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Maternal and neonatal metabolomes and their associations to immune 

maturation and allergy in early life 

OLLE HARTVIGSSON 

Department of Biology and Biological Engineering 

Chalmers University of Technology, Gothenburg, Sweden 

Abstract 

 

Allergy, one of the most common chronic diseases worldwide, is caused by a dysregulated 

immune system reacting to normally harmless proteins. However, regulating mechanisms are 

not well understood. The aim of this thesis was to investigate if plasma and placenta 

metabolites associate prospectively to allergy development and immune maturation. The aim 

was further to explore differences between arterial and venous umbilical cord blood 

metabolomes, and if they associated with maternal or infant traits.  

Placentas and plasma (maternal from pregnancy and delivery and from the umbilical cord) 

were obtained from the prospective NICE-cohort. Metabolites were measured by LC-MS and 

GC-MS.  

None of the measured metabolomes associated with any of the investigated allergic outcomes 

(asthma, food allergy and eczema). Modest associations were observed between immune 

maturation (in particular memory B cells) and plasma and placenta metabolomes. Energy-

related metabolites were higher in arterial cord blood, while amino acids were higher in venous 

cord blood. Amino acid and energy metabolites were higher in first born children compared to 

children with older siblings.  

Overall, the results suggest that immunomodulatory metabolites might be transferred from 

mother to child during pregnancy, affecting the future production and maturation of immune 

cells. Studies involving umbilical cord should consider the differences in arterial and venous 

cord blood and the association of maternal parity in experimental design and data analysis.  

Furthermore, algorithms for real-time quality monitoring in untargeted LC-MS metabolomics 

were developed to improve quality during data generation. Quality monitoring was based on 

general metrics (e.g. total intensity and number of peaks) and peak metrics from so-called 

landmark features (e.g. peak area and noise). Landmark features were discovered, validated 

and then extracted and used in procedures to automatically discover injections of poor data 

quality. The developed procedures show great promise for improved data generation in high-

throughput metabolomics. 

Keywords: Untargeted Metabolomics, LC-MS, plasma, placenta, allergy, immune system, 

umbilical cord, quality control, QC 
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1 INTRODUCTION 

 

Allergy is one of the most common chronic diseases in the western world, affecting between 

10 - 40 % of the population in any country (1). Allergy is an umbrella term for several diseases 

including asthma, atopic eczema, rhinitis, conjunctivitis, and food allergy. These diseases are 

caused by a hypersensitive reaction by the immune system to normally harmless antigens, such 

as pollen, food or animal protein, commonly referred to as allergens (1). When the immune 

cells in tissues encounter these allergens, symptoms such as wheeze, dry and itchy skin, 

urticaria, swollen red eyes, anaphylaxis may occur (2). In addition to being a major issue for 

the individual, allergy is also costly from a societal perspective, since a large number of 

hospitalizations occur each year due to allergies. In 2014, avoidable costs related to allergies 

within the EU alone were estimated to range between a staggering €55 - €151 billion annually 

(3).  

The leading hypothesis regarding allergy development is the so-called hygiene hypothesis (4). 

This states that the increased cleanliness of the Western world leads to a less stimulated and 

immature immune system prone to respond to harmless antigens that should normally be 

tolerated. Despite being well characterized disease conditions, with a well understood 

pathogenesis, much remains hidden as to the mechanisms by which allergies are developed.  

Metabolomics is the study of small molecules in biological samples (e.g., blood, placenta or 

faeces), and is the ‘omics’-discipline that is closest to the molecular phenotype. It has therefore 

been used for a wide range of applications, such as to analyse effects of exercise (5, 6), diet 

(7), pollution (8) and drug exposure (9). Metabolomics has further been extensively used to 

gain more in-depth knowledge of a variety of non-communicable diseases such as diabetes 

(10), cancer (11), cardiovascular diseases (12), and Alzheimer’s disease (13).  

Metabolomics is frequently divided into targeted and untargeted metabolomics. Targeted 

metabolomics is hypothesis driven, where the researcher has an idea of what metabolites to 

investigate and uses a method for the detection of tens up to a few hundred metabolites (14). 

Untargeted metabolomics on the other hand, rather focuses on being hypothesis generating, 

and aims to characterize all metabolites (biologically active molecules <1500 Da) in any given 

sample.  

Metabolomics is heavily reliant on the use of analytical chemistry methods and the main 

methods are nuclear magnetic resonance (NMR) and mass spectrometry (MS). NMR-based 

metabolomics is highly reproducible and does not cause sample depletion. However, NMR has 

a large limitation in its metabolite coverage, can only pick up signals from molecules that are 

high in concentration and have issues relating to overlapping signals. MS-based metabolomics 

on the other hand is affected by reproducibility within and between labs and requires extensive 

sample preparation. On the other hand, it also provides a wider metabolite coverage than NMR. 

MS-based metabolomics is usually conducted using separation (e.g., chromatography or 

capillary electrophoresis) as a front end to the MS. The chromatography enables separation of 

molecules based on their physio-chemical properties and thus increases the resolution of 
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metabolic features significantly. The two most commonly used chromatographic methods in 

metabolomics are gas chromatography (GC) and liquid chromatography (LC). Advances over 

the past two decades in instrumentation have made LC-MS based metabolomics the dominating 

technique for metabolite profiling by enabling analysis of thousands of features simultaneously 

(15, 16). Although untargeted LC-MS based metabolomics is a well-established technique, it 

still has issues relating to inherent variation and instrument malfunction. Labs throughout the 

world are dealing with these issues in different ways (17) and these methodologies are often 

laborious for the operator and cost considerable resources.  

Metabolomics has previously been used to study manifest allergy: e.g., in a study using exhaled 

breath condensate a classification rate of 81 % was achieved using NMR based metabolomics 

on healthy and asthmatic children (18). Another study found a significant decrease in 

sphingolipid levels in children with prevalent food allergy compared to healthy controls (19). 

While these studies have pointed towards aiding in assessing disease severity and diagnosis, 

they were not designed to provide insight on the causal effects leading to disease incidence. 

Instead, prospective studies where samples are acquired before disease onset hold higher 

potential for studying the origin of the disease. Recently, prospective studies have been 

published showing e.g., that decreased concentrations of unconjugated bilirubin in plasma at 

one year of age inversely associated with asthma at the age of six (20). Moreover, the coffee 

related metabolites: caffeine, theophylline, trigonelline, quinate, and 3-hydroxypyridine 

sulphate in maternal pregnancy metabolome or the umbilical cord metabolome were inversely 

associated with future asthma development (21). Several metabolites relating to steroid 

metabolism was further associated with an increased risk of asthma (21). However, these 

associations were moderate and require replication in independent cohorts.   
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2 AIMS & OBJECTIVES 

 

The overall objective of this thesis work was to identify associations of metabolites before and 

during birth with future allergy development and immune maturation, identify key aspects 

affecting the umbilical cord blood metabolome and to develop procedures for automatic quality 

assessment of injections using untargeted LC-MS based metabolomics. The specific aims were 

to: 

 
- Identify associations of future allergy development with metabolites in maternal blood 

during pregnancy and at delivery and infant blood at delivery. (Paper I) 

- Identify associations between metabolites in umbilical cord blood, maternal blood and 

placenta with immune maturation in children during the first year of life (Papers I and II) 

- Investigate how the sampling of umbilical cord blood (arterial vs venous) contributes to 

systematic differences in the measurable metabolome and their association to maternal and 

neonatal factors (Paper III) 

- Improve quality control and assessment in untargeted LC-MS based metabolomics.  

(Paper IV) 
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3 BACKGROUND 

 

The Immune System  
The purpose of the immune system is to protect the organism from external and internal threats 

such as pathogens and cancer by distinguishing them from the organisms’ own healthy cells. It 

consists of two parts, the innate, or non-specific immune system which responds quickly to 

intrusions in a repeatable fashion and the adaptive immune system which upon first exposure 

to the pathogen takes a longer time but can generate a more specific response to the allergen 

(22). 

The innate immune system consists of physical barriers such as: the skin and various mucosal 

layers; the complement system which consists of several proteins that aid in the neutralization 

of pathogens by either marking them for destruction by other cells or causing the pathogen to 

undergo lysis; and certain leukocytes such as macrophages, dendritic cells, and mast cells. 

Macrophages, and to a lesser extent dendritic cells, are phagocytic cells which can engulf and 

lyse pathogens. Dendritic cells are also the main antigen presenting cells (APCs), which can 

react to pathogen associated molecular patterns (PAMPs) (23), e.g., glycoproteins from 

bacterial cell walls. When a PAMP is encountered, the APC engulfs the pathogen and can 

transport parts of the pathogens to the lymph nodes where it presents them to the cells involved 

in the adaptive immune system. Mast cells are covered in so-called IgE-antibodies and become 

activated when they encounter antigens matching the antibodies on its surface, whereupon 

histamine is released (24). The histamine, in turn, causes blood vessels to expand and blood to 

leak into the tissue, causing redness and swelling, as is commonly seen during an allergic 

reaction.  

The adaptive immune system consists of lymphocytes, that include two main cell types: T and 

B cells. Both precursor T and B cells are produced in the bone marrow. Precursor T cells have 

to travel to the thymus where they mature into naïve T cells. These cell types have receptors 

on their surface that are each specific to one unique antigen. T cells can be further subdivided 

into categories; helper CD4+ T cells (Th cells), cytotoxic CD8+ T lymphocytes (CTLs) and 

regulatory T cells (Tregs). As the name suggests, Th cells help other cells in fighting pathogens, 

e.g., by activating B cells, thereby aiding in generating an inflammatory response. CTLs aids 

in the killing of the host’s own cells that show foreign markers due to viruses or tumours. The 

main function of Tregs is to regulate and hinder an overactive immune response, by dampening 

the activity of T cells towards the end of a response, or by supressing autoreactive immune 

cells (i.e., cell that are reacting to the body’s own cells).  

When an APC from the innate immune system identifies and presents an antigen that 

corresponds to one of the specific T cell receptors present on the T cell surface, the T cell 

becomes activated and undergoes clonal expansion, i.e., making it rapidly proliferate and 

multiply itself (25). B cells in most cases require both its specific antigen and aid from Th cells 

to become activated (26). They then undergo clonal expansion and differentiate into plasma 

cells. The plasma cells, in turn, start to produce immunoglobulins that enter the blood stream 

and aid in the removal of the pathogens (Fig. 1).  
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Figure 1. Activation of the adaptive immune system. A pathogen-associated molecular pattern is 

engulfed by an antigen presenting cell. The antigen presenting cell brings the antigen to the lymph node 

via lymph vessels where it presents the antigen to T cells. Antigens can further travel to the lymph node 

by themselves and there, bind to B cell receptors leading to B cell activation. Upon activation, both T 

and B cells proliferate and are transported to the rest of the body where they can aid in the immune 

response, by antibody production, cytotoxic activity, and cytokine release. Figure adapted from 

Inflammationsjukdommar by Agnes Wold and Johan Mölne (2).  

The process from infection to adaptive immune system response may take up to two weeks. 

Upon activation, some of the adaptive immune cells differentiate into memory cells that can 

stay in the body for months up to years after infection. This process ensures that the immune 

system can respond faster if the same antigen is encountered again, thus also ensuring that 

symptoms become significantly milder or even non-noticeable. Plasma cells are mainly 

responsible for producing antibodies, or immunoglobulins. Antibodies are proteins that, similar 

to the T cell receptors, have a unique specificity and affinity for a molecular pattern (antigen). 

