
Thesis foR The DegRee of Licentiate of EngineeRing

Server-Aided
Privacy-Preserving
Proximity Testing

Ivan OleyniKov

Division of Computing Science, Information Security
Department of Computer Science & Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2022

Server-Aided Privacy-Preserving Proximity Testing

Ivan OleyniKov

Copyright ©2022 Ivan Oleynikov
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Division of Computing Science, Information Security
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2022.

ii

Abstract

Proximity testing is at the core of many Location-Based online Services
(LBS) which we use in our daily lives to order taxis, find places of interest
nearby, connect with people. Currently, most such services expect a user to
submit his location to them and trust the LBS not to abuse this information,
and use it only to provide the service. Existing cases of such information be-
ing misused (e.g., by the LBS employees or criminals who breached its secu-
rity) motivates the search for better solutions that would ensure the privacy
of user data, and give users control of how their data is being used.

In this thesis, we address this problem using cryptographic techniques.
We propose three cryptographic protocols that allow two users to perform
proximity testing (check if they are close enough to each other) with the help
of two servers.

In the papers 1 and 2, the servers are introduced in order to allow users
not to be online at the same time: one user may submit their location to
the servers and go offline, the other user coming online later and finishing
proximity testing. The drastically improves the practicality of such protocols,
since the mobile devices that users usually run may not always be online. We
stress that the servers in these protocols merely aid the users in performing
the proximity testing, and none of the servers can independently extract the
user data.

In the paper 3, we use the servers to offload the users’ computation and
communication to. The servers here pre-generate correlated random data
and send it to users, who can use it to perform a secure proximity testing
protocol faster. Paper 3, together with the paper 2, are highly practical:
they provide strong security guarantees and are suitable to be executed on

iii

Abstract

resource-constrained mobile devices. In fact, the work of clients in these
protocols is close to negligible as most of the work is done by servers.

Keywords: privacy, secure proximity testing, MPC, active security

iv

Acknowledgments

First of all, I thank my supervisors Andrei and Elena for all the guidance
and support during these three years I spent at Chalmers. I am very grate-
ful for your patience, help with organizing myself I got from you and all the
valuable feedback. Working with you greatly helped me fight my procrasti-
nation and the sense of helplessness in the face of challenging problems. I
appreciate all the effort you made for me.

Big thank you to all my friends from Chalmers for their hospitality and
help with settling down, getting me out of my introverted moods, showing
new hobbies, challenging my views, and making Gothenburg feel like home.
Mohammad, Iulia, Jeremy, Benjamin, Alexander, Carlos, Nachi, Max, Fabian,
Matti, Irene, Elizabet, Augustin, Liam, Boel, Carlo, Jeff and many more from
CS division.

I owe any knowledge and taste in Computer Science that I have to my
teachers and classmates from Academic University in St. Petersburg, Russia.
I am greatly privileged to have learned from you, and without those two
difficult years I would never end up doing Computer Science.

I am very greatful to my buddies and instructors from Brazilian Jiu-Jitsu
at Fighter Centre for giving me sense of community and showing example
of dedication and hard work.

Большое спасибо моей семье за помощь и поддержку, без которых
у меня бы ничего не получилось.

v

This page intentionally left blank.

Contents

Introduction 1

Bibliography 9

1 Where are youBob? Privacy-PreservingProximityTestingwith
a Napping Party 11
1.1 Introduction . 13
1.2 Modeling Private Proximity Testing Using Two Servers . . . 16
1.3 Recap of the InnerCircle Protocol 19
1.4 Private Location Proximity Testing with Napping Bob 22

1.4.1 OLIC: Description of the Protocol 22
1.4.2 OLIC: Privacy of the Protocol 25
1.4.3 Security Against Malicious Servers 28

