
Fiber-on-Chip: Digital Emulation of Channel Impairments for Real-Time
DSP Evaluation

Downloaded from: https://research.chalmers.se, 2025-05-17 09:22 UTC

Citation for the original published paper (version of record):
Börjeson, E., Larsson-Edefors, P. (2023). Fiber-on-Chip: Digital Emulation of Channel Impairments
for Real-Time DSP Evaluation. Journal of Lightwave Technology, 41(3): 888-896.
http://dx.doi.org/10.1109/JLT.2022.3200248

N.B. When citing this work, cite the original published paper.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



1

Fiber-on-Chip: Digital Emulation of Channel
Impairments for Real-Time DSP Evaluation

Erik Börjeson, Student Member, IEEE and Per Larsson-Edefors, Senior Member, IEEE

Abstract—We describe the Fiber-on-Chip (FoC) approach to
verification of digital signal processing (DSP) circuits, where
digital models of a fiber-optic communication system are im-
plemented in the same hardware as the DSP under test. The
approach can enable cost-effective long-term DSP evaluations
without the need for complex optical-electronic testbeds with
high-speed interfaces, shortening verification time and enabling
deep bit-error rate evaluations. Our FoC system currently con-
tains a digital model of a transmitter generating a pseudo-random
bitstream and a digital model of a channel with additive white
Gaussian noise, phase noise and polarization-mode dispersion. In
addition, the FoC system contains digital features for real-time
control of channel parameters, using low-speed communication
interfaces, and for autonomous real-time analysis, which enable
us to batch multiple unsupervised emulations on the same hard-
ware. The FoC system can target both field-programmable gate
arrays, for fast evaluation of fixed-point logic, and application-
specific integrated circuits, for accurate power dissipation mea-
surements.

I. INTRODUCTION

A common way to evaluate digital signal processing (DSP)
algorithms for communication systems is to simulate the
complete end-to-end system in software on a computer. Here,
the transmitter and channel are modeled as floating-point algo-
rithms which generate data to some DSP functions which are
represented as a floating-point algorithm. This approach has
the benefit of short evaluation times. However, to accurately
evaluate a DSP hardware implementation, circuit simulations
must be performed. Here, the simulated channel output can
be fed, cycle by cycle, to a software simulation of a fixed-
point DSP circuit description. This method makes it possible
to correctly capture the bit- and cycle-level behavior of the
circuit, accounting for aspects such as algorithm approxima-
tions and digital logic optimizations. Additionally, since signal
switching statistics are available, credible estimations of power
dissipation can be performed. However, simulation of detailed
circuit representations requires very long run-times, making it
difficult to evaluate the long-term behavior and perform deep
bit-error rate (BER) analysis of a DSP system.

On the other side of the spectrum, we find real-time optical
communication experiments. This approach typically requires
complex testbeds with both optical and electronic components,
possibly also including mechanical components to emulate
time-varying properties like polarization changes [1], [2]. The
added complexity makes real-time experiments more expen-
sive and more complicated to set up, especially when the DSP

E. Börjeson and P. Larsson-Edefors are with the Department of Computer
Science and Engineering, Chalmers University of Technology, 41296 Gothen-
burg, Sweden (e-mail: erikbor@chalmers.se, perla@chalmers.se).

functionality is implemented in application-specific integrated
circuits (ASICs) [3] instead of the more common method of
offline processing. For the latter, a significant disadvantage is
the limited memory of the oscilloscopes typically used to store
the output data snapshot. This makes it hard to save continuous
output waveforms, which hampers long-term analyses.

As an extension to our invited OFC 2022 contribution [4],
we describe in this paper the Fiber-on-Chip (FoC) approach
which represents a middle-ground between the two previously
described approaches and which can be used for real-time
evaluation of coherent receiver DSP circuit implementations.
Based around on-chip digital models of both transmitter and
channel, the FoC system aims to move time-consuming circuit
simulations in software to circuits emulated on dedicated
hardware. Here, the receiver DSP circuits—the DSP under test
(DUT)—are co-located with the transmitter and the channel on
either an ASIC or a field-programmable gate array (FPGA).
All digital impairment models are under software control,
which makes is possible to set up long-term, unsupervised
evaluation runs with dynamic control of the parameters in the
system. In addition, the output of the DUT can be continuously
monitored and stored in memory.

A. Fiber-on-Chip (FoC)

Our first FoC version [5] emulated a single polarization
system, including additive white Gaussian noise (AWGN),
to control the signal-to-noise ratio (SNR), and phase noise,
to facilitate long-term evaluations of the cycle-slip rate of
carrier phase recovery circuits [6]. In later contributions,
more extensive analysis tools as well as support for dual-
polarization (DP) systems and polarization-mode dispersion
(PMD) emulation were added, to enable equalizer evaluations
based on time-varying impairments [4], [7].

An overview of an FoC system, in which a DUT is
integrated, is shown in Fig. 1. All operations are performed
onboard the FPGA/ASIC using fixed-point arithmetic and
parameters can be adjusted from a computer using a low-speed
communication interface. Thus, high-speed data interfaces can
be completely avoided, simplifying prototyping work. To make
it possible to evaluate complex DUTs, the hardware resources
used by the FoC system should be minimized. This means
that some FoC parameters, such as filter lengths, need to be
hardcoded. Other parameters, such as the amount of AWGN
or PMD rotations, can be controlled during run-time.

