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Root Cause Analysis for Autonomous Optical
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Abstract—The ongoing evolution of optical networks towards
autonomous systems supporting high-performance services be-
yond 5G requires advanced functionalities for automated security
management. To cope with evolving threat landscape, security
diagnostic approaches should be able to detect and identify
the nature not only of existing attack techniques, but also
those hitherto unknown or insufficiently represented. Machine
Learning (ML)-based algorithms perform well when identifying
known attack types, but cannot guarantee precise identification of
unknown attacks. This makes Root Cause Analysis (RCA) crucial
for enabling timely attack response when human intervention
is unavoidable. We address these challenges by establishing an
ML-based framework for security assessment and analyzing
RCA alternatives for physical-layer attacks. We first scrutinize
different Network Management System (NMS) architectures and
the corresponding security assessment capabilities. We then inves-
tigate the applicability of supervised and unsupervised learning
(SL and UL) approaches for RCA and propose a novel UL-
based RCA algorithm called Distance-Based Root Cause Analysis
(DB-RCA). The framework’s applicability and performance for
autonomous optical network security management is validated
on an experimental physical-layer security dataset, assessing the
benefits and drawbacks of the SL- and UL-based RCA. Besides
confirming that SL-based approaches can provide precise RCA
output for known attack types upon training, we show that the
proposed UL-based RCA approach offers meaningful insight into
the anomalies caused by novel attack types, thus supporting the
human security officers in advancing the physical-layer security
diagnostics.

Index Terms—Optical networks, physical layer security, super-
vised learning, unsupervised learning, interpretability, explain-
ability.

I. INTRODUCTION

As the key technology underpinning the global communi-
cation network infrastructure, secure and reliable operation
of optical networks is a necessary enabler for the network
evolution beyond 5G. Due to the high data rates carried
over the optical fiber, even short disruptions at the physical
layer can cause large data losses and affect a multitude of
aggregated upper layer services, which makes the optical
network an enticing target of man-made attacks. The current
trends of optical/wireless integration and extension of the
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optical domain towards the network edge – in order to reduce
latency – further aggravate the damaging potential of physical-
layer attacks compared to current architectures with optical-
electrical-optical conversions at segment exchange points.

Attacks aimed at physical layer disruption may vary in their
levels of disturbance, sophistication, or traceability, among
other traits. One of the well-known service degradation tech-
niques reported in the literature is jamming [1], where a
harmful signal is inserted in the fiber to either add un-filterable
noise to a signal at the same wavelength (in-band jamming),
or to deprive the co-propagating useful signals of optical
amplifier gain (out-of-band jamming). Another technique is
a polarization modulation attack, where the fiber is squeezed
at a high frequency, resulting in very fast changes of the
polarization of light that cause errors when the coherent
receiver’s polarization recovery algorithm cannot compensate
for the fast fluctuations any longer [2].

Coping with evolving security threats, in the frame of
network transformation into automated high-performance sys-
tems, requires intelligent approaches for autonomous secu-
rity management embedded into services’ life cycles and
incorporated into a cognitive network management system
(C-NMS) paradigm [3]. Diagnosing physical-layer security
threats is a challenging task due to several factors. Firstly,
there are no exact analytical models of physical-layer attack
effects to date. Consolidated analytical modeling of physical-
layer impairments for, e.g., Quality of Transmission (QoT)
estimation or margin reduction purposes, is complex even
under normal operating conditions, which spawned an entire
field of Machine Learning (ML) applications [4], [5]. Attacks
can violate the normal operating conditions, which limits the
applicability of known analytical models. Moreover, attacks
can cause intricate interplay among the Optical Performance
Monitoring (OPM) parameters, and subtle changes in their
values may accumulate into service degradation, rendering
analytical, e.g., threshold-based approaches ineffective [3].
Finally, the security threat landscape keeps transforming, with
new threats targeting the vulnerabilities of evolving systems.

ML has already been demonstrated as a powerful tool to
meet the need for intelligent and adaptive security manage-
ment approaches [2], [6], [7]. Today’s commercially available
Digital Signal Processing (DSP)-enabled coherent receivers
provide the Network Management System (NMS) with a rich
OPM dataset that can be processed with ML-based tools and
provide insight into the network state without the need for
costly, specialized monitoring equipment. In this case, the
system observed by means of the OPM data includes the
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transmission system itself and the measuring system with their
own specific physical behavior and processing algorithms.
An example of the power of ML techniques is that they
are able to perform end-to-end optimization: they extract the
information of a feature going beyond the physical meaning
of that feature and taking into account the whole measurement
system regardless of how specific metrics are obtained.

When applying ML tools to physical-layer security diagnos-
tics, it is not always possible to ensure identification of attacks
based on sufficient prior knowledge. In such cases, human
intervention is often unavoidable in investigating the root cause
of a detected anomaly before triggering the correct counter-
measures. The first stage of incorporating ML-supported Root
Cause Analysis (RCA) in Security Operations Center (SOC)
processes is expected to aid the decision process of a human
security operator rather than eliminating the human from
the loop [8]. Therefore, it is important to provide insightful
information about the detected anomalies. RCA in networks is
typically addressed using Supervised Learning (SL) techniques
that rely on prior knowledge of anomalies to be detected
[9], [10]. However, these approaches may not be applicable
to physical-layer security scenarios where a representative
labeled dataset covering all attack scenarios may not be
available, or new threats may emerge at any time, or models
trained for one optical channel may not be applicable to other
channels. In this work, we establish an ML-based framework
for security assessment. Then, we propose an Unsupervised
Learning (UL)-based RCA algorithm named Distance-Based
Root Cause Analysis (DB-RCA) that does not require prior
knowledge on the anomalies caused by physical-layer attacks.
The algorithm, which extends our preliminary study in [11], is
validated on an experimental physical-layer security dataset.
Our performance assessment includes the RCA outputs of
eXtreme Gradient Boosting (XGBoost), a known SL model
that enables RCA, in addition to our proposed DB-RCA. By
analyzing the output of the SL- and UL-based algorithms we
can assert that, although significantly different, the outputs
of both approaches can provide meaningful insight when
investigating the root cause of an attack.