1.5 Evaluation . 30
1.5.1 Asymptotic complexity 32
1.5.2 Implementation . 32
1.5.3 Performance Evaluation 34

1.6 Related Work . 35
1.7 Conclusions . 37
Bibliography . 39
Appendix . 43
1.A Tools Used in OLIC . 43
1.B Detailed Measurements . 44

2 CatNap: Leveraging Generic MPC for Actively Secure Privacy-
Enhancing Proximity Testing with a Napping Party 47
2.1 Introduction . 49
2.2 Preliminaries . 54
2.3 The CatNap Protocol . 55

2.3.1 Security Proof . 59
2.4 Evaluation . 61

vii

Contents

2.5 Related Work . 62
2.6 Conclusion . 64
Bibliography . 69
Appendix . 73
2.A Algebraic Manipulation Detection Code 73

3 Outsourcing MPC Precomputation for Location Privacy 75
3.1 Introduction . 77
3.2 Preliminaries . 81
3.3 The POLAR Protocol . 83
3.4 Security Analysis . 86
3.5 Evaluation . 87
3.6 Related Work . 90
3.7 Discussion . 93
3.8 Conclusion . 94
Bibliography . 97

viii

Introduction

An increasing number of online services depend on the information about
the location of their users, be it to deliver a taxi home, suggest restaurants in
proximity to visit, build a route on the map, connect with people of interest
closeby. In current practice, such Location-Based Services (LBS) are full-trust
centralized services. They require the user (usually through a mobile device
like smartphone) to submit her location to the LBS and trust that the service
will not misuse or accidentally leak it to another party.

In principle, the functioning of many LBS does not depend on knowing
the exact user locations, since it uses only the result of some function over
them. For example, it would suffice for a dating service to know which users
are close enough for a match with a given user even if the exact coordinates
of its users are not given. This, together with existing precedents of LBS—
maliciously or by accident—misusing user location data [6, 8, 10, 11, 16], mo-
tivates the search for better ways to implement LBS that would ensure the
privacy of user locations.

The goal of this thesis is to address some of these privacy issues using
cryptographic tools.

Cryptographic Protocols

The functionality of an LBS is built on the exchange of messages over internet
between user’s mobile device and the servers of LBS. Therefore it is natural
to see this functionality as a communication protocol, and try to provide
privacy and security of the parties involved in it using cryptography.

In cryptography, there are a few standard definitions of security for a
cryptographic protocol, which vary in the strength of the adversary they

1

Introduction

tolerate and versatility of settings where they can work. In the following, we
give a high-level overview of the definitions that are relevant to this work,
more details can be found in tutorial by Lindell [12].

Passive security. When the protocol starts, parties hold their inputs, and
the goal of the protocol is to reach a state where they would hold their
corresponding outputs which are defined as (probabilistic) functions
of all parties’ inputs. Formally, the functionality of a protocol (i.e. the
computation that the protocol is expected to carry out) is defined by a
random function

f (i1, i2, . . . in) = (o1, o2 . . . on).

Here, ij is the input of the party i and oj is its output.
Passive security requires that party j (who honestly follows all the pro-
tocol steps, but tries to passively extract as much information as it can
from the messages it receives) should not be able to deduce anything
about the inputs of the other parties other than what is already leaked
by its corresponding output oj . Formally, this is proven by showing
that all the messages that the party receives can be efficiently simu-
lated given only the party’s input and output values. The simulated
messages are required to be computationally indistinguishable from
the actual ones that are sent during the protocol execution, which guar-
antees that the actual messages do not carrymore information than the
simulted ones, which in turn do not carry more information than the
input and output of the corresponding party.
This definition also covers the case when multiple parties collude in
order to extract infromation about the inputs of the others.

