilizing systems that are seldom fair, and [32], which considers self-stabilizing
Byzantine fault-tolerant systems that with synchrony assumptions.

6 Self-Stabilizing Gossip and Quorum Services

Algorithm2 provides an implementation that satisfies the requirements ofDefinition 2.
We start the algorithm description by refining the model with respect to the variables
thatAlgorithm2uses, aswell as its interfaces.We then detail howAlgorithm2provides
the requirements that appear in Definition 2.

6.1 RefinedModel

We assume that the system has access to a self-stabilizing end-to-end (reliable FIFO)
message delivery protocol [22, 24] (over unreliable non-FIFO channels that are subject
to packet omissions, reordering, and duplication). The self-stabilizing algorithms in
[22, 24] circulate a token between any pair of senders and receivers. Our pseudo-
code interfaces that protocol via events for token departure and arrival. Moreover, the

123

242 Algorithmica (2023) 85:216–276

self-stabilizing algorithms in [22, 24] guarantee that the receiver raises eventually a
token arrival event with a token that the sender had transmitted upon its previous token
departure event; exactly one token exists at any time that succeeds the recovery period.

6.1.1 Variables

The gossip servers require two kinds of buffers (line 30): one for the messages that go
out (gossipT x) and another for the ones that come in (gossipRx[]). Node pi stores in
gossipT x the needed-to-transmit messages and in the buffers gossipRx[j] : j �= i
the ones that are arriving to pi from p j ’s gossip. We use gossipRx[i] for aggregating
these received values.

Four kinds of buffers facilitate the quorum-based communications, because this
communication pattern has a round-trip nature that a client initiates and includes a
number of nodes (line 31). The initiating client writes the message to pingT x . The
end-to-end communication protocol [22, 24] transfers that message to the server-side
and stores it in pongT x[]. The server processes the arriving messages and stores
its reply in pongRx[] so that the end-to-end protocol could transfer this reply back
to the client-side, which stores it in pingRx[]. When any of these buffers do not
store a message, the ⊥ symbol is used. Note that the client requests take the form
of (tag, word, phase) ∈ F = (T ∪ {⊥}) × (W ∪ {⊥}) × (D ∪ {‘qry’}), where
phase = ‘qry’ whenever the client sends a query (rather than another phase that does
appear in D). The reply has the form of (ping, pong) ∈ F ∪ {⊥} × F ∪ {⊥}. We use
the variable aggregated for letting the client aggregate the server responses for the
latest request (line 32).

6.1.2 The Interface that Algorithm 2 Assumes to be Available

Every pair of nodes maintains a pair of self-stabilizing communication channels [22,
24], i.e., one channel in each direction, which circulates a token between the sender
and the receiver. The code interfaces that protocol via events for token departure
(lines 40, 43 and 44) and arrival (lines 41, 47, and 51). Moreover, this protocol
guarantees that the receiver raises eventually a token arrival event with a token that
the sender had transmitted upon its previous token departure event. Exactly one token
exists at any time. In the code, token arrival and departure events raise the respec-
tive events according to the message type, which is either gossip or quorum. The
event handlers to these events perform local operations, release the token by call-
ing send(receiver I D, Payload), as well as raising other local events on the calling
node. Algorithm 2 also assumes access to a primitive, which we call suspend().
When an event calls suspend(var , const), the system suspends the calling event
until var = const (while allowing other non-suspended events on that node to run).

6.2 The Details of Algorithm 2

The gossip functionality simply sends the message in gossipT x whenever the token
arrives at the client (line 40), stores it in gossipRx[j] whenever the token arrives at

123

Algorithmica (2023) 85:216–276 243

the server (line 41), and raises the gossip arrival event at the server-side with all the
most recently arrived gossip messages from each server (line 42). Note that when a
gossip message arrives, the receiving server raises an event with {gossip[k]}pk∈P ,
which includes the most recently received messages. We allow a simpler presentation
of Algorithm 3 by letting the server at node pi use the item gossip[i] for aggregating
the gossip information that it later gossips to all other servers.

The ping-pong protocol is inspired by the Communicate protocol proposed by
Attiya el at. [5, Section 3]. The client sends its message to the server upon token
departure (line 43), update the server buffer upon token arrival (line 46), and then
the server sends its reply upon its token departure (line 46) before the token arrival
event allows the client to accumulate the server replies (line 47). The client then tests
whether it has accumulated replies from a quorum of servers (line 53). If this is the
case, it lets the calling client procedure receive the accumulated replies (line 55).

Note that, for the sake of simple presentation of Algorithm 3, we allow the client
to call qrmAccess(msg) either when msg is a single message to be sent to all servers
or when msg is a vector that includes an individual message for each server (line 43
and line 59).

6.3 Correctness of Algorithm 2

Theorem 1 shows that the system always reaches a legal execution (Definition 2) and
uses Remark 1.

Remark 1 Recall that we assume the use of a self-stabilizing communication channel
between any pair of nodes, such as in [22, 24], guarantees reliable end-to-end message
delivery. In [22, 24], the receiver raises eventually a token arrival event with a message
that the sender had transmitted upon its previous token departure event, such that, at
any time, there is exactly one token carrying one message. And, the token traversal
direction alternates, i.e., go from one peer to another, then back, then go again, and so
on.

Theorem 1 shows the satisfaction of the requirements of Definition 2.

Theorem 1 (Self-stabilizing gossip and quorum-based communications) Let R be an
Algorithm 2’s (unbounded) execution that satisfies the terms of service of the quorum-
based communication functionality. Suppose that R is fair and its starting system
state is arbitrary. Within O(1) asynchronous cycles, R reaches a suffix R′ in which
(1) the gossip, and (2) the quorum-based communication functionalities are correct.
(3) During R′, the gossip and quorum-based communication correctly complete their
operations within O(1) asynchronous cycles.

Proof Part (1). Let agossip,	 ∈ R be a step in which the server at p j ∈ P calls
gossip(m) for the 	-th time in R (line 36). Note that agossip,	 copies m to gossipT xi
(line 36). Let adepart,	′ ∈ R be the first step in R that appears after agossip,	′ : 	′ ∈
{1, . . .} and before agossip,	′+1, if there is any such step, in which p j executes the
event of gossip token departure (line 40). Note that adepart,	′ transmits to the server at
pk ∈ P the token m	′ , where m	′ = gossipT xi [i] in any system state that is between

123

244 Algorithmica (2023) 85:216–276

Algorithm 2: Self-stabilizing gossip and quorum-based communication, code for pi .

30 Variables: gossipT x and gossipRx[] are buffers, where pi ’s server stores in gossipT x the needed to transmit a
message. In gossipRx[j] : j �= i , pi ’s server stores the most recently received p j ’s gossip and allows the use of
gossipRx[i] for aggregating these received values.

31 pingT x , pingRx[], pongT x[] and pongRx[] are buffers, where pi ’s client stores in pingT x its request, or ⊥. In
pingRx[j], pi ’s server stores the most recently received p j ’s request, or ⊥. In pongT x[j], pi ’s server stores the
reply to p j , or ⊥. In pongRx[j], pi ’s client stores the most recently received p j ’s acknowledgment, or ⊥. The
client request and pingT x has the form (tag, word, phase) ∈ F = (T ∪ {⊥}) × (W ∪ {⊥}) × (D ∪ {‘qry’}). The
reply form is (ping, pong) ∈ F ∪ {⊥} × F ∪ {⊥}.

32 aggregated is a variable in which pi ’s client stores the collected server responses for the latest request;

33 Interface in use: Every pair of nodes maintain a self-stabilizing communication channel [22, 24], which circulates
a token between the sender and the receiver. Token arrival and departure events raise the respective events
according to channel type, which is either gossip or quorum;

34 suspend(var , const) suspends the calling event until var = const (while allowing other events to run);

35 Interface provided:
36 function gossip(msg) do gossipT x ← msg;
37 function qrmAccess(msg) do phaseIni t(msg); return(wait());
38 function reply(j,m) do {if pingRx[j].phase = ‘qry’ then pongT x[j] ← (m.tag, ⊥, ‘qry’) else pongT x[j] ←

(pingRx[j].tag,m.word, pingRx[j].phase)}
39 Event handlers and local functions:
40 upon gossip token departure from pi ’s server to p j ’s server do send(j, gossipT x);
41 upon gossip token m arrival from p j ’s server to pi ’s server do
42 gossipRx[j] ← m; raise the gossip arrival event with the message {gossipRx[k]}pk∈P ;

43 upon pingpong token departure from pi ’s client to p j ’s server do send(j, load(j, pingT x));
44 upon pingpong token departure from pi ’s server to p j ’s client do
45 if pingRx[j] = ⊥ then send(j , (⊥,⊥)); /* ignore the server during channel resets */
46 if pingRx[j] �= ⊥ then send(j , (pingRx[j], pongT x[j]));
47 upon pingpong token arrival from p j ’s client to pi ’s server do
48 pingRx[j] ← pingpong; /* pingpong is either ⊥ or msg */
49 if pingRx[j] �= ⊥ then /* don’t interrupt the server during channel resets */
50 raise the event of pingRx[j].phase arrival from p j ’s server with pingRx[j].msg (unless it is ⊥)

51 upon pingpong = (ping, pong) token arrival from p j ’s server to pi ’s client do
52 if load(j, pingT x) = ping ∧ (pong = ⊥ ∨ pong.tag = ⊥ ∨ ((ping.phase �= ‘qry’) �⇒ (ping.tag =

pong.tag))) then pongRx[j] ← pong;
53 if {p j : pongRx[j] �= ⊥} ∈ Q then /* test for a quorum of acknowledgments */
54 aggregated ← {pongRx[j].word : pongRx[j] �= ⊥};
55 clear(); /* returns from ping.phase with aggregated as the acknowledgment set

*/

56 function clear() do begin foreach pk ∈ P do pongRx[k] ← ⊥ end; pingT x ← ⊥;
57 function phaseIni t(m) do begin foreach pk ∈ P do pongRx[k] ← ⊥ end; pingT x ← m;
58 function wait() do suspend(pingT x, ⊥); let x = aggregated; aggregated ← ∅; return(x);
59 function load(j,m) do if m := ((•, w1, •), . . . , (•, wN , •)) then return (•, w j , •) else return m;

agossip,	′ and adepart,	′ . That token arrives eventually to the server at pk , which raises
the respective event (line 41) and then the event of gossip arrival with the messagem	′
(line 42). Thus, the gossip functionality is correct (Definition 2), because (1) m	′ was
indeed sent by p j , and (2) pk delivers such message infinitely often.
Correct behavior of the gossip functionality. Suppose that (1) every message that pk
delivers to the upper layer as a gossip from p j (line 41) was indeed sent by p j earlier
in R (line 36). Moreover, (2) such deliveries occur infinitely often in R. Furthermore,
(3) at any time, the communication channel from p j to pk does not include a message
that p j has never sent. In this case, we say that the behavior of the gossip functionality
from the server at p j to the one at pk is correct.

123

Algorithmica (2023) 85:216–276 245

Part (2).
Claims 1 and 2 imply the proof of this part.

Claim 1 Suppose that the client at pi sends a request, i.e., pi calls the function
qrmAccess(m) (line 37) in step aqrmAccess ∈ R, where m �= ⊥. After aqrmAccess ,
execution R includes steps (i) to (v) (Definition 2).

Proof In aqrmAccess , node pi assigns mi �= ⊥ to pingT xi (line 37) and then sus-
pends the running client (while allowing other events to run concurrently) until
pingT xi = ⊥, where mi ∈ F . Recall that only the client calls the function
qrmAccess() (Algorithm 3) and it does so sequentially (terms of service for the
quorum-based communication functionality, Definition 2). Thus, after aqrmAccess , the
only way in which pi assigns ⊥ to pingT xi is by executing line 55. Therefore, the
invariant of pingT xi = mi �= ⊥ holds until the client at pi takes the step (v), which
returns from the function that it had called in step adepart with aggregated as the
acknowledgment set. We show that after aqrmAccess , the system takes steps (i) to (v).
Steps (i) and (ii). Let adepart be the first step in R that appears after aqrmAccess

and in which pi executes the event of ping-pong token departure from the client at pi
to the server at p j (line 43). Note that pi transmits the message mi = pingT xi in
adepart . That token arrives eventually to the server at p j (Remark 1), which raises the
respective event at some step a j ∈ R (line 47) and then the event of pingRx[j].phase
arrival (also in step a j), which delivers the arriving token, pingRx[j].msg (line 50),
unless the latter is ⊥. Let Q̂(i),(i i) ⊆ P include the set of nodes, such as p j , that their
servers raise the latter two events (in step a j). Note that, as long as the invariant of
pingT xi = mi �= ⊥ holds, Q̂(i),(i i) includes more and more nodes. Thus, Q̂(i),(i i) ∈
Q eventually (Property (2) of Lemma 2).
Steps (iii). Recall that this lemma assumes that in R the server at p j ∈ P acknowl-
edges (by calling reply(msg), line 38) requests that p j delivers to it (terms of service
for the quorum-based communication functionality, Definition 2). Let a j ′ ∈ R refer to
these steps and Q̂(i i i) ⊆ P include the set of nodes, such as p j , that take these steps,
a j ′ . Note that, as long as the invariant of pingT xi = mi �= ⊥ holds, Q̂(i i i) includes
more and more nodes. Thus, Q̂(i),(i i),(i i i) ∈ Q eventually (Property (2) of Lemma 2).
Steps (iv) and (v). The server at p j eventually sends the token (pingRx j [i],
pongT x j [i]) (line 46), cf. Remark 1. Note that the sent token includes (in the ping
field) aqrmAccess’s request and (in the pong field) the same phase and tag of the arriv-
ing request (line 38), if the sent request includes any such values. Moreover, that
token arrives eventually from the server at p j to the client at pi (Remark 1) at some
step a j ′′ ∈ R, which raises the respective event (line 51). Recall that node pi cannot
change the value of pingT xi �= ⊥ before the if-statement condition of line 52 holds.
By the fact that the arriving token includes the same phase and tag, if there is any,
of the sent request pingT xi , node pi collects the arriving acknowledgments until the
if-statement condition of line 52 holds eventually. Let Q̂(iv) ⊆ P be the set of nodes,
such as p j , for which the pi takes the step a j ′′ . Note that, as long as the invariant of
pingT xi = mi �= ⊥ holds, Q̂(iv) includes more and more nodes. Thus, Q̂(iv) ∈ Q
eventually (Property (2) of Lemma 2). This implies that pi also takes the step ai ∈ R in
which pi lets the function (which pi had previously called in step aqrmAccess) to return

123

246 Algorithmica (2023) 85:216–276

(line 55) by calling clear() (line 55) and by that allowing the resume of the client and
the return from the function that has sent the request. Only then does the invariant
pingT xi �= ⊥ stops from holding. Recall that aggregated holds the set of server
replies that were sent between aqrmAccess and ai , as well as matched pi ’s request, and
used the same phase and tag (if there were any such values in pi ’s request).