The contributions of this paper, extensions with respect to
[11], and the corresponding sections in this paper, can be
summarized as follows:

• We analyze the different NMS architectures and the cor-
responding ML-based security assessment functionalities
(Sec. III).

• We investigate the benefits and drawbacks of the SL-
and UL-based RCA, and establish an RCA framework
applicable to the security assessment task (Sec. IV).

• We propose a UL-based DB-RCA algorithm that can be
used irrespective of the attack detection model, extending
the initial study in [11] that was specifically tailored to
work with Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) (Sec. V).

• We validate its applicability to autonomous optical
network security management using an experimental
physical-layer security dataset (Sec. VI).

II. RELATED WORK

The three pillars of network security management, namely
risk mitigation, attack detection and recovery, have been
addressed in the literature to different extents. Risk mitigation
efforts focus on attack-aware network design and service
provisioning in an effort to reduce the network exposure
to and/or the damaging potential of attacks. Embedding the
awareness of physical-layer attacks into connection routing
was initially proposed in [12]. Attack-aware routing and
wavelength assignment under static and dynamic traffic was
performed in [13], [14], respectively. Jamming-aware provi-
sioning of dynamic traffic in Space Division Multiplexing
(SDM) networks was studied in [15], [16]. Strategies for
cost-efficient placement of dedicated devices that can filter
out harmful signals or equalize their excessive power were
investigated in [17], [18], respectively. Attack-awareness was
also incorporated into advanced networking scenarios, such
as connection provisioning in multi-domain elastic optical
networks [14], and game theory-assisted control plane design
[19].

Detection of faults caused by component failures or attacks
is a key aspect of network monitoring. ML has revolutionized
the field of optical network monitoring by removing the need
for explicit modeling of the physical-layer effects and precise
inventory of the optical infrastructure. ML has been shown
to successfully tackle challenges related to detection of both
failures and attacks. Applications of ML-aided failure man-
agement range, e.g., from the early works on integrating SL
for failure detection and identification into transport-Software
Defined Networking (TSDN) architecture [?], to cooperative,
self-supervised learning for brokered soft failure detection
across multiple domains [20]. For a survey of the various
applications of ML for failure management, we refer the reader
to [21].

The performance of different SL techniques, including,
among others, Artificial Neural Network (ANN) and Support
Vector Machine (SVM), for detection and identification of
jamming and polarization scrambling attacks was experimen-
tally analyzed in [6]. In [22], SVM was used to analyze the
optical spectrum and detect unauthorized transmission. [23]
investigated the potential of UL to detect attacks without
prior insight or training. Practical implications, advantages and
challenges of SL, UL and Semi-Supervised Learning (SSL)
for attack detection and/or identification were comparatively
investigated in [2]. The role of ML in security management
automation was analyzed in [8]. A novel functional block,
referred to as the optical security manager, was proposed in
[7] to complement the TSDN controller with encompassing
optical security functions.

Fast and accurate detection and identification of attacks is
crucial for appropriate and effective remediation of security
breaches, which should encompass service recovery, threat
neutralization and network adaptation. Planning of backup
routes to be used for protection in case of jamming was
presented in [24], relying on prior knowledge of the attack
properties and connection routing. However, analysis of the
root cause of a detected anomaly, as a prerequisite for trigger-
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ing countermeasures tailored to an evolving threats landscape,
has not been investigated in the literature yet.

III. PROGRESS TOWARDS AUTOMATED SECURITY
DIAGNOSTIC PROCEDURES

The introduction of telemetry systems and advanced ML
techniques enables NMSs to evolve towards supporting auto-
mated security diagnostics [25]. The evolution of the NMS
architecture is illustrated in Fig. 1, starting from a legacy
scenario characterized by traditional NMS and describing a
possible evolution path towards optical networks with embed-
ded telemetry systems and optical security ML tools.

Unauthorized access to the management system of an op-
tical network can cause substantial damage, since the network
settings and configurations can be maliciously changed, pro-
ducing detrimental effects on the services. The protection of
management systems, which takes place through increasingly
sophisticated authentication systems, including biometric or
multi-level, is beyond the scope of this paper and is treated
elsewhere [26]. This study aims to evaluate how the data made
available by the NMS can feed an ML system to classify the
various types of network attacks occurring at physical layer.

A. Network Assurance approach based on traditional NMSs

Today, most optical networks are still operated by traditional
NMSs, as illustrated by Fig. 1a. They are characterized by
collecting OPM data every 15 minutes with very limited OPM
data storage capabilities. The limitations of those technologies
force operators to implement elementary reactive strategies
based on alarm monitoring and manual intervention as coun-
termeasures to both faults and attacks. In case of an attack, an
alarm is typically raised in the NMS and the operator is alerted
in case an OPM value exceeds a predetermined threshold. The
NMS itself provides to the operator remedy tables that propose
plausible causes for each alarm, suggesting also further checks
and appropriate remedy actions.

Due to the limited historical records and the requirement
of manual checks, security assessment is very difficult and
requires highly-trained and experienced operators that un-
derstand the specifics of the system. Moreover, the use of
predefined thresholds is unscalable and unreliable, as some
attack techniques cause only minor variations in OPM values
and each optical channel might need a specific fine tuning of
its thresholds [2].