Active security. This notion of security ensures that even if some parties
deviate from the protocol specification, they will not learn anything
about the inputs of the others nor they will cause the protocol to pro-
duce an incorret result.
Here, the security formalism is based on the model of Real and Ideal
worlds. Real world setup corresponds to the actual executions that can
happen in practice, it involves all the parties present in the protocol
and they are allowed to exchange messages over network. By default,
the parties here correctly execute the algorithms assigned to them by
the protocol specification. When the execution completes, each party
algorithm returns the output value intended for that party. The model
also considers executions where the adversary corrupts one or more

2

Server-Aided Privacy-Preserving Proximity Testing

of the parties and replaces their algorithms by algorithms of its choice,
possibly making the parties (both corrupted and uncorrupted) to pro-
duce a different output at the end of protocol execution. Ideal world
setup involves all the parties and also a special extra party called Func-
tionality, which can never be corrupted and is completely trusted by
everyone.
Ideal world executions are not intended to be implemented in practice,
but they serve as a specification of how we want the Real world to
behave. When no parties are corrupted, we require that for any tuple
of inputs (i1, i2 . . . in) the outputs of the protocol in the Ideal world are
indistinguishable from the corresponding outputs in the Real world,
denoted as

Ideal(i1, i2 . . . in) ≈ Real(i1, i2 . . . in).

The ≈ here denotes computational indistinguishability.
For the case when an adversary A corrupts some parties in the Ideal
world, there must exist a simulator S that corrupts the same parties in
the Real world, and causes both worlds to produce the same output,

IdealS (i1, i2 . . . in) ≈ RealA(i1, i2 . . . in).

The Ideal world specification (which includes the algorithms for Func-
tionality and all the parties) serves as a definition of what we want
the protocol to compute, while the Real world specification (the algo-
rithms of all the parties) is the solution showing how to achieve that
in practice.

Universally Composable security. Universally Composable security adds
an extra party called Environment to both Ideal and Real worlds of Ac-
tive security. Now the adversary and simulator are allowed to interact
with it, and the security requirement demands that no Environment
should be able to tell whether it is connected to Ideal or Real world.
In other words, Universally Composable security is a modification of
Active security that is indistinguishable by an interactive distinguisher.
This simple generalization has an important practical effect, now the
protocol is guaranteed to stay secure even if the parties are interacting
in some way outside of it, for example, running another instance of
the same protocol in parallel, or composing multiple protocols to build
a bigger one. The intuition here is that the Environment represents
any interaction that the parties (including the adversary) might have
outside of the current protocol instance.

3

Introduction

Protocols that are proven to be Universally Composable secure can
be composed together with little effort, yielding another Universally
Composable protocol.

In this thesis we construct protocols that achieve Active and Passive se-
curity, while some of the prior work we use in our construction meets the
definition of Universally Composable security.

Proximity Testing

A great number of LBS, at their core, use the location data to test if some
locations are close enough to each other. For example, a taxi service would
take a passenger’s location and look for a driver that is close enough (or
the closest) to pick up the passenger. A ridesharing service would do the
same, but consider the proximity of both start and end points of the journey
(because here, the driver wants to take only those passengers whose trips are
close to his).

Proximity Testing (PT) is range of problems of constructing secure cryp-
tographic protocols that would allow two parties who know each their own
location, to test if they are close enough to one another. PT is a generic term
which covers different notions of what “location” is, what metric is used by
“close enough” and what is a “secure” protocol. For example, PT for a taxi
service could define location as a node in the graph representing the city road
network, with the closeness metric being the shortest distance the driver has
to travel to reach the passenger. An IoT system that wants to know if the
user is home to turn on the lights, could represent the user location as a pair
of GPS coordinates and test it for closeness to home via Euclidean distance.

Alice

Bob
1

Bob
2

r

Bob
3

Figure 1: Illustration of
Euclidean distance based
matching

In this work, we focus only on PT based on
Euclidean distance. Here, the location of a user
is a point on a plane represented by a pair of in-
teger coordinates p1 = (x,y) and the PT protocol
wants to test whether the distance between two
such points p1 and p2 exceeds the pre-defined
threshold value R or not.