There are five types of immunoglobulins, (IgD, IgM, IgG, IgA and IgE) and different types of 

B cells release different types of immunoglobulins. However, unlike T cells, a B cell can switch 

class, which enables it to change which immunoglobulin type it produces. IgE-antibodies is a 

particular class of antibody, exclusively found in mammals, and are related to allergy and the 

associated histamine release (27). 

The types and number of T and B cells can be measured based on their cell surface markers 

using flow cytometry (Fig. 2). In flow cytometry, a cell suspension is mixed with an antibody 

cocktail, containing antibodies specific to various regions expressed on the cell surface. These 

antibodies are labelled with a fluorophore that can be detected using fluorescence spectrometry. 

The cell suspension is then passed through a narrow path where only one cell fits at a time and 

the excitation and emission wavelengths of each cell is measured. Using flow cytometry, 

several surface markers on immune cells can be used to identify what type each cell is, and 

their concentration in the original sample.  
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Figure 2. Schematic figure of flow cytometry. Cells are mixed with fluorescent antibodies, then forced 

through a narrow path where a laser excites fluorophores, and a detector measures the emitted and 

scattered light.  

Another measure for studying T and B cells is through T cell Receptor Excision Circles (TREC) 

and Kappa-deleting Recombination Excision Circles (KREC) (28). These are in essence a 

measure of newly formed T and B cells, respectively. A TREC is a small circular DNA 

fragment, that is created when genes in the T cell are rearranged in the thymus during its 

maturation in order to create its antigen specificity (29). When a T cell is cloned, however, the 

TREC is only kept in one of the T cells. Measuring the number of TRECs present in a blood 

sample therefore gives information about how many T cells are being created rather than 

cloned. Similar to TRECs, KRECs are created when newly created B cells undergo gene 

shuffling in the bone marrow in order to gain its antigen specificity and does not multiply when 

a cell clones itself (30) (Fig. 3). KRECs are therefore used to estimate B cell production. As 

the numbers of cells expressing either TREC or KREC are diluted during proliferation, low 

levels of TREC and KREC can also be a sign of high proliferation in T and B cells 

 

Figure 3. Schematic picture showing KREC formation during gene rearrangement in the bone marrow 

and how the KREC is only kept in one cell after cloning of itself. 



 

7 

 

 

Allergy and allergy development 
The immune system is exceptionally well constructed to manage potentially harmful insults. 

However, the immune system may become dysregulated and activated by otherwise harmless 

proteins (allergens), such as milk protein, pollen, or animal dander. The allergic disease 

progression starts with the cells in the adaptive immune system getting activated by an allergen 

leading to the creation of antibodies specific to the allergen. This process is known as 

sensitization (2). Sensitization is a prerequisite for subsequent IgE-mediated allergy, although 

not all people who are sensitized develop allergies. 

IgE-mediated allergy is the most common form of allergy (31), where mast cells in local tissues 

(e.g., air ducts) are coated with IgE antibodies specific to such antigens, causing histamine 

release and associated inflammatory symptoms upon exposure (27). Allergy is classified into 

categories, depending on what symptoms are presented, or what causes the symptoms, with the 

most common allergic diseases in children being atopic dermatitis, food allergies, and asthma. 

Atopic dermatitis, or atopic eczema, is very prevalent in young children (up to 20 % in school 

children (32)) and affected children will often develop hay fever or asthma later in life, a 

phenomenon known as the atopic march (33). The cause of atopic dermatitis is unknown, but 

a combination of genetic factors and environmental exposures are likely (34). Food allergy is 

classified by the specific food compounds triggering the allergic reaction. Symptoms within 

this class can differ from stomach pains to severe anaphylaxis (35). Asthma is often 

concomitant with other allergic diseases, such as pollen allergy or eczema, and the definition 

of allergic asthma is in fact partially dependent on the presence of other allergic diseases (36-

38).  

Although a dysregulated immune system is at the core of allergy, the aetiology is still unclear. 

It has been hypothesized that the increase of allergy in the western world is due to an increased 

cleanliness and therefore less exposure to microorganisms and other stimuli the immune system 

can react to. This is known as the ‘hygiene hypothesis’ and was first stipulated by Dr. David 

Strachan 1989 (4). The hygiene hypothesis is further supported by studies showing that 

children growing up on farms have less allergy than both their rural and city dwelling 

counterparts (39, 40). Pet ownership is another factor that seems to play a role in the future 

disease risk (41, 42). Studies have also shown that genetics plays a crucial role in the 

development of the diseases (43-47) and that the maternal heredity appears to have a stronger 

impact than the paternal on asthma development (48, 49). Several studies point towards food 

during early life having an influence on disease onset where consumption of butter, dairy 

products, and fish (50, 51) seem protective while consumption of margarine and oils is 

associated with increased risk of allergy development (39, 52). Additionally, there is evidence 

that food consumed by the mother during pregnancy might have an impact on the future well-

being of the child (53, 54), although the evidence for this are not conclusive (55).  
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The Metabolome and Metabolomics 
Metabolites are small molecules (<1500 Da) that are involved in the metabolism (56). Unlike 

genes and proteins, metabolites are subject to rapid changes throughout the day and thus 

provide the closest representation of the molecular phenotype (56). The metabolome is a term 

that encompasses all metabolites in a given biological sample (57). Along these lines, studying 

the metabolome offers the potential to elucidate mechanistic effects of e.g., a specific 

medication or diet, or to aid in disease diagnosis (58). Metabolomics aims to measure the entire 

or parts of the metabolome either quantitively or qualitatively. Metabolomics is consequently 

last in the line of the major ‘omics’ methodologies, preceded by genomics, transcriptomics, 

and proteomics (Fig. 4).  

 

Figure 4. The four main ‘omics’: genomics, transcriptomics, proteomics, and metabolomics. Genomics 

describes the measurement of the genes present in DNA, transcriptomics the abundance of genes 

transcribed into RNA, proteomics the abundance of proteins that are created based on the RNA and 

metabolomics measures metabolites, stemming from processes catalysed by proteins (enzymes) and 

exposures. 

Advances in analytical chemistry techniques, such as NMR or MS, have facilitated the 

metabolomics research field to provide an overview of the measurable metabolome. The study 

of the metabolome has been widely used the past two decades and has been successfully applied 

to investigate many non-communicable diseases such as cancer (59-61), diabetes (10, 62, 63), 

and cardiovascular disease (64, 65). Metabolomics has further been used in the study of effect 

of exercise (5, 6), pollutant exposures (8, 66), and food on the molecular phenotype (67). It has 

also been applied to identify biomarkers of dietary exposures, such as rye (68, 69), citrus fruit 

(70-74), vegetables (7, 75, 76), and coffee (7).  

Metabolomics can be divided into targeted and untargeted approaches (56): Targeted 

metabolomics is a hypothesis driven research field, where the aim is to quantitively determine 

the concentrations of a pre-determined set of metabolites, normally corresponding to a research 

question or hypothesis (77). The set of metabolites could for instance be based on previous 

studies which have shown associations to the outcome of interest, or based on available assays, 

such as the ones available via commercial actors such as Nightingale Health 

(https://nightingalehealth.com) and Biocrates (https://biocrates.com). The set of metabolites 

could also be determined from available in-house assays. 

In contrast to targeted methods, in non-targeted methods, the peak height or area is calculated 

without comparing to any internal standards and therefore feature abundance is compared 

qualitatively, thus, untargeted metabolomics is predominantly hypothesis-generating (78). 

https://nightingalehealth.com/
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Using this methodology, the aim is usually to identify new associations or mechanisms linking 

metabolites to exposure or health status. As these associations are often hypothesis-agnostic, 

this is performed by covering as large portion as possible of the measurable metabolome with 

little or no a priori assumptions on what to look for.  

Non targeted profiling is data driven and is often reliant on machine learning techniques for 

data analysis. However, when attempting to maximize coverage, measured chemical entities 

(analytes) are frequently, or even predominantly, of unknown identity. The identification of 

molecular features of interest (i.e., associated with the research question) is thus required. 

However, this is also very resource-demanding and is widely considered one of the major 

bottlenecks within the metabolomics community to date (79).  

Regardless of the choice between targeted or untargeted approaches, metabolomics can be 

performed using a variety of techniques, where the most common are based on NMR or MS. 

NMR is a spectroscopy-based method that measures the magnetic resonance at so-called 

chemical shifts (i.e. a quality of the atom nucleus, which changes based on proximity to other 

atoms) (80). The most common NMR methodology in metabolomics is 1H-NMR, where the 

resonance of hydrogen atoms within molecules is measured quantitatively and shifts compared 

against reference values for identification. MS on the other hand measures the mass-to-charge 

ratio (m/z) of analytes (e.g., using quadrupoles or time-of-flight mass analysers). Metabolites 

are identified by comparing against reference databases and quantification is achievable by 

precise calibration for each metabolite. Alternatively, relative quantification is possible by 

comparing peak areas of the same analyte over different samples, without using a calibration 

curve. MS methods are most frequently coupled to a chromatographic separation step before 

mass analysis, most frequently GC or LC, both of which were used in this thesis. NMR has the 

advantages of an easier sample preparation, that it is non-destructive of the samples that 

absolute quantification of analytes is achievable. The MS based methods have a larger 

metabolome coverage, often need less sample volume, and can measure analytes present at 

lower concentrations than NMR-based methods. Below follows a brief introduction of LC-MS 

and GC-MS.  

In both GC-MS and LC-MS, the chromatographic frontend serves to separate molecules based 

on their physicochemical properties. Consequently, using these hyphenated techniques, 

metabolites can be identified with an increased accuracy both using m/z and retention time. In 

chromatographic separation, a sample is transported through a stationary column by either a 

gas (for GC) or a liquid (for LC) mobile phase. In GC, the column the stationary phase normally 

consists of a liquid film layer and in LC, it normally consists of solid particles with a wide 

variety of surface chemistries for different chemical properties. The stationary phase thus 

retains different analytes for different amounts of time depending on e.g., boiling point (GC) 

and the size and polarity (LC) of the analyte.  

In gas chromatography, analytes must be in gaseous phase. To facilitate this process, a 

derivatization step is usually required, e.g., using methoxymation or silylation, to make the 

molecules more volatile. Prior to injection, samples are incrementally heated to convert more 

analytes into gaseous phase. GCs have a stable retention time profile and due to the 

implementation of Kovats retention index (81), comparing identification and results between 

different labs is routinely performed. Furthermore, GC is easy to combine with an MS, as it, 
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unlike LC, does not require the use of high pressure and high mass flows in the column to 

obtain separation of analytes. 

In LC, the mobile phase is in liquid phase. LC uses much shorter columns and applies a high 

pressure to force the liquid through the column. The most common LC method used in 

metabolomics is Ultra High-Performance Liquid Chromatography (UHPLC). UHPLC utilizes 

densely packed particles (~2µm) in the column which requires very high pressure, usually 

several hundred bars, to force liquid through the column. The small particle sizes used results 

in a high surface area of column particles, thus enhancing separation of analytes. The mobile 

phase is delivered in a gradient that changes the composition over time, in order to change its 

polarity and thereby cover a wider range of analytes. To further broaden the coverage, different 

combinations of column and mobile phase are used. The two most common methods are 

reversed phase and hydrophilic interaction liquid chromatography (HILIC). Reversed phase 

uses a hydrophobic column and polar solvents to elute analytes primarily of low polarity. 

HILIC uses a hydrophilic column and even stronger hydrophilic solvents to achieve separation 

primarily of high polarity.  