B. NMSs with telemetry functions

A first evolutionary step in optical network management
comprises the development of telemetry systems embedded in
the NMS, that collect large OPM data records every second
(or few seconds) and store those records in a database, as
illustrated by Fig. 1b. This technology is already proposed by
many network system manufacturers for their next generation
products. Nevertheless, even with this advanced telemetry
system, attack diagnostics is similar to the traditional one, but
the checks suggested by remedy tables can be done on OPM
historical data series rather then on log files with few tens of
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Fig. 1. Network Management System (NMS) architecture evolution with the
introduction of telemetry systems and advanced ML techniques for security
diagnostics.

entries. In any case, the historical data series analysis, which
is performed manually by the operator, is very complex, time
consuming, and requires special data processing skills seldom
included in the training of Network Operation Center (NOC)
operators. Based on their standard fault-oriented mindset, the
network assurance operator has no effective tools to analyze
what is happening in the network in case of an attack and no
criteria for applying specific data analysis tools on the OPM
dataset.

C. NMSs with telemetry and attack detection ML functions

A network malfunction is caused by either a failure or a
malicious attack. Often, an attack and a failure can have similar
symptoms but need different treatments. For this reason it is
very important to have, alongside telemetry systems which
continuously monitor the status of the connections and the
quality of the optical signals, a system that, based on these
data, is able to recognize that the malfunction is caused by a
malicious attack and classify such attack based on a previously
identified set. Such an NMS architecture, capable of detecting,
identifying and locating the source of an attack, is illustrated
by Fig. 1c. We have already demonstrated the effectiveness
of ML techniques to detect and classify network attacks [2].
When those ML tools are embedded in future generation NMS,
they can provide an effective support for the NOC operators:
they will gain information on the nature of the network attack
directly from the ML system in quasi real time, and they
will use their knowledge and experience to apply appropriate
countermeasures.

D. NMSs with telemetry, attack detection and Root Cause
Analysis ML functions

To support automated security diagnostics, NMS should also
have embedded functionalities for tracking newly emerging
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Fig. 2. Workflow of an NMS with ML-based attack detection (and identification) and Root Cause Analysis. The anomaly detection (and identification)
(AD/ADI) module outputs the attack class/cluster and known/unknown signature based on the appropriate use of SL and SSL/UL models.

attacks. As an evolution of the previously described scenario,
where the NMS has an embedded algorithm capable of dis-
cerning between a failure and an a priori known attack and,
correspondingly, classifying the attack. Leveraging currently
available technologies, properly addressing newly emerging
attacks unavoidably requires human intervention. However, a
step forward is given by an ML-driven RCA functionality due
to its ability to provide an initial insight into the effects of
a novel threat. NMS architecture with RCA is illustrated in
Fig. 1d. This approach does not rely on prior knowledge of
attack consequences, but can, nonetheless, provide meaningful
insight into their effects on network performance and aid the
operators in determining the most effective security counter-
measures.

IV. ROOT CAUSE ANALYSIS IN OPTICAL NETWORKS

Root Cause Analysis (RCA) is a term used to define
methods that aim at identifying the root causes of faults,
problems, or anomalies. Application areas include production
engineering and management, IT operations, and telecommu-
nications. Depending on the area where RCA is applied, it
might include different steps and techniques. With the advent
of the use of ML techniques across a wide range of industries,
the lack of explainability of many ML models increases the
need for RCA specifically tailored for analyzing the output of
the models [27]. These ML-based RCA methods analyze the
same data that can be input to an ML model, and produce
metrics that indicate which aspects or features of the data are
more likely to be decisive to the ML output, contributing to
the interpretability and explainability of the ML output.

In the context of NMSs, RCA can be used to assist the
network management staff with the difficult task of analyzing
the OPM parameters and identifying the cause of an anomaly.
The difficulty of this task might be exacerbated when the ML

algorithms in place raise an alarm without providing further
insight such as identifying the problem.

Fig. 2 illustrates the workflow of an NMS and the role of the
network management staff in addressing detected anomalies,
which can be further enhanced by anomaly identification.
OPM samples are received periodically, which triggers the
entire process. An ML-based model performs anomaly detec-
tion (and possibly identification). The right-hand side of the
figure expands the related procedures. The depicted workflow
combines SL and SSL/UL models to obtain a reliable anomaly
assessment. First, an SL model performs multi-class classifi-
cation, which results in anomaly detection and identification
in addition to a confidence score associated with the output of
the model. If the confidence level is above a desired level, the
known anomaly signature is reported. On the contrary, if the
confidence level is below the desired level, the output of the SL
model is not considered reliable enough and, instead, anomaly
detection is performed by either SSL or UL. In this case, only
binary classification or clustering are possible, and the output
specifies whether or not an anomaly is detected. If the SSL/UL
model detects an anomaly, it reports the detection flagged as an
unknown anomaly signature. Note that the described workflow
also functions when no SL model is available to detect and
identify an anomaly. In this case, the received OPM sample is
used by the SSL/UL model to perform binary classification,
always flagging the detected anomaly as unknown. Long-term
storage is usually needed in this case to store either a set
of the most recent OPM samples, or the ML model itself,
or both. The output of this module is evaluated, and if no
anomaly is detected, the process idles and waits for the next
monitoring cycle. The frequency of the monitoring cycle (e.g.,
every minute, or every 15 minutes) is decided by the network
operator depending on the criticality of the monitored services
and the expected reaction time to events.
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Fig. 3. The operating principle of SL and UL models for training (only in
the SL case) and inference. Note that usually |S| ≪ |T |.