Claim 2 Suppose that the state of the client at pi includes a non-⊥ value in pingT xi .
Eventually, pingT xi = ⊥ (and the client at pi resumes, if it had been suspended).

Proof Suppose that the client at pi calls eventually the function qrmAccess() (line 37).
Then, by Claim 1 the proof of this claim is done.

Suppose that, throughout R, the client at pi does not call the qrmAccess() function
and yet pingT xi �= ⊥ (in R’s starting system state). We show that pingT xi = ⊥
eventually. Recall that pingT x �= ⊥ has the form of (tag, •, phase) ∈ F , where F =
(T ∪{⊥})×{•}× (D∪{‘qry’}) and the replies have the form of (ping, pong) ∈ F ∪
{⊥}×F∪{⊥} (line 31).Note that eventuallywhen p j sends a token back to pi (line 44).
That token is either (⊥,⊥) or (pin j , pon j), where pin j is the request pingRx j [i]
that p j had received from pi and pon j is (pingRx[j].tag, •, pingRx[j].phase)
(line 38). By the same arguments that appear in the proof of Claim 1, this proof is
done. Namely, as long as pingT x �= ⊥ we have pin j �= ⊥ and we can apply ‘steps
(iv) and (v)’ in the proof of Claim 1. ��
Part (3). By the proof of Part (1) of this lemma, we see that the correctness invariant
of the gossip service holds within O(1) asynchronous cycles because it considers the
propagation of a single message from p j to every pk ∈ P , i.e., it requires a single
complete server iteration (with round-trips). By the proof of Part (2) of this lemma, we
see that the correctness invariant of the quorum-based communication service holds
within O(1) asynchronous cycles because steps (i) and (v) consider the propagation
of a single message round-trip from a client to a quorum of servers, i.e., it requires a
single complete client round.

7 An Unbounded Self-Stabilizing CAS Algorithm

This paper presents a self-stabilizing algorithm that uses a bounded amount of mem-
ory. For the sake of presentation simplicity, we start by presenting a self-stabilizing
algorithm that has no such bounds as a ‘first attempt’. We then prove the correctness
of the unbounded algorithm (Sect. 8) before bounding the amount of storage needed
(Sect. 9), as well as the number of possible tag values (Sect. 10).

One of the key differences between self-stabilizing algorithms to non-self-
stabilizing algorithms is that, due to a transient fault, the self-stabilizing system can
start in a state c that the non-self-stabilizing system can never reach. For example,
in c a single server may include a record with a finalized tag t for which there is no
quorum of servers that store records that include coded elements relevant to t . Due to
the asynchronous nature of the system, we cannot bound the number of write opera-
tions that the system will take until at least one write operation installs its records on
all servers. Similar examples can be found when considering pre-write records. We

123

Algorithmica (2023) 85:216–276 247

Algorithm 3: Private and Unbounded Self-Stabilization CAS, code for pi ’s client and server.

60 The client: //At any time, pi ’s client is a writer, a reader, or none but not both wri ter(s): /* Store the
secret s as a new version of the shared object */

/* Query for finalized tags and after hearing from a quorum get the maximal
tag */

61 let (z, j) := max({t ′ : (t ′, •) ∈ qrmAccess((⊥, ⊥, ‘qry’))})
62 qrmAccess(((z + 1, i), {Φp j (s)}p j∈P , ‘pre’)); /* Prewrite and wait for a quorum of replies

*/
63 qrmAccess(((z + 1, i),⊥, ‘fin’)); /* Finalize and wait for a quorum of replies */
64 qrmAccess(((z + 1, i),⊥, ‘FIN’)); /* FINALIZE and wait for a quorum of replies */
65 return;

66 reader(): ; /* The reader retrieves the current object version, or ⊥ upon
failure */

67 let t := max({t ′ : (t ′, •) ∈ qrmAccess((⊥, ⊥, ‘qry’))}) ; /* Query as in line 67 */
68 let Q := qrmAccess((t,⊥, ‘fin’)) // Ask and wait for finalized records from a quorum if

|{(t, w, ‘fin’) ∈ Q : w �= ⊥}| � kthreshold then return ⊥; /* Test the number of replies */
69 else return(Φ−1(w : {(t, w, s) ∈ Q : w �= ⊥})); /* Use the retrieved shares for decoding */

70 The server:
71 S ⊂ T × (W ∪ {⊥}) × D is a record set, where T = Z × P is the set of tags, W the set of coded words and

D = {‘pre’, ‘fin’, ‘FIN’} the set of phases. When S = ∅, we use the default triple (t0, wt0,i , ‘fin’) when reporting

on the triple with the highest locally known tag;

72 Event handlers at the server:
73 upon query arrival from p j ’s client to pi ’s server do
74 if p j ’s client is a reader then reply(j , (max Phase(D \ {‘pre’}),⊥, ‘qry’));
75 else reply(j, (max Phase(D), ⊥, ‘qry’));

76 upon pre-write (t, w, ‘pre’) arrival from the p j ’s writer to pi ’s server do
77 updatePhase(t, w, ‘pre’);
78 reply(j, (t,⊥, ‘pre’));

79 upon finalize or FINALIZE m := (t, ⊥, d) : d ∈ (D \ {‘pre’}) arrival from p j ’s client to pi ’s server do
80 updatePhase(t, ⊥, d);
81 if ∃s := (t, w, d) ∈ S and p j ’s client is a reader then reply(j , (t, w, d)) else reply(j, (t,⊥, d));

82 upon gossip {(pre[k], f in[k], F I N [k]) = gossip[k]}pk∈P arrival from p j ’s server to pi ’s server do
83 pre[i] ← max({pre[k], f in[k], F I N [k]}pk∈P ∪ {max Phase(D)});
84 updatePhase(pre[i], ⊥, ‘pre’);
85 f in[i] ← max({ f in[k], F I N [k]}pk∈P ∪ {max Phase(D \ {‘pre’})});
86 updatePhase(f in[i], ⊥, ‘fin’);
87 F I N [i] ← max({F I N [k]}pk∈P ∪ {max Phase({‘FIN’})}) ∪ {t ∈ T : {pk ∈ P : f in[k] = t} ∈ Q};
88 updatePhase(F I N [i], ⊥, ‘FIN’);
89 gossip(tagT uple());

90 Local functions at the server:
91 function max Phase(phs) do return max({t : (t, •, p) ∈ (S ∪ {(t0, w0,i , ‘fin’)}) ∧ p ∈ phs})
92 function tagT uple() do return (max Phase(D),max Phase(D \ {‘pre’}),max Phase({‘FIN’}));
93 function updatePhase(t, w, u) do {if ∃s := (t, w′, c) ∈ S ∧ w′ �= ⊥ ∧ w = ⊥ then S ← (S \ {s})∪ {(t, w′, p)}),

where p := upgradePhase(c, u) else S ← ((S \ {(t, •)}) ∪ {(t, w, u)})};
94 function upgradePhase(old, new) do switch (old, new) :
95 case(‘pre’, ‘fin’): return ‘fin’; case(‘fin’, ‘FIN’): return ‘FIN’; default return old;

propose to overcome this challenge by letting the gossip server exchange a message
that includes the maximal tag values for each phase.

There is no self-stabilizing algorithm for end-to-end communication when there is
no bound on the capacity of the communication channels [18, Chapter 3]. Cadambe et
al. [15] assume that all communication channels are reliable and cannot losemessages.
We are not aware of a straightforward manner in which we can assume that these
communication channels are both of bounded capacity and self-stabilizing, because
the asynchronous nature of the system implies that there is no bound on the number

123

248 Algorithmica (2023) 85:216–276

of write operations that the system may finish before a given server receives a single
gossip message. Therefore, we let the gossip service repeatedly exchange among the
servers their maximal tag values. This way, the servers get to know eventually about
the highest tag values.

With thesemodifications inmind, we note that the client part of Algorithm3 follows
similar lines as the ones of Algorithm 1 with the following notable differences. The
prewrite phase (line 62) associates the operationwith the tag (z+1, i), where t = (z, •)

is the maximal prewrite tag returned from the query phase (line 61). Moreover, Algo-
rithm 3 uses an additional finalized phase (line 64), which we refer to as FINALIZED.
This phase helps the algorithm to assure that every complete write operation with tag
t has at least a quorum of servers with a finalized tag t .

The server part of Algorithm 3 also implements the above modifications. The
notable changes, with respect to Algorithm 1, include the following. Servers reply
to queries from readers with the highest local finalized tag (line 75), whereas for
the case of writers, all local tags are considered (line 74). Also, upon gossip arrival
(line 82), the server processes all the gossip messages that have recently arrived for
all servers. It first calculates the local maximal prewrite tag (lines 83 and 84), then
the local maximal finalized tag (lines 85 and 86) before considering the FINALIZED
one (lines 87 and 88) and then sending an updated gossip message (line 89). Note that
each server stores the highest tag that it has heard from each phase. Moreover, when
a server discovers that it knows about a quorum of servers in which each server stores
a finalized record with tag t , it updates that record to have the FINALIZED phase
(line 87). This way, an implicit FINALIZED record becomes explicitly FINALIZED.

8 Correctness Proof of our Self-Stabilizing CAS Algorithm

After the preliminaries (Sect. 8.1), we study the basic properties of Algorithm 3
(Sect. 8.2) before showing its ability to recover after the occurrence of transient-faults
(Sect. 8.3). We then demonstrate the atomicity (Sect. 8.4) and liveness (Sect. 8.5) of
Algorithm 3.

8.1 Notation and Definitions

We refer to the values of variable X at node pi as Xi , i.e., the variable name with a
subscript that indicates the node identifier. We denote the storage variable, S, of pi as
Spi due to its centrality to the system state. Let R be an execution, c ∈ R a system
state, and pi ∈ P a node that executes the function f () in a step a ∈ R that appears in
R immediately after c. We denote by fa() the value that returns from f ()’s execution
during step a.

Each client procedure includes a finite sequence of requests that the client sends
to the servers, where the responses received from one request to the servers are used
for forming the next request to the servers. We associate each invocation of the client
procedures with an operation π that includes all of its steps in R (either taken by
the client or by the servers) in which a node sends or receives messages due to π ’s

123

Algorithmica (2023) 85:216–276 249

invocation of the client procedure. Definition 3 classifies operations by the way they
start and end.

Definition 3 (Classifying operations by their start and end) Let R be the algorithm
execution with π as a client operation. Denote by cstart (π) ∈ R the system state that
is followed immediately by step astart (π) that starts π . Moreover, cend(π) denotes the
system state that follows immediately after a step aend(π) that endsπ .We characterize
π ’s behavior in R in the following manner.

– Incomplete operations. Suppose that π ’s first step, astart (π), does not include
the execution of the first line of the π ’s (write or read) procedure (lines 61, and
respectively, 67). In this case, we say that π is incomplete in R. We say that a client
request or a server reply is incomplete if it is part of an incomplete operation (due
to stale information that appears in an arbitrary starting system state). Note that
the expression “operation π is complete in suffix R′′ of R” refers to the case in
which astart (π) ∈ R′ and aend(π) ∈ R′′, where = R′ ◦ R′′.

– Failed operations. Suppose that π ’s last step, aend(π), does not include the exe-
cution of the last line of the π ’s (read or write) procedure. In this case, we say that
π fails in R.

– Complete operations. Suppose that π is eventually neither incomplete, nor failed
in R. In this case, we say that π is complete in R. Before the end of a given
complete operation, we refer to it as an ongoing operation.

8.2 Basic Properties of Algorithm 3

Lemma 5 (Algorithm 3’s progression) Algorithm 3’s operations, whether they are
failed, incomplete or complete, end within O(1) asynchronous cycles in any fair exe-
cution of Algorithm 3, which may start in any system state.

Proof The server part of Algorithm 3 includes only non-blocking responses to Algo-
rithm 3’s requests. Thus, Algorithm 3’s termination depends on the termination of
each client phase. We, therefore, prove that every client phase ends eventually.
The query, pre-write and finalize phases (of readers and writers) terminate. We start
by showing that at least a quorum of query responses arrive at every non-failing client
(lines 61 and 67). The proof uses parts (2) and (3) of Theorem1 for showing the correct
functionality of quorum-based communication in R (Sect. 5.1), as long as the system
satisfies the terms of service of the quorum-based communication functionality. To
that end, we need to show that: (i) only the client calls the function qrmAccess()
and it does so sequentially, as well as (ii) the server algorithm acknowledges (by
calling reply(), Sect. 5.1) requests that were delivered to it. From Sect. 2.1.1 and
Algorithm 3, we observe that: (i.a) any node run at most one client that is either
a writer or a reader, (i.b) only the clients call the function qrmAccess(), (i.c) there
is only one client (either reader or writer) per node, and (i.d) that client does not
call qrmAccess() before the previous call returns. We also note that (ii) the server
pseudo-code (Algorithm 3) includes a response for every client request. In detail, any
non-failing server, say, the one at node p j ∈ P , replies to queries that pi delivers to
it with the message ((⊥,⊥, ‘qry’), (t,⊥, ‘qry’)) (line 73), where (t, •, ‘fin’) ∈ Spi

123

250 Algorithmica (2023) 85:216–276

and t is Spi ’s highest finalized local tag. Note that whenever Spi = ∅, the server at pi
considers the tuple (t0,⊥, ‘qry’) (line 71), and thus the server at p j always replies to
queries. From (i.a), (i.b), (i.c), (i.d), and (ii) we get that the functionality of quorum-
based communication is correct eventually even when starting from any system state,
because the conditions of parts (2) and (3) in Theorem 1 hold (terms of service for
the quorum-based communication functionality, Sect. 5.1). Therefore, the client at pi
receives eventually at least a quorum of server responses (Sect. 5.1). Using the same
arguments as above, this proof shows that at least a quorum of pre-write and finalize
responses arrive at every non-failing client (lines 62, 63 64, and 68).

Finally, we show that the above happens withinO(1) asynchronous cycles. This is
because each client operation considers a constant number of phases. Recall that each
phase is associated with a client round, which completes within O(1) asynchronous
cycles (Theorem 1).

Definition 4 (Classifying localmaximal tags by their phase) Let R be anAlgorithm3’s
execution, and ai,k ∈ R a step (that the server at pi ∈ P takes) in which pi exe-
cutes the function max Phase(phs) (line 91) for the k-th time in R. We characterize
max Phaseai,k (phs)’s behavior in R according to its argument phs (Lemma 6) and
consider the set tags(C, D) = {t : (t, •, d) ∈ (Sp j ∪{(t0, w0,i , ‘fin’)})∧d ∈ D∧ p j ∈
C}, where D = phs and C = {pi } in the system state that immediately precedes ai,k .

– A write maximal tag is the returned value from max Phaseai,k (D) (lines 75
and 83), where D = {‘pre’, ‘fin’, ‘FIN’}, i.e., the tag in the maximal tuple in
tags({pi }, {‘pre’, ‘fin’, ‘FIN’}).

– A read maximal tag is the returned value from max Phaseai,k (D\{‘pre’})
(lines 74 and 85), i.e., the tag in the maximal tuple in returned from
tags({pi }, {‘fin’, ‘FIN’}).