The most common mass spectrometers used are orbitraps, quadrupoles and time-of-flight 

(TOF). Prior to entering the MS however, analytes must be ionized in the interface between 

the chromatographic separation and the MS. The ionization is important as MS measures the 

mass-to-charge ratio (m/z) of an analyte, and thus requires the analyte to be charged. Normally, 

soft ionization techniques such as electro spray ionization are employed to minimize 

fragmentation of the analytes. Quadrupoles consists of four parallel rods that by an alternating 

current can separate ionized analytes by their m/z ratio. Quadrupoles are highly selective but 

come with the downside of having a low mass accuracy (approximately 1 Da). Quadrupoles 

are frequently used either as single quadrupoles, or as triple quadrupoles (QqQ). For QqQ, the 

first is used to select the appropriate mass, the second is used as a collision cell to fragment the 

analyte and the third to select the mass fragments created in the collision cell in order to identify 

and quantitate the metabolite. TOFs work by measuring the time it takes for a molecule to be 

transported a certain length in an electric field, which correlates with the m/z. Orbitraps on the 

other hand measures oscillation frequency of analytes which in turn relate to their m/z (82). 

Quadrupoles are often coupled to TOFs (QTOF), resulting in an instrument that can achieve 

fragmentation spectra via the quadrupole and have the mass accuracy of a TOF. Both QTOFs 

and orbitraps are high-resolution mass spectrometers thus their mass accuracy is below 5ppm, 

and even below 1ppm for orbitraps (83). QTOFs have traditionally had higher acquisition speed 

than orbitraps making them more suitable when coupled to UHPLC. However, with ongoing 

instrument development, this distinction is subject to change. 

The combination of a chromatograph and a MS gives separation between analytes both 

regarding their retention time in the column as well as through the specific m/z of the analyte 

(Fig. 5). Thus, analytes in LC-MS, frequently referred to as features, are attributed with m/z 

ratio and retention time. To elucidate what metabolite a feature corresponds to, fragmentation 

of the molecule is employed. This fragmentation is done by combining two MS together, with 

an intermediate collision chamber and is therefore called MS/MS or MS2. Once a feature is 

selected by the first MS, the molecule is struck by particles causing it to fragment. The formed 
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fragments are subsequently measured using the second MS, giving a molecular fingerprint for 

each molecule. This fingerprint can then be used to match against available libraries (either in-

house or from online data bases) and a molecular entity can be assigned to the feature.  

For targeted applications, triple quadrupoles are normally used, as they have the highest 

sensitivity and are, after development of dedicated methods, the most specific (77). For 

untargeted metabolomics, the most common choices are Orbitrap and QTOF, due to the high 

acquisition speed and high mass accuracy. In this work, QTOF has been used exclusively.  

 

Figure 5. Three-dimensional representation of how analytes from one sample are separated both in 

retention time and m/z domain.  

As the aim of untargeted metabolomics is to cover as large part as possible of the metabolome, 

different combinations of LC and MS are frequently used. Reversed phase and HILIC are 

frequently used in combination to cover less and more polar analytes, respectively. Further, as 

some analytes are more prone to being negatively or positively charged, depending on their 

electron configuration, both positive and negative ionization are usually applied. This leads to 

a total of four different analytical modes for each sample: reversed phase positive (RP), 

reversed phase negative (RN), HILIC positive (HP), and HILIC negative (HN), although more 

options still are available (84).  

Metabolomics in allergy 
Metabolomics studies in both adults and children have shown molecules in different 

biospecimen that can distinguish allergic from non-allergic individuals and/or be used as a tool 

to assess disease severity (18, 85-90). These studies range from using blood or urine as a 

biospecimen for different allergic diseases, to studies made on tissues or sample matrices 

specific for the disease. Carraro et al. studied the metabolomes in exhaled breath condensate 

(EBC) in relation to asthma and found a higher presence of oxidized compounds in asthmatic 

children compared to healthy controls (18). The same group further observed that there was a 

clear association between the exhaled molecules and the severity of the disease, with 
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concentrations of vitamin D, adenosine and retinoic acid-relating compounds as the main 

drivers of the association (88). In another study, atopic dermatitis was studied by comparing 

metabolites measured in skin samples with or without eczema (90). Results indicated that 

several amino acids and glycerophospholipids were enriched in lesioned skin. A summary of 

metabolomics studies on allergic diseases is shown in Table 1. 
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Pre-analytical and analytical quality in Metabolomics 
During sampling, sample management, and sample preparation, there may be several sources 

of undesired variability, with the potential to obscure underlying associations in the data. The 

metabolome is affected by fasting state (120), as well as by the circadian rhythm (121). 

Furthermore, as samples used in metabolomics are biologically active, rapid changes can occur 

in blood and plasma due to presence of living cells and active enzymes. It is thus of high 

importance to have uniform and rapid sample management conditions to avoid unnecessary 

variation (122). MS-based metabolomics further suffers retention time drifts, stemming from 

column contamination from injections, as well as intensity drifts from decreased detector 

sensitivity over time (123). Both the retention time and intensity drifts can be reduced by 

regular instrument maintenance, but frequently also requires post analytical correction. There 

are thus several sources of variation that requires attention, and effects are not always obvious 

at an initial glance. 

Quality assessment (QA) and quality control (QC) are vital parts of any untargeted 

metabolomics protocol (17): The concept of quality assessment includes the development of 

standard operating procedures and training of researchers in using these. Quality control on the 

other hand refers to procedures used on a day-to-day basis to ensure that data generation is of 

adequate quality. Untargeted LC-MS metabolomics is especially prone to instrument-related 

issues relating to e.g., pressure and mass flux. These issues include for example leakages, 

needle clogging, column- and detector deterioration, in addition to general metabolomics-

issues with e.g., sample preparation. In addition, variation in sampling and sample management 

might have detrimental effects on the measurable metabolome as biological samples contain 

degradable metabolites, living cells and active enzymes that may alter the composition of 

metabolites in the sample even after it is removed from the host (124). Sampling and sample 

handling pose a significant difficulty in clinical settings, where the primary aim of the clinician 

is to look after the patient rather than to ensure perfect sample treatment. To combat these 

issues, rigid QA and QC procedures should be in place to minimize and detect problematic 

injections so that they do not end up in the final data analysis (125). Further, QA and QC 

practices differ widely between different labs, and in an effort to harmonize and improve 

general procedures, the Metabolomics Quality Assurance & Quality Control Consortium 

(mQACC) was founded in 2018 (126). They have since conducted surveys and published 

several manuscripts (126-129) in their ongoing effort to identify, harmonize and disseminate 

best practices for QA and QC.  

For QA practices, maintenance, calibration and tuning of instruments are integral to keep an 

instrument up and running with accurate results. For QC practices, standard procedures today 

include the use of system suitability tests (SSTs), solvent blanks and QC samples (128). SSTs 

are injected prior to the analysis of study samples and contain a set of well-defined analytes 

that give an indication of instrument performance at time of testing. Solvent blanks are 

injections where only the solvent (e.g., acetonitrile or methanol) are injected without any 

sample, and are used to check if there is any contamination from previous injections on the 

column. QC samples are samples that are identical to each other, often created by combining 

small aliquots of several samples from the study or a reference population. These are injected 

throughout an experiment to for several purposes: to monitor injection quality, to assess feature 

quality, to adjust for retention time drift and to adjust for intensity drift. In addition, injections 

are frequently inspected manually based on a few well-known metabolites to diagnose injection 
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quality. This is however very time consuming for the operator. Moreover, although this 

procedure might indicate sufficient injection quality, this procedure is not always adequate. 

Particular emphasis is placed on QC-samples, both for monitoring, correction, and exclusion 

of poor-quality features (123, 130). In brief, within an experiment, identical QC-samples are 

injected between every few samples (e.g., every 10-12th injection) so that these can be 

compared to each other. Furthermore, as QC-samples should have the same analyte intensities, 

they can be used both to correct for instrument related drift issues in both intensity and retention 

time as well as for exclusion of features that do not give reproducible intensities in the QC-

samples. Several QC-procedures have been developed during the past years (123, 130-136). 

One major drawback of these methodologies is that they are applied after an entire batch has 

been run or even after an entire experiment, causing a delay in potential discovery of instrument 

or quality issues. If injections, or even batches, are found to be of poor quality, the 

corresponding data must be discarded and samples re-injected. However, this causes 

complications since instrument time is a contested resource. Moreover, it introduces additional 

complexity in adjusting data for drift in intensity and retention time. In addition, samples are 

frequently a scarce resource and further aliquots may no longer be available which could result 

in valuable data being lost. Consequently, it would prove beneficial to have a monitoring 

system that could immediately identify and notify users on potential instrumental issues. If 

combined with a high degree of automation, such a system could provide a more resource 

efficient workflow for operators. 
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4 METHODS AND METHODOLOGICAL CONSIDERATIONS 

 

Study participants and sampling in the NICE-cohort (papers I, II and III) 
All samples and data for papers I-III were from the Nutritional impact on Immunological 

maturation during Childhood in relation to the Environment (NICE) cohort, that has been 

thoroughly described elsewhere (137). In brief, the NICE-cohort is a prospective parent/child 

population-based cohort, where 655 pregnant women and their partners were recruited between 

the years 2015 and 2018 (Table 2).  

Table 2. Basic characteristics of new-borns and mothers in the NICE-study presented as median 

(IQR). 

Infant characteristics 

Birth weight (grams) 3565 (3234 – 3955) 

Gestational length (days) 281 (274 - 287) 

Length (cm) 50 (49 - 52) 

Caesarean Section (%, yes) 13.4 

Sex (%, female) 54 

Maternal characteristics 

Parity (%, nulliparous) 47 

Age (years) 30 (27 - 34) 

BMI (kg/m2) 24.35 (22.13 – 27.81) 

 

All prospective parents within the catchment area of Sunderby Hospital in northern Sweden 

were given brief information about the cohort during their routine visit in their local maternity 

clinic at gestational weeks 10-12. Recruitment took place during routine ultrasound visits at 

gestational week 18-19, at which time more detailed information was provided to the 

prospective study participants. Parents who wished to participate in the study were asked to 

send in their informed consent after taking the time to properly consider participation. Inclusion 

criteria were: ability to understand oral and written Swedish, intent to give birth at Sunderby 

Hospital as well as residency in the county of Norrbotten. Initially 655 pregnant women and 

their partners were recruited. Due to drop-out, stillbirth and withdrawal from the study, 601 

families remained when the children were one year of age (Fig. 6). 
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Figure 6. Flow chart of families participating in the NICE study at various time points up to 12 months 

of age including the number of families present at the 4- and 12-month study visits and allergy diagnoses 

at 12 months of age. 
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The NICE-study collects several sample types (Fig. 7), and only a subset of these are used 

within this thesis, namely: peripheral blood plasma of the mother at gestational week 28 and in 

connection to delivery, umbilical cord blood plasma (venous, arterial and a mix between the 

two) and placenta from the delivery as well as peripheral whole blood from the child at 48 h, 1 

month, 4 month and 1 year of age.  

 

 

Figure 7. Timeline of samples and questionnaires obtained in the NICE-cohort.  