On the other hand, if an anomaly is detected, the process
for anomaly identification and mitigation starts. First, if the
ML model is capable of anomaly identification, or if a stan-
dalone anomaly identification is in place, the NMS checks if
the anomaly signature is known. If so, automated anomaly
localization and mitigation developed a priori are executed.

RCA becomes vital in the case where the anomaly signature
is not known. In this case, manual mitigation of the anomaly
needs to be tailored by the network management staff. The
RCA is helpful at this stage when the network management
staff needs to understand what caused the ML model to
identify the current network state as anomalous. Without
RCA, the network management staff is left with the manual
investigation procedures described in Sec. III. RCA provides
useful insights, often enriched with graphical representation
that can enhance and speed up the analysis phase.

It is important, however, to mention that RCA applied to ML
models has some limitations. First and foremost, RCA is based
on data, and therefore, can only highlight the possible causes
that are represented in the data. This is especially important
in optical networks, where minor electrical and temperature
variations can affect the correct operation of optical devices
[10], [28]–[31]. These variations are usually not represented in
the OPM data collected from the coherent transceivers, which
usually only contain optical-related parameters (i.e., do not
include electrical current, power, or temperature). Therefore,
these electrical and/or temperature variations will manifest in
the form of OPM parameter changes. These limitations can be
addressed by including, integrating and consolidating further
monitoring data (e.g., from the electrical power grid and/or
cooling system) into the analysis, which is out of the scope of
this work. In the next sections, we introduce RCA techniques
for SL and UL.

A. Supervised Learning for Root Cause Analysis

Supervised Learning (SL) models comprise two different
stages represented in Fig. 3a. First, the model is trained
over a training dataset which needs to be labeled, i.e., for
each sample, a label specifies what is expected as an output

from SL model. During training, the model abstracts the
important information present in the dataset that allows it
to adjust and store its internal representation to facilitate the
association between each input and the label. For instance,
traditional Feed-Forward Neural Networks (FFNNs) represent
the information in the form of weights and biases. Decision
Trees (DTs), on the other hand, store the information in the
form of thresholds and conditional statements. Once trained,
SL models can perform inference by analyzing only a single
sample (i.e., there is no need to analyze previous samples).
This means that SL models are usually resource-intensive
during training, but lightweight during inference.

One drawback of SL models, in particular in the con-
text of anomaly detection and security assessment, is that
their performance expectations can only be drawn over data
that is used for training or test purposes. This means that
new anomalies or security threats (previously unseen by a
model) can potentially remain undetected for long periods of
time unless they are mistakenly classified. In the context of
optical networks, this issue becomes more critical as each
optical channel may need a specific SL model trained just
for that channel, given that, to the best of our knowledge,
the applicability of a single model addressing multiple optical
channels established over a different set of optical devices
has not been reported in the literature so far. This is due to
the fact that different optical channels use different spectrum
and traverse different equipment, which differentiates their
behavior enough to render an SL model trained for another
optical channel unsuitable. Another potential reason is the fact
that different optical channels may be designed for different
OPM levels such as Optical Signal-to-Noise Ratio (OSNR),
modulation format, etc. During operation, this translates either
to a longer deployment time for optical channels (due to the
need to collect enough samples for every anomaly/attack case),
or running the optical channel with user traffic without proper
anomaly/attack detection/classification assessment in place [2].

Another drawback of SL models is their trade-off between
accuracy and interpretability. ANNs usually achieve the high-
est accuracy among the SL models when their hyperparameters
are appropriately tuned, but are considered a black-box model.
This is due to the fact that their internal representation (in the
form of weights and biases) is hard to be interpreted. On the
other hand, traditional DTs do not usually reach the same level
of accuracy as ANNs, but are easily interpreted and can be
implemented with simple conditional statements. This makes
DTs ideal for use in the RCA for SL models.

The eXtreme Gradient Boosting (XGBoost) algorithm [32]
was proposed to mitigate the usual accuracy limitations of
DTs, and reduce the trade-off between accuracy and inter-
pretability. XGBoost implements gradient boosting for DTs,
and uses an ensemble of DTs to improve its accuracy. The
training procedure uses the gradient descent algorithm, which
enables the use of different loss functions depending on the
task at hand (e.g., cross-entropy for classification tasks and
mean squared error for regression). The gradient descent
decides whether to add new nodes/leaves to the current DT
structure such that the loss is minimized. XGBoost is in
the same category as Random Forests (RFs), i.e., ensemble
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Fig. 4. An illustrative example of a decision tree for binary classification
using hypothetical normalized OPM parameters.

learning algorithms based on decision trees. The main dif-
ference between the two is that in RFs each decision tree is
independent from another, while in XGBoost the decision tree
n+1 focuses on improving the accuracy obtained by decision
tree n.

Fig. 4 illustrates an example decision tree for a binary
classification task in an optical network. Each node in the tree
represents a conditional statement, similar to traditional DTs.
However, leaves represent the probabilities (e.g., logit, used in
the example and throughout the paper) of a sample belonging
to a given class, as opposed to traditional DTs where leaves
represent decisions. Note that the example shows a tree for
binary classification, so a logit ≤ 0 (i.e., probability ≤ 0.5)
means that the sample is likely of the first class, while a logit
> 0 (i.e., probability > 0.5) means the sample is likely of
the second class. By using an ensemble of DTs, XGBoost
collects these probabilities across the different DTs to define
the output.