– An anchor maximal tag is the returned value from max Phaseai,k ({‘FIN’})
(line 87), i.e., the tag in the maximal tuple in tags({pi }, {‘FIN’})).

Lemma 6 (Servers do not remove their maximal records) Servers (Algorithm 3) keep
in their storage the currently maximal (1.1) write, (1.2) read, and (1.3) anchor records
(or any record with a tag that is higher than the ones in these records).

Proof Part (1.1). We show that the server (Algorithm 3) at pi does not remove from
Spi the maximal anchor record (Definition 3), i.e., the tuple with the maximal tag in
tags(Spi ,D), cf. Definition 4. Note that the server at pi updates and inserts records
(t, •) to Spi only via the updatePhase() function (line 93). In case that ∃(t, •) ∈ Spi ,
the function updatePhase() calls the function upgradePhase() (line 95), which
transfers (t, •)’s phase from ‘pre’ to ‘fin’, and ‘fin’ to ‘FIN’, but otherwise it does not
change (t, •)’s phase, e.g., when p = ‘pre’. Moreover, in case �(t, •) ∈ Spi , the server
at pi merely adds (t, •) to Spi . We study each call to updatePhase() in Algorithm 3
and show that it does not remove the currently maximal write record.

– When (t,⊥, d) : d ∈ D (lines 76 and 79) arrives at the server at pi , that server
uses the updatePhase() (lines 77 and 80) for making sure that (t, •, d) exists in
Spi (line 93) in a way that can only add a missing record (t,⊥, d) to Spi (when
(t,⊥, d) /∈ Spi) or transfer the phase of an existing record in Spi according to

123

Algorithmica (2023) 85:216–276 251

upgradePhase(), which does not remove the currently maximal write record.
Moreover, when (t,⊥, d) arrives either from a reader or a writer, pi updates Spi
in a manner that differs only by the response that pi sends to the client (lines 78
and 81), i.e., irrelevant to pi ’s server state after that send.

– When gossip arrives at pi (line 82), pi calculates its newmaximal write record in a
way that includes both the records in its own storage Spi and the maximal records
reported recently from all servers including itself (lines 83, 85, and 87). Note
that pi might add a new maximal anchor record with tag t whenever it discovers
that there is a quorum of servers that have reported a finalized record with tag t
(line 87). After calculating these new maximal values, pi updates its storage Spi
via updatePhase() (lines 84, 86, and 88), in a way that we showed above that
pi does not remove the currently maximal write record.

Parts (1.2) and (1.3). The proofs here follow similar arguments to the ones of Part
(1.1); it is even simpler because phs’s values are different and thus ‘pre’ is irrelevant
to Part (1.2) and only ‘FIN’ is relevant to Part (1.3).

We note that the same arguments hold also for any record that has a tag that is
higher than these maximal tags.

Lemma 7 (Maximal tags arrive at every server eventually) Suppose that the server
at pi ∈ P calls gossip(Tk) (Sect. 5.1) for an unbounded number of times in Algo-
rithm 3’s execution, R, such that the triple Tk := (tk,wri te, tk,read , tk,anchor) is the k-th
gossip that pi sends. The server at p j ∈ P receives eventually at least one gossip
(tk,wri te, tk,read , tk,anchor), such that each respective tag is not less than its correspon-
dent in (t1,wri te, t1,read , t1,anchor). Moreover, if R is fair, each gossip message arrives
within O(1) asynchronous cycles.

Proof Lemma 6, and Claim 3 facilitate the proof of Claim 4, which implies the
first part of this lemma. Claim 3 considers the sequence tk,t ype, where t ype ∈
{read, wri te, anchor} and Tk := (tk,wri te, tk,read , tk,anchor).

Claim 3 The sequence tk,t ype is non-decreasing.

Proof The three parts of Lemma 6 show that the server never removes its currently
maximal write, read and anchor records. The rest of the proof is implied directly from
the fact that line 91 merely calculates the currently maximal write, read and anchor
records.

Claim 4 The server at p j ∈ P receives eventually at least one gossip message
(tk,wri te, tk,read , tk,anchor), such that each respective tag is not less than its corre-
spondent in (t1,wri te, t1,read , t1,anchor).

Proof Let us consider the sequence tk,t ype, where t ype ∈ {read, wri te, anchor} and
Tk := (tk,wri te, tk,read , tk,anchor). Let ak ∈ R be a step in which pi calls gossip(Tk) for
the k-th time in R. Letadepart,k′ ∈ R be thefirst step that appears afterak′ : k′ ∈ {1, . . .}
and before ak′+1 in R, if there is any such step, in which pi executes the event of gossip
token departure. Let aarrival,k′ ∈ R be the first step that appears after adepart,k′ in R,
if there is any such step, in which the server at p j delivers the token that adepart,k′

123

252 Algorithmica (2023) 85:216–276

transmits. By the correctness of the gossip functionality (Theorem 1), step aarrival,k′
exists eventually. The proof is done, because Tk′ includes only tags, tk′ , that are no
less than their corresponding elements in T1 (Claim 3).

We complete this proof by considering the case in which R is fair. Theorem 1, Part
(3) implies that step aarrival,k′ exists within O(1) asynchronous cycles. ��

Corollary 2 considers the calls to max Phase(D) (lines 75, 83 and 92), to
max Phase(D\{‘pre’}) (lines 74, 85 and 92), and to max Phase({‘FIN’}) (lines 87,
and 92). The same arguments as in the proof of Claim 3 imply Corollary 2.

Corollary 2 Let phs ∈ {D,D\{‘pre’}, {‘FIN’}} and ai,k ∈ R be a step in which the
server at pi ∈ P executes max Phase(phs) for the k-th time in R. The sequence of
max Phaseai,k (phs)’s returned values is non-decreasing.

8.3 Recovery After the Occurrence of Transient-Faults

The correctness of Algorithm 3 assumes that the system execution is fair. That is, every
node participates in the execution within a single asynchronous cycle. This way, the
proof bounds the number of asynchronous cycles that it takes the system to remove
stale information by receiving the largest tag values and then allowing the system to
perform a valid write operation (Definition 7).

Definition 5 (Notation) Let π be a (complete) operation in execution R. We use the
following notation.

– Q̂(π) is the quorum of servers that π ’s client receives their acknowledgments for
π ’s query.

– Suppose that π is a write operation. Qpw(π) and Qfw(π) are the quorums for π ’s
pre-write, and respectively, finalize phases.

– Let T̂ (π) be the maximum arriving tag during π ’s query (line 67). T (π) is the tag
of π , such that when π is a write operation, T (π) = T̂ (π) + 1 is the tag in use
during π ’s pre-write (line 62) and when π is a read operation, T (π) = T̂ (π) is
the maximum arriving tag during π ’s query (line 67).

– cstar t(R) is the starting state of Algorithm 3’s execution R.
– Tnode(R) is the tag set in the state of any node in cstart (R).
– Tcomm(R) is the tag set in the payload of any message that is delivered during

R, but it is never sent during R, because it was in transit in the communication
channels in R’s starting system state, cstart (R).

– T (R) = Tnode(R) ∪ Tcomm(R) is the set that includes all the tags in cstart (R).

For the sake of compatibility of our proposalwith the one in [15], we define the set of
legal executions (Definition 8) in a way that considers a recovery period from arbitrary
(transient) faults, as well as the case in which the system starts from a well-initialized
system state (Definition 6).

Definition 6 (A safe system start) Let csa f e be a system state in which: (1) no client nor
server is executing any procedure, (2) the communication channels from the clients

123

Algorithmica (2023) 85:216–276 253

to the servers (servers to clients), pingT x and every entry of pingRx (respectively,
pongT x and every entry of pongRx) include the message 〈⊥〉 (respectively, 〈⊥,⊥〉),
(3) the communication channels between any two servers, gossipT x and every entry
of gossipRx include the message (t0, t0, t0), and (4) the storage S of every server is
empty. In this case, we say that csa f e is one of the safe system states.

The definition of recoveryAlgorithm3’s period uses the termavalid client operation
(Definition 7).

Definition 7 (Valid client operations) Let π be a complete operation in R. Suppose
that there exists a system state c ∈ R, such that c appears in R before π ’s start in
cstart (π) and π ’s tag is greater than any tag that appears both in c and R’s starting
system state, i.e., max(T (cstart (R)) ∩ T (c)) < T (π). In this case, we say that π is
valid.

Definition 8 specifies legal executions, as such, that follow at least one complete
and valid operation.

Definition 8 (Recovery periods as well as legal executions) Let R = RrecoveryPeriod ◦
RlegalExecution be an execution of Algorithm 3 that (is legal with respect to the external
building blocks in Sect. 5.1 and it) has an arbitrary starting system state, cstart (R),
with respect to Algorithm 3. Suppose that within a finite number of steps the sys-
tem reaches a state cstart (πcomplete&valid), such that (1) cstart (πcomplete&valid) is the
starting system state of a complete and valid write operation πcomplete&valid , and (2)
R’s suffix, RlegalExecution , starts at cend(πcomplete&valid), where atomicity and live-
ness hold with respect to any operation that is complete in suffix RlegalExecution of R
(Definition 3), which starts immediately after cend(πcomplete&valid).

In this case, we refer to RrecoveryPeriod and RlegalExecution as R’s recovery, and
respectively, legal periods. We also consider any execution that starts from csa f e
(Definition 6) to be legal. Namely, RlegalExecution is an asynchronous execution of
Algorithm 3.

Theorem 2 shows that the system reaches a legal execution eventually. Theo-
rems 3 and 4 show that it takes merely a single complete and valid write operation
πcomplete&valid (Definition 8) to end the recovery period after which the system exe-
cutes legally, because they demonstrate correct shared-memory emulation. Arora and
Gouda [3] refer to the properties demonstrated by Theorem 2 as Convergence and the
properties showed by Theorems 3 and 4 as Closure. Our proof shows that fair execu-
tions guarantee recovery withinO(1) asynchronous cycles. Once πcomplete&valid had
occurred, the correct system behavior no longer needs the above fairness assumption.
Recall that, withinO(1) asynchronous cycles, Algorithm 3’s execution reaches a suffix
in which the correctness of gossip and quorum-based communication is guaranteed
(Theorem 1). Therefore, Theorem 2 considers an execution of Algorithm 3 that is legal
with respect to the external building blocks in Sect. 5.1, because it demonstrates that
the system reaches suffix Rno incomplete within O(1) asynchronous cycles.

Theorem 2 (Recovery after the occurrence of transient-faults)Let R be a fair execution
of Algorithm 3 that (is legal with respect to the external building blocks in Sect. 5.1

123

254 Algorithmica (2023) 85:216–276

and it) has an arbitrary starting system state, cstart (R), with respect to Algorithm 3.
Within O(1) asynchronous cycles, execution R = R′ ◦ Rno incomplete has a suffix
Rno incomplete that does not include incomplete operations. Moreover, within O(1)
asynchronous cycles, execution Rno incomplete reaches a suffix, RcompleteNonStable,
that does not include invalid operations.

Proof The proof is implied by Claim 7, which uses claims 5 and 6 . Leveraging
Theorem 1, Claim 5 shows that Algorithm 3’s executions stop having incomplete
operations.

Claim 5 Let R be a fair execution of Algorithm 3 in which the gossip function-
ality behaves correctly. Within O(1) asynchronous cycles, R includes a suffix,
Rno incomplete, that does not include: (1) operations that are incomplete in R, nor (2)
incomplete client requests or server replies in R. Moreover, (3) ∃c ∈ Rno incomplete :
∀pi ∈ P : ∃t ∈ T : t ′ ∈ (T (Rno incomplete)) �⇒ ∃(t, •) ∈ Spi : t ≥ t ′ in c.
Proof Part (1). Lemma 5 implies that all incomplete operations end within O(1)
asynchronous cycles.
Part (2). Suppose that all operations in Rno incomplete are complete, i.e., no incomplete
request or replies enter the system throughout Rno incomplete. (Due to Part (1) of this
proof, we can make this assumption without losing generality.) Lemma 5 implies
the correct behavior of the quorum-based communication functionality within O(1)
asynchronous cycles, which implies Part (2).

For the sake of simple presentation, the rest of this proof assumes that throughout
Rno incomplete, all of client requests and server replies were indeed (Sect. 5.1).
Part (3). We start by showing that Tcomm(Rno incomplete) = ∅ (Definition 5). Parts (1)
and (2) of this proof says that Rno incomplete does not include the delivery of messages
that were never sent in R. This implies Tcomm(Rno incomplete) = ∅, because Tcomm()’s
definition considers any message that is delivered but never sent during (since they
were in transit at the starting system state of Rno incomplete).

Due to the above, we only show that within O(1) asynchronous cycles in
Rno incomplete, the system reaches a system state c ∈ Rno incomplete, such that
∀pi ∈ P : ∃t ∈ T : t ′ ∈ (Tnode(Rno incomplete)) �⇒ ∃(t, •) ∈ Spi : t ≥ t ′.
Let t ′ ∈ (Tnode(Rno incomplete)). Suppose that t ′ appears in the client state at node
p j ∈ P . By the assumption that this theorem makes about R fairness, we know that
p j ’s client operation terminates within O(1) asynchronous cycles (Lemma 5). Once
that happens, the client state no longer includes any tag value (cf. part (c) of the
quorum-based communication service and Theorem 1). Suppose that t ′ is part of the
server state, i.e., ∃p j ∈ P : (t ′, •) ∈ Sp j . Let us consider a choice of p j and t ′,
such that t ′ is maximal. By Lemma 7, within O(1) asynchronous cycles, pi ’s server
receives at least one gossip that includes a tag t ′′ ≥ t ′ that is not smaller than t ′.
The proof is done by replacing t with t ′′ in the invariant that we need to prove, i.e.,
∀pi ∈ P : ∃t ′′ ∈ T : t ′ ∈ (Tnode(Rno incomplete)) �⇒ ∃(t ′′, •) ∈ Spi : t ′′ ≥ t ′.

Claim 6 shows that a Rno incomplete’s operation, π , uses a tag that is not smaller than
any (maximal) tag TmaxQuery(π) on the servers that participate in π ’s query quorum,
where tags(C, D) = {t : (t, •, d) ∈ Sp j ∧ d ∈ D ∧ p j ∈ C} (Definition 4) and

TmaxQuery(π) = max tags(Q̂(π),D\{‘pre’}) in cstart (π) ∈ Rno incomplete.

123

Algorithmica (2023) 85:216–276 255

Claim 6 Let π be an Rno incomplete’s operation. T (π) ≥ TmaxQuery(π) in the system
state cstart (π) ∈ Rno incomplete. Moreover, T (π) > TmaxQuery(π) when π is a write
operation.

Proof Due to the correctness of the quorum-based communication functionality during
Rno incomplete (Claim 5), Corollary 2, as well as lines 61, 67, and 73 to 75, it holds
that T̂ (π) is not smaller than any write or read tag in Sp j : p j ∈ Q̂(π) in cstart (π).