Inside the FoC system, a pseudo-random bitstream is mod-
ulated and the symbols are pulse shaped before being fed to
the channel emulator. The random-number generator (RNG),



2

RNG modulator RRC
transmitter

AWGN
channel

phase noisePMD

rotation DGD rotation

sectionsK

DUT

reference bitstream
DP IQ symbols

demodulator analysis

counterstimers

recorder

delay

parameters

results

FoC test signals

comm.
control

computer

RAM

captured signals
phase

Fig. 1: Block diagram of an example FoC system used to evaluate the DSP under test (DUT).

which is used to generate the bitstream, and the Gaussian
random number generators (GNG), which are used to emu-
late some of the impairments, have a very long periodicity,
creating a virtually endless stream of symbols at the output
of the digital channel model. After processing in the DUT
and demodulation of the symbols, the resulting bitstream can
be compared to a reference bitstream, which is propagated
in a parallel channel from the RNG through the complete
system. Typically, the number of transmitted and erroneously
demodulated bits are counted to calculate the BER, but other
analysis tools are also available, such as timers to measure,
e.g., the convergence speed of an equalizer, and recorders to
capture any signal in the system for later software analysis.

The system is written in a hardware description language
(HDL) called VHDL and is mainly targeting Xilinx FPGAs,
but ASIC versions have also been developed, manufactured
and tested. The fixed-point HDL description has been verified
against a floating-point MATLAB model of the same system,
and the HDL code has been released as the Chalmers Optical
Fiber Channel Emulator (CHOICE)1. In fact, Fig. 1 represents
the FoC system of CHOICE.

B. Similar Approaches

When evaluating forward error-correction (FEC) circuits for
optical communication, it is very challenging to reach the
required, very low post-FEC BERs. We have previously used
FPGA-based emulation schemes to evaluate soft-decision low-
density parity check FEC implementations [8], [9]. In these
works, RNGs are used to generate the log-likelihood ratios
at the input of the FEC, thus the generation of a complete
channel can be avoided. ZTE has presented many impressive
FPGA-based FEC experiments over the years. For example,
FEC solutions for OIF-800GZR have been evaluated using a
large number of FPGAs to reach very low BERs within short
run-times [10]. Here, a complete transmitter is implemented on
FPGAs, to generate a pseudo-random input bitstream, perform
FEC encoding, interleaving and symbol mapping. An AWGN
channel is used before the receiver and FEC decoder. It should
be noted that in the context of system emulation, FEC has one
big advantage over DSP: FEC operates on demodulated binary
data, which are much easier to emulate in the digital domain
than modulated data.

For DSP evaluation, Fraunhofer’s high-speed digital signal
processing platform is available [11]. This is a modular

1A GIT repo of the CHOICE FoC environment is available at https://www.
cse.chalmers.se/research/group/vlsi/choice.

system which uses FPGAs to perform signal processing on
real channel data. For other applications, FPGA emulation of
wireless channels has also been suggested, e.g., for Wi-Fi [12]
and for autonomous vehicle control channels [13]. Radar
development is another application where FPGA emulation
is used to accelerate evaluation of target signatures [14].

C. Outline

Section II contains a short introduction to the most relevant
aspects of digital circuit design, followed by descriptions
of the parts of the CHOICE FoC system in Section III–
V. The resource utilization for an FPGA implementation of
CHOICE is given in Section VI. Before concluding the paper
in Section VIII, two case studies, demonstrating one FPGA-
and one ASIC-based FoC implementation, are presented in
Section VII.

II. DIGITAL IMPLEMENTATION ON ASIC AND FPGA

To enable a real-time end-to-end communication system,
the transmitter and channel emulators share the hardware
resources with the DSP under test (DUT). To maximize the
capabilities of the FoC system, the digital hardware imple-
mentation of the emulators needs to be optimized in terms of
resources. But depending on whether we target an ASIC or an
FPGA, this optimization process is different.

Floating-point representation is common in, e.g., scientific
computing, but for embedded applications which require high
throughput, low latency, and low resource usage, fixed-point
circuits are preferred. The use of a fixed number of bits,
the wordlength, to represent a digital word is very hardware
efficient, but it makes the implementation process challenging.
This is because we need to consider, for each fixed-point
signal, what the wordlength should be (as short as possible
to save hardware) and where the binary point should be
located to keep the desired information within the chosen
data wordlength. Fig. 2a shows a simplified example of an
unsigned 8-bit word with two integer bits2. With the general
goal to use as few bits of information as possible to save
hardware, a significant part of DSP hardware implementation
is spent on wordlength and scaling optimization. Fig. 2b shows
an example of the binary multiplication of two digital words
which leads to wordlength growth at the output. In DSP where
multiplications are very common, it is not sustainable to keep

2In fact, our fixed-point implementations use signed numbers based on the
widely used two’s complement representation.



3

0 1 1 0 1 0 0 1

fractional bitsinteger bits

2 2 2 2
0 -1 -3 -6

binary

decimal 0 0 0 0+ + + + + + + = 1.640625

binary point

(a)

0 1 1 0 1 0

1 1 0 0 1 1

0 1 0 0 1 0 1 1 1 00 1=

⨯

1.625

3.1875

5.179875

(b)

Fig. 2: Illustration of (a) an 8-bit unsigned fixed-point data word
with two integer bits and 6 fractional bits, and (b) an unsigned
multiplication of two 6-bit data words.

the full multiplication output resolution but the output must
be truncated.