Maternal blood was sampled via venepuncture in EDTA-tubes for samples taken both at 

gestation week 28 and in connection to delivery. A majority of gestation week 28 samples were 

taken by midwifes at the local maternity clinics throughout the country of Norrbotten and some 

were taken at Sunderby hospital. Samples were left for 30 minutes prior to centrifugation and 

subsequent storage at 4 °C before transportation to Sunderby Hospital where samples were 

aliquoted and frozen at -80 °C. Due to ethical considerations, mothers were not asked to fast 

prior to sampling in connection to delivery but were encouraged to fast prior to sampling at 

gestation week 28.  

Venous and arterial umbilical cord blood samples (Paper III) were collected in connection with 

sampling for blood gas analysis in the new-born. This was performed using heparinized 

syringes in immediate connection to delivery. Excess blood that was not needed for blood gas 

analysis were put into EDTA-tubes for subsequent, centrifugation and freezing. Mixed 

umbilical cord blood was sampled in EDTA-tubes after the cord was cut, by squeezing blood 

out of the umbilical cord. Due to research personnel not being available every hour of the week, 

some samples were left to stand in the delivery ward for an extended time until samples could 

be centrifuged, aliquoted and frozen (Full information available in Paper I).  
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Chorionic villous placental tissue was collected from placentas within 4 hours after delivery. 

1-2 cm3 pieces were obtained from four different locations on the placenta with the goal of the 

umbilical cord being equidistant from the sampling locations (Fig. 8). The four pieces were 

washed in ice cold PBS to remove potentially contaminating blood. The four pieces were 

further subdivided into four even smaller pieces (3-4 mm3), placed into microtubes and frozen 

at -80 °C.  

 

Figure 8. Sampling of the placenta. Four pieces of chorionic villous tissue were cut out and each piece 

was further separated into four smaller pieces and put into microtubes for subsequent freezing. 

 

Whole blood samples for flow cytometry, TREC and KREC analyses were taken at birth, 48 

h, one month, four months and one year of age. Samples were drawn into TruCount™ tubes 

and immediately stored in a dark room at room temperature prior to analysis that was conducted 

within 48 hours of sampling.  

Allergy diagnoses were performed according to predefined protocols (137) by a single 

allergologist (Anna Sandin, M.D.). In brief, food allergy was diagnosed if an immediate 

reaction after ingestion had been observed, or if there was a delayed reaction with improved 

conditions once the food item was removed from the diet. Unless first symptoms were acute 

and severe, diagnosis was confirmed by provocation of the food item that was suspected to 

cause symptoms. Sensitization and specific IgE antibodies were used as support for food 

allergy diagnosis but were not considered mandatory. Asthma was diagnosed if the child met 

one or more of the following criteria: wheezing between infections, persistent wheeze for four 

weeks or more, wheezing during infection combined with concomitant allergic disease, or three 

episodes of wheezing during an infection, without concomitant allergic disease. Atopic 

dermatitis (eczema) was diagnosed according to the Williams criteria (36-38), in which the 

1. 2.

3. 4.

Umbilical cord

PLACENTA 
(Basal plate) 

Decidua

4 pieces 
2x2 cm

Villous tissue

3x3 mm

x4

x4

Metabolomics

x4

x4
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subject needs to have an itchy skin condition as well as three or more of the following criteria: 

1) involvement of the skin creases, 2) a history of hay fever or asthma, 3) problems with dry 

skin during the past year, 4) visible flexural eczema (e.g., eczema in knees or elbows), and 5) 

onset before 2 years of age (the last one not used during work in this thesis as all participants 

were under the age of 2 at time of diagnosis). 

 

Data for development of quality monitoring procedures (Paper IV) 
For development and testing of procedures for continuous quality monitoring in untargeted 

LCMS metabolomics data generation, 3 data sets were used: the MedGICarb, SMC-C and QC 

data sets. In this thesis, these data sets are consistently referred to in italics for clarity. 

The MedGICarb data was generated on samples from the MedGICarb study, which is described 

in detail elsewhere (138). In short, the MedGICarb study is a multicentre dietary intervention 

study consisting of adults from the US, Italy, and Sweden at risk for type 2 diabetes. The study 

aims to investigate the effect of low vs high Glycaemic Index foods within a Mediterranean-

style healthy eating pattern. Blood was drawn at 8 time points (4 at baseline and 4 post 

intervention) from 145 individuals with at least two traits of the metabolic syndrome, resulting 

in 1160 samples that were analysed using untargeted LC-MS based metabolomics for the 

analytical modes RP, RN, HP, and HN.  

The Swedish Mammography Cohort – Clinical (SMC-C) is a sub-cohort of the larger Swedish 

Mammography Cohort (SMC) (139) taking place in Uppsala and Västmanland counties and 

recruiting all women in the counties born in 1917 through 1948. SMC-C is an ongoing 

population-based longitudinal cohorts designed to study dietary exposures in relation to 

chronic disease outcomes. SMC-C entails around 8000 women, out of which 5022 samples 

from baseline were available for untargeted LC-MS based metabolomics for the analytical 

modes RP and RN.  

The QC-data set consists of repeated injections of three different quality control samples 

available at the Chalmers Mass Spectrometry Infrastructure (CMSI) during the time of analysis 

in 2017. In total, 527 injections over 6 batches were analysed in the analytical modes RP and 

RN.  

 

Measurements of immune maturation  
T and B cell populations were measured by flow cytometry. To ensure that the proportion of 

different cell populations are representative for the circulation, phenotypical analyses requires 

fresh blood and viable cells, achieved either by analysis within 48 h or by specific 

cryopreservation protocols (140). It is thus imperative to maintain proper sampling protocols 

for analytical quality. However, this can be difficult to coordinate in a clinical setting and is a 

major contributing factor to why the number of flow cytometry analyses is often lower than 

the total amount of available samples, as is the case in the present work. Furthermore, 

depending on the flow cytometer used, there may be limitations in the number of fluorophores 

and consequently, the number of possible combination of fluorophores used is not sufficient to 
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cover all subpopulations of the T and B cells. Thus, the selection of surface markers and 

fluorophores might not be large enough to quantify every cell type, and potential information 

on immune maturation might have been missed. In the NICE-cohort, we could identify all steps 

of the circulating T and B cell populations, i.e. transitional B cells, naïve and memory B cells, 

recent thymic emigrants, as well as naïve, central- and effector memory T cells. TREC and 

KREC, measures of newly formed T and B cells respectively, were measured using real-time 

PCR on whole blood samples.  

The interpretation of immune data is difficult. For instance, naïve cells could be present at 

higher numbers for several reasons. These could be caused by high production of immune cells, 

which would indicate a more mature immune system. However, these could also relate to fewer 

immune cells being activated, thus staying in their naïve form. This, in turn, could indicate that 

the immune system has encountered fewer antigens, and thereby not required activation. Whilst 

perhaps memory cells are easier to interpret, with higher proportion or total number indicating 

a more mature immune system (141).  

 

Metabolomics method selection 
Untargeted LC-MS based metabolomics has the widest coverage, is the method with the overall 

lowest detection limit and has a comparatively easy sample preparation. Drawbacks of this 

method includes complicated pre-processing of instrument data, in order to retain as much of 

the relevant metabolite signals as possible, while keeping noise features to a minimum. Further, 

LC-MS systems comes with an inherent variability both with regards to retention time and 

intensity drifts and struggles with reproducibility between labs. Identification of measured 

features is the major bottle neck for the LC-MS community (79).  

In comparison to the MS based methods, NMR has high reproducibility, and the results are 

easy to compare between different labs. Also, it only requires simple sample preparation, the 

sample is not spent analysis and it offers the possibility of absolute quantification. However, it 

also has limitations with regards to sensitivity and deconvolution, reflecting in a lower 

metabolome coverage and higher detection limit. GC-MS based metabolomics can analyse 

more analytes and detect compounds of lower concentration than NMR and is also robust in 

terms of retention stability (142). Furthermore, extensive libraries exist for GC-MS based 

metabolomics making metabolite identification comparatively easy. A drawback is that 

analytes need to be volatile to be analysed, either inherently or through derivatization, which 

normally involves more complex sample preparation. Thus, while the metabolome coverage is 

normally larger than for NMR, it is still smaller than for LCMS. In addition, different analytes 

have different response factors, which incurs a higher demand on calibration for absolute 

quantification. Further, the detector suffers from sensitivity deterioration over time making it 

necessary to monitor and adjust for intensity drift.  

During the work of this thesis, untargeted LC-MS based metabolomics was chosen as the main 

analytical strategy (Paper I, II and IV). This was primarily due to the exploratory nature of the 

research and the corresponding need to maximize the metabolome coverage since little is 

known about prospective markers of allergy and immune maturation. Further, the procedures 
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for continuous quality monitoring software were developed mainly with LC-MS in mind, since 

this is the most common analytical technique utilized in our lab. In the study on arterial and 

venous umbilical cord plasma (Paper III), GC-MS based metabolomics was chosen, primarily 

since the same methodology had been used in a previous study (106), and the possibility of 

replication was desired.  

All plasma samples (Papers I and IV) were prepared according to the same protocol (SMCC-

metabolomic SOP v010, available upon request). In short, frozen plasma samples were thawed 

for 15 h at 4 °C. Samples were then vortexed and pipetted into 96 deep well plates, after which 

acetonitrile was added to remove protein in the samples. Samples were shaken, centrifuged and 

the supernatant was filtered under water vacuum using a filter plate and collected into 96 well 

plates followed by a final shaking and centrifugation and covered prior to analysis in the LC-

MS.  

The placenta metabolomics (Paper II) was performed in a similar way to the above-described 

procedure, with some exceptions: Placenta samples were ground using stainless steel beads and 

methanol was used to precipitate proteins instead of acetonitrile. In addition, since the placenta 

is not a homogenous tissue, and some features might not be reproducible throughout the same 

placenta, 4 pieces per placenta were analysed as biological replicates and downstream data 

analysis limited to stable features, i.e. where the coefficient of variation was < 0.3 for at least 

50 % of the placentas.  

Study-specific quality control (QC) samples were used in all analyses. These were obtained by 

combining aliquots from all samples within the first analytical batch and were prepared as 

described above for each sample matrix. QC samples were injected 5 times at the beginning of 

each batch for conditioning, and then consecutively every 12th injection for downstream 

retention time and intensity drift correction and feature assessment.  

All samples from both plasma and placenta were analysed using UHPLC-Electrospray 

Ionization-Quadrupole-Time of Flight systems. All analyses employed identical LC 

instrumentation and settings (Agilent 1290). In brief, samples were injected onto a UPLC HSS 

T3 column kept at 45 °C. Methanol was used as a polar solvent for placenta samples while 

acetonitrile was used for all plasma samples. QTOF settings varied between instrumentation, 

using an Agilent 6520 QTOF for maternal and neonatal plasma samples (Paper I) and a 6550 

QTOF for placenta, MedGICarb, SMC-C and QC-data (Papers III and IV). 

MS2 data were obtained by identifying samples with the highest concentrations of the analytes 

of interest. These samples were reinjected and subjected to MS/MS fragmentation at 10, 20 

and 40 eV. MS/MS fragmentation patterns were matched against an inhouse library of 

authentic standards for level 1 ID, and to the Massbank of North America (MoNA) using an 

in-house developed script (SLIM, to be published) and the human metabolome database 

(HMDB) (143) for level 2 ID. Further, the Sirius GUI (144) including use of CSI:fingerID 

(145) and CANOPUS (146, 147) were used to further aid identification at lower levels of 

confidence. Initiatives have been carried out in an attempt to harmonize methodologies and 

reporting standards between labs (148, 149). All identification performed in this work are 

reported as suggested by the Metabolomics Standard Initiative (MSI).  
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In the work presented in this thesis using GC-MS (Paper III), derivatization was performed by 

silylation and methoxymation. This is in essence performed by attaching either tri-methyl-silyl 

or methoxyamine to the analyte to make it more stable and to facilitate the transition into 

gaseous phase (150). The method used in this thesis combines untargeted (n = 268), targeted 

(n = 118), and multiple reaction monitoring (n = 30), meaning that the method is targeting a 

set of known metabolites, whilst simultaneously trying to find molecular entities not in the list 

of targeted metabolites.  