Moreover, T (π) ≥ T̂ (π) (Definition 5) and T (π) > T̂ (π)whenπ is awrite operation.
Thus, in cstart (π), it holds that T (π) is not smaller than any tag in Sp j : p j ∈ Q̂(π)

(and it is actually greater when π is a write operation).

Claim 7 implies that any write operation πwri te in RcompleteNonStable is valid with
respect to R and by that we complete the proof.

Claim 7 Within O(1) asynchronous cycles, execution Rno incomplete reaches a suffix,
which we denote by RcompleteNonStable, such that for any write operations, πwri te, in
RcompleteNonStable, it holds that in c ∈ RcompleteNonStable we have that T (πwri te) >

max(T (Rno incomplete)) holds.

Proof The proof is implied by Part (3) of Claim 5 and Claim 6.

��

8.4 Atomicity of Algorithm 3

We demonstrate that, after a recovery period (Definition 8), Algorithm 3 emulates
shared atomic read/write memory. Some elements of the following proof are similar
to arguments in [15, Theorem 1]. Note that Theorem 3 considers RlegalExecution but
does not require fairness. By that, it merely assumes that at least a single complete
and valid write operation occurred during the recovery period (Definition 8) or that
the system starts in a safe state (Definition 6).

Theorem 3 (Atomicity) Algorithm 3 is atomic in RlegalExecution .

The ≺ order satisfies the sufficient conditions for atomicity (Corollary 3), which
we borrow from [15].

Corollary 3 (Lemma 2 in [15]) Let Π be the set of all operations in R. Suppose that
≺ is an irreflexive partial ordering of all the operations in Π that satisfies: (1) when
π1’s return precedes π2’s start in R, π2 ≺ π1 is false. (2) When π1 ∈ Π is a write
operation and π2 ∈ Π is any client operation, either π1 ≺ π2 or π2 ≺ π1 holds (but
not both). (3) The value returned by each read operation is the value written by the
last preceding write operation according to ≺ (or v0, which is the default object value
in the absence of such write).

Definition 9 Define π1 ≺ π2 if (i) T (π1) < T (π2), or (ii) T (π1) = T (π2), π1 is a
write and π2 is a read.

123

256 Algorithmica (2023) 85:216–276

Weshow that≺ satisfies the conditions ofCorollary 3. The proof of the closure prop-
erty follows similar arguments to the ones made by Cadambe et al. [15]. It shows that
by the time operation π ends, the tag T (π) has finished propagating and installing the
messages 〈T (π), •, ‘fin’〉 in the storage of at least one quorum of servers (Lemma 8).
It uses the visibility of T (π) for claiming that the query phase of any operation that
starts after π ’s end, retrieves a tag that is at least as large as T (π) (Lemma 9). This
is the basis of showing that each write operation has a unique tag (Lemma 10). We
complete the proof of Theorem 3 by demonstrating conditions (1) and (2) of Corol-
lary 3 (using Lemmas 9 and 10), as well as condition (3) by considering read and
write operations (Algorithm 3) during RlegalExecution .

Lemma 8 is a variation on Lemma 3 in [15]. We use Lemma 6 for arguing that
the servers (Algorithm 3) store the currently maximal records (and any record with a
higher tag). This variation is needed, because Lemma 8 considers only operations that
start after the (last) valid and complete write operation πcomplete&valid (or a system
that starts in a safe system state, cf. Definition 6).

Lemma 8 (Storing the operation records) Suppose that π is a complete (read or write)
operation in RlegalExecution. There is a quorum Qfw(π) ∈ Q, such that all of its servers
store the triple (t, w, ‘fin’), where t = T (π) and w ∈ W ∪ {⊥} in cend(π) and in
every system state after cend(π).

Proof Let Qfw(π) the quorum that π ’s client (at node pi) receives responses from
Qfw(π)’s servers during π ’s finalize phase (lines 63 and 68). Since π is complete, as
well as the functionalities of gossip and quorum-based communication are correct in
RlegalExecution (Theorem 1), it is true that the server at node p j ∈ Qfw(π) responds to
π ’s finalize message (line 79) at some step afw, j ∈ RlegalExecution . Note that: (i) p j ’s
response arrives eventually to pi ’s writer and that occurs before the system reaches
cend(π), because p j ∈ Qfw(π), as well as (ii) the servers (Algorithm 3) keep in
their storage the currently maximal (write, read, and anchor) records and any received
record with a tag that is higher than the ones in these records (Lemma 6).

Lemma 9 (Similar to Lemma 4 in [15]) Let πi : i ∈ {1, 2} be two complete operations
in R, such that each πi starts immediately after the system states csi ∈ R : i ∈ {1, 2}
and returns immediately before cri ∈ R : i ∈ {1, 2}. Assume that cr1 appears before cs2
in R. (1) T (π2) ≥ T (π1) and (2) when π2 is a write operation, T (π2) > T (π1).

Proof Let T̂ (π) be the maximum arriving tag during π ’s query (lines 61 and 67). It
suffices to show that T̂ (π2) ≥ T (π1) (Claim 8), because when π2 is a read, T (π2) =
T̂ (π2), and when π2 is a write, T (π2) > T̂ (π2) (see the pseudo-code of the reader
and writer in Algorithm 3).

Claim 8 T̂(π2) ≥ T(π1).

Proof Let Q̂(πi) be the set of nodes that their servers respond to πi ’s query (lines 61
and 67). Note the existence of node p j ∈ Q̂(π2)∩ Qfw(π1) (Lemma 2) that its server
responds to π2’s query with (t, •, ‘qry’) (line 73) immediately after some system state
ĉ2, j ∈ R, where t is the highest tag of a finalized (or FINALIZED) record that p j

stores in Sp j . We argue that t ≥ T (π1), because (T (π1), •, d) ∈ Sp j : d ∈ D\{‘pre’}
in ĉ2, j and t is Sp j ’s highest finalized tag in ĉ2, j . In detail, we argue the following.

123

Algorithmica (2023) 85:216–276 257

1. The fact that p j ∈ Qfw(π1) implies (T (π1), •, d) ∈ Sp j : d ∈ D\{‘pre’} as long
as ĉ2, j appears after cend(π1) in R (Lemma 8). Moreover, ĉ2, j indeed appears after
cend(π1) in R, since cr1 appears before cs2 in R (by this lemma assumption) and
cs2 cannot appear after ĉ2, j (by the fact that ĉ2, j appears immediately before the
response to a query that is sent immediately after cs2).

2. The fact that p j ∈ Q̂(π2) implies that p j responds to π2’s query (by Q̂(π2)’s
definition),

3. The server at p j replies with (t, •, ‘qry’) to π2’s query, such that (t, •, d) ∈ Sp j :
d ∈ D\{‘pre’}, where t is Sp j ’s highest finalized (or FINALIZED) tag (line 73) in
ĉ2, j .

Since t ≥ T (π1), it holds that π2’s query phase includes the reception of a response
with a tag that is no smaller than T (π1). Thus, T̂ (π2) ≥ T (π1).

��
Lemma 10 (cf. Lemma 5 in [15]) Letπ1 andπ2 be twowrite operations in R. T (π1) �=
T (π2).

Proof Denote by idi :∈ {1, 2} the identifier of the node that invokes operation πi .
Note that id1 �= id2 implies T (π1) �= T (π2), because T (πi) = (zi , idi)

(lines 62, 63 and 64 , Algorithm 3).
Thus, until the end of this proof, we focus on the case in which id1 = id2. The

client (at node pi) performs sequentially the operations π1 and π2 (Sect. 2.2), i.e., one
of them ends before the other starts. Let us assume, without loss of generality, that π1
ends before π2 starts. T (π2) > T (π1) (Lemma 9) implies that T (π2) �= T (π1). ��
Proof of Theorem 3 For any two operations π1, π2, the definition of ≺ (Corollary 3)
says π1 ≺ π2 when: (i) T (π1) < T (π2), or (ii) T (π1) = T (π2) as long as π1 is a
write and π2 is a read. Suppose that operations π1 and π2 occur in Algorithm 3’s legal
execution RlegalExecution . After verifying that ≺ is indeed a partial order, we show the
three properties of Corollary 3.
The relation ≺ is a partial order. We demonstrate that π1 ≺ π2 �⇒ π2 ⊀ π1
by assuming that this statement is false, i.e., π1 ≺ π2 ∧ π2 ≺ π1, and then show a
contradiction. Note that (T (π1) ≤ T (π2))∧ (T (π2) ≤ T (π1)) �⇒ T (π1) = T (π2)

(≤’s definition). Therefore, π1 is a write and π2 is a read (Part (ii), Definition 9). Using
symmetrical arguments, π2 is a write and π1 is a read. A contradiction.
Property (1) of Corollary 3.

Assume that π1 returns before π2 starts in R.
We show that whether π2 is a read or a write, it holds that π2 ≺ π1 is false.

– When π2 is a read, T (π2) ≥ T (π1) (Lemma 9, as well as the assumption that π1
returns beforeπ2 starts). Thus,π2 ≺ π1 is false, because otherwise, byDefinition 9
of the order ≺, it holds that: (i) T (π1) > T (π2), which contradicts the above, or
(ii) π2 is a write (Definition 9 of the order ≺). Moreover, with respect to case (ii),
if π2 is a write, T (π2) > T (π1) (Lemma 9, as well as the assumption that π1
returns before π2 starts). Thus, π1 ≺ π2 is true (case (i), Definition 9 of the order
≺). Moreover, π2 ≺ π1 is false (≺ is a partial order).

123

258 Algorithmica (2023) 85:216–276

– When π2 is a write T (π2) > T (π1) (Lemma 9, as well as the assumption that π1
returns before π2 starts). Thus, π1 ≺ π2 is true (case (i), Definition 9 of the order
≺). Moreover, π2 ≺ π1 is false (≺ is a partial order)

Property (2) of Corollary 3.
Lemma 10 implies that only case (i) of Definition 9 holds. This implies Property

(2), i.e., either π1 ≺ π2 or π2 ≺ π1 (but not both) hold.
Property (3) of Corollary 3.

We show that every read operation π in a legal execution RlegalExecution returns a
value that a preceding, according to ≺, write operation writes. (In the absence of such
write operations, the read operation π returns v0, which is the default object value,
line 71).) To that end, we argue that: (i) there is a unique coupling between object
version values and tag values and (ii) the read operation π returns the value associated
with T (π).
(i) Unique coupling between object version values and tag values.

Recall that the system reaches RlegalExecution after the systemhas performed at least
one complete and valid write operation πgreat F I N ∈ RcompleteNonStable (Definition 8
and Theorem 2).

After πgreat F I N , any succeeding write operation π f ur therWrite in RlegalExecution

couples uniquely between versions of the data object and write operations in R
(Sect. 2.2). We know that all written versions are uniquely associated with tag values
(Lemma 10). We note that even when starting the system in a state that includes no
written object values, the servers reply with (t0, w0,i , ‘fin’) (line 71) and the reader
returns the decoding of that value (line 69).
(ii) The read operation π returns the value associated with T (π).

The complete read operationπlegi timateRead ∈ RlegalExecution returns a value that is
the result of retrieving and inverting the MDS code Φ using k coded elements (line 69
and Definition 4). These k coded elements were obtained at some previous point by
applying Φ to the value associated with T (π), where π ∈ {πgreat F I N , π f ur therWrite}
(line 62). Therefore, the read operation π returns the value associated with T (π) due
to the correctness of Φ (Sect. 2.2). ��

8.5 Liveness of Algorithm 3

Definition 10 (Liveness criteria) Suppose that there are nomore than f crashed severs,
e data-corrupting malicious server, and that kthreshold ∈ {1 . . . , N − 2(f + e)}. In any
fair and legal execution of Algorithm 3, it holds that: (1) every operation terminates,
and (2) the servers replying to a reader’s finalize phase includes at least kthreshold
(different) coded elements (and thus read operations can decode the retrieved values).

Theorem 4 (Liveness) The liveness criteria (Definition 10) hold in Algorithm 3’s fair
and legal executions.

Proof Note that Lemma 5 implies Part (1) of the liveness criteria (Definition 10).
Therefore, we focus on proving that read operations can decode the retrieved values
(Part (2) of Definition 10). I.e., at least k servers include coded elements in their replies

123

Algorithmica (2023) 85:216–276 259

to a reader’s finalize phase. The proof is implied from Claims 9 and 10 and the fact
that Algorithm 3’s servers do not remove records from their storage.

Claim 9 The query of a read operation πr in RlegalExecution always returns a tag t that
is either t0 or refers to the tag of a write operation πw that had a complete pre-write
phase in R.

Proof Definition 8 implies that πw always occurred before the legal execution (or the
servers only consider the default tuple with the tag t0). Lemma 6 says that the servers
do not remove their maximal records. Upon the arrival of πr ’s query message, the
server replies with πw’s tag (line 74), which is t .

Claim 10 As long the no server removes the record (t, •) from its storage, if it had any
such record in cstart (πr), at least k servers include coded elements in their replies to
πr ’s finalize phase.

Proof Let Qpw(t) denote the set of nodes that their servers acknowledge the pre-write
phase of the write operation πw for which t = T (πw). Let ci be the system state
that occurs immediately before the server at pi acknowledges πr ’s finalize message
(line 81). We show that the storage Spi of every node pi ∈ Qpw(t)∩Qfw(t) includes a
coded element in ci . Since pi ∈ Qpw(t), it holds that (t, wt,i , •) ∈ Spi in any system
state that follows the step in which pi received πw’s pre-write message (line 76 and by
the assumption of this claim that no server removes the record (t, •) from its storage).
Note that pi ∈ Qfw(t) indeed acknowledges the reader’s finalize message, because
of Claim 9 and the fact that ci appears in R after pi acknowledges that pre-write
message. Therefore, pi includes in its reply the coded elementwt,i . By the correctness
of the quorum-based communication during legal executions (Theorem 2, Claim 5),πr

receives at least k coded elements in its finalize phase, because |Qpw(t)∩Qfw(t)| ≥ k
(Part(1) of Lemma 2).

��

9 A Bounded Set of Relevant Server Records

Algorithm 3’s servers store the entire set of records that have arrived from the clients
and the gossip service. This is in addition to the records that originated from the system
starting state. To the end of bounding the number records that each server needs to
store, we consider the relevance of a record with respect to the way that the servers use
it after any point of time, i.e., a record is irrelevant in system state c ∈ RlegalExecution if
the server at pi ∈ P never use it after c for responding to a client request. Theorem 5
and Corollary 4 point out a set that includes all relevant records and bound it by
N + δ + 3 during executions RlegalExecution in which there are no more than δ write
operations that occur concurrently with any read operation.

Definition 11 (Tag visibility) Let R be an execution of Algorithm 3, πr be a read
operation and πw be a write operation in R. Denote by cvisibili t y(πr) = cend(πr),
which refers to πr ’s ending system state. We say that πr has visibility in R starting
from cvisibili t y(πr). Moreover, denote by cvisibili t y(πw) ∈ R either:

123

260 Algorithmica (2023) 85:216–276

(i) the first system state, if such a state exists, for which a quorum Q ∈ Q of non-
failing nodes that their servers store the finalized record (T (πw), •, d) ∈ Sp j∈Q :
d ∈ D\{‘pre’}, or

(ii) when case (i) does not hold in R (because operationπw fails in R), cvisibili t y(πw) =
cend(πw), which refers to πw’s ending system state. When case (i) holds for πw,
we say that πw has visibility in R starting from cvisibili t y(πw). Otherwise, πw’s
visibility is not guaranteed in R.