FPGAs are made up of hardware modules of greater com-
plexity than the logic gates of ASICs and this impacts the
implementation optimization. While it is in general beneficial
to reduce the wordlength, reducing it with only one bit is likely
to have no effect on an FPGA system that uses DSP slices
with, by default, tens of bits per input. In contrast, digital
ASICs are made up of fine-grain elements such as 2-input
logic gates. Thus, here it pays off to optimize the wordlength
aggressively, since this allows for significant circuit area
reductions during the synthesis phase which translates HDL
code down to logic gates.

There are two other aspects of digital implementation often
ignored when algorithms are designed: pipelining and paral-
lelism. The critical path in a digital circuit is the longest path
between two delay elements (registers), as shown in Fig. 3a.
This is the path that limits the maximum clock rate of a digital
system, since the signal needs to propagate through all logic
elements on the path in one clock cycle. By inserting pipeline
stages, i.e., additional delay elements, on this path, as in
Fig. 3b, the clock rate can be increased at the cost of increased
cycle latency. An added benefit is that pipelining reduces
the probability of glitches; short unwanted signal toggles that
increase power dissipation. The approach to pipelining differs
somewhat between FPGA and ASIC implementations, since
the former usually includes pipelining stages in the DSP slices.
These can often be used without incurring an extra resource
penalty, if the DSP slices are fully utilized.

Parallel processing is a way to increase data throughput
by duplicating functional elements, as shown in Fig. 3c, thus
enabling the processing of multiple data samples per clock
cycle. Parallelism is necessary for systems where the symbol
rate is faster than the clock rate of the signal processing
system, which is the case for most fiber-optic communication
systems. A drawback of parallel processing is the larger
amount of resources occupied by the DSP hardware; as the
degree of parallelism increases, the resources consumed can
quickly become prohibitively large. Both pipelining and par-
allel implementation of a circuit are relatively straightforward
for feed-forward algorithms, but for systems with a feedback

path, such as an adaptive equalizer, the latency added by
pipelining can become so large that it impacts performance.
Contrary to DSP circuits, parallel processing is not strictly
necessary for the FoC system, but it is just another option to
further increase the emulation speed.

z-1 z-1logic 1x[k] y[k-2]

critical path

logic 2

(a)

z-1 z-1x[k] y[k-3]z-1logic 1 logic 2

critical path

(b)

z-1 z-1x[3k] y[3(k-2)]

z-1 z-1x[3k+1] y[3(k-2)+1]

z-1 z-1x[3k+2] y[3(k-2)+2]

logic 1 logic 2

logic 1 logic 2

logic 1 logic 2

(c)

Fig. 3: Illustration of how the critical path in (a) can be shortened
by insertion of a pipeline register (b). A 3x-parallel implementation
of the same logic is shown in (c).

III. TRANSMITTER

The transmitter part of the CHOICE FoC system shown
in Fig. 1 consists of an RNG, a modulator and an optional
pulse-shaping filter. The RNG generates a pseudo-random bit
sequence (PRBS) using linear-feedback shift registers [15].
The internal wordlength of the shift registers, k, is adjustable,
and the resulting periodicity is 2k − 1 bits. In this paper,
we use k = 64, which gives a periodicity of ≈ 1019.
The modulator currently supports Gray-coded BSPK, QPSK,
16QAM, 64QAM, and 256QAM, but can easily be extended
to other formats. The modulator outputs both the symbols and
the corresponding bits, which are fed as a bitstream through
all succeeding processing modules to be used as a reference
after demodulation.

When using the PMD emulator to evaluate an equalizer, the
modulated signal needs to be upsampled and pulse shaped.
This is performed in a root-raised cosine (RRC) filter which
supports 2x upsampling. The filter is realized as a symmetric
direct-form FIR filter with constant coefficients. The use of
constant filter taps has the benefit of allowing the synthesis
tool to infer, on FPGAs, add-and-shift operations instead of
precious DSP slices or, on ASICs, real multipliers [16].

IV. CHANNEL EMULATION

The emulation of the channel shown in Fig. 1 consists of
three separate impairment emulators that can be used either
separately or in combination: PMD, AWGN and phase noise.
The AWGN and phase noise generators have previously been
outlined in [5], while the PMD emulator is an extension of
the work done in [7]. These impairments were selected as the
CHOICE environment was originally designed to evaluate new
carrier phase recovery and equalization circuits.



4

A. Polarization Mode Dispersion

PMD can be modelled as a concatenation of K birefringent
fiber sections described by its Jones matrices [17]. The result
is the combined transfer function

N(ω) =

K∏
k=1

polarization rotation︷ ︸︸ ︷[
cos θk sin θk
− sin θk cos θk

] phase rotation︷ ︸︸ ︷[
ejφk 0
0 e−jφk

] DGD︷ ︸︸ ︷[
ejωτk/2 0

0 e−jωτk/2

]
,

(1)
where θ is the polarization rotation angle, φ is the phase
rotation angle, and τ is the differential group delay (DGD).
One section of this model will excite two of three degrees
of freedom of the Poincaré sphere, but after a few sections
all points on the sphere can be reached. As shown in Fig. 1,
our PMD emulator uses the same functional separation, im-
plementing each matrix in a separate processing module.

Polarization Rotation: The polarization rotation is described
by the first matrix in (1) and a block diagram of our emulator
circuit implementation is shown in Fig. 4a. A look-up-table
(LUT) indexed by the θ input is used to output sin θ and
cos θ, which are used as inputs to the matrix multiplication.
As outlined in Section II, the unavoidable wordlength growth
must be controlled; in this case by rounding back to the input
wordlength after the addition.