XGBoost is particularly useful for RCA due to its impor-
tance score that results from the training process. The impor-
tance score is attributed to each feature (or hypothetical OPM
parameter in our context) and represents the number of times
that the feature is used to add a new split/node. The intuition
is that a tree with an additional split/node is more accurate
than one without the split. Therefore, the more times a feature
is used in splits, the more important it is for the particular
effect under analysis. A shortcoming of this approach is that
it does not account for the impact of a split to the final output
(e.g., a split with both leaves leading to the same output), but
alternative approaches such as the Shapley values can be used
to mitigate this issue [33]. Fig. 5 illustrates the normalized
feature importance resulting from a XGBoost training over
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Fig. 5. An illustrative example of feature importance obtained from the
XGBoost algorithm using hypothetical OPM parameters.

a hypothetical dataset collected from optical transceivers for
classification of anomalies. We can see that OPM PAR 1
is the most important feature, with OPM PAR 2 accounting
for approximately 30% of the importance of OPM PAR 1.
OPM PAR 3, OPM PAR 4 and OPM PAR 5 have a minor
importance. This importance score can be directly linked to the
particular effect under analysis and used to tailor mitigation
strategies.

B. Unsupervised Learning and Root Cause Analysis

Unsupervised Learning (UL) models are tailored to identify
anomalous samples by considering an observation window
containing a number of samples. The observation window
usually has a few hundreds of samples. The UL models assume
that at the beginning of observation, only a few samples
in the observation window will contain anomalous behavior.
By considering the distance between samples to group them,
it is expected that anomalous samples will be far from the
samples that characterize normal behavior, and will, therefore,
be flagged as anomalies.

Fig. 3b illustrates the operating principle of UL models. As
opposed to SL, UL does not require training, which translates
into neither using a labeled (training) dataset nor storing of
any internal states. This means that it needs to receive an
entire observation window every time an inference is needed.
Therefore, inference is costlier in UL than in SL models in
terms of complexity and runtime [7].

Compared to SL (illustrated in Fig. 3a), UL models have
several benefits important for their use in the autonomous
operation of optical networks. The absence of training brings
two important advantages: (i) these models do not need to be
tailored for each optical channel, and a single implementation
can be used for all optical channels in a network; and (ii)
the models can start their operation shortly after the optical
channel is set up, i.e., there is no need to collect a training
dataset. Finally, given the general ability to detect anomalies,
these models can be potentially applied to any sort of anomaly
(e.g., attack, malfunction), unlike SL models that need labeled
samples and training for each and every anomalous condition.

On the other hand, there are a few drawbacks of UL models
when compared to SL. First, UL models can only detect
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the anomaly, without any further insight. On the contrary,
SL models are able to identify the anomaly as long as they
have been trained for it. Moreover, SL models are typically
exposed to a larger number of samples during training, which
allows them to identify subtle but consistent properties of
the system behavior. By analyzing a relatively small number
of samples compared to a training dataset for SL models,
UL models rely on observing the unstable behavior of the
system upon an anomaly occurrence to detect significant
deviations from normal operation. As previously mentioned,
UL models usually have more complex inference than SL
models, although some efforts have been made to combine
SL and UL to provide lightweight inference [34]. Finally, UL
models usually have a few hyperparameters that define how
strictly the relationships among samples will be evaluated, and
defining these parameters without knowledge of the anomalies
is challenging. One possible way to tune hyperparameters
using only normal samples is to start from a more relaxed
set of parameters and progressively make them more strict
until the algorithm starts presenting false positives. At this
point, one can decide on an initially acceptable level of
false positives. During network operation, as anomalies are
detected and validated through, e.g., an RCA framework, the
hyperparameters can be further optimized.

These differences between SL and UL models significantly
change the way that RCA is performed in each scenario. With
SL models, RCA aims at finding the ground truth importance
of features based on extended (and usually far) past behavior
(represented by the training dataset). On the other hand, RCA
based on UL models aims at finding the importance of features
based on a limited number of (close to) real-time observations.
In the following section, we describe the algorithm proposed
in this paper that aims at providing a viable RCA approach
for UL models.

V. DISTANCE-BASED ROOT CAUSE ANALYSIS (DB-RCA)

This section describes the main contribution of this paper,
i.e., the algorithm for UL-based RCA called DB-RCA. The
main output of the algorithm is the Anomaly Vector (AV). The
AV enriches the anomaly detection algorithm by representing
the average distance between anomalous samples and their
closest cluster of normal samples. The results of the AV can be
graphically shown to the network management staff together
with other data relevant for anomaly mitigation. Furthermore,
the AV can be integrated into automated anomaly localization
and mitigation procedures.

Alg. 1 presents the pseudocode of the proposed algorithm.
The algorithm takes as input the set F that describes which
features are present in the dataset, and the (pre-processed)
dataset X containing values of the features for every sample.
Additionally, the algorithm also receives the output from the
anomaly detection algorithm Y , where the number of elements
in Y is equal to the number of elements in X . DBSCAN
[35] is one of the UL models that can be used for anomaly
detection, i.e., to produce Y , which is also the approach taken
in this work. In any case, the UL algorithm used to detect
an anomaly will provide at least two clusters for RCA. For a

Algorithm 1 Distance-based RCA
Data: Set of features F , (pre-processed) dataset X ∈

R|F |×|X|, anomaly detection output Y ∈ Z|X|

Result: Anomaly vector AV
1 N ←

⋃|X|
i=1{Xi} : Yi ≥ 0

2 A←
⋃|X|

i=1{Xi} : Yi = −1
3 P ← cluster in N closest to A

4 AVi ←
∑|A|

j=0 Ai,j

|A| −
∑|P |

k=0 Pi,k

|P | , i=0..F

5 return AV
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Fig. 6. An illustrative example of the Anomaly Vector (AV) obtained from
the proposed RCA framework using hypothetical OPM parameters.

sample with index i, we assume that Yi = −1 when sample
Xi is flagged as anomaly, and Yi ≥ 0 when the sample is
considered normal, in which case the value of Yi acts also as
the cluster index for the sample indexed by i.