Definition 12 (Explicit and implicit FINALIZED tags and records) Suppose that the
server at node pi stores a finalized (or FINALIZED) record r = (t, •, d) ∈ Spi : t ∈
T ∧ d ∈ D\{‘pre’} in system state c ∈ R. In this case, we say that tag t and record
r are explicitly finalized (with respect to the server) at pi . Moreover, we say that tag
t and record r are explicitly FINALIZED at pi when (t, •, ‘FIN’) ∈ Spi : t ∈ T in
system state c ∈ R.

Suppose that the server at node pi stores two records r1, r2 ∈ Spi , such that
∃p j∈P∀x∈{1,2}tx = (zx , j) ∧ rx = (tx , •) in system state c ∈ R that their tags,
tx = (z1, j), and respectively, tx = (z2, j), are associated with the client at p j . More-
over, suppose that t1 < t2. In this case, we say that tag t1 and record r1 are implicitly
FINALIZED (inwith respect to the server) at pi .We denote Spi ’s explicit FINALIZED
records in c by Si,expFIN := {(t, •, ‘FIN’) ∈ Spi } and Spi ’s implicitly FINALIZED
records in c by Si,impFIN := {((z1, j), •) ∈ Spi : ∃((z2, j), •) ∈ Spi ∧ z1 < z2}.

Claim 11 shows that an implicitly FINALIZED record at a server implies explicitly
FINALIZED records at a server quorum.

Claim 11 Suppose that RlegalExecution includes awrite operationπ , such that in system
state c ∈ RlegalExecution it holds that T (π) is implicitly FINALIZED at pi . (1) π is
visible in c. (2) There is a quorum Q ∈ Q of nodes that their servers store the
FINALIZED record (T (π), •, ‘FIN’) ∈ Sp j∈Q. Suppose that in c it holds that T (π)

is explicitly FINALIZED at pi , i.e., (T (π), •, ‘FIN’) ∈ Spi . (3) π is visible in c.

Proof We start the proof by showing that π includes the entire execution of the
FINALIZED phase before RlegalExecution reaches the system state c. We do that by
demonstrating that π is not an incomplete operation, nor a failed one. Recall that
Claim 5 implies that RlegalExecution does not include (write) operations that are incom-
plete and thusπ is not an incomplete operation. This claim assumes that in system state
c, it holds that T (π) is implicitly FINALIZED at pi . This means that, in c, the server at
node pi stores two records r1, r2 ∈ Spi : rx = (tx , •), tx ∈ T ∧ tx = (zx , j)∧ p j ∈ P ,
such that T (π) = t1 < t2 (Definition 12). By the assumption that each node p j ∈ P
lets its client to run just one procedure at a time, by the assumption that failing clients
do not resume (Sect. 2.2.3), and by the writer code (lines 61 and 65), we have that π
is not a failed operation. Therefore, π is a complete write operation that ends before
c. In particular, π ’s finalized and FINALIZED phases are done before R reaches c
and thus parts (1) and (2) are correct (by Definition 11 and the correct operation of
the quorum-based communications Theorem 1). To show that part (3) also holds, we
note that during RlegalExecution , any write operation π , which is after πcomplete&valid ,
updates to the record (T (π), •, ‘FIN’) ∈ Spi occurs only after the completion of the
finalized phase (line 63 and 64). Thus, visibility is implied (Definition 11).

123

Algorithmica (2023) 85:216–276 261

Definition 13 (The done system state cdone(π)) Let R be an execution of Algorithm 3
and π be a client (read or write) operation in R. Let ak(π) ∈ R be the step in which
a server (at node pi ∈ P) adds or updates the record (T (π), •) to its server storage,
Spi for the k-th time. This update could be due to the π operation itself, another
read operation πr �= π for which T (πr) = T (π), or the arrival of a gossip message
(•, T (π), •). Denote c0(π) := cstart (π), ck(π) is the system state that immediately
follows ai,k(π) and clast (π) = c	(π), where 	 is the maximum value of 	 for which
∃c	(π) ∈ R. We denote by cdone(π) ∈ {clast (π), cend(π)} the system state that
appears latest in R between clast (π) and cend(π).

Definition 14 (Concurrent operations) Let π1 and π2 be two operations in R. Suppose
that �x, y ∈ {1, 2} : x �= y, such that cdone(πx) appears before cstart (πy) in R. In this
case, we say that π1 and π2 appear to be concurrent in R.

We note that one way to explain Definition 14, is to say the following. When
cdone(πx) appears before cstart (πy) in R, we can say that R orders πx before πy

sequentially. Moreover, π1 and π2 appears to be concurrent in R if, and only if, R
neither orders πx before πy nor πy before πx .

Definition 15 (δ-bounded concurrent write operations during any read in R) Suppose
that for every read operation πr in R, it holds that there are at most δ write operations
in R that are concurrent with πr . In this case, we say that the number of concurrent
write operations that occur in R during any read operation is bounded by δ in R.

Definition 16 (Record relevance) Let r = (t, •) ∈ Spi : t ∈ T be a record that the
server at node pi ∈ P stores in system state c ∈ R. Suppose that there is a step ai
that appears in R after c and in which the server at node pi responses to a (1) writer
query request (line 75), (2) reader query request (line 74) or (3) reader finalized request
(lines 79) with a message that includes tag t ′ ≤ t . In this case, we say that tag t and
record r are of relevance to c with respect to a (1) writer query request, (2) reader
query request, and respectively, (3) reader finalized request.

Definition 17 (The Ti,wri teQuery , Ti,readQuery and Ti,readFinali zed sets) Let pi ∈ P
be a node with a server. Let ti,F I N AL I Z ED = ti,1, ti,2, . . . : (ti,k, •) ∈ (Si,expFIN ∪
Si,impFIN) (Definition 16) be a (possibly empty) sequence tags in a descending
order that are explicitly or implicitly FINALIZED at pi in system state c. Let
maxTi,F I N AL I Z ED = max{ti,x ∈ ti,F I N AL I Z ED} and Ti,F I N AL I Z ED = {ti,x ∈
ti,F I N AL I Z ED : x ≤ δ + 1}. Let Ti,notY et F I N = {t : (t, •) ∈ Spi \(Si,expFIN ∪
Si,impFIN)} be a (possibly empty) set of tags that are at pi ’s record storage and are
not in Ti,F I N AL I Z ED in system state c. Let Ti,wri teQuery = {max{t : (t, •) ∈ Spi }},
Ti,readQuery = {max{t : (t, •, d) ∈ Spi : d ∈ (D\{‘pre’})}} and Ti,readFinali zed =
Ti,notY et F I N ∪ Ti,F I N AL I Z ED in system state c.

Lemma 11 Suppose that during any read operation in RlegalExecution there are at most
δ concurrent write operations. Suppose that RlegalExecution includes a read operation
πr and a step ai ∈ RlegalExecution in which the server at pi responds with (T (πr), •) to
πr ’s finalize request (line 79), such that RlegalExecution includes a write operation πw

for which T (πw) = T (πr). (If there is more than just one such operation, we select

123

262 Algorithmica (2023) 85:216–276

the latest one that appears before πr and note that by Theorem 3 these operations
cannot be concurrent.)

It holds that T (πr) ∈ Ti,readFinali zed in any system state c ∈ RlegalExecution

that is between ci,in ∈ RlegalExecution and ci,out ∈ RlegalExecution, where ci,in is
RlegalExecution’s first system state for which (T (πr), •) ∈ Spi holds and ci,out is the
system state that immediately precedes ai .

Proof The proof is implied by the following claims.

Claim 12 Let c ∈ RlegalExecution be a system state. |Si,notY et F I N | ≤ N holds in c
(Definition 17).

Proof By the definition of Si,impFIN := {((z1, j), •) ∈ Spi : ∃((z2, j), •) ∈ Spi ∧z1 <

z2} (Definition 12), it holds that Si,notY et F I N := S\(Si,expFIN ∪ Si,impFIN) does not
include any record ((z1, j), •) for which ((z2, j), •) ∈ Si,notY et F I N and z1 < z2.
Therefore, every client can have at most one tag that appear in a record that belongs
to Si,notY et F I N . The proof of this claim is implied by the upper bound on the number
of clients, which is N (Sect. 2.1.1).

Claim 13 Let tstart be the maximum visible tag in cstart (πr) ∈ R. It holds that tstart ≤
T (πr).

Proof By the assumption that tstart is the maximum visible tag in cstart (πr), it holds
that there is a quorum Q ∈ Q of nodes that their servers store the finalized record
(T (π), •, d) ∈ Sp j∈Q : d ∈ D\{‘pre’} (Definition 11), such that π is a write operation

in R and T (π) = tstart . Let Q̂(πr) be the set of nodes that πr ’s client receives their
query responses (Definition 5). Note the existence of node p j ∈ Q̂(π)∩Q (Lemma 2)
that its server responds to πr ’s query with a tag that is at least tstart (line 81). The rest
of the proof is implied by line 67 and Part (2) of Theorem 1.

Claim 14 Let ti,start := max Ti,F I N AL I Z ED be Ti,F I N AL I Z ED’s the maximum tag in
cstart (πr) ∈ R. It holds that ti,start ≤ T (πr).

Proof Part (1) of Claim 11 implies that tag ti,start is visible in cstart (πr). Let tstart be
the maximal tag that has visibility in cstart (πr) ∈ R, i.e., ti,start ≤ tstart . By Claim 13,
we have that ti,start ≤ tstart ≤ T (πr), which implies this claim. ��
Claim 15 Let tvisibili t y(c) ∈ T be the maximum explicitly visible tag in system state
c ∈ RlegalExecution.

Suppose that T (πr) ≥ tvisibili t y(c) in system state c ∈ RlegalExecution that is
between c j,in ∈ RlegalExecution and c j,out ∈ RlegalExecution, where p j ∈ P . In c, it
holds that:

1. T (πr) ≥ maxTi,F I N AL I Z ED, and
2. (T (πr), •) ∈ Sp j implies T (πr) ∈ {maxTj,F I N AL I Z ED} ∪ {t ∈ Tj,notY et F I N :

t ≥ maxTj,F I N AL I Z ED}.
Proof Part (1). Recall thatmaxTj,F I N AL I Z ED = max{t j,x ∈ t j,F I N AL I Z ED} (Def-
inition 17), where t j,F I N AL I Z ED = t j,1, t j,2, . . . : (t j,k, •) ∈ (S j,impFIN ∪ S j,expFIN)

123

Algorithmica (2023) 85:216–276 263

(Definition 16). Let us consider any tag that is either in S j,impFIN or S j,expFIN, i.e., any
tag that is FINALIZED either (i) implicitly or (ii) explicitly. That is, we look at the
cases in which (i) (T (πr), •) ∈ Sp j : pk ∈ P ∧ T (πr) = (z1, k) ∧ ∃((z2, k), •) ∈
Sp j : z1 < z2 in c, or (ii) (T (πr), •, ‘FIN’) ∈ Sp j in c. Parts (1), and respectively,
(3) of Claim 11 imply that T (πr) has visibility in c. This claim assumption says that
T (πr) ≥ tvisibili t y(c). Therefore, T (πr) ≥ maxTj,F I N AL I Z ED (Claim 14).
Part (2). By Definitions 12 and 17 , (T (πr), •) ∈ Sp j implies that either (T (πr), •) ∈
(S j,impFIN ∪ S j,expFIN) or (T (πr), •) ∈ Tj,notY et F I N . Part (1) of this proof consider
the former case and implies that T (πr) ∈ {maxTj,F I N AL I Z ED} in c. The latter refers
to the cases that Part (1) of this proof do not consider. That is, (T (πr), •, d) ∈ Sp j :
d ∈ D\{‘FIN’} ∧ pk ∈ P ∧ T (πr) = (z1, k) ∧ �((z2, k), •) ∈ Sp j : z1 < z2, which
implies (T (πr), •, d) ∈ Tj,notY et F I N . ��
Claim 16 Let tvisibili t y(c) ∈ T be the maximum explicitly visible tag in system state
c ∈ RlegalExecution and c1, c2, . . . be a sequence of all system states in RlegalExecution

(in the order that they appear in RlegalExecution).

1. (tvisibili t y(c), •) ∈ Sp j implies tvisibili t y(c) ∈ {t ∈ Tj,notY et F I N : t ≥
maxTj,F I N AL I Z ED} ∪ {maxTj,F I N AL I Z ED} in c.

2. The sequence tvisibili t y(c1), tvisibili t y(c2), . . . is monotonically increasing, i.e.,
tvisibili t y(ck) ≤ tvisibili t y(ck+1).

Proof Part (1). This is implied by Part (1) of Claim 15 and the definition of
Tj,notY et F I N .
Part (2). According to Algorithm 3, the server at p j ∈ P does not remove the records
in {t ∈ Tj,notY et F I N : t ≥ maxTj,F I N AL I Z ED} ∪ {maxTj,F I N AL I Z ED}. The max
function properties imply this part.

Claim 17 Let c1, c2 ∈ RlegalExecution be two system states that appear between c j,in ∈
RlegalExecution and c j,out ∈ RlegalExecution, where p j ∈ P . It holds that |(S1 ∪
S2)\(S1 ∩ S2)| ≤ δ, where Sx ∈ {1, 2} = Spi in cx .

Proof By this lemma assumption, any read operation π in RlegalExecution has at most
δ concurrent write operations (Definition 15). Recall that RlegalExecution does not
include incomplete operations (Claim 5). Therefore, an update or an addition of the
record (t, •) to Spi (between ci,in and ci,out) implies that there is write operation πw′
that is concurrent (Definition 14) with the read operation π . Thus, this claim. (Note
that the same holds for this lemma’s read operation, πr .) ��
Claim 18 Let ti,F I N AL I Z ED,c′ = ti,F I N AL I Z ED denote the value of the sequence
ti,F I N AL I Z ED in c′ ∈ R. Let c ∈ RlegalExecution be a system state that is between
ci,in and ci,out . The sequence ti,F I N AL I Z ED,c includes at most δ tags that are greater
than T (πr), which are not in ti,F I N AL I Z ED,cstart (πr).

Proof Claim 14 implies that T (πr) is greater than the value of any element in
ti,F I N AL I Z ED,cstart (πr). From Claim 17, we get that, between cstart (πr) and ci,out ,
Algorithm 3 may add to the sequence ti,F I N AL I Z ED at most δ records. Hence, the
claim. ��

123

264 Algorithmica (2023) 85:216–276

Claim 19 Let c ∈ RlegalExecution be a system state that is between ci,in and ci,out . It
holds that T (πr) ∈ Ti,readFinali zed (Definition 17) in c.

Proof Suppose that ci,in appears before cstart(ßr) in RlegalExecution.
We show that the conditions ofClaim15 hold in c and thus T (πr) ∈ Ti,readFinali zed .