×
×

+

×
×

+

×
×

+

×
×

+

LUT

l

l

θ

in_x_i

in_x_q

in_y_i

in_y_q

out_x_i

out_x_q

out_y_i

out_y_q

-

-

sin

cos

(a)

×
×

+

×
×

+

×
×

+

×
×

+

LUT

l

l

ϕ

in_x_i

in_x_q

in_y_i

in_y_q

out_x_i

out_x_q

out_y_i

out_y_q

-

-

sin

cos

(b)

Fig. 4: Simplified block diagrams showing a single lane of (a) the
PMD polarization rotation and (b) the PMD phase rotation blocks.

A fixed-point implementation approximates an ideal al-
gorithm. Fig. 5 shows the maximum error magnitude for
varying fixed-point wordlengths compared to a floating-point
implementation, using random symbol data and rotation angles
θ. The results show that using rotation-angle wordlengths
larger than the symbol wordlength + 2 bits does not improve
performance. Above this limit, the error is caused by the
limited resolution of symbol data, and is smaller than the least-
significant bit (LSB) of each I/Q signal component.

Fig. 5: Maximum error of the fixed-point output signals from the
PMD polarization rotation implementation compared to a floating-
point version. The dashed lines show the value of the LSB of the
symbols.

Phase Rotation: The phase rotation is described by the
second matrix in (1). Fig. 4b shows a block diagram of the em-
ulator circuit implementation. Not only is the implementation
very similar to the polarization rotation block, but its fixed-
point behavior is almost identical to that of the polarization
rotation shown in Fig. 5.

Differential Group Delay: A function of the optical fre-
quency (ω), the DGD is described by the third matrix in (1).
This frequency dependency implies that the straightforward
way of implementing the DGD in a circuit would be in the
frequency domain. However, since the polarization and phase
rotations are more easily implemented in the time domain, a
large number of FFT/IFFT blocks would be needed. In order
to keep the hardware resource usage of a complete FoC system
as low as possible, we choose to approximate the DGD in the
time domain using fractional-delay FIR filters.

Laakso et al. [18] provide descriptions of many of the
methods available to calculate the coefficients of a DGD filter.
In our case, Lagrange interpolation was deemed most suitable
because of the smooth magnitude response, especially at low
frequencies, and the fact that the coefficients can be calculated
with relative ease using

h[n] =

N∏
k=0,k 6=n

D − k
n− k

for n = 0, 1, 2, ...N, (2)

where N is the filter order and D is the fractional delay.

Fig. 6: Frequency response of floating-point Lagrange-interpolation
fractional delay filters for different tap counts at delay d = 0.1Ts.

However, the time-domain approximation of the DGD re-
sults in a frequency dependency in both the magnitude and
the delay caused by the finite length of the filter, as shown in
Fig. 6. An odd number of taps is used, since that results in a
flatter magnitude response for small delays. The approximation
of the fractional delay is excellent at lower frequencies, but
the bandwidth grows slowly with increasing filter order [18].

As shown in Fig. 7, the DGD filter is implemented as
a 2x-parallel, transposed FIR filter. The filter is extensively
pipelined to match the architecture of the DSP slices available
in the FPGA platforms that we mainly target. The full reso-
lution of the multiplier outputs are used for all summations,
while the sum is rounded to the appropriate wordlength before
being output.

To see how the fixed-point filter response affects the band-
limited transmitted symbols, simulations of a 16QAM trans-
mission was carried out, where a 0.1Ts DGD was applied to



5

× × × × ×

× × × ×

z-1 z-1 z-1 z-1 z-1

z-1 z-1 z-1

z-1+ + + +

+

z-1

z-1 + z + +

z-1z-1

×

h4 h3 h2 h1 h0

h4 h3 h2 h1 h0

-1

in

in

0

1

out0

out1

Fig. 7: Simplified block diagram of the PMD delay block for a 2x-
parallel 5-tap filter, where h represents the filter taps.

the 8-bit quantized symbols either using floating-point math
in the frequency domain or using our HDL time-domain
implementation. The symbols were upsampled 2x in a 51-tap
root-raised cosine pulse-shaping filter, with β = 0.1, before
being fed to the two implementations. Fig. 8 shows that using
7 taps or more for the time-domain filter and ≥ 10 bits for
the wordlength results in an error smaller than the value of
the LSB bit of the symbols. In general, a larger DGD requires
a larger number of taps to keep the error low, since the outer
filter coefficients become larger. However, since they affect
the fixed-point quantization error, the actual coefficient values
also matter.

Fig. 8: Maximum difference between a floating-point frequency-
domain DGD calculation and a fixed-point time-domain HDL im-
plementation using an 8-bit 16QAM signal. The value of the LSB of
the symbol representation is marked with a dashed line.

Because of the time-domain approximation used for the
DGD, the combination of parameters for the pulse-shaping
filter and the DGD filter must be carefully selected. If a larger
roll-off factor is needed for the pulse-shaping filter, the order
of the DGD filter needs to be increased. Additionally, other
impairments affecting the higher frequencies of the spectrum,
such as AWGN, should be added after the PMD, to avoid
affecting their frequency response.

Multiple PMD Sections: Even though care is taken to min-
imize the difference between the time-domain implementation
and a frequency-domain floating-point reference model for
each PMD component, the rounding errors will inevitably
accumulate when concatenating multiple PMD emulator mod-
ules in multiple sections. These errors are due in part to the
limited resolution of the fixed-point representations and in part
to the time-domain approximation of the DGD.