The algorithm begins by obtaining a cluster that contains
normal samples (line 1) and anomalous samples (line 2) from
X , denoted by N and A, respectively. Then, the algorithm
selects the cluster closest to the anomalous samples (line 3)
and computes the anomaly vector as the difference between
the average values of the features in the two clusters (line
4). By considering only the closest cluster, the algorithm
is more likely to observe smaller variations in the features
that led the samples to be positioned outside of the cluster
area. Moreover, this limits the number of samples whose
distance needs to be computed for each feature. The AV is
returned (line 5). Note that our proposed algorithm has a small
impact on the overall system runtime, since it is only executed
when an anomaly is detected. Note also that the algorithm
is extensible enough to be included in pipelines using other
models. Finally, the algorithm uses the same data used for
DBSCAN (or another UL algorithm), in addition to its outputs,
without keeping any state between inferences. This means that
the algorithm does not change the fundamental properties of
DBSCAN and therefore can also be considered a UL approach.
The worst-case complexity of the algorithm can be derived
as O(|X|2 × |F | + |X| + |X|) since we need to calculate
the distance between every pair of samples (|X|2 × |F |) and
traverse the samples twice (|X|).

Fig. 6 shows an illustrative example of how the AV would
be presented to the network management staff for a hypo-



8

TABLE I
SUMMARY OF CONSIDERED ATTACK SCENARIOS [2].

Attack scenario
Jamming
signal
power

Jamming
signal
frequency

Fiber
squeezer
driver
amplitude

Out of band
jamming

Light P0+3 dB 195.1 THz -
Strong P0+8.7 dB 195.1 THz -

In band
jamming

Light P0-10 dB f0 -
Strong P0-7 dB f0 -

Polarization
modulation

Light - - 0.3 V
Strong - - 1.6 V

P0 and f0 denote the power level and frequency of the optical channel
under test.

thetical detected attack. Note that the AV enables a network
security specialist to identify the level of deviation from
the normal for the considered hypothetical OPM parameters
(e.g., OPM PAR 2 and OPM PAR 3 deviate the most, while
OPM PAR 7 deviates the least in this hypothetical case).
It also indicates the increasing or decreasing trends in the
parameter variations, represented by positive or negative AV
values, respectively.

VI. PERFORMANCE ASSESSMENT

This section presents a detailed analysis of the performance
of the SL and UL learning models presented in this work,
focusing on their accuracy and RCA properties. The accuracy
performance is assessed in terms of the f1 score, which
balances the importance of false positives and false negatives
into a single metric equal to 1 when the model is perfectly
accurate in detecting attacks, and smaller otherwise. Then, we
analyze the importance metrics output of XGBoost and the
proposed UL-based RCA algorithm. Finally, we discuss the
characteristics and properties of the evaluated approaches.

A. Use Case

We validate the proposed algorithm on a physical layer se-
curity use case where anomalies are characterized by physical
layer attacks launched over optical channels. OPM samples
are collected from an experimental optical network testbed
with coherent transceivers, Reconfigurable Optical Add-Drop
Multiplexers (ROADMs) and Erbium-Doped Fiber Ampli-
fiers (EDFAs). A detailed description of the experiments and
testbed can be found in our previous work [2]. The monitored
channels are two optical 200 Gbit/s polarization multiplexed
16 quadrature amplitude modulation (16QAM) signals at 195.2
and 195.3 THz. Then, three attack strategies are launched in
the network, namely In-Band (IB) and Out-of-Band (OOB)
jamming, and Polarization Modulation (PM). For each attack
strategy, a light and a strong attack condition is used, result-
ing in 7 different attack scenarios: Light In-Band jamming
(INBLGT), Strong In-Band jamming (INBSTR), Light Out-
of-Band jamming (OOBLGT), Strong Out-of-Band jamming
(OOBSTR), Light Polarization Modulation (POLLGT), and
Strong Polarization Modulation (POLSTR).

The characteristics of the considered attack scenarios are
summarized in Table I. In IB jamming, a signal at the same
frequency as the channel under test is inserted in the network,

adding unfilterable noise. This type of attack requires precision
in terms of frequency, but can be realized with relatively low
power. We set the jamming signal power to 10 and 7 dB
below the power of the channel under test to obtain INBLGT
and INBSTR intensities, respectively. For OOB jamming, the
inserted signal has higher power, but is substantially separated
from the spectrum used by the channels under test. We set
the jamming signal power to 3 and 8.7 dB above the power
of the channel under test to obtain OOBLGT and OOBSTR
intensities, respectively. In the polarization modulation attack,
the fiber is squeezed with a piezoelectric squeezer at a resonant
frequency of 136 kHz. The two different intensities, POLLGT
and POLSTR are obtained by using two different values of
the sinewave signal driving the squeezer, i.e., 0.4 and 1.6 V
peak-to-peak, respectively.

In each minute, and for each attack condition and optical
channel, a script collects the following OPM parameters over
the course of 24 hours: pre-FEC Bit Error Rate (BER-FEC),
post-FEC Bit Error Rate (BER-PF), Loss of Signal (LOS),
Optical Power Received (OPR), Chromatic Dispersion (CD),
Differential Group Delay (DGD), OSNR, Polarization Depen-
dent Loss (PDL) and Q-factor. For some of the OPM param-
eters, the minimum and maximum values obtained within the
monitoring window are also reported. The resulting dataset
is the largest optical security-related dataset reported in the
literature, composed of 1440 samples for each scenario, with
each sample containing 31 features. The collected dataset is
pre-processed by removing samples with missing features and
by applying z-score standardization. Finally, for the analysis
reported in this section, only the nominal values are considered
(we do not consider minimum and maximum values reported
by the transceivers).