Specifically, we show that T (πr) ≥ tvisibili t y(c) in c and that (T (πr), •) ∈ Spi in c,
because then we can complete the proof by using Ti,readFinali zed = Ti,notY et F I N ∪
Ti,F I N AL I Z ED (Definition 17).

Let us look at the case in which c appears between ci,in and cstart(ßr) in
RlegalExecution (including both system states ci,in and cstart(ßr) as possible values
of c).

We recall the fact that T (πr) ≥ tvisibili t y(cstart (πr)) (Claim 13) and that
tvisibili t y(cstart (πr)) ≥ tvisibili t y(c) (Part (2) of Claim 16 and this case assumption
that c appears no later than cstart (πr) in R). Thus, T (πr) ≥ tvisibili t y(c).

To the end of showing that (T (πr), •) ∈ Spi in c, we start by assuming that
c = ci,in and then consider every system state c that appears between ci,in and
cstart (πr) (including the latter state). Recall that ci,in is RlegalExecution’s first sys-
tem state for which (T (πr), •) ∈ Spi holds (cf. this lemma’s statement). Therefore,
(T (πr), •) ∈ Sp j implies T (πr) ∈ {t ∈ Tj,notY et F I N : t ≥ maxTj,F I N AL I Z ED} ∪
{maxTj,F I N AL I Z ED} ⊆ Ti,readFinali zed in c = ci,in (Part (2) of Claim 15).

Now, let us continue by assuming that c is the state in RlegalExecution that imme-
diately follows ci,in (and yet c does not appear in RlegalExecution after cstart (πr)). By
the same arguments as above, it holds that T (πr) ≥ tvisibili t y(c). Algorithm 3 does not
include a line in which a server removes a record from its storage. Thus, we only need
to show that T (πr) does not leave the set Ti,readFinali zed in the transition from ci,in
to c. We show more than that, i.e., T (πr) does not leave the set {t ∈ Tj,notY et F I N :
t ≥ maxTj,F I N AL I Z ED} ∪ {maxTj,F I N AL I Z ED} ⊆ Ti,readFinali zed in the transition
from ci,in to c.

We note that it cannot be the case that in the system state ci,in we have T (πr) ∈
{maxTj,F I N AL I Z ED} and T (πr) /∈ {maxTj,F I N AL I Z ED} in c. The reason is that
T (πr) ∈ {maxTj,F I N AL I Z ED} in ci,in says that T (πr) is (either explicitly or implic-
itly) FINALIZED in ci,in and that status field in the record cannot change to a status
that is not (either explicitly or implicitly) FINALIZED (Algorithm 3 and the way that
Definition 17 constructs ti,F I N AL I Z ED).

Suppose that in ci,in it holds that T (πr) ∈ {t ∈ Tj,notY et F I N : t ≥
maxTj,F I N AL I Z ED} and in c it holds that T (πr) /∈ {t ∈ Tj,notY et F I N : t ≥
maxTj,F I N AL I Z ED}. This implies that tag T (πr) becomes (either explicitly or
implicitly) FINALIZED during that transition (Definition 17), That is, T (πr) ∈
{maxTj,F I N AL I Z ED} in c and the proof is done.

The rest of the proof of this part is followed by repeating the same arguments for
every two consecutive system states c′ and c′′ that are between ci,in and cstart (πr).

Let us look at the case in which c appears between cstart(ßr) and ci,out in
RlegalExecution (including both system states cstart(ßr) and ci,out as possible values
of c).

From the proof of the previous case, when c = cstart (πr), it holds that T (πr) ∈ {t ∈
Tj,notY et F I N : t ≥ maxTj,F I N AL I Z ED} ∪ {maxTj,F I N AL I Z ED} ⊆ Ti,readFinali zed .

123

Algorithmica (2023) 85:216–276 265

Recall also from the previous case that if Algorithm 3 causes T (πr) to leave the set
{t ∈ Tj,notY et F I N : t ≥ maxTj,F I N AL I Z ED}, then T (πr) becomes a member of
the sequence ti,F I N AL I Z ED (Algorithm 3 and the way that Definition 17 constructs
ti,F I N AL I Z ED). From Claim 18, we get that Algorithm 3 may move T (πr) down the
sequence ti,F I N AL I Z ED , by including other (either explicitly or implicitly) FINAL-
IZED records with higher tags, at most δ times between cstart (πr) and ci,out but still
include T (πr) in Ti,F I N AL I Z ED . This implies T (πr) ∈ Ti,readFinali zed (Definition 17)
for the case in which c appears between cstart(ßr) and ci,out in RlegalExecution, as well
as the case in which ci,in appears before cstart (πr) in RlegalExecution .

Suppose that ci,in appears after cstart(ßr) in RlegalExecution.
By this case assumption, it holds that the tag T (πr) does not appear in the

sequence ti,F I N AL I Z ED in cstart (πr). From Claim 18, we get that Algorithm 3
may include in the sequence ti,F I N AL I Z ED at most δ (either explicitly or implic-
itly) FINALIZED records with higher tags than T (πr) during the period that is
between cstart (πr) and ci,out . During this period, the record (T (πr), •) ∈ Spi does
appear in the storage of the server at pi . By the arguments above, it appears either in
{t ∈ Tj,notY et F I N : t ≥ maxTj,F I N AL I Z ED} or in the top δ+1 tags of ti,F I N AL I Z ED .
Therefore, T (πr) ∈ Ti,F I N AL I Z ED (Definition 17) and we can complete the proof by
using Ti,readFinali zed = Ti,notY et F I N ∪ Ti,F I N AL I Z ED (Definition 17).

��
Theorem 5 uses Lemma 11.

Theorem 5 (Only Ti,writeQuery, Ti,readQuery and Ti,readFinalized are relevant and they
are bounded) Let r = (t, •) ∈ Spi : t ∈ T be a record that the server at node
pi ∈ P stores in system state c ∈ RlegalExecution. Suppose that tag t is of relevance
to c with respect to a (1) writer query request, (2) reader query request or (3) reader
finalized request. The server at pi stores the record r = (t, w j , •) ∈ Sp j∈Q and
r ∈ relevant(Si), such that (1) r ∈ Ti,wri teQuery , (2) r ∈ Ti,readQuery , and respec-
tively, (3) r ∈ Ti,readFinali zed in c. Moreover, |relevant(Si)| ≤ N + δ + 3, where
relevant(Si) := Ti,wri teQuery ∪ Ti,readQuery ∪ Ti,readFinali zed .

Proof Showing that r ∈ Ti,writeQuery.
The theorem assumption and Definition 16 imply that Ti,wri teQuery = {max{t :

(t, •) ∈ Spi }} in c (Definition 17). The server at node pi replies to a reader by returning
the maximal tag t in any record stored in Spi (line 74). Therefore, the server at pi and
Ti,wri teQuery store in system state c any record (t ′, •) that is relevant with respect to
a writer query request.

Showing that r ∈ Ti,readQuery.
By this theorem assumption and Definition 16 it implies that Ti,readQuery =

{max{t : (t, •, d) ∈ Spi : d ∈ (D\{‘pre’})}} in c (Definition 17). The server at
node pi replies to a reader by returning the tag t in any finalized or FINALIZED
record stored in Spi (line 74). Therefore, the server at pi and Ti,readQuery store in
system state c any record (t ′, •) that is relevant with respect to a reader query request.

Showing that r ∈ Ti,readFinalized.
The proof of this case is implied by Lemma 11.
The bound |relevant(Si)| ≤ N + + 3. This bound comes from the Definition 17,

which implies |Ti,wri teQuery | ≤ 1 and |Ti,readQuery | ≤ 1, as well as the definition of

123

266 Algorithmica (2023) 85:216–276

Fig. 3 A bounded extension of Algorithm 3

Ti,readFinali zed and Claim 17, which implies that during executions that have at most
δ concurrent write operations, it holds that |Ti,readFinali zed | ≤ N + δ + 1. ��

Corollary 4 is implied directly from the definition of the set relevant(Si) (Theo-
rem 5), Theorem 5 and line 82 to 89 of Algorithm 3.

Corollary 4 Let pi ∈ P be a node that hosts a server. The set relevant(Si) (Theorem 5)
always includes the records (twri te, •), (tread , •) and (tanchor , •), which pi gossips
their tags in the triple (twri te, tread , tanchor) (line 89).

10 A Bounded Variation on Algorithm 3

Wepresent a variation ofAlgorithm3 that has boundedmessage and state size. Figure 3
adds a couple of lines to the code of Algorithm 3 and uses the external building block
globalReset() (Sect. 5.2). Theorem 13 demonstrates the correctness of the proposed
variation. Note that the proof assumes the execution to be fair eventually in the manner
of self-stabilizing systems in the presence of seldom fairness (Sect. 2.2). Namely, once
the storage of at least one server includes at least one record with a tag t that is at
least ttop (Fig. 3), we require the system execution to eventually be fair until all nodes
return from the call to globalReset(). This requirement is indeed seldom, because such
fair executions are needed only once in everyO(zmax)write operations and during the
recovery from rare transient faults (Theorem 3). After the recovery period and during
the periods in which no server stores tag t ≥ ttop, the execution is not required to be
fair.

Definition 18 (Legitimate overflows) Le c be a system state in which every tag t < ttop
is smaller than the one that would trigger an overflow event. In this case, we say that c
is overflow-free.We say that execution R has a legitimate overflow event if R’s starting
system state c is (i) both overflow-free and reset-free (Sect. 5.2.2), as well as (ii) the

123

Algorithmica (2023) 85:216–276 267

first step that immediately follows c includes the start (the first sent request to the
server) of a pre-write phase that has the tag t ≥ ttop. Let R′′ be a suffix of R = R′ ◦ R′′
that (a) includes a starting system state in which any pi ∈ P (that hosts a server) stores
a record (t, •) ∈ Spi with tag t ≥ ttop and (b) R′ is the shortest matching prefix of R′′
in R. In this case, we say that R′′ is an execution with a legitimate overflow record.
(Note that R′′ may have system states, including the starting one, with tags t ′ ≥ ttop,
such that t �= t ′.)

Lemma 12 (Eventual recovery of Algorithm 3’s variation in Fig. 3) Let R be a fair
execution of the bounded variation of Algorithm 3 (Fig. 3). Suppose that in R’s starting
system state, c, it holds that there is a node pi ∈ P (that hosts a server) stores a record
(t, •) ∈ Spi with tag t ≥ ttop (but R is not necessarily an execution with a legitimate
overflow record). WithinO(Ψ) asynchronous cycles, R reaches a system state that is
reset- and overflow-free.

Proof Recall that the reset procedure has a termination period withinΨ asynchronous
cycles (Sect. 5.2.2). Thus, within Ψ asynchronous cycles, the system reaches a state
c′ ∈ R that is reset-free. Note that if c′ is also overflow-free, the proof is done.
Therefore, we consider the complementary case and assume that c is reset-free but
not necessarily overflow-free, i.e., (t, •) ∈ Spi with tag t ≥ ttop. Claim 20 shows that
within O(1) asynchronous cycles, the overflow handling proceeds to the invocation
of the reset procedure (item 2 of Fig. 3), which in turn brings the system to a reset-
and overflow-free state within Ψ asynchronous cycles. Therefore, the proof is done,
because we showed that withinO(Ψ) asynchronous cycles, the system reaches a state
in R that is both reset- and overflow-free.

Claim 20 Within O(1) asynchronous cycles, the system reaches a state, c′, in which
Condition (1) holds, where t, t ′, t ′′ ∈ T : t ≤ t ′ ∧ t ′ ≥ t ′′.

∃pi ∈ P : (max Phasei (D) = t ′ ≥ ttop) ∧
(∀pk ∈ P : gossipi [k] = tagTuplei ()) ∧

(tagT uplei () = (t ′, t ′′, t ′′))
(1)

Proof Suppose that this claim is false, and R includes a prefix R′ with more thanO(1)
asynchronous cycles in which Condition (1) does not hold in every c′′ ∈ R′.
We show that ∃cstop ∈ R′ : ∀pj ∈ P : (t, •) ∈ Spj : t ≥ ttop.

Note that, within O(1) asynchronous cycles, the gossip protocol works correctly
(Part (3) of Theorem 1). Moreover, the function tagTuple() returns (max Phase(D),
max Phase(D\{‘pre’}),max Phase({‘FIN’})) (line 92) and this triple is sent by the
gossip service. This claim assumes that (t, •) ∈ Spi , which implies that within O(1)
asynchronous cycles of R′, the system reaches a system state cstop ∈ R′ for which
∀p j ∈ P : (t, •) ∈ Sp j : t ≥ ttop holds (Lemma 7).
We show that no step follows immediately after cstop in which any server responds
to a query request of a write operation.

No server responds to a query request due to the fact that ∀p j ∈ P : (t, •) ∈ Sp j

in cstop and item 1 of Fig. 3.

123

268 Algorithmica (2023) 85:216–276

We show that Condition (1) holds in c′′ ∈ R′.
Everywrite operation that has started before cstop terminates eventually (Theorem4

with respect to Part (1) of Definition 10) or they cannot proceed beyond the pre-write
phase. (This is because R is a fair execution and each write operation occurs within a
constant number of phases and gossip rounds, we note that termination occurs within
O(1) asynchronous cycles, because each phase occurs within O(1) asynchronous
cycles, as we show in Part (3) of Theorem 1.) Let c′′′ be the first system state in which
all of these write operations have terminated (or have stopped forever to proceed
beyond the pre-write phase). Let t ′ = maxp j∈P max Phase j (D) : t ′ ≥ t ≥ ttop and
t ′′ = maxpk∈P max Phasek(D\{‘pre’}) in c′′′. Recall that the server at p j gossips
(t ′, •) and the server at pk gossips (•, t ′′, •). Lemma 7 implies that within O(1)
asynchronous cycles in R′, the system reaches a state c′′′′ ∈ R′ in which ∀p	 ∈ P :
tagTuple	() = (t ′, t ′′, •). By line 87, we have that Condition (1) holds in c′′′′ and so
does this claim, because we have reached a contradiction with the assumption at the
beginning of this proof.

��
Lemma 13 Let R be a fair execution of the bounded variation of Algorithm 3 (Fig. 3)
with a legitimate overflow record. (1) Within O(1) asynchronous cycles, the system
reaches the first system state c ∈ R in which it holds that there is a node pi ∈ P
(that hosts a server that) stores a record (t, •) ∈ Spi with tag t ≥ ttop. Also, we
can write R = R′ ◦ RsameTagTuple ◦ R′′, such that (2) within a prefix R′ of O(1)
asynchronous cycles, the system reaches an unbounded suffix, RsameTagTuple ◦ R′′,
that has a prefix RsameTagTuple of O(1) asynchronous cycles, such that Condi-
tion (1) holds in its starting system state, c′ ∈ RsameTagTuple. Moreover, (3) only
then at least one node calls globalReset(t ′′), all nodes participate in that proce-
dure and within O(Ψ) asynchronous cycles they resume, which leads to the end
of RsameTagTuple. Furthermore, (4) suppose that in c′ ∈ RsameTagTuple it holds that
∃p j ∈ P : {(t ′′ = (z, k), •, d) : d ∈ D\{‘pre’}} ⊆ Sp j , where t ′′ is the tag value
taken from Condition (1). Then, there is system state c′′ ∈ RsameTagTuple that follows
c′′ and in which ∀p	 ∈ P : Sp	

= {((1, k), •, ‘FIN’)}. Otherwise, (5) t ′′ = t0 (line 71)
and ∀p	 ∈ P : Sp	

= ∅ in c′ and c′′.