To reduce the first effect, the wordlength of the signals used
in the PMD emulator can be increased, essentially hiding the
rounding errors in the LSBs that will be removed before the
next stage. Fig. 9 shows how a time-domain PMD emulator
for QPSK, using 11-tap DGD filters with τ = 0.1TS , and

Fig. 9: The effect of using extra bits for the internal data representa-
tion in the PMD emulator, shown for 11-tap DGD filters. The dashed
line marks the value of the LSB for the 8-bit symbol representation.

random, static settings for θ and φ, is affected by increasing
the internal wordlength for 1–4 sections. For ≤ 2 sections, it
is enough to use 3 additional bits, but for higher number of
sections more bits are needed to keep the error lower than 1
LSB. However, this number is highly dependent on the τ used.
For > 5 sections, longer DGD filters are necessary if we want
to keep the difference between the two models small. If the
target architecture is an FPGA, additional bits can be added
without a significant increase in resource utilization, as long as
the longest internal wordlength does not exceed the wordlength
of the dedicated DSP slices. For an ASIC implementation, this
solution would incur an area penalty.

Increasing the number of taps used in the DGD filters will
decrease the time-domain approximation error, at the cost of
extra multipliers. Since the filters are 2x-parallel and applied
on the I/Q components on both polarizations, this corresponds
to 8 extra multipliers (or FPGA DSP slices) per added filter
tap.

The low-pass response of the DGD filter also affects how
time-dependent impairments can be added to the FoC system.
If the PMD polarization rotation and/or phase rotation is
emulated as, e.g., a random walk, the high frequency content
of the signals will be increased, reducing the accuracy of the
DGD approximation. The effect is especially pronounced for
fast changes of θ and φ and for short DGD filters.

B. Additive White Gaussian Noise

An open-source Gaussian noise generator (GNG) IP [19] is
used as the basic building block for the AWGN emulation
block. The GNG generates a 64-bit uniformly-distributed
pseudo-random number every clock cycle [20], and the re-
sulting uniform distribution is transformed to a Gaussian
distribution using the inverse cumulative distribution function

ICDF(x) =
√

2erf−1(2x− 1). (3)

To reduce the area of the GNG circuit, the ICDF is imple-
mented using a piecewise polynomial approximation and a
non-uniform segmentation scheme similar to [21]. The result
is a random distribution in the range ±9.1σ with a periodicity
of approximately 2176 [19].

A block diagram of the AWGN block is shown in Fig. 10
for one single lane, which needs two GNGs; one for each
complex dimension. When a higher degree of parallelism is
needed, this circuit is repeated for all lanes but with different
seeds for all GNGs. The scaling signal controls the SNR by



6

GNG

in_I

in_Q

GNG

+

+

×

scaling

×

out_I

out_Q

Fig. 10: Block diagram of the AWGN emulator for a single lane.

adjusting the amount of AWGN added to the inputs, and can
in a real-time experiment be changed during run-time.

C. Phase Noise

Phase noise can be modelled as a Wiener process,

θi = θi−1 + ∆i, (4)

where θi is the phase of the ith sample and ∆i is a normally
distributed random variable with zero mean and a variance
σ2

∆i
= 2π∆fTs. The variance is a function of ∆f , which is

the combined linewidth of the transmitter and local oscillator
lasers, and Ts, which is the symbol duration.

GNG + LUT

×

GNG + z LUT

×

GNG + LUT

×

in_1

in_2

in_P

out_1

out_2

out_P

-1

... ...

×

×

×

scaling

z-1

z-1

Fig. 11: Block diagram of the phase noise emulator for P parallel
lanes. Note that the inputs and outputs are I/Q signals.

An overview of the circuit implementation is shown in
Fig. 11, for P parallel lanes. The same type of GNG is used as
for the AWGN block and the GNG outputs are scaled with the
linewidth symbol-duration product (∆fTs), which is given by
the scaling input and can be updated during run-time. Different
seeds are used for each GNG. The resulting phase offset for
each parallel lane (∆i) is summed with the previous phase to
calculate θi for each input symbol. Finally, a LUT is used to
convert the phase to a complex number of unit length, which is
multiplied with the input symbol to realize the phase rotation.

Since the first lane needs the previous phase offset from
the last lane, a feedback loop is created which is inherent to
the Wiener process. The critical path of this loop limits the
number of parallel lanes that can be used for the phase noise
block for a given clock rate.

V. DSP UNDER TEST AND ANALYSIS

As shown in Fig. 1, the channel emulator drives the DUT
which in principle can be made up of any receiver DSP
functionality. Depending on the DSP functions selected, the
relevant digital channel impairment models are chosen and
used in the real-time evaluation.

Downstream from the DUT’s output, the demodulator maps
the symbols to the corresponding bits, which are subject to
further analysis. For example, the reference bits from the RNG
can be used to compare the reference and the DUT output

TABLE I: Synthesis results for a QPSK FoC system including
AWGN, phase noise and 5 sections of PMD. The percentage of the
total available resources is shown in parenthesis where relevant. DUT
resources are not included.