Euclidean distance based PT is relatively
simple, it can be expressed via a few arithmetic
operations and a comparison. This notion of PT
arises naturally in some LBS (for example, dat-
ing apps or IoT system discussed above). And it
can serve as a reasonable approximation of some
other metrics (for example, given how much simpler Euclidean distance is

4

Server-Aided Privacy-Preserving Proximity Testing

comapred to graph distance, a taxi service may want to approximate road
distance with straight-line Euclidean distance). Euclidean distance based PT
can also be used to compute closeness of other data represented by vectors
of numbers, for example preferences of two users in a social network.

Generic Multi-Party Computation (MPC)

Generic Multi-Party Computation is a subfield of cryptography that aims
at computing generic functions (often described by airthmetic, Boolean or
mixed circuits) in the setting of cryptographic protocols, meeting the security
properties like the ones we outlined above.

Since Euclidean distance based matching wants to compute a specific
function privately, MPC can be seen as its generalization (computing arbi-
trary function) and a natural tool to apply on PT.

Thesis structure

In this thesis we construct three protocols for Euclidean distance based PT.
Each of the three protocols allows two clients to perform the Euclidean dis-
tance based proximity testing with the help of two servers. In the first two
papers, the servers are introduced to allow matching clients who are not on-
line at the same time. In the third paper, the role of servers is to offload some
part of computational and communicational overhead from the clients, but
do sowithout sacrificing clients’ privacy. High-level relation of the presented
protocols is shown on Figure 2.

We build on two previously existing works on Euclidean distance based
proximity testing, InnerCircle by Hallgren et al. [5] and ABY-based protocols
of Järvinen et al. [9].

OLIC, Paper 1 [13]

CatNap, Paper 2 [14]

Polar, Paper 3 [15]Improve performance
and security

Figure 2: The relations of the protocols built in this thesis to each other

5

Introduction

Paper 1: Where are you Bob? Privacy-Preserving Proximity Testing
with a Napping Party [13]

In this paper, we construct OLIC, a protocol for privacy-preserving PT. This
protocol involves two clients, Alice and Bob, who know their corrdinates
(xa, ya) and (xb, yb) respectively, and they want Alice to know if the squared
distance between them D = (xa − xb)2 + (ya − yb)2 exceeds R2. The protocol
has practical performance, but only for small values of radius R. Its running
time and total communication grow proportionally to R2. OLIC achieves
Passive security.

The distionguishing feature of this protocol is allowing clients to perform
the protocol without necessarily being online at the same time—we call it
“offline” feature. To achieve that, we introduce two servers into the setting,
and make Bob submit his location to the servers (in a privacy-preserving
way, so none of the servers can read it), and have Alice come online later
and finish the protocol with the servers without him being online.

The techniques used byOLIC are heavily based on the previously existing
server-less protocol InnerCircle [5].

Statement of contributions Wepublished this paper in collaborationwith
my supervisors Elena Pagnin and Andrei Sabelfeld. I implemented the pro-
tocol benchmarking code with some high-level guidance from Elena and An-
drei, I also drafted the protocol description and its security proof, which we
then heavily edited in a few iterations.

Appeared in: 25th European Symposium on Research in Computer Security
(ESORICS)’2022.

Paper 2: CatNap: LeveragingGenericMPC forActively Secure Privacy-
Enhancing Proximity Testing with a Napping Party [14]

In this paper, we solve the same problem of Euclidean distance based PT
with “offline” feature as in the previous paper, improving both security and
performance compared toOLIC. The protocol CatNap that we build here has
Active security and performance independent of radius R. We achieve this
using the generic techniques from MPC, as opposed to ad-hoc techniques of
OLIC.

The construction of CatNap is highly modular, it applies the used MPC
techniques [1, 2, 3, 7] in a black-box way. This means that if some of those
techniques get improved in the future, CatNap will get improved “for free”.
This work shows what can be achieved using off-the shelf techniques, and
sets the bar for any future work based on ad-hoc techniques.