Proof Part (1). Lemma 5 implies this part of the proof.
Part (2). Claim 20 implies this part.
Part (3). Note that, by this lemma’s assumption that R has a legitimate overflow
record, the starting system state of R includes no tag that is greater or equal to ttop.
Moreover, there is a node pi ∈ P for which it holds that ∀pk ∈ P : gossipi [k] =
(t ′, t ′′, t ′′) in c′, where t ′ ≥ ttop ∧ t ′ ≥ t ′′, because of Part (2) of this proof which
implies that Condition (1) holds in c′. Therefore, the only way in which gossipi [k] =
(t ′, t ′′, t ′′) can hold in c′, is if tagTuplek() = (t ′, t ′′, t ′′) holds in some system state
that appears in R before (and perhaps also after) c′ (and then these tags are gossiped
from pk to pi), because these tag values do not appear in R’s starting state. Moreover,
at least one node calls globalReset(t ′′) (due to item 2 of Fig. 3 and the fact that
Condition (1) holds in c′). Therefore, all nodes resume within O(Ψ) asynchronous
cycles (Sect. 5.2.2), which leads to the end of RsameTagTuple.

123

Algorithmica (2023) 85:216–276 269

Part (4). Claim 21 considers the case in which more than one node calls
globalReset(t ′′) (item 2 of Fig. 3). This implies that all such calls during RsameTagTuple

refer to the same FINALIZED tag t ′′ = (•, k). This part of the proof is implied by the
fact that a call to globalReset(t ′′) indeed replaces t ′′ by (1, k), cf. item 2 of Fig. 3.

Claim 21 Suppose that RsameTagTuple includes two steps, ai and a j , in which pi and
p j call globalReseti (ti), and respectively, globalReset j (t j). It is true that ti = t j .

Proof We prove this claim by assuming that ti �= t j and then demonstrating a con-
tradiction. Suppose, without the loss of generality, that ai appears in RsameTagTuple

before a j . Let us start the proof by assuming that ti < t j before considering the com-
plementary case of ti > t j . We show that neither case is possible and, thus, this claim
is correct.
The case of ti < tj. By Part (2) of the proof of this lemma, we know that pi calls
globalReseti (ti) in step ai only after p j has seen that the tag ti is a FINALIZED record,
because Condition (1) must hold with respect to ti (item 2 of Fig. 3) and the definition
of tagTuple() (line 92). This is true starting from some system state that appears in
R before the steps ai and a j .

When pi takes step ai and calls globalReseti (ti), indeed, pi has not seen t j in a
finalized (or FINALIZED) record, due to this case assumption that ti < t j and the
fact that Condition (1) holds with respect to tag ti in the system state that immediately
precedes ai (item 2 of Fig. 3).

Once pi takes step ai and calls globalReseti (ti), the function globalReset() disables
pi ’s server and therefore pi ’s server does not receive or send in RsameTagTuple gossip
messages after ai . Therefore, pi does not receive the tag t j (in a finalized or FINAL-
IZED record) in any step that follows ai in RsameTagTuple. Moreover, the fact that pi
does not gossip after ai implies that p j cannot receive from pi a gossip message with
(•, t j , t j) (lines 82 and 89). Thus, gossip j [i] = (•, t j , t j) does not hold in any system
state in RsameTagTuple that follows ai . This is in contradiction to the assumption that
p j takes step a j ∈ RsameTagTuple, because this step requires Condition (1) to hold
with respect to t j (item 2 of Fig. 3).
The case of ti > tj. By Part (2) of the proof of this lemma, we know that pi calls
globalReseti (ti) in step ai only after p j has seen the tag ti is a FINALIZED record,
because Condition (1) must hold with respect to ti (item 2 of Fig. 3) and the definition
of tagTuple() (line 92). This is true starting from some system state that appears in R
before the steps ai and a j . The fact that, in the system state that immediately precedes
step a j in which p j calls globalReset j (t j), node p j has indeed seen ti in a finalized
(or FINALIZED) record, demonstrates a contradiction due to this case assumption
that ti > t j and our assumption that a j appears in R after ai , because p j should select
t j according to Condition (1) (item 2 of Fig. 3). ��
Part (5). This part refers to a case in which no server stores any finalized record.
Thus, by the arguments above, there is at least one node that calls globalReset j (t0).
Since no server stores any record, the tag t0 is used (line 71), and this part of the proof
flows simply from item 2 of Fig. 3. ��
Theorem 6 (Bounded self-stabilizing CAS(kthreshold) in the presence of seldom fair-
ness) Algorithm 3’s variation in Fig. 3 is a bounded (message and state) size

123

270 Algorithmica (2023) 85:216–276

self-stabilizing algorithm (in the presence of seldom fairness) for implementing
TCAS(kthreshold)’s task. Both the recovery and the overflow periods end within O(Ψ)

asynchronous cycles.

Proof We demonstrate that the proposed algorithm is self-stabilizing (in the presence
of seldom fairness). To that end, we show that (1) the proposed algorithm can always
recover within O(Ψ) asynchronous cycles from an arbitrary starting system state of
a fair execution, (2) during arbitrary executions that start from a legitimate system
state, the system execution is legal, but (3) once in every O(zmax) write operations,
the system stops providing liveness until the system execution becomes fair and then
within O(Ψ) asynchronous cycles (during which safety is not violated) liveness is
regained.
Part (1). Theorem 4 (with respect to Part (1) of Definition 10) demonstrates that
the operations of Algorithms 3 always terminate. Lemma 12 demonstrates that the
added mechanisms for dealing with overflow events (Fig. 3) always finish to deal with
overflows and then the system simply follows Algorithms 3 for a period of at least
zmax write operations.

The proof of Theorem 2 considers a complete write operation, πwri te, that its tag is
greater than any tag that is present throughout any earlier stage of the recovery process,
i.e., including the set of tags that appeared in the starting system state. As long as no
overflow event occurs, within O(1) asynchronous cycles, the system can complete
the write operation, πwri te, such that T (πwri te)’s record stays at the set relevant(Si)
at least until a later write operation is completed. If an overflow handling is needed,
recovery occurs within O(Ψ) asynchronous cycles (Lemma 13).
Part (2). Algorithm 3’s correctness (Theorems 3 and 4) implies this part.
Part (3). Lemma 13 implies this part. ��

11 Cost Analysis

The main complexity measures of self-stabilizing systems in the presence of seldom
fairness are (Sect. 2.2.6): (i) the maximum length overflow period, which is of O(Ψ)

asynchronous cycles (Theorem 6) for the proposed solution, and (ii) the maximum
length of the period during which the system recovers after the occurrence of transient
failures, which is O(1) asynchronous cycles for the case of the unbounded solution
(Theorem 2) but can also take O(Ψ) asynchronous cycles if the recovery period
includes an overflow (or a recovery of the overflow mechanism).

Cadambe et al. [15] present a version of the CAS(kthreshold) algorithm that includes
elements of garbage collection that recycles merely the stored objects and never the
meta-data, i.e., it never removes the records themselves, because the garbage collector
removes only the coded elements and always keeps the tags and the phase indices.
In the context of self-stabilizing systems, this implies that the storage is unbounded,
because a single transient fault can clog the storage. Cadambe et al. also explicitly
say that when the execution is unfair, an infinite storage is required [15, Table 1].
One of the advantages of Algorithm 3’s variation in Fig. 3 is that it offers bounded

123

Algorithmica (2023) 85:216–276 271

local storage ofO(N + δ) records also during periods in which the execution is unfair
(Theorem 5), i.e., O((log2 |V|)(N + δ)) bits in total.

The proposed solution has write operations that include four phases rather than
three, as in [15]. Cadambe et al. [15, Theorem 4] analyze the communication costs
of CAS(kthreshold) and show that they can be made as small as N

N− f log2 |V| bits by
choosing k = N − 2 f . Moreover, Algorithm 3 and its variation in Fig. 3 consider
gossip messages that include three tags, rather than just one as in Cadambe et al. [15].
When comparing the communication costs of a self-stabilizing algorithm to another
that does not consider recovery from transient faults, we have to take into consideration
that fact that self-stabilizing algorithms can never stop communicating (because then
the system can be first brought to a state in which communication stops, and then
a transient-fault merely change some part of that state, which the algorithm cannot
correct because it has stopped communicating, see [18, Chapter 3.2] for details).
Therefore, the proposed algorithm never stops sending gossip messages, whereas the
one by Cadambe et al. [15, Theorem 4] sends O(N 2) gossip messages per client
operation.

12 Discussion

We studied the implementation of a private coded atomic storage protocol, which is
resilient to data-corrupting malicious servers. For the case of asynchronous message-
passing networks that provide fair communication, we proposed a self-stabilizing
algorithm that preserves privacy and recovers after the occurrence of transient faults.
Our solution requires the system to first reach a fair execution before the algorithm
guarantees recovery. Moreover, once in a practically infinite number of write opera-
tions, the proposed solution again requires fair execution to the end of dealing with
counter overflows. Since overflow events of 64-bit integers, in any practical setting,
can only be the result of transient faults, and since transient faults are very rare, we
believe that our novel stabilization criteria are applicable to a range of similar prob-
lems that require self-stabilizing tag schemes. Thus, as future work, we propose to
study self-stabilizing (in the presence of seldom fairness) of consensus [9, 21], virtual
synchrony [29], and other shared register emulation schemes [16], to name a few.

12.1 Extension: Recyclable Client Identifiers

In Sect. 2.2.3, we assume that clients that crash, do not return to take steps. We present
here an elegant extension that is based on well-known techniques. This extension
allows the nodes to recycle their client identifiers whenever they resume operation
after failing. That is, we tolerate crash failures of the client nodes (rather than crashes)
that are followed by detectable restarts. For dealing with detectable restarts of the
server nodes, we point out the existence of self-stabilizing quorum reconfiguration
[27, 28, 28].

The client identifier could be a pair that includes the identifier of node pi and an
incarnation number that is incremented whenever a failing node resumes and then

123

272 Algorithmica (2023) 85:216–276

wishes to invoke client operations. A well-known technique for maintaining a persis-
tent incarnation number (without assuming access to stable storage or that the storage
is not prone to corruption by transient-faults) is to let a quorum service emulate a
shared counter, similar to the one in [25, Section 3.3]. Namely, pi queries all servers
for its current maximal incarnation number, and waits for a quorum of replies. Then,
the client sends to all servers its updated incarnation number, which is the maximum
in all query replies plus one, and waits for a quorum of replies before invoking the
next client operation. Note that each node pi that hosts a client has to maintain its
own incarnation counter (by using the client identifier for partitioning the space of
incarnation numbers) and that the above procedure is executed only when pi resumes
after failing.

We end the description of this extension by saying that the bounded variation
of Algorithm 3 (Sect. 3) includes a global reset procedure that resets all clients and
servers. This reset procedure can also reset the above mechanisms for recyclable client
identifiers. In addition, whenever the incarnation number reaches its maximum value,
the global reset procedure is triggered. Note that the latter happens only after the
occurrence of a transient fault. Thus, the client never runs out of incarnation numbers
(in any participial settings). The description of the above procedure would not be
complete without saying that the server gossip periodically the set of all known pairs
of client identifiers and their incarnation numbers. When such a set is received, the
server updates its local set by adding all the pairs that come from clients that it does
not know and updating all the existing pairs with the highest incarnation number. Note
that the size of these sets is bounded by the number of possible clients, N .

12.2 Conclusions

Wehavepresented thefirst self-stabilizing algorithm in thepresenceof seldomfairness.
On the onehand,Dijkstra’s self-stabilization criterion [17] requires a bounded recovery
period but its well-known solutions usually model crashes as transient faults [18].
On the other hand, the less restrictive criteria of pseudo-self-stabilizing [12, 23] and
practically-self-stabilizing systems [9, 21, 29], do not model crash failures as transient
faults, but also do not offer a bounded recovery period. We view the criteria of self-
stabilizing algorithms (in the presence of seldom fairness) as an attractive alternative
to both Dijkstra’s self-stabilization criterion [17], and the less restrictive criteria of
pseudo-self-stabilizing [12, 23] and practically-self-stabilizing systems [9, 21, 29].

We consider self-stabilizing systems (in the presence of seldom fairness) to be
(i) wait-free (since they do not assume execution fairness) in the absence of transient
faults, and (ii) offering a bounded recovery period from transient faults, as in Dijkstra’s
self-stabilization criterion [17]. This is offered at the expense of compromising liveness
(without jeopardizing safety) for a bounded period that occurs once in every practically
infinite number of operations, of say, 264.

Acknowledgements We thank Robert Gustafsson and Andreas Lindhé for the useful discussions and for
helping to improve thepresentation significantly.Weare grateful for the comments received fromanonymous
reviewers.

123

Algorithmica (2023) 85:216–276 273

Funding Open access funding provided by Chalmers University of Technology. The work of E. M. Schiller
was partially supported by the project ‘Privacy-ProtectedMachine Learning for Transport Systems’ of Area
of Advance Transport and Chalmers AI Research Centre (CHAIR) as well as by AutoSPADA (Automotive
Stream Processing and Distributed Analytics) OODIDA Phase 2 by Vinnova’s FFI framework (reference
number 2019-05884).