Component LUT CARRY8 DSP

Transmitter 5346 808 0
RRC ×2 2578 404 0

Channel 18013 134 502 (28%)
PMD 6894 0 456 (25%)

Rotation ×6 587 0 16 (0.9%)
DGD ×5 72 0 56 (3.1%)
Phase ×5 586 0 16 (0.9%)

AWGN 2415 88 24 (1.3%)
Phase noise 8704 46 22 (1.2%)

Analysis 123 16 0
Control etc. 63345 66 0

Total 86582 (8%) 1024 (0.8%) 502 (28%)

bitstreams and count the number of erroneously decoded bits.
A second counter can be used to store the total number of
processed bits and the result can be downloaded to a computer
to calculate the BER. This post-processing operation is better
performed outside of the FoC system, since the division is
complex to implement in digital hardware.

The FoC system also contains a timer that counts the
number of clock cycles that has passed until a certain event
happens. This feature can be useful to capture, e.g., equalizer
convergence by stopping the timer when the average equalizer
error drops below a set threshold.

The recorder block in Fig. 1 can be used to capture any
signal inside the system before, after or around a trigger point.
Currently, the amount of free block SRAM memory on an
FPGA is limiting the number of samples that can be captured,
but the functionality can be extended to use external DRAM
memory for the data, which would enable capture of very long
data series.

VI. FPGA RESOURCE USAGE

To estimate the resource utilization of the FoC system
presented above, a complete DP-QPSK emulator was synthe-
sized targeting the Xilinx VCU110 development board [22],
featuring a Virtex Ultrascale XCVU190 FPGA. The imple-
mented system follows the organization in Fig. 1, excluding
the recorder and trigger components. It uses a single lane,
which becomes 2x-parallel after pulse shaping and oversam-
pling in a 51-tap RRC filter. Each I/Q component of the two
polarizations is represented by 8 bits. The channel emulation
includes AWGN, phase noise and five PMD sections. The
PMD DGD filters use 11 taps, and the internal signals of the
PMD emulator use 3 additional bits, to reduce the fixed-point
errors as described above. A 100-MHz clock is used, resulting
in an emulation speed of 400 Mbit/s.

The FPGA resources used for each of the larger components
are shown in Table I, which clearly indicates that the DSP
slices are the limiting factor rather than the configurable
logic blocks (CLBs), which contain LUTs, registers, carry
chains etc. The DSP slices are mainly used for the many
multiplications necessary in the channel emulation, especially
in the DGD filters. The benefit of using constant filter-tap
values is shown when comparing DGD to RRC filters. Even



7

though 26 · 2 = 52 multiplications need to be performed
for each 51-tap symmetric RRC filter, the logic is simplified
to shift-and-add operations, utilizing the LUTs and CARRY8
chains included in the CLBs instead of the DSP slices. If run-
time control of the DGD is not necessary, this static solution
can be used also for the DGD filters, resulting in a significant
reduction of the resources occupied by the FoC system.

VII. CASE STUDIES

As a demonstration of the capabilities of a CHOICE FoC ap-
proach, this section will describe both an FPGA implementa-
tion and a manufactured ASIC design. We have used these de-
signs to explore the properties of a DSP subsystem for QPSK;
the DUT consists of a 9-tap adaptive CMA equalizer followed
by a 4th-power Viterbi-Viterbi (VV) phase estimator. The
channel emulation consists of an AWGN generator and a 10-
section PMD emulator, using a DGD of 0.05 samples/section.
The polarization rotation for each section is set to use a
time-dependent rotation of 10 to 100 krad/s with random start
values and rotation direction. All other channel impairments
are assumed to be fully compensated by other DSP units. Due
to the different hardware platforms used for the two examples,
the two circuits are not an exact one-to-one match.

The CMA equalizer can converge to output the transmitted
X polarization at either the X or at the Y output, with the
transmitted Y polarization at the other output. Additionally,
the symmetry of the QPSK constellation makes it possible for
the VV unit to lock the phase tracking in steps of π/2. The
result is eight different potential DSP output states. To avoid
introducing pilot symbols in the system, which would enable
detection of the correct state at the cost of increased circuit
complexity, we choose to use eight demodulators instead, each
with a separate error counter. The demodulators and coun-
ters are relatively small, so the additional area is negligible
compared to other parts of the system. Each demodulator is
configured for one output state and by looking at the counter
with the smallest number of errors, we can find the state to
which the system has converged.

One of the main motivations for using an FoC system is
evaluation speed-up. In Fig. 12, we plot BER curves for the
two systems, capturing at least 10 bit errors per data point.
Generation of these curves took just over an hour for the FPGA
and less than 15 minutes on the ASIC, due to its faster clock
rate. A simulation of a software model of the circuit, using a
Dell PowerEdge server, would require more than 6 months to
process the same number of bits.

Fig. 12: BER of a DUT captured after equalizer convergence on an
FPGA and an ASIC, respectively.

A. FPGA

The FPGA can be used for fast real-time evaluation of
circuit properties and Fig. 13 shows constellation diagrams of
the input and the output of the DUT. The symbols are captured
using the recorder component after equalizer convergence,
which is detected by comparing the average equalizer error
signal with an adjustable threshold.

(a) (b)

Fig. 13: Symbol constellations at (a) the input and (b) the output of
the DUT subsystem, using an SNR of 10 dB.

Since the digital CMA equalizer circuit is designed to be
partially programmable using logic signals, its step size can
be adjusted during run-time. This further accelerates analysis
of the convergence behavior, since no time-consuming re-
synthesis is necessary between emulation runs. By capturing
how much the bit-error counters have increased over the last
128 transmitted bits, the bit-error probability can be plotted
as a function of the number of transmitted samples, as shown
in Fig. 14, for four different step sizes. To remove the effect
of π/2 phase jumps at the VV output during the equalizer
convergence phase, where it has trouble locking, each data
point shows the value of the error counter resulting in the
smallest error. These runs use the same PMD settings as
Fig. 13, and an SNR of 5 dB.