B. RCA Using XGBoost
For the results presented in this section, we used the

Python open-source implementation of the XGBoost model.
We configured the model for binary classification (which is
appropriate for the attack detection task) and to use a single
decision tree. The dataset was split into 50% for training and
50% for testing purposes. For the binary classification, the
XGBoost attack detector achieved a f1 score of 0.995, which
represents a good performance, with near zero false positives
and negatives.

Figures 7 and 8 show the resulting decision tree for classify-
ing IB jamming and PM strong attacks, respectively. Note that
the numerical values for the OPM parameters are standardized,
and that each leaf represents the probability of a sample being
an attack. We can see that for INBSTR attacks (Fig. 7), only
BER-FEC and OPR are sufficient to detect an attack. On the
other hand, for POLSTR attacks (Fig. 8), BER-PF and OSNR
are needed in addition to OPR. These results make it evident
that each attack scenario is best represented by a particular set
of OPM parameters. More importantly, it shows that collecting
a set of OPM parameters as complete as possible is paramount
for enabling a reliable and future-proof security assessment.
In other words, certain parameters might not be important for
the currently known attacks, but might become important to
diagnose new attacks in the future.
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Fig. 7. Resulting tree for identifying strong in-band jamming attacks.
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Fig. 8. Resulting tree for identifying strong polarization attacks.

Next, we move our attention to the feature importance
scores obtained by XGBoost (in our case, features represent
the OPM parameters collected from the transceivers). Fig.
9 shows the feature importance for the models trained over
all the attack scenarios (Fig. 9a) and over each individual
scenario. When detecting all the attack scenarios (Fig. 9a),
OPR and BER-FEC are the two most important features.
However, PDL and CD, usually disregarded for most of the
analysis in the literature, retain a significant importance for the
overall attack detection. When examining an OPM parameter
and its impact on ML algorithms, we must consider how this
parameter is measured by the coherent transponder optical
interface. Recall that the OPM data represents the combination
of the transmission and the measurement system. Considering,
for instance, the OSNR, the transponder manufacturer does
not provide details on how it is measured, but, based on the
literature (see, e.g., [36]), we can argue that OSNR is derived

from the Error Vector Magnitude (EVM). If we consider the
measurement technique, it is not a surprise that OSNR is not
an important feature for some kind of attacks (while in general
it is). This simply means that the whole OSNR measurement
system: EVM estimation from a given number of received
symbols, sampling system, OSNR derivation (and perhaps
many more intermediate measuring functions) produce a result
that is not strongly influenced by some kinds of attacks.

For IB and OOB jamming (Figs. 9b and 9c), the two most
important OPM parameters are BER-FEC and OPR. However,
starting from the third place, things are different. While Q-
factor is the third most important OPM parameter for both
intensities of OOB jamming, it is only the fifth for IB. For IB,
CD is the third most important OPM parameter. Interestingly,
for the IB, the importance for the strong attack is concen-
trated over BER-FEC and OPR, while for the light attack,
the importance is spread over 6 different OPM parameters.
Moreover, looking at the physical nature of the attack, CD
and DGD features should not be representative of the OOB
jamming attack where just OSNR, Q-factor and BER-PF are
expected to vary, but still have significant importance for the
attack detection.

Fig. 9d shows that for PM, the order of importance changes
from the light to the strong intensities. BER-FEC and OPR
swap places in terms of importance. BER-FEC is the most
important for the light attack while OPR is ranked third. For
the strong attack, OPR comes first and BER-FEC in third.
Finally, BER-PF, which is not ranked for the IB and OOB
jamming attacks, is important for PM, and replaces DGD that
was important for the two jamming attacks.

C. DB-RCA using DBSCAN

For the results presented in this section, we assume the use
of DBSCAN for the anomaly detection task. DBSCAN [35]
is an anomaly detection algorithm that clusters samples based
on their pair-wise distances. The algorithm has two param-
eters: ϵ defines the radius around each sample within which
other samples are considered neighbors (usually considering
Euclidean distance); and M defines the minimum number of
neighbors that a sample needs to have in order to be considered
a normal sample. Any sample whose number of neighbors is
less than M is considered an anomaly. We used the Scikit-
Learn Python implementation of the DBSCAN algorithm. We
fine tuned the model to obtain the best f1 score according
to the dataset and the standardization procedures applied by
testing the following sets of parameter values. We performed a
hyperparameter search over ϵ = {0.1, 0.5, 1, 1.5, 2, 3, 4, 5, 10}
and M = {3, 5, 8, 10, 12, 15, 20}. The best accuracy was
obtained with M=15 and ϵ=1.0, which results in a f1 score
equal to 0.8, with 0.073 false positive and 0.251 false negative
rates. In a real deployment, strategies such as Window-based
Attack Detection (WAD) [2] can be used to mitigate the false
positive and false negative rates of DBSCAN, increasing f1
score to levels close to those achieved by XGBoost, e.g., 0.995.

Our algorithm was executed using a 10:1.5 proportion
between normal (no attack) and anomalous (attack) samples.
The experiments reported in Fig. 10 are obtained by running
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Fig. 9. Feature importance for the decision trees trained to identify all attacks, and each one of them individually.

the algorithm for each attack scenario, averaged over 50 runs.
Since in this work the focus is on obtaining a representative
AV, DBSCAN was executed with a relatively large number
of samples, i.e., 200 normal (no attack) samples and 30
anomalous (attack) samples, which represents a reasonable
trade-off between accuracy and runtime.