6

Server-Aided Privacy-Preserving Proximity Testing

Statement of contributions I suggested the idea of trying what can be
done for PT using MPC techniques, and implemented all the code and most
of the security proof occasionally asking Elena and Andrei for a review and
advice. I also prepared the draft of the paper, which we then discussed and
edited together.

Appeared in: Proceedings of the 19th International Conference on Security
and Cryptography’2022.

Paper 3: OutsourcingMPC Precomputation for Location Privacy [15]

This paper approaches the Euclidean distance based PT in the client-client
setting (that does not rely on servers), using Actively secure MPC techniques
[2, 3, 7, 9]. We argue that one of the main obstacles to applying the existing
MPC protocols to client-client setting is performance. Modern implemen-
tations of MPC protocols are often tailored for good amortized performance
when doing large amounts of computations, but become relatively expensive
when applied to a simple functionality like Euclidean distance based match-
ing.

In this paper, we seek a different compromise between performance and
privacy and introduce two servers to speed up the PT that clients perform
between themselves—albeit at a small privacy cost. Most MPC protocols rely
on a resource-heavy precomputation phase that is performed without inputs
from the parties. In this protocol, we offload the clients’ precomputation
phase onto the two servers which perform it inside another MPC protocol,
and return the clients their precomputation data in privacy-preserving way
(without servers themselves being able to learn it). This drastically speeds
up the execution of clients’ MPC protocol at a cost of introducing an extra
assumption that that both servers will not get corrupted at the same time.

The burden of doing client precomputation inside an extra MPC protocol
on the servers is quite moderate, since in this model the same pair of servers
can serve multiple pairs of clients and generate the precomputation data for
all of them in one large batch taking advantage of the MPC protocols’ good
amortized performance.

Statement of contributions I am the main author of this paper. I sug-
gested the idea of offloading the precomputation for PT to servers which we
refined in later discussions together, and also implemented all the code for
this paper. I prepared the final draft of the paper, which we then proof-read
and edited together.

7

Introduction

Appeared in: IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW)’2022, Location Privacy Workshop.

8

Bibliography

[1] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing. Spdz2k:
Efficient mpc mod 2k for dishonest majority. In CRYPTO, 2018.

[2] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved
primitives for mpc over mixed arithmetic-binary circuits. In CRYPTO,
2020.

[3] T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl. A unified approach
to mpc with preprocessing using ot. In ASIACRYPT, 2015.

[4] C. Gentry, S. Halevi, and V. Vaikuntanathan. i-hop homomorphic en-
cryption and rerandomizable yao circuits. In CRYPTO. Springer, 2010.

[5] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. InnerCircle: A parallelizable
decentralized privacy-preserving location proximity protocol. In PST,
2015.

[6] A. Hern. Uber employees ’spied on ex-partners, politicians and Bey-
oncé’, 2016. https://www.theguardian.com/technology/2016/dec/
13/uber-employees-spying-ex-partners-politicians-beyonce.

[7] T. P. Jakobsen, J. B. Nielsen, and C. Orlandi. A framework for outsourcing
of secure computation. In ACM CCSW, 2014.

[8] R. Jones. The Uber scammers who take users for a (very expensive)
ride. 2016. https://www.theguardian.com/money/2016/apr/22/
uber-scam-hacking-account-phantom-journeys.

[9] K. Järvinen, A. Kiss, T. Schneider, O. Tkachenko, and Z. Yang. Faster
privacy-preserving location proximity schemes for circles and polygons.
IET Information Security, 14, 10 2019.

[10] D. Lee. Uber concealed huge data breach, 2017. http://www.bbc.com/
news/technology-42075306.