Fig. 14: Bit-error probabilities shown for the convergence phase of
the adaptive CMA equalizer used in the DSP subsystem. The data
have been smoothed using a moving average after downloading from
the FPGA.

A simple event generator circuit allows us to temporarily in-
crease the polarization rotation rate to study how the equalizer
responds to PMD changes, called PMD events. During such a
PMD event, we set the polarization rotation in four of the ten
sections to 1 Mrad/s for a set duration. We use the recorder to
capture the bit-error counters around these events, which takes
place deep into an emulation run, and download the results
to a computer for calculation of the bit-error probability and
smoothing using a moving average. An SNR of 6 dB was used
for these runs, as a slightly higher SNR was necessary to avoid
losing the VV phase lock during the PMD event. The results
are shown in Fig. 15.



8

Fig. 15: Bit-error probabilities around a PMD event, smoothed with
a moving average after downloading from the FPGA.

B. ASIC

An ASIC version of the FoC system was developed and
manufactured on the side of a multi-project wafer in a 22-nm
fully-depleted silicon-on-insulator (FD-SOI) CMOS process.
Compared to the FPGA version, minor updates to the HDL
code were necessary to account for, mainly, a different pipelin-
ing strategy. A cropped chip photo of the system is shown in
Fig. 16, illustrating how the different subsystems are placed.
The total cell area of this implementation is 0.24 mm2, where
the equalizer accounts for 0.082 mm2.

Not only is it difficult to separate out the power dissipated
in distinct modules on an FPGA board, but the fact that
FPGAs dissipate considerably more power than their ASICs
counterparts makes them unsuitable for evaluations of DSP
power dissipation. In contrast, by evaluating an ASIC FoC we
can obtain power and energy dissipation numbers that show
the true potential of gate-level customization of DSP functions.

As in the FPGA system above, the DSP DUT is made
up of an equalizer followed by an phase estimator. To track
the power dissipation of the equalizer, this is placed in a
separate power domain with a dedicated power supply net,
leading to a dedicated chip pin. The power dissipation is
directly related to the switching frequency of the logic gates,
which means that having access to reliable input data is key
to producing credible power measurements. Using the FoC
system to generate the input symbols on-chip obviates the need
to implement high-speed optical-electronic interfaces and to
set up complex optical experiments. The benefit is significantly
faster system setup and easy dynamic variation of system
parameters.

Analysis & 
communication

Power domain 1Power domain 0

EqualizerV&VAWGN + PMD

TX

Fig. 16: Chip die photo of an ASIC implementation of an FoC system,
with annotated modules.

VIII. CONCLUSION

The Fiber-on-Chip (FoC) approach to DSP hardware ver-
ification is based on models of fiber-optic transmission sys-
tem components in fixed-point sequential hardware. In our

CHOICE FoC system, these digital models include the trans-
mitter itself, with pseudo random data generation, fiber chan-
nel impairments, demodulation and multiple analysis tools.
Currently, impairment models include AWGN, phase noise
and PMD. These models can be used when evaluating circuit
implementations of DSP algorithms, where they can replace
optical and electronic components with an emulator running
on the same hardware as the DSP, either on FPGAs or on
ASICs.

Since the impairments are modelled in the time domain
using limited resolution, there are limitations in how closely
they match a floating-point model. This effect is especially
pronounced for the DGD emulation included in the digital
PMD model. Two methods to reduce the difference between
the digital fixed-point model and the floating-point model have
been presented: temporarily increasing the resolution for the
PMD emulator and increasing the number of filter taps in the
DGD filter.

Implementing the channel model on the same hardware
as the DSP increases the evaluation speed with orders of
magnitude, compared to logic simulation of bit-accurate circuit
models on a computer. This speed-up enables deep-BER
evaluation of circuits and analysis of rare phenomena, such as
cycle slips for carrier phase estimation implementations. When
including an FoC system on an ASIC, the emulator can be
used to generate meaningful input data to the DSP under test,
enabling accurate measurements of ASIC power dissipation
without the need for complex external test equipment and
optical-electronic testbeds.

The parameters of the FoC system can be programmed
from a computer, allowing for multiple different simulation
scenarios, each with dynamically updated and time-varying
impairments. Since these run-time updates can be performed
in one and the same FoC hardware implementation, we avoid
the time-consuming re-synthesis between emulation runs. The
FoC system also includes modules for monitoring internal
states of the DSP under test, which facilitates debugging. The
pseudo-random bitstream and impairment generators ensure
reproducible results and repeatability of evaluations.

Possible future extensions to our FoC system include other
digital models, such as frequency offset, I/Q skew and the
Kerr non-linearity, as well as feature additions, such as pattern
memories to store waveforms from optical experiments. The
latter will make it possible to switch between synthetic and
experimental data.

ACKNOWLEDGEMENTS

We thank Magnus Karlsson and Mikael Mazur for useful
discussions, Victor Åberg and Lars Svensson for support with
ASIC tape-out and GlobalFoundries for chip fabrication.