In short, plasma samples were mixed with methanol and internal standards, followed by 

shaking, incubation and centrifugation. The supernatant was evaporated followed by 

methoxymation and subsequent silylation before analysed in the GC-MS/MS system. Spectral 

information from MRM was acquired using data from pre-determined transitions (150), 

targeted spectral information was acquired using a MATLAB script provided by the Swedish 

Metabolomics Centre that automatically scans spectral data based on MS1 and MS2 matches 

and integrates peak areas to annotated compound identifiers, and untargeted spectra were 

obtained using MS-Dial (described below).  

Pre-processing of metabolomics data 
Spectral data from the instrument need pre-processing into tabularized format that can be used 

in downstream statistical data analysis. Especially for LC-MS data that normally contains 

thousands of peaks per injection, this is not trivial. Pre-processing can be subdivided into the 

following discrete tasks (151) (Fig. 9): 1) peak picking, where spectral peaks are determined 

and integrated, 2) retention time alignment, where drift in the chromatographic retention is 

adjusted for, 3) feature correspondence, where features in different samples are matched to 

their corresponding features in other samples, 4) consensus integration, where peaks not found 

by the peak picking algorithm are integrated, 5) imputation, where data that are not present are 

filled in with plausible values, 6) intensity drift correction, where drift in the mass spectrometer 

response is adjusted for, and 7) feature clustering, where features likely belonging to the same 

metabolite are clustered together to one feature. 

Two different approaches for pre-processing were used in the work reflected in this thesis: One 

centred around the XCMS package (152) in R (153) (Papers I and IV) and the other using the 

MS-Dial (154) software (Papers II and III). 

Parameters for XCMS-based peak picking were optimized by a combination of the 

Isotopologue Parameter Optimization (IPO)-algorithm (155) and manual assessment of peak 

quality. Due to retention time shift in the LC-MS system, retention time adjustment is necessary 

ensure that peaks corresponding to the same analyte elute at the same time in all the different 

injections. Post retention time alignment, peak correspondence is performed, where the peaks 

from each injection are grouped into features. After correspondence, the ensuing consensus 

peak filling is performed. Both XCMS and MS-dial do this by checking every injection and 

every feature for missing values. If a value is missing, it performs integration in the injections 

where the features are missing and assigns the integrated area for the corresponding feature 

(152, 154).  
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For various reasons, some injections will not have any signal at the given location (156) (157). 

These reasons include that there are no measurable metabolites in the sample, that the peak is 

misaligned in RT or m/z space or that the instrument or peak picking software failed to 

recognise a peak. However, missing values are a nuisance that contribute to loss of power in 

statistical analysis. Moreover, several machine learning methods will not accept missingness 

(156). To compensate for this, imputation is usually performed, where so-called dynamic 

imputation is usually considered to be the best choice (156, 157). Imputation was performed 

through the use of a partial least squares (PLS)-based two-step imputation, where the first 

iteration uses slack tolerance settings, in order to provide a good starting guess for the second, 

stricter round of imputation using an in-house algorithm (function mvImpWrap, available at 

https://gitlab.com/CarlBrunius/StatTools).  

After imputation, intensity drift correction was carried out. This was done using the batchCorr 

(123) algorithm, which has been shown to outperform several of the more common batch 

correction methods (158). Following the intensity drift correction, the RamClust (159) 

algorithm was used to cluster features likely corresponding to the same molecule. RamClust 

parameters were optimized based on visual inspection of a random subset of clusters, to check 

whether features not belonging together were present in the same cluster or not according to 

in-house procedures. 

 

Figure 9. Workflow of pre-processing for all untargeted data sets used in this thesis.  

 

Data Analysis 
All analyses containing sensitive personal data were carried out using resources provided by 

the Swedish National Infrastructure for Computing (SNIC) at UPPMAX, partially funded by 

the Swedish Research Council through grant agreement no. 2018-05973. For all analyses on 

the NICE cohort data (Papers I, II and III), initial analyses were carried out using Random 

Forest (RF) modelling (160) within a repeated double Cross Validation scheme (161, 162) with 

integrated variable selection implemented via the MUVR R package (163). Random forest is 

one of many possible machine learning options when dealing with metabolomics data, where 

other possible options include e.g. PLS (including PLS-based methods such as OPLS, PLS-DA 

etc.) and support vector machines. Random forest was chosen as this is a non-linear method, 

that does not rely on specific distributions of the input variables, and it requires relatively little 

parameter optimization to work well for metabolomics data (164). As with every method, 

random forest also comes with drawbacks. One of the major drawbacks is that it is difficult to 

produce intuitive and accurate visualisations of the decision process, thereby impeding 

interpretation and making it somewhat of a black box method, although all the information is 
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theoretically possible to obtain. Furthermore, RF is unable to extrapolate values outside of the 

available range in the training data (165). 

Since multiple RF models were made for each research question in this thesis, a priori limits 

for fitness metrics were decided at Q2 > 0.2 and classification rate > 66 %. These limits were 

chosen based on experience from working with predictive modelling, with the intent to only 

evaluate models containing potentially relevant information with regards to the outcomes 

studied.  

When attempting to discern differences between arterial and venous umbilical cord plasma 

(Paper III), arterial and venous cord blood samples were drawn from the sample individuals, 

producing non-independent samples. To take this into account, a so-called multilevel approach 

(163, 166) was utilized, where an effect matrix was used as the predictor data in the RF analysis 

against a dummy response variable. The effect matrix was calculated as the log2 fold change 

of the measured arterial and venous cord blood metabolomes (equation 1). 

 

𝐸𝑓𝑓𝑒𝑐𝑡 𝑀𝑎𝑡𝑟𝑖𝑥 =  𝑙𝑜𝑔2 (
𝑋𝐴

𝑋𝑉
) (1) 

 

Features selected from the MUVR models were then further tested using more traditional 

feature-wise methods, such as Spearman correlation (for T and B cell markers and continuous 

demographic variables (e.g., maternal BMI); Papers I, II and III), and the Mann-Whitney U-

test (for dichotomous demographic variables (e.g., parity); Papers II and III). Adjustment for 

multiple testing was generally not carried out as the number of variables to adjust for was 

difficult to estimate. The number of features in an untargeted metabolomics experiment can 

reach tens of thousands, and some of these features will not correspond to real molecules 

originally present in the sample (e.g., instrument noise, artefacts from sample management and 

fragments of metabolites) and thus including these in an adjustment scheme may obfuscate true 

underlying associations. 

In addition to the general strategy described above, analyses were also performed to investigate 

whether metabolites previously associated to manifest allergic disease were also prospectively 

associated to incidence of allergy (Paper I). This analysis was performed using a combination 

of criteria: i) a potential match of exact mass (MS1) of metabolite candidates from literature 

(with adducts [M + H]+, [M + Na]+, [M + K]+, [M + NH4]+, [M + CH3OH + H]+, 

[M + ACN + H]+ and [M + 2H]2+ in positive mode and [M–H]–, [M–H2O–H]–, [M + Na–2H]–, 

[M + K–2H]–, [M + Cl]–, [M + FA–H]–, [M + HAc–H]– and [M–2H]2– in negative mode) with 

the generated metabolomics data (within 20 ppm); ii) Paired t-tests of matched case-control 

pairs and generalized linear models (unmatched, but adjusting for gender, gestational length, 

caesarean section, age of mother, parity and BMI of the mother), where p < 0.05; and 

association to iii) the same allergic disease and; iv) in the same effect direction as the original 

study. 
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Tests and metrics used in QualiMon 
Quality Monitoring using landmark features (QualiMon) uses several metrics to assess the data 

quality of an injection. These include metrics that are judged based on the whole injection, 

hence referred to as injection-based metrics, but also metrics that are specific to individual 

landmark (LaMa) features, referred to as LaMa-based metrics. 

The injection-based metrics include Total Ion Count (TIC), number of peaks (using predefined 

peak picking parameters), IPO-score and number of landmarks found. TIC was chosen as this 

gives a good overall measure of detector sensitivity. Number of peaks was chosen as this could 

indicate whether something went wrong during injection of sample, or during sample 

preparation as a significant drop in number of peaks indicates that no or little sample was 

injected. The IPO-score measures the number of peaks with corresponding isotopic peaks (i.e., 

peaks containing one or more 2H or 13C) and correlates with the number of peaks but provides 

further information about general peak quality for the injection. Number of LaMas was chosen 

as these are less sensitive to intensity drift and can provide a measure of instrument stability 

even though other injection-based metrics fluctuate between injections. Once a value has been 

assigned to an injection for each of these metrics, this value will remain constant, even as more 

injections are added. For each metric, a students’ t-test is thus performed to compare the value 

of the injection with the current distribution of all other injections performed within the 

experiment. If a metric deviates enough from the total population, according to a pre-

determined p-value threshold, the injection is then flagged for that particular metric. In addition 

to testing deviations from the sample population, QualiMon also assesses whether injections 

deviate according to pre-determined (absolute) limits. The injection-based metric values are 

compared to soft and hard limits, reflecting user defined limits determined based on usual 

instrument performance. Injections are then further flagged if passing these thresholds.  

The LaMa-based metrics are as follows: Full width at half maximum, tailing factor, intensity, 

retention time deviation, scans per peak, peak height and number of LaMas found. Most of 

these metrics are generally used within traditional analytical chemistry when determining peak 

quality (167). For each LaMa-based metric, the number of outliers is calculated. The number 

of outlying LaMas is further compared to the same value for the other injections in the database.  

When doing this many tests to a sample (one test for each LaMa and metric), it is very likely 

that several of these will end up as significant outliers by chance alone. We therefore further 

test if the number of outliers per sample and metric differ from the total distribution of outliers 

in the previous samples. Furthermore, as distributions change over time as more injections are 

added, an iterative testing of previous injections is also performed. This iterative testing is often 

useful in the beginning of a new batch, where previous injections might not be representative 

for the new batch. A new injection might thus be initially classified as deviating, but after a 

few further injections be perceived as ‘normal’ by the algorithm, through the addition of 

samples with similar characteristics of the new batch.  

At the end of the QualiMon testing, an accumulative quality score (the so-called status score) 

is calculated, where every flagged metric is tallied, effectively summing outliers from the 

sample population as well as broken limits (equation 2). Similar to the tests for the LaMa-based 
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metrics, the status score is highly dependent on the distributions of previous injections and are 

similarly recalculated for each sample after each new injection is added to the distribution. 

𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑓𝑙𝑎𝑔𝑠 𝑓𝑟𝑜𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 + ∑ 𝑏𝑟𝑜𝑘𝑒𝑛 𝑠𝑜𝑓𝑡 𝑙𝑖𝑚𝑖𝑡𝑠 +  2 ∗ ∑ 𝑏𝑟𝑜𝑘𝑒𝑛 ℎ𝑎𝑟𝑑 𝑙𝑖𝑚𝑖𝑡𝑠  (2)

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑐𝑜𝑟𝑒
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5 RESULTS AND DISCUSSION 

 

Associations of maternal and neonatal metabolomes with allergy 

development (Paper I) 

Random forest analysis did not show any associations of either the maternal metabolome 

during pregnancy, the maternal metabolome at delivery or the umbilical cord metabolome with 

any of the four allergy outcomes (asthma, eczema, food allergy, and any allergy) at one year 

of age (Table 3). Classification rates ranged between 32 % and 61 %, indicating that the models 

were on par with random (permuted) models at predicting allergies. Further inference from 

these models regarding mechanisms or metabolites-of-interest were consequently not drawn. 