Fig. 10 shows the AVs obtained for the different attack
scenarios. Note that light and strong attack conditions are
shown in the same plot due to space reasons, but in a real-
world scenario, a plot similar to the one seen in Fig. 6 is
expected to be shown. Out of the three attack strategies, IB
jamming (Fig. 10a) is the one that incurs the highest relative
change on the OPM parameters. However, PM incurs the
changes over the highest number of OPM parameters.

The AVs for IB and OOB jamming (Figs. 10a and 10b),
show interesting differences between the two attacks. While
for IB the CD shows no variation, OOB incurs a significant
change in its value. OPR has a slight variation, while DGD,
OSNR and Q-factor are the most affected OPM parameters.
BER-FEC, BER-PF, LOS and PDL do not show significant
fluctuations for IB and OOB jamming attacks. The PM attack
shows a very different AV. It affects BER-PF in addition to
other parameters, and the OSNR variations are both in the
positive and negative directions, indicating that there might be
a fluctuation of this OPM parameter throughout an attack.

D. Discussion

This work analyzes two fundamentally different ways to
implement RCA while using ML models. One is the XGBoost,
which is a SL algorithm that, based on the training dataset,
builds decision trees capable of performing regression or clas-
sification. The other is DBSCAN, which is an UL algorithm
that has no training and is executed over a set of samples every
time an anomaly detection needs to be performed.

XGBoost is designed to capture the behavior of a phenom-
ena (optical physical layer attacks in our case) by looking
at a (historical) dataset that has enough samples to properly
represent how the different features (or OPM parameters in
our case) are affected by the phenomena. In our case, we use
50% of our dataset to train XGBoost, which represents 12
hours of OPM monitoring for each attack scenario. However,
using current ML models, this training needs to be performed
for each optical channel, and having these long monitoring
windows prior to the optical channel use (i.e., prior to start
sending user traffic) are impractical in real world deployments.

DBSCAN, on the other hand, is designed to identify changes
on the feature (or OPM parameters in our case) trends as they
happen. This means that it does not need any prior training,
and can be used shortly after the optical channel establishment.
In our case, we used 200 samples, which represents 3 hours
and 20 minutes considering a 1-minute monitoring window.
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Fig. 10. Anomaly Vector (AV) for each attack scenario.

However, this window can be shortened by increasing the
monitoring frequency at the beginning of the optical channel
operation, or by using a lower number of samples as input to
DBSCAN at the expense of potentially lower accuracy. Such
lower accuracy can be mitigated by, e.g., leveraging WAD [2].

From their very different approaches to training and infer-
ence, it can be expected for the RCA results from XGBoost
and DBSCAN to diverge to some extent. Fig. 9 shows that
one of the most important features found by XGBoost is
BER-FEC, which presents negligible variations in the AVs
for all attack scenarios in Fig. 10. On the contrary, OPM

parameters such as DGD show a significant variation in the
AVs (Fig. 10), but do not figure among the top five most
important features in Fig. 9. These divergences are explained
by the different time scales that the algorithms have access to.
For instance, the variations caused to BER-FEC by attacks can
be very small, but consistent. By analyzing a large number of
samples, XGBoost can consistently and confidently identify
these small variations that are present in the attack samples
and leverage this to build the decision trees. Conversely, OPM
parameters such as DGD can have inconsistent patterns during
an attack, making it harder to consistently and confidently use
it to determine whether there is an attack or not. In this case,
using BER-FEC to identify a small but consistent difference
is more effective than using DGD. This effect can also be
observed with respect to OPR, which shows a small variation
in the AVs (Fig. 10a), but figures among the top two most
important OPM parameters for the IB jamming (Fig. 9b).
However, few OPM parameters are identified as valuable by
both algorithms. For instance, BER-PF shows variations in the
AV only for the PM attack in Fig. 10. Likewise, Fig. 9 shows
BER-PF among the important features only for the PM attack.

This demonstrates that the DB-RCA algorithm proposed in
this work is an effective way to illustrate the important features
that were decisive for the samples to be considered anomalies.
Moreover, in some cases, it shows similar results as other
algorithms that require much more data to be trained. The AV
visualization equips the operators with deeper insight into the
anomaly structure and eases the physical interpretation of the
anomaly thus complementing the ML-assisted RCA tool. AV
visualization goes beyond the typical historical data plot that
is provided by NMSs today, where simple time series of OPM
parameters are presented to the operators. This is especially
significant when a new, previously undetected anomaly is
analyzed.

VII. CONCLUSIONS

This work investigated ML-based techniques for RCA as
an important enabler of autonomous optical network security
management. The considered RCA framework may rely on ei-
ther existing SL-based approaches, such as XGBoost, or on the
newly proposed UL-based DB-RCA algorithm, or both. The
proposed DB-RCA algorithm also enables a useful graphical
representation of a detected anomaly to the network operator
in the form of an anomaly vector. An in-depth analysis reveals
the performance of the two fundamentally different approaches
and uncovers their advantages and drawbacks when applied to
the physical-layer security diagnostics. Although differences
are observed, we can see that both methods can show sig-
nificant insights into the properties of the experienced attack.
For future work, we plan to investigate the practical imple-
mentation aspects of the frameworks in real-world NMSs and
evaluate the applicability of the approaches to other anomaly
detection use cases. For instance, the proposed framework and
algorithm has potential for application to fault management,
where interpretability is key to define mitigation actions.
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