REFERENCES

[1] T. Pfau, C. Wordehoff, R. Peveling, S. K. Ibrahim, S. Hoffmann,
O. Adamczyk, S. Bhandare, M. Porrmann, R. Noe, A. Koslovsky,
Y. Achiam, D. Schlieder, N. Grossard, J. Hauden, and H. Porte,
“Ultra-fast adaptive digital polarization control in a realtime coherent
polarization-multiplexed QPSK receiver,” in Opt. Fiber Commun. Conf.
(OFC), 2008, p. OTuM3.



9

[2] S. Yamamoto, T. Inui, H. Kawakami, S. Yamanaka, T. Kawai, T. Ono,
K. Mori, M. Suzuki, A. Iwaki, T. Kataoka, M. Fukutoku, T. Naka-
gawa, T. Sakano, M. Tomizawa, Y. Miyamoto, S. Suzuki, K. Murata,
T. Kotanigawa, and A. Maeda, “Hybrid 40-Gb/s and 100-Gb/s PDM-
QPSK DWDM transmission using real-time DSP in field testbed,” in
Natl. Fiber Opt. Eng. Conf. (NFOEC), 2012, p. JW2A.4.

[3] C. R. S. Fludger, J. C. Geyer, T. Duthel, S. Wiese, and C. Schulien,
“Real-time prototypes for digital coherent receivers,” in Opt. Fiber
Commun. Conf. (OFC), 2010, p. OMS1.

[4] P. Larsson-Edefors and E. Börjeson, “Fiber-on-chip: Digital FPGA
emulation of channel impairments for real-time evaluation of DSP,” in
Opt. Fiber Commun. Conf. (OFC), 2022, p. W3H.3.

[5] E. Börjeson, C. Fougstedt, and P. Larsson-Edefors, “Towards FPGA
emulation of fiber-optic channels for deep-BER evaluation of DSP
implementations,” in Signal Process. in Photonic Commun. (SPPCom),
July 2019, p. SpTh1E.4.

[6] E. Börjeson and P. Larsson-Edefors, “Cycle-slip rate analysis of blind
phase search DSP circuit implementations,” in Opt. Fiber Commun.
Conf. (OFC), Mar. 2020, p. M4J.3.

[7] H. Kan, H. Zhou, E. Börjeson, M. Karlsson, and P. Larsson-Edefors,
“Digital emulation of time-varying PMD for real-time DSP evaluations,”
in Asia Communications and Photonics Conf., Oct. 2021, p. M4H.4.

[8] K. Cushon, P. Larsson-Edefors, and P. Andrekson, “A high-throughput
low-power soft bit-flipping LDPC decoder in 28 nm FD-SOI,” in
European Solid-State Circuits Conf., 2018, pp. 102–105.

[9] K. Cushon, P. Larsson-Edefors, and P. Andrekson, “Low-power 400-
Gbps soft-decision LDPC FEC for optical transport networks,” IEEE J.
Lightw. Technol., vol. 34, no. 18, pp. 4304–4311, Sept. 2016.

[10] L. Zhang, K. Tao, W. Qian, W. Wang, J. Liang, Y. Cai, and Z. Feng,
“Real-time FPGA investigation of interplay between probabilistic shap-
ing and forward error correction,” IEEE J. Lightw. Technol., vol. 40,
no. 5, pp. 1339–1345, 2022.

[11] High-Speed Digital Signal Processing Platform, Fraunhofer Heinrich
Hertz Institute, 2022, https://www.hhi.fraunhofer.de/dsp-platform.

[12] A. Dassatti, G. Masera, M. Nicola, A. Concil, and A. Poloni, “High
performance channel model hardware emulator for 802.11n,” in IEEE
Int. Conf. on Field-Programmable Technology, 2005, pp. 303–304.

[13] M. Hofer, Z. Xu, D. Vlastaras, B. Schrenk, D. Löschenbrand, F. Tufves-
son, and T. Zemen, “Real-time geometry-based wireless channel emu-
lation,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1631–1645, 2019.

[14] J. Zhang, L. Zhang, P. Gao, and F. Shen, “An FPGA based real-time
radar target simulator with high spur suppression,” in IEEE Int. Conf.
on Signal Processing, vol. 1, 2020, pp. 126–130.

[15] G. Marsaglia, “Xorshift RNGs,” J. Stat. Softw., vol. 8, no. 1, pp. 1–6,
2003.

[16] P. Cappello and K. Steiglitz, “Some complexity issues in digital signal
processing,” IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. 32, no. 5, pp. 1037–1041, 1984.

[17] J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode
dispersion in optical fibers,” Proc. National Academy of Sciences of the
United States of America, vol. 97, no. 9, pp. 4541–4550, 2000.

[18] T. Laakso, V. Valimaki, M. Karjalainen, and U. Laine, “Splitting the
unit delay,” IEEE Signal Process. Mag., vol. 13, no. 1, pp. 30–60, 1996.

[19] G. Liu, “OpenCores: Gaussian noise generator,” 2015,
https://opencores.org/projects/gng.

[20] P. L’Ecuyer, “Maximally equidistributed combined Tausworthe genera-
tors,” Mathematics of Computation, no. 213, pp. 203–213, 1996.

[21] R. C. C. Cheung, D.-U. Lee, W. Luk, and J. D. Villasenor, “Hardware
generation of arbitrary random number distributions from uniform
distributions via the inversion method,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 15, no. 8, pp. 952–962, 2007.

[22] Virtex Ultrascale FPGA VCU110 Development Kit, Xilinx Inc., 2019,
https://www.xilinx.com/products/boards-and-kits/dk-u1-vcu110-g.html.