Our null results regarding future allergy development could be due to several reasons. For one, 

the allergy diagnoses were performed at one year of age, meaning that there is ample time for 

children currently diagnosed as healthy to develop allergies in the future, which would 

obfuscate potential findings relating this. Another possible explanation could be that there 

might be several endotypes relating to these diseases depending on origin, severity, and trigger. 

Several studies in manifest disease have shown that asthma is a heterogenous disease (168, 

169) and that the metabolome changes depending on severity of asthma (88, 170, 171), and it 

is not impossible that these metabolic differences could be observed already prior to disease 

onset, and thus contribute to additional variation in the allergic groups. In addition, the criteria 

used for asthma diagnosis could reflect both atopic and non-atopic asthma, increasing the 

heterogeneity in this group. Furthermore, as the metabolome represents a snapshot of the 

phenotype and the samples were taken from the umbilical cord and the mother in immediate 

connection to delivery, the stressful situation for both the child and the mother might obscure 

potential underlying associations. 

Table 3. Classification rates from random forest analysis of all plasma metabolomes and all allergy 

outcome 

 CRa (%) Maternal 

pregnancy 

metabolome 

CRa (%) Maternal 

metabolome at 

delivery 

CRa (%) Umbilical 

cord blood 

metabolome 

Asthma 32 33 42 

Food allergy 58 56 40 

Eczema 36 59 36 

Any allergy 

(Food allergy 

or eczema) 

39 61 32 

a CR = Classification Rate 

 

In a targeted search for metabolites previously reported in the literature of manifest allergy, 

only hypoxanthine showed an association consistent with the disease in question and direction 

of the association (i.e., higher in asthma (96)). It should be noted that all candidate markers that 
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we identified from literature were from studies investigating markers of manifest disease, 

potentially reflecting metabolite associations at later stages of disease progression or symptoms 

rather than mechanistic metabolites causal for disease development. Consequently, it is not 

surprising that most of the metabolite-allergy associations could not be replicated in a 

prospective setting. No adjustment for multiple testing was performed, and false positive 

replications cannot be ruled out. However, filtering metabolite candidates by disease and 

direction of association in practice limited the number of actual tests performed.  

 

Associations of maternal and neonatal metabolomes with immune 

maturation (Paper I & II) 
Modest associations were found for memory and naïve lymphocytes, measured by flow 

cytometry, with the investigated metabolomes, i.e., the plasma metabolome of the mother 

during pregnancy and delivery, the umbilical cord metabolome, and the placenta metabolome 

(Table 4). Unfortunately, most of the features driving these associations could not be identified. 

Identified associations further suffers from low sample sizes, as missing values were present 

both in relation to the metabolomics measurements as well as the flow cytometry 

measurements.  

Table 4. All discovered associations (Q2 ≥ 0.2) using random forest analysis on both plasma and 

placenta metabolomes with regards to immune maturation parameters at 48 hours, 1 month, 4 months 

and 12 months of age. 

Outcome n Q2 pa 

Maternal metabolome during pregnancy 

CD27+ B cell count at 

4 months 

24 0.20 0.023 

Maternal metabolome at delivery 

CD24+CD38low B cell 

count at 4 months 

26 0.21 0.033 

Umbilical cord metabolome 

CD24+CD38low B cell 

count at 4 months 

22 0.24 0.009 

CD5+ B cell count at 4 

months 

22 0.23 0.037 

Placenta metabolome 

KREC (at birth) 36 0.33 0.003 

CCR7+CD45RA- T cell 

count at 4 months 

22 0.23 0.028 

Proportion of CCR7+ 

CD45RA- T cells of CD4+ T 

cells at 4 months 

25 0.26 0.002 

Proportion of CD24low 

CD38low B cells of total B 

cells at 12 months 

23 0.26 0.006 
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Plasma metabolomes and immune maturation 

Associations were observed between the maternal metabolome at gestational week 28 and the 

number of CD27+ B cells at 4 months of age (Table 4), suggesting a link specifically to memory 

B cells (172). This association indicates the possibility of immunomodulatory compounds 

being transferred from the mother to the child already at mid-pregnancy. The association was 

mainly driven by 4 features, a diglyceride (32:1), an unknown carnitine, and an unknown 

phosphatidylserine. Further associations were found between another marker of memory B 

cells, CD24+CD38low B cells and both the blood plasma from mothers during delivery (Q2 = 

0.21, p = 0.33) and the umbilical cord plasma (Q2 = 0.24, p = 0.009), further strengthening the 

link to memory B cells. These associations were primarily driven by 4 features from the 

maternal plasma and 3 features from the umbilical cord plasma. Most notable among these 

features, phenylacetylglutamine (PAG) was inversely associated with CD24+CD38low memory 

B cells in both the maternal and umbilical cord plasma. PAG has previously been reported to 

have anti-inflammatory properties in mice, where it reduced the endogenous production of 

tumour necrosis factor-α and interleukin-6 (IL-6) (173). IL-6 in turn is a cytokine that 

stimulates differentiation in B cells (174). Our findings thus suggest that PAG, transferred from 

the maternal circulation to the foetus, could inhibit B cell differentiation. Among the other 

features, only one putative annotation could be made of a triglyceride (45:7) in the maternal 

plasma at delivery, which associated negatively with the formation of memory B cells. This 

finding strengthens the findings of previous research, where polyunsaturated fatty acids have 

been shows to have immune supressing effects (175, 176). However, as the triglyceride could 

not be identified, further interpretation of the results is speculative. The umbilical cord 

metabolome further associated with the number of CD5+ immature B cells at 4 months of age 

(Q2 = 0.26, p = 0.006), suggesting a link to naïve B cells that have not undergone differentiation 

into a more mature form.  

The placenta metabolome and immune maturation 

The association of the placenta metabolome with KRECs (Q2 = 0.33, p = 0.003) indicate an 

association to newly formed B cells, and thereby to B cell production in the bone marrow. 

Further, the proportion of CD24low CD38low (i.e. naïve) B cells at one year of age associated 

with the placenta metabolome (Q2 = 0.26, p = 0.006), thereby potentially pointing towards a 

less mature immune system. Both the number of CCR7+CD45RA- T cells within the CD4+ T 

cells (Q2 = 0.23, p = 0.028) and the proportion (Q2 = 0.26, p =0.002) at one year of age was 

found to associate with the placenta metabolome. CCR7+CD45RA- is a marker of central 

memory Th cells (177), meaning that they are memory cells that reside in the lymph nodes. 

Once its specific antigen is presented, central memory T cells can rapidly undergo clonal 

expansion, and differentiate into effector T cells that aid in B cell activation as well as stimulate 

the innate immune cells.  

The features driving the associations found in the placenta metabolome were unfortunately of 

low intensity, and MS2 fragmentation spectra were not obtainable. An attempt to circumvent 

this issue was performed in which features were filtered based on their signal intensity, 

resulting in exclusion of approximately half of the features, prior to reperforming RF analysis. 

Most of the previously observed associations were no longer present, highlighting that 
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associations were primarily driven by low intensity features that are susceptible to background 

instrument noise. In fact, all the features of interest selected from the original analyses were of 

low signal intensity. Thus, we speculate that any potentially immunomodulatory metabolites 

likely do not originate from the placenta but rather are transferred from the maternal blood 

stream.  

We further examined whether the associations observed in the maternal and umbilical cord 

metabolomes could be found in the placenta metabolome, and if the associations observed in 

the placenta metabolome could be found in the plasma metabolomes. However, none of these 

associations could be observed. This lack of replication between the two sample types might 

indicate that the findings in one or both sample matrices could be spurious. Another possible 

explanation for the lack of overlapping features could be that the features found in maternal 

and umbilical cord blood might easily pass across the placenta, and thus be below the limit of 

detection in the placenta. As the placenta is a metabolically active organ (178) the features 

found in the placenta could be metabolized further prior to entering the maternal or neonatal 

blood streams, and thereby not be present in either blood stream.  

Associations of arterial and venous umbilical cord metabolomes with 

maternal and neonatal traits (Paper III) 
Systematic differences were found between arterial and venous umbilical cord blood as well 

as for the parity of the mother with the venous umbilical cord plasma metabolome. No 

associations were found relating either the venous or the arterial cord blood with gestational 

length, birth weight, sex, maternal age, or maternal BMI. 

Metabolites differing between venous and arterial umbilical cord blood 

RF modelling showed systematic differences between the arterial and the venous umbilical 

cord metabolomes measured using GC-MS (Classification Rate = 79%, ppermutation = 0.004). 

The differences between arterial and venous umbilical cord plasma metabolomes were 

primarily driven by 11 metabolites. Amongst these metabolites, a hexose, two deoxy-hexoses, 

glutamic acid and two organic acids pertaining to energy metabolism were the most prominent 

(Fig. 10).  



 

35 

 

 

Figure 10. Graphical representation of organic acids travelling from the placenta to the child via the 

umbilical artery and de-oxy hexoses and a hexose travelling to the placenta from the child. 

The hexose and the deoxy-hexoses were higher in the arterial cord plasma, indicating a negative 

energy balance in the child during delivery. This condition likely reflects the high energy 

expenditure in the mother, shown by the higher levels of the TCA-cycle intermediates α-keto 

glutaric acid and succinic acid in the venous cord blood. A possible explanation for the child 

transferring energy metabolites to the mother could be that the mothers are in a stressful state 

at time of delivery, thus not having any surplus for transferring these to the child. This is further 

supported by the metabolites being transferred from the mother indicating an active energy 

metabolism. This is however, in contrast to a previous study, that found higher concentrations 

of glucose, lactate and catecholamines in the venous cord blood in children born via elective 

caesarean section (179). As most of the children in the NICE-cohort were born via vaginal 

delivery, this difference could be explained by the different energy expenditures between an 

elective caesarean section and a vaginal delivery. The amino acid glutamic acid was further 

found to be higher concentration in the venous cord blood, supporting previous findings by 

Holm et al., that found several amino acids to be higher concentration in the venous cord blood 

(180).  

Taken together, these results suggests that the sampling of umbilical cord blood (i.e., arterial, 

venous, or mixed) has implications on the measured metabolome, which could contribute to 

obfuscating underlying associations of interest. Thus, it is important to select a sampling 

protocol in accordance with the research question at hand. If an association is expected to be 
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related to the child’s metabolism, arterial cord blood likely represents the better choice while 

venous umbilical cord blood might be more suited if investigating effects mediated by the 

mothers’ exposures and/or metabolism. It should however be noted that as the umbilical 

arteries are much smaller than the vein, it might be difficult to obtain large sample volumes of 

arterial cord blood, thus making this biospecimen less attractive for certain analyses. 