Declarations

Conflict of interest All authors certify that there is no actual or potential conflict of interest in relation to
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alon, N., Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Practically stabilizing
SWMR atomic memory in message-passing systems. J. Comput. Syst. Sci. 81(4), 692–701 (2015)

2. Androulaki, E., Cachin, C., Dobre, D., Vukolic, M.: Erasure-coded Byzantine storage with separate
metadata. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) Principles of Distributed Systems—
18th International Conference, OPODIS 2014, Cortina d’Ampezzo, Italy, December 16–19, 2014.
Proceedings, Lecture Notes in Computer Science, vol. 8878, pp. 76–90. Springer (2014)

3. Arora, A., Gouda, M.G.: Closure and convergence: a formulation of fault-tolerant computing. In:
FTCS, pp. 396–403. IEEE Computer Society (1992)

4. Attiya, H.: Robust simulation of shared memory: 20 years after. Bull. EATCS 100, 99–113 (2010)
5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems. J. ACM

(JACM) 42(1), 124–142 (1995)
6. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local checking and global

reset (extended abstract). In: Tel, G., Vitányi, P.M.B. (eds.) Distributed Algorithms, 8th International
Workshop, WDAG ’94, Terschelling, The Netherlands, September 29–October 1, 1994, Proceedings,
Lecture Notes in Computer Science, vol. 857, pp. 326–339. Springer (1994)

7. Bao, Z., Wang, Q., Shi, W., Wang, L., Lei, H., Chen, B.: When blockchain meets SGX: an overview,
challenges, and open issues. IEEE Access 8, 170404–170420 (2020)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In: 20th Symp. on Theory of Computing, pp. 1–10. ACM (1988)

9. Blanchard, P., Dolev, S., Beauquier, J., Delaët, S.: Practically self-stabilizing Paxos replicated state-
machine. In: Noubir, G., Raynal, M. (eds.) Networked Systems—Second International Conference,
NETYS 2014, Marrakech, Morocco, May 15–17, 2014. Revised Selected Papers, Lecture Notes in
Computer Science, vol. 8593, pp. 99–121. Springer (2014)

10. Bonomi, S., Dolev, S., Potop-Butucaru, M., Raynal, M.: Stabilizing server-based storage in Byzan-
tine asynchronous message-passing systems: extended abstract. In: Georgiou, C., Spirakis, P.G. (eds.)
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015,
Donostia-San Sebastián, Spain, July 21–23, 2015, pp. 471–479. ACM (2015). http://dl.acm.org/
citation.cfm?id=2767386

11. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Brief announcement: Optimal self-
stabilizingmobile Byzantine-tolerant regular registerwith bounded timestamps. In: SSS, LectureNotes
in Computer Science, vol. 11201, pp. 398–403. Springer (2018)

12. Burns, J.E., Gouda, M.G., Miller, R.E.: Stabilization and pseudo-stabilization. Distrib. Comput. 7(1),
35–42 (1993)

123

http://creativecommons.org/licenses/by/4.0/
http://dl.acm.org/citation.cfm?id=2767386
http://dl.acm.org/citation.cfm?id=2767386

274 Algorithmica (2023) 85:216–276

13. Cachin, C., Tessaro, S.: Optimal resilience for erasure-coded Byzantine distributed storage. In: 2006
International Conference on Dependable Systems and Networks (DSN 2006), 25–28 June 2006,
Philadelphia, Pennsylvania, USA, Proceedings, pp. 115–124. IEEE Computer Society (2006). http://
ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10881

14. Cadambe, V.R., Wang, Z., Lynch, N.A.: Information-theoretic lower bounds on the storage cost of
shared memory emulation. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, PODC 2016, Chicago, IL, USA, July 25–28, 2016, pp. 305–313 (2016)

15. Cadambe, V.R., Lynch, N.A., Médard, M., Musial, P.M.: A coded shared atomic memory algorithm
for message passing architectures. Distrib. Comput. 30(1), 49–73 (2017)

16. Cadambe, V.R., Nicolaou, N.C., Konwar, K.M., Prakash, N., Lynch, N.A., Médard, M.: ARES: adap-
tive, reconfigurable, erasure coded, atomic storage (2018). CoRR arXiv:1805.03727

17. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.ACM 17(11), 643–644
(1974)

18. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
19. Dolev, S., Herman, T.: Dijkstra’s self-stabilizing algorithm in unsupportive environments. In: Datta,

A.K., Herman, T. (eds.) Self-Stabilizing Systems, 5th International Workshop, WSS 2001, Lisbon,
Portugal, October 1–2, 2001, Proceedings, Lecture Notes in Computer Science, vol. 2194, pp. 67–81.
Springer (2001)

20. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election. IEEE Trans. Parallel
Distrib. Syst. 8(4), 424–440 (1997)

21. Dolev, S., Kat, R.I., Schiller, E.M.: When consensus meets self-stabilization. J. Comput. Syst. Sci.
76(8), 884–900 (2010)

22. Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Stabilizing data-link over non-FIFO channels
with optimal fault-resilience. Inf. Process. Lett. 111(18), 912–920 (2011)

23. Dolev, S., Dubois, S., Potop-Butucaru, M.G., Tixeuil, S.: Crash resilient and pseudo-stabilizing atomic
registers. In: Baldoni, R., Flocchini, P., Ravindran, B. (eds.) Principles of Distributed Systems, 16th
International Conference, OPODIS 2012, Rome, Italy, December 18–20, 2012. Proceedings, Lecture
Notes in Computer Science, vol. 7702, pp. 135–150. Springer (2012)

24. Dolev, S., Hanemann, A., Schiller, E.M., Sharma, S.: Self-stabilizing end-to-end communication in
(bounded capacity, omitting, duplicating and non-FIFO) dynamic networks. In: Stabilization, Safety,
and Security of Distributed Systems—14th Int. Sym., SSS 2012, LNCS, vol .7596, pp. 133–147.
Springer (2012)

25. Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.M.: Practically stabilizing virtual synchrony (2015).
CoRR arXiv:1502.05183

26. Dolev, S., Petig, T., Schiller, E.M.: Brief announcement: robust and private distributed shared atomic
memory in message passing networks. In: Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21–23, 2015, pp. 311–313
(2015)

27. Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.M.: Self-stabilizing reconfiguration. In: Middleware
Posters and Demos, pp. 13–14. ACM (2016)

28. Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.M.: Self-stabilizing reconfiguration. In: NETYS,
Lecture Notes in Computer Science, vol. 10299, pp. 51–68 (2017), the complementary technical report
can be found at CoRR arXiv:1606.00195

29. Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.M.: Practically-self-stabilizing virtual synchrony. J.
Comput. Syst. Sci. 96, 50–73 (2018)

30. Dolev, S., Petig, T., Schiller, E.M.: Self-stabilizing and private distributed shared atomic memory in
seldomly fair message passing networks (2018). CoRR arXiv:1806.03498

31. Dutta, P., Guerraoui, R., Levy, R.R., Vukolic, M.: Fast access to distributed atomic memory. SIAM J.
Comput. 39(8), 3752–3783 (2010)

32. Duvignau, R., Raynal, M., Schiller, E.M.: Self-stabilizing byzantine-tolerant broadcast (2022). CoRR
arXiv:2201.12880

33. Fan, R., Lynch, N.A.: Efficient replication of large data objects. In: Distributed Computing, 17th
International Conference, DISC 2003, Sorrento, Italy, October 1–3, 2003, Proceedings, LNCS, vol.
2848, pp. 75–91. Springer (2003)

34. Gemmell, P., Sudan, M.: Highly resilient correctors for polynomials. Inf. Process. Lett. 43(4), 169–174
(1992)

123

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10881
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10881
http://arxiv.org/abs/1805.03727
http://arxiv.org/abs/1502.05183
http://arxiv.org/abs/1606.00195
http://arxiv.org/abs/1806.03498
http://arxiv.org/abs/2201.12880

Algorithmica (2023) 85:216–276 275

35. Georgiou, C., Nicolaou, N.C., Shvartsman, A.A.: Fault-tolerant semifast implementations of atomic
read/write registers. J. Parallel Distrib. Comput. 69(1), 62–79 (2009)

36. Georgiou, C., Gustafsson, R., Lindhe, A., Schiller, E.M.: Self-stabilization overhead: an experimental
case study on coded atomic storage (2018). CoRR arXiv:1807.07901

37. Georgiou, C., Gustafsson, R., Lindhé, A., Schiller, E.M.: Self-stabilization overhead: a case study on
coded atomic storage. In: NETYS’19, Lecture Notes in Computer Science, vol. 11704, pp. 131–147.
Springer (2019), the complemetry technical report appears in CoRR arXiv:1807.07901, 2018

38. Gilbert, S., Lynch, N.A., Shvartsman, A.A.: Rambo: a robust, reconfigurable atomic memory service
for dynamic networks. Distrib. Comput. 23(4), 225–272 (2010)

39. Gramoli, V., Nicolaou, N., Schwarzmann, A.A.: Consistent distributed storage. In: Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool Publishers (2021)

40. Hendricks, J.,Ganger,G.R.,Reiter,M.K.:Low-overheadByzantine fault-tolerant storage. In:Bressoud,
T.C., Kaashoek,M.F. (eds.) Proceedings of the 21st ACMSymposium onOperating Systems Principles
2007, SOSP 2007, Stevenson, Washington, USA, October 14–17, 2007, pp. 73–86. ACM (2007)

41. Johnen, C., Higham, L.: Fault-tolerant implementations of regular registers by safe registers with
applications to networks. In: Garg, V.K., Wattenhofer, R., Kothapalli, K. (eds.) Distributed Computing
and Networking, 10th International Conference, ICDCN 2009, Hyderabad, India, January 3–6, 2009.
Proceedings, Lecture Notes in Computer Science, vol. 5408, pp. 337–348. Springer (2009)

42. Konwar, K.M., Prakash, N., Kantor, E., Lynch, N.A., Médard, M., Schwarzmann, A.A.: Storage-
optimized data-atomic algorithms for handling erasures and errors in distributed storage systems. In:
2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago, IL,
USA, May 23–27, 2016, pp. 720–729. IEEE Computer Society (2016). http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=7510487

43. Konwar, K.M., Prakash, N., Lynch, N.A., Médard, M.: RADON: repairable atomic data object in
networks. In: Fatourou, P., Jiménez, E., Pedone, F. (eds.) 20th International Conference on Principles of
Distributed Systems, OPODIS 2016, December 13–16, 2016,Madrid, Spain, LIPIcs, vol. 70, pp. 28:1–
28:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). http://www.dagstuhl.de/dagpub/
978-3-95977-031-6

44. Konwar, K.M., Prakash, N., Lynch, N.A., Médard, M.: A layered architecture for erasure-coded con-
sistent distributed storage. In: Schiller, E.M., Schwarzmann, A.A. (eds.) Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25–
27, 2017, pp. 63–72. ACM (2017)

45. Lamport, L.: On interprocess communication. Part II: algorithms.Distrib. Comput. 1(2), 86–101 (1986)
46. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
47. Lynch, N.A., Shvartsman, A.A.: Robust emulation of shared memory using dynamic quorum-

acknowledged broadcasts. In: Digest of Papers: FTCS-27, The Twenty-Seventh Annual International
Symposium on Fault-Tolerant Computing, Seattle, Washington, USA, June 24–27, 1997, pp. 272–281.
IEEE Computer Society (1997). http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4855

48. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Commun. ACM 24(9),
583–584 (1981)

49. Musial, P.M.,Nicolaou,N.C., Shvartsman,A.A.: Implementing distributed sharedmemory for dynamic
networks. Commun. ACM 57(6), 88–98 (2014)

50. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2),
300–304 (1960)

51. Roth, R.M.: Introduction to Coding Theory. Cambridge Press, Cambridge (2006)
52. Salem, I., Schiller, E.M.: Practically-self-stabilizing vector clocks in the absence of execution fairness.

In: Networked Systems—6th International Conference, NETYS 2018, p to appear (2018)
53. Sampson, A., Nelson, J., Strauss, K., Ceze, L.: Approximate storage in solid-state memories. ACM

Trans. Comput. Syst. 32(3), 9:1-9:23 (2014)
54. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
55. Skeen, D.: A quorum-based commit protocol. In: Berkeley Workshop, pp. 69–80 (1982)
56. Spiegelman, A., Cassuto, Y., Chockler, G.V., Keidar, I.: Space bounds for reliable storage: fundamental

limits of coding. In: Proceedings of the 2016ACMSymposiumonPrinciples ofDistributedComputing,
PODC 2016, Chicago, IL, USA, July 25–28, 2016, pp. 249–258 (2016)

57. Welch, L.R., Berlekamp, E.R.: Error correction for algebraic block codes. US Patent 4,633,470. https://
www.google.com/patents/US4633470 (1986)

123

http://arxiv.org/abs/1807.07901
http://arxiv.org/abs/1807.07901
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7510487
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7510487
http://www.dagstuhl.de/dagpub/978-3-95977-031-6
http://www.dagstuhl.de/dagpub/978-3-95977-031-6
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4855
https://www.google.com/patents/US4633470
https://www.google.com/patents/US4633470

276 Algorithmica (2023) 85:216–276

58. Xing, B.C., Shanahan, M., Leslie-Hurd, R.: Intel® software guard extensions (intel® SGX) software
support for dynamic memory allocation inside an enclave. In: Proceedings of the Hardware and Archi-
tectural Support for Security and Privacy 2016, HASP@ICSA 2016, Seoul, Republic of Korea, June
18, 2016, pp. 11:1–11:9. ACM (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Self-Stabilizing and Private Distributed Shared Atomic Memory in Seldomly Fair Message Passing Networks
	Abstract
	1 Introduction
	1.1 The Problem
	1.1.1 Storage and Communication Costs
	1.1.2 Malicious Behavior and Privacy
	1.1.3 Problem Description

	1.2 Fault Model
	1.3 Self-Stabilization
	1.4 Related Work
	1.4.1 Non-self-stabilizing Register Emulation in Message-Passing Systems
	1.4.2 Self-Stabilizing Register Emulation in Message-Passing Systems
	1.4.3 Privacy-Preservation
	1.4.4 Proposed Techniques of Independent Interest

	1.5 Our Contributions
	1.6 Solution Outline and Document Organization

	2 System Settings
	2.1 System Overview
	2.1.1 Emulating Shared Objects
	2.1.2 External Building Blocks

	2.2 Models
	2.2.1 Communication Model
	2.2.2 Execution Model
	2.2.3 Fault Model
	2.2.4 Dijkstra's Self-Stabilization Criterion
	2.2.5 Self-Stabilization in the Presence of Seldom Fairness
	2.2.6 Complexity Measures

	3 Background
	3.1 Maximum Distance Separable (MDS) Codes
	3.2 Cadambe et al.'s CAS(kthreshold) Algorithm
	3.2.1 External Building Blocks: Quorum and Gossip Communications
	3.2.2 Local Variables
	3.2.3 Protocol Phases

	4 Basic Results
	4.1 Using (m, kthreshold) MDS Codes for Secret Sharing
	4.2 Quorums of (kthreshold+2e)-Overlap
	4.3 Privacy-Preserving Variation of Cadambe et al.
	4.3.1 Robustness
	4.3.2 Privacy

	5 External Building Blocks
	5.1 Specifications of Gossip and Quorum Services
	5.2 Self-Stabilizing Global Reset
	5.2.1 The localReset() and globalReset() Functions
	5.2.2 Requirements
	5.2.3 Possible Implementations

	6 Self-Stabilizing Gossip and Quorum Services
	6.1 Refined Model
	6.1.1 Variables
	6.1.2 The Interface that Algorithm 2 Assumes to be Available

	6.2 The Details of Algorithm 2
	6.3 Correctness of Algorithm 2

	7 An Unbounded Self-Stabilizing CAS Algorithm
	8 Correctness Proof of our Self-Stabilizing CAS Algorithm
	8.1 Notation and Definitions
	8.2 Basic Properties of Algorithm 3
	8.3 Recovery After the Occurrence of Transient-Faults
	8.4 Atomicity of Algorithm 3
	8.5 Liveness of Algorithm 3

	9 A Bounded Set of Relevant Server Records
	10 A Bounded Variation on Algorithm 3
	11 Cost Analysis
	12 Discussion
	12.1 Extension: Recyclable Client Identifiers
	12.2 Conclusions

	Acknowledgements
	References