Associations of umbilical cord plasma metabolomes and neonatal and maternal 

factors (Paper III) 

Among the neonatal and maternal traits (gestational length, birth weight, sex, parity, maternal 

age, and BMI), only parity associated with the venous umbilical cord metabolome 

(Classification rate 77 %, ppermutation = 0.004). 14 features were selected from the RF modelling, 

13 of which were in higher concentration in children with nulliparous mothers. Most of the 

identified metabolites related to energy and amino acid metabolism (Fig 11). The higher 

concentration of energy metabolites in the children with nulliparous mothers could relate to 

longer delivery times for the first delivery compared to subsequent ones (181). A longer 

delivery time would in turn mean that more energy has been expended during the labour 

process and thus being in a more exhausted metabolic state.  
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The association to parity was more pronounced in the venous blood compared to the arterial, 

which indicates that it is determined more by the mother’s metabolism rather than that of the 

child’s. The results further show that it is important to consider parity already in the study 

design, either through matching or through statistical adjustment, in addition to choosing the 

proper sample matrix. 

 

Associations of the placenta metabolome with neonatal and maternal traits 

Weak associations were found in the placenta metabolome with parity and sex (CR = 65 %, p 

= 0.04, CR = 65 %, p = 0.03 respectively). As neither of these associations were above the a 

priori threshold of 66 %, no further investigations into the molecular entities of the features 

driving these associations were performed. Although associations were weak, there appears to 

be some discriminating features between these factors and the placenta metabolome. However, 

the placenta appears to have a weaker association to parity than venous umbilical cord blood 

does. 

 

Continuous monitoring of injection quality in non-target analysis (Paper 

IV) 
To address the quality of data at the point of instrumental analysis in untargeted metabolomics, 

procedures for continuous quality monitoring were developed. These procedures were made 

freely available as a fully automated software solution under MIT licence in an R/Shiny 

implementation ‘QualiMon’ (http://github.com/MetaboComp/QualiMon). In addition to 

monitoring newly generated instrument data, the QualiMon software also allows review of 

quality of previously generated data.  

LandMark features 
LaMas are features that are specific for the sample matrix, instrument and to each analytical 

mode and are present in nearly every injection, at high intensity and distant from any other 

features. We identified 128 and 160 landmarks for RP and RN respectively using the 

MedGICarb data. These landmarks were further validated in RP mode using two separate data 

sets that were analysed on the same instrument, showing that 83.2 (sd = 8.42), 81.8 (sd = 16.5) 

and 95.7 (sd = 31.2) LaMas were found in the QC-data, SMCC and MedGICarb data sets 

respectively (Fig. 12). 

http://github.com/MetaboComp/QualiMon
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Figure 12. Histograms of LaMas found per sample for the SMC-C (left) and the QC (middle) and 

MedGICarb (right) data sets. 

We developed automated methods to aid users in acquiring LaMas. However, as experience 

working with the system grows, users should refine the LaMa selection to ensure that they are 

stable over longer time periods and properly reflect a general sample of the given sample 

matrix. We speculate that the LaMas can be categorized into three different categories: 1) 

sample specific metabolites, 2) artefacts from the sample preparation and 3) instrument 

artefacts. Although it may be tempting to focus specifically on sample specific metabolites, 

keeping LaMas originating from sample preparation and instrumental artefacts should have 

high value, since these might contain potential information on why injections are of subpar 

quality.  

Assessment of injection quality 

Injection quality is assessed based both on metrics that are pertaining to the injection as a 

whole, such as number of peaks and TIC and on the LaMa-based metrics. The injection-based 

metrics are assessed using a t-test comparing the value to the distribution of other injections, 

while the LaMa-based metrics are assessed based on the if proportion of the observed LaMas 

are significantly different from the proportion of previous injections. These two different ways 

of assessing quality provide a broad coverage of potential errors.  

With only a few exceptions, almost all injections in the QC-data performed well regarding all 

quality metrics (Fig. 13), indicating that the instrument was in a good condition and little 

variation was found between the injections. This is to be expected as the QC-data represents 

optimal injection conditions: For one, as the QC-samples are injected from the same vials over 

and over, this reduces all variation in sample handling. It further does not represent any 

biological variation, as all the injections should be identical.  
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Figure 13. Injection dependent metrics generated by QualiMon using the QC-data in RP mode. 

Nearly all injections exhibit good quality properties in all metrics, with a few outlying drops in quality 

randomly distributed throughout the run. Injection quality seems to decrease with the number of 

injections for all metrics except for number of LaMas, which seems more stable over time, with 

sudden drops in the last two batches. 

Some injections did show significant differences in all the injection-based metrics and a clear 

deviation can be seen in the plots (Fig. 13). Furthermore, a clear decline in TIC, number of 

peaks and IPO-score can be seen as the injection progresses, showing the need of instrument 

maintenance after these six batches were completed. A sudden increase in TIC can be observed 

in Fig. 13a, corresponding to some unknown event, likely related to detector sensitivity or 

interface efficiency. In Fig. 13d, the number of LaMas is shown to decrease below the soft 

limits towards the end of the experiment. This behaviour highlights the importance of the soft 

and hard limits that can be used to pick up on instrument decline, as a steadily decreasing 

instrumental output will change the distribution to encompass injection of subpar quality. 

Furthermore, the strict limits are needed if the distribution of previous injections to a large 

extent consists of faulty injections, thus making a faulty injection seem as good 

Due to the risk of potential variation in instrumental conditions (e.g., due to instrument 

maintenance or prolonged time between two batches), the LaMa-based metrics may entail 

artefactual incidence of low-quality injections. A sample in the beginning of a new batch with 

differing instrumental conditions should therefore be able to be re-evaluated as new injections 

from the current batch is expanding the reference population. Owing to this, a functionality to 

continuously re-evaluate injection quality with every addition of a new injection within an 

experiment. To properly visualize this re-evaluation, what is referred to as triangle plots were 

introduced (Fig. 14). These triangle plots contain one injection for each row, and the updated 

evaluation of that injection along the horizontal axis. Thus, the diagonal represents the initial 

evaluation of each injection at the time of injection and every subsequent point to the right 

represents how that injection behaves as more injection are added to the distribution. This 
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operation and plot are used to interpret and visualize all the LaMa-based metrics and for the 

final scoring summary.  

 

Figure 14. Triangle plot showing % of LaMas that are outliers in intensity compared to the rest of the 

population using the ‘optimal case’ QC-data in the RP analytical mode. Each row corresponds to the 

performance of a single injection, while every column represents the time point of every injection. 

Almost every injection was classified as being of good quality (indicated by blue colour). Samples at 

the beginning of batch 2 (indicated by a red circle) were initially evaluated as of potentially poor 

quality (lighter colour). However, as the batch progressed, more samples from the same batch were 

added to the distribution and the evaluation updated towards well-behaved. 

 

Finally, the scoring function is visualized in a similar manner to that of the injection-based 

metrics. Figure 15 shows final scoring plots for a) the ‘optimal case’ data represented by the 

QC-data set.  
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Figure 15. Final scoring plot for ‘optimal case’ data represented by the QC data set in the RP 

analytical mode. Nearly all injections were rated as high quality, with a few erroneous injections, 

likely caused by instrument malfunction. Similar to Fig. 14, samples at the beginning of batch 2 

(indicated by a red circle) were initially evaluated as of potentially poor quality (lighter colour). 

However, as the batch progressed, more samples from the same batch were added to the distribution 

and the evaluation updated towards well-behaved. 

 

When instead applying QualiMon to the MedGICarb data, i.e., an authentic dataset with all 

aspects of undesired variability from sampling, pre-analytical sample management as well as 

sample preparation, the variation in injection quality greatly increases (Fig. 16, 17, and 18).  
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Figure 16. Injection-based metrics for real-case data represented by the MedGICarb data set. Note 

that batches 3, 5, 6, 7 and 11 shown in these plots were rerun as they were found to be of poor quality 

during manual checking.  

 

Figure 17. Triangle plot showing % of LaMas that are outliers for the tailing factor metric compared 

to the rest of the population using the ‘real case’ MedGICarb data in the RP analytical mode. Several 

low scoring injections can be found in the middle and end of the experiment (brackets marked with a, 

i.e., batches 5, 6, 7 and 11) 
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Figure 18. Status plot for MedGICarb-data in RP analytical mode. The red circle indicated by a) 

shows a typical behaviour in the beginning of a new batch where samples are first classified as very 

poor, to increase in quality score as more injections from the same batch are added to the 

distribution. Batches 3, 5, 6, 7 and 11 marked by b) were deemed to be of poor quality by manual 

checking at time of analysis and were rerun. While from the plots presented in this thesis, it is difficult 

to see which injections are of poor quality, the zooming, and mouse-over features in QualiMon makes 

it easy to quickly identify which injections to give further attention to. 

Several reasons exist to why the quality differs greatly between the ‘optimal case’ data (QC-

data set) and authentic data, represented by the MedGICarb-data set: The MedGICarb-data 

stems from a real population and the biological variation is greater compared to the QC-data 

where only 3 samples were injected over and over. Even if standard operating procedures are 

in place and adhered to, an increase in variation will also come from the sampling, pre-

analytical sample management and the sample preparation. Figures 16, 17 and 18 clearly show 

that 5 batches had severe problem related to data quality. These batches were consequently 

rerun.  

The large number of LaMa peaks examined by QualiMon gives a much wider basis for 

assessing peak and data quality control compared to manual inspection where in reality only a 

few (normally 5-10) peaks are checked. This extensive testing is made possible by the 

automated metric extraction and assessment for a large number of LaMas. QualiMon further 

excels in injection quality assessment compared to post-batch QC as the quality is assessed 

immediately post-injection and not post-batch or even post-experiment. Moreover, it does not 

rely on QC-samples as a proxy for quality, but instead checks the quality of every single 

injection in and of itself. It should however be stressed that, QualiMon does not work as a 

replacement for QC-samples in an experiment, but rather as a complement: QC-samples are 

still required for adjustment of instrument drift and to exclude features that cannot be measured 

in a stable way. 

QC-samples are further encouraged to combine with QualiMon usage, as the algorithm handles 

QC-injections separately from the normal injections. As the QC-samples within an experiment 

are de facto replicates, the reference populations will have less variability than the study 
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samples (i.e., they should be similar to the output of the QC-data set) and any abnormalities 

relating to instrumentation should be easier to identify in this sample type. 

Automated monitoring 
Following the set-up of the QualiMon software, the entire procedure is fully automated, from 

reading generated instrument files, optional data backup and quality assessment to sending 

real-time notifications to instrument operators via slack. QualiMon uses the open file format 

mzML to read instrument files which in turn are generated using Proteowizard (182). This 

makes the process vendor-agnostic which has a large positive impact on the availability and 

contributes further to open science. Open science is further promoted through making all code 

publicly available and modifications or adaptions into other usages from the community is 

greatly encouraged.  

The automated file backup system addresses a major security issue that enables to not be reliant 

on manual batch-wise backups and the automated notification system leads to operators getting 

real-time notifications about injections potentially of poor quality resulting in an immediate 

possibility to investigate the issue hands on. This immediate response can reduce sample waste 

by not having to inject samples whilst the instrumental conditions are poor and can reduce the 

amount of valuable instrumental time generating data of poor quality. As both samples and 

instrument are scarce resources, QualiMon can reduce man hours required by an operator as 

well as streamline the instrumental usage. 

QualiMon is and ongoing project and several updates regarding both functionality, efficiency 

and user friendliness are planned over the course of the coming year.  
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6 GENERAL DISCUSSION 

 

Prospective cohort studies that collect information prior to disease onset have unique potential 

to study mechanisms in disease pathogenesis (183). However, an issue with prospective 

sampling is that it is difficult to estimate how many people will develop the disease in question 

in the sample population. In the available data, no associations could be identified between 

metabolome and allergy. This was true for all measured metabolomes (maternal metabolome 

during gestational week 28, maternal metabolome during delivery and umbilical cord 

metabolome) with all allergy outcomes (atopic dermatitis, food allergy and asthma). This lack 

of associations could possibly be due to the early timepoint of diagnosis, i.e., 12 months of age. 

Prolonging the follow-up time could give a different distribution of allergy cases in the sample 

population, which could give a two-fold advantage from a data analytical perspective: first, it 

would give more power to the analyses due to a larger case population and second, it would 

remove prospective cases from the control population. With this change of basis for analysis, 

other results could be obtained and potential associations with allergy development in children 

could be identified. As the metabolome is vast, there could also be metabolic features not 

covered by the methods used in this study that associates to the future allergy development. 

Another explanation to the null associations could relate to allergy being a multifaceted disease: 

There are several determining factors as to why allergy emerges, and there may not be sufficient 

homogeneity in potentially affected mechanisms or pathways to obtain meaningful predictions 

(184). The major strength of the present studies and the NICE-cohort as a whole is that allergy 

(atopic eczema, food allergy and asthma) was physician-diagnosed based on strict criteria and 

that all the children met with the same paediatrician specialized in allergy. Furthermore, the 

collection of biologic specimens was extensive, including blood samples from mothers during 

pregnancy and at delivery, umbilical cord blood (separated in arterial and venous in a subgroup 

of children), placenta, breast milk, urine, faeces, and saliva, enabling studies combining 

metabolomics from several time points and sample matrices, but also offers the potential to 

combine several different ‘omics’ methodologies. 

Some associations were observed for both the plasma and placenta metabolomes with immune 

maturation markers. However, these associations were not very strong and could not easily be 

translated from the maternal and umbilical cord plasma metabolomes to the placenta 

metabolome or vice versa. It should also be noted that several hundred models were created to 

test for associations between the metabolomes and the different stages of immune maturation. 

However, adjustment for multiple testing in this scenario is difficult since models were tested 

for several outcomes. However, not all of these were independent (e.g., the total number of B 

cells are dependent on the number of memory B cells and the proportion of memory B cells of 

total B cells are dependent on both). Hence, we chose to report nominal p-values from 

permutation tests for all multivariate models. Among the observed associations, only memory 

B cells could be linked to more than one of the metabolomes (maternal plasma in connection 

to delivery and umbilical cord plasma), indicating that these associations represent actual 
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relationships. However, neither of the identified associations in the plasma and the placenta 

metabolome could be replicated in the other sample matrix, suggesting a substantial risk of the 

other observed associations being spurious. 

Placenta was chosen as a biospecimen from the assumption that localized tissue could be 

advantageous as the biochemical processes in situ likely have a stronger finger print than 

metabolites in circulation (185). Moreover, the placenta is the organ that constitutes the border 

between the maternal and neonatal circulatory systems, which made it a relevant candidate to 

investigate potential associations with immune maturation. However, this hypothesis did not 

appear to hold as we observed that the intensities of potential features of interest were low. 

Moreover, none of the features of interest found in plasma could be found within the placenta. 

Together, these findings suggest that potential metabolites of interest do not stem from nor are 

enriched in the placenta. Furthermore, BMI and age are commonly used in our lab as sanity 

checks for blood plasma, but no such associations were found in the placenta metabolome. This 

lack of associations could point either towards that the placenta metabolome contains little 

valuable information about the measured outcomes or towards a lack of established best 

practices for working with placenta metabolomics and might stem from problems relating to 

not knowing how to manage samples, sample matrix heterogeneity or how to normalize data. 

As touched upon previously, one of the major limitations in this work relates to small sample 

size. The delivery of a child is something that can occur at any hour. However, research staff 

is usually only available for sample management during normal office hours. In an effort to 

reduce the contribution from undesired variability from varying sample management 

conditions (predominantly related to prolonged pre-centrifugation delay times), only placentas 

that were obtained within 4 hours of delivery were used for metabolomics analyses, causing 

only 96 out of originally 414 placentas to be suitable for analysis. Although plasma samples 

were obtained from almost all mothers during pregnancy, fewer were available from time of 

delivery and fewer still from the umbilical cord blood. Since delivery is a stressful situation for 

both the mother and the staff, sampling for research purpose becomes a secondary issue if 

complications arise. In addition, for the immune maturation analyses, several of the measured 

cell types were too few in many of the samples to enable counting, leading to a substantial loss 

of statistical power for several of these measures. Further, taking blood from infants can be a 

daunting task, and for several children at varying time points it was not possible to take blood 

samples. For the allergy diagnoses, there were few children with allergy diagnoses at one year 

of age. When combining loss of obtainable information from both the outcomes and the 

samples, the end result is a lower than desired statistical power in the data analysis. 

Major differences were observed between the arterial and the venous umbilical cord blood 

metabolomes. Moreover, the observed association between the venous umbilical cord blood 

plasma and parity and corresponding null association for arterial cord blood further supports 

the notion of the two different umbilical cord sample types being systematically different, 

showing that the choice of sample matrix is of high importance when studying the umbilical 

cord metabolome. Furthermore, the association with parity was weak for the placenta 

metabolome. This suggests that parity is mainly determined by the maternal metabolism and 

that parity as a covariate may be more important to adjust for when working with venous 
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umbilical cord plasma than when using placenta or arterial umbilical cord plasma. The weak 

association between the placenta metabolome and parity further supports that the lack of 

experience working with placenta metabolomics in our lab might have affected the results 

negatively. The weak association could also be explained by the fact that the metabolites 

driving the association in the venous blood were mainly related to energy metabolism. These 

energy metabolites are essential for the child and might thus not be retained by the placenta but 

rather can pass through quickly and thus not be identified.  

Despite the weak results in relation to allergy and immune maturation, untargeted 

metabolomics has a considerable potential when it comes to evaluating health outcomes and 

other biological phenomena. Furthermore, recent advances in both the analytical and the 

computational fields are continuing to push the limits of metabolomics (186). Along these lines, 

new and vastly improved versions of open-source software have been released (e.g., MZmine 

3.0 and MS-Dial 5.0 (manuscripts expected to be released shortly)). Although there is much 

progress in the field, major issues remain concerning e.g., reproducibility, comparability and 

identification (187). The studies conducted in this thesis points towards several of these 

difficulties: results from previous studies can frequently not be replicated [Papers I and III], 

partially due to the lack of overlapping metabolite coverage. Metabolites are difficult to 

identify [Papers I and II ]. The data quality of injections in untargeted LC-MS based 

metabolomics is frequently uneven or even poor [paper IV].  

To address this last issue, we developed procedures and an accompanying R-based software 

QualiMon that analyses several hundred traits on both the level of injection as a whole as well 

as specific peak characteristics from so-called landmark features. QualiMon serves as a 

complement to the current best QC/QA practices, and it should be stressed that using QualiMon 

alone does not ensure perfect quality: Rigid QA practices are still needed, and QC should be 

performed at the end of a batch or experiment to ensure the validity of the data. The developed 

software is capable of continuous monitoring to enable near real-time detection of injections 

of low quality and thereby alert operators of potential instrument-related deviations. In line 

with the strong movement towards open science, including sharing of protocols, methods, data, 

and algorithms, QualiMon is delivered through an open licence (MIT), and may therefore 

contribute to an increased awareness of quality issues and hopefully to improved data quality 

in untargeted metabolomics. Implementation of QualiMon can free up operator time from 

manually assessing peak and injection quality, improve sample and instrument usage by not 

having to re-perform low quality injections at a later stage and, importantly, improve data 

quality for downstream data analysis. Although functional, several improvements to QualiMon 

are planned for an enhanced user experience, to broaden its usability (including e.g., support 

for different types of reference materials (128) as well as MS2-level data) and to improve upon 

existing metrics.  
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7 MAIN FINDINGS AND CONCLUSIONS 

 

The work in this thesis aimed to identify associations of maternal and neonatal metabolomes 

before and during birth with allergy development at one year of age and to associate these 

metabolomes with immune maturation. It further aimed to explore differences in arterial and 

venous umbilical cord blood as well as to see how these relate to maternal and neonatal 

demographics. Finally, the work aimed to develop procedures for automated quality 

monitoring in untargeted LC-MS metabolomics. 

Even though the study had a large metabolite coverage, in a relatively large cohort and used 

robust statistical methodology, no associations were found for allergy development with either 

the maternal or neonatal metabolomes. The null findings can likely be attributed to low power 

due to few cases, diluted associations due to potential future allergy development or that no 

associations can be found this early in life. Although no associations were found, this is one of 

the largest prospective cohorts performed on prospective allergy development, and future 

analyses of the different collected biospecimen not yet analysed might still reveal associations 

to future allergy development. 

Modest associations were found when relating various subpopulations of T and B cells to both 

the plasma and placenta metabolomes. Most notably, phenylacetylglutamine in both the 

maternal plasma at delivery and the umbilical cord metabolome associated with the formation 

of memory B cells at 4 months of age, suggesting that potentially immunomodulatory 

metabolites are transferred from the mother to the child. 

Major differences between arterial and venous umbilical cord blood were found, mainly 

pertaining to energy and amino acid metabolism. This finding highlights the need of a proper 

study design and sample strategy prior to the start of a project. Furthermore, the venous cord 

blood associated with the maternal parity status, indicating that this factor is important to take 

into consideration when adjusting statistical models or when matching controls to cases. 

Due to issues raised with injection quality during this work, this thesis further aimed to develop 

a quality monitoring aimed to combat the inherent variation in untargeted LC-MS based 

metabolomics, by developing procedures based on landmark features for automated real-time 

quality monitoring of injections. When used on data previously run on our instruments, it could 

distinguish batches and single injections of poor and good quality from each other, and the 

open source and open licence offer the possibility of enhancing quality monitoring procedures 

for the metabolomics community. 
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8 FUTURE RESEARCH 

 
Given that allergy diagnoses were only available at one year of age, and that the diagnoses will 

likely change over the following years, it would be of great interest to reperform analyses 

regarding allergy development when diagnoses from 4 years are available or at even later time 

points. 

As the data on immune maturation suffered from low sample sizes for several of the outcomes, 

it would be of great interest to investigate these markers in a larger study population and with 

more overlapping immune measurements. Furthermore, attempted replication of observed 

associations would be needed to confirm whether associations are real or if they are stemming 

from spurious findings. As potential immunomodulatory metabolites were only present at low 

concentrations, other omics methodologies could offer better insights into mechanisms at the 

maternal-foetal interface regulating immune maturation. 

QualiMon, the software developed for automated quality monitoring developed in this thesis, 

is currently at a relatively early stage in its development, and several improvements and 

additional features are planned. For one, the current processing speed of the procedures is too 

slow to handle large scale metabolomics experiments with a large LaMa coverage (number of 

LaMas > 100), thus more efficient computing is needed to facilitate this. Currently, if several 

different sample matrices are being analysed on the same instrument, manual intervention is 

needed to switch between configuration files. For future versions, an option to identify what 

sample matrix is being analysed based on the project name will be added.  

At present, the quality monitoring procedure is entirely data driven. However, options to 

include reference materials in quality monitoring would further increase the performance of 

the quality assessment as well as reduce the need for a priori existing data to set up the 

procedures. QualiMon was designed with untargeted LC-MS metabolomics in mind, but the 

concept can be applied to targeted methods as well as to GC-MS based methods as well and 

development for a broadened use is planned for the future.   
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