9

https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce
https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce
https://www.theguardian.com/money/2016/apr/22/uber-scam-hacking-account-phantom-journeys
https://www.theguardian.com/money/2016/apr/22/uber-scam-hacking-account-phantom-journeys
http://www.bbc.com/news/technology-42075306
http://www.bbc.com/news/technology-42075306

Bibliography

[11] S. Levin. Facebook fires engineer accused of stalking, possibly by abus-
ing data access. 2018. https://www.theguardian.com/technology/
2018/may/02/facebook-engineer-fired-alleged-stalker-tinder.

[12] Y. Lindell. How to simulate it–a tutorial on the simulation proof tech-
nique. In Tutorials on the Foundations of Cryptography, pages 277–346.
Springer, 2017.

[13] I. Oleynikov, E. Pagnin, and A. Sabelfeld. Where are you Bob? Privacy-
Preserving Proximity Testingwith a Napping Party. InComputer Security
– ESORICS 2020, pages 677–697, 2020.

[14] I. Oleynikov, E. Pagnin, and A. Sabelfeld. CatNap: Leveraging Generic
MPC for Actively Secure Privacy-Enhancing Proximity Testing with a
Napping Party. In Proceedings of the 19th International Conference on
Security and Cryptography – SECRYPT, pages 237–248, 2022.

[15] I. Oleynikov, E. Pagnin, and A. Sabelfeld. Outsourcing MPC Precompu-
tation for Location Privacy. In 2022 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), pages 504–513, 2022.

[16] C. Shu. Uber reportedly tracked Lyft drivers using a secret software
program named ‘Hell’. https://techcrunch.com/2017/04/12/hell-o-
uber/, 2017.

10

https://www.theguardian.com/technology/2018/may/02/facebook-engineer-fired-alleged-stalker-tinder
https://www.theguardian.com/technology/2018/may/02/facebook-engineer-fired-alleged-stalker-tinder
https://techcrunch.com/2017/04/12/hell-o-uber/
https://techcrunch.com/2017/04/12/hell-o-uber/

1
Where are you Bob?
Privacy-Preserving Prox-
imity Testing with a
Napping Party

Ivan Oleynikov, Elena Pagnin, Andrei Sabelfeld

ESORICS’2020

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

Abstract. Location based services (LBS) extensively utilize proxim-
ity testing to help people discover nearby friends, devices, and ser-

vices. Current practices rely on full trust to the service providers: users
share their locations with the providers who perform proximity test-
ing on behalf of the users. Unfortunately, location data has been often
breached by LBS providers, raising privacy concerns over the current
practices. To address these concerns previous research has suggested
cryptographic protocols for privacy-preserving location proximity test-
ing. Yet general and precise location proximity testing has been out of
reach for the current research. A major roadblock has been the require-
ment by much of the previous work that for proximity testing between
Alice and Bob both must be present online. This requirement is not
problematic for one-to-one proximity testing but it does not generalize
to one-to-many testing. Indeed, in settings like ridesharing, it is desir-
able to match against ride preferences of all users, not necessarily ones
that are currently online.
This paper proposes a novel privacy-preserving proximity testing pro-
tocol where, after providing some data about its location, one party can
go offline (nap) during the proximity testing execution, without under-
mining user privacy. We thus break away from the limitation of much
of the previous work where the parties must be online and interact di-
rectly to each other to retain user privacy. Our basic protocol achieves
privacy against semi-honest parties and can be upgraded to full security
(against malicious parties) in a straight forward way using advanced
cryptographic tools. Finally, we reduce the responding client overhead
from quadratic (in the proximity radius parameter) to constant, com-
pared to the previous research. Analysis and performance experiments
with an implementation confirm our findings.

12

1.1 Introduction

We use more and more sophisticated smart phones, wear smart watches,
watch programs on smart TVs, equip our homes with smart tools to regu-
late the temperature, light switches and so on.

Location Based Services. As we digitalize our lives and increasingly rely
on smart devices and services, location based services (LBS) are among the
mostwidely employed ones. These range from simple automation like “switch
my phone to silent mode if my location is office”, to more advanced services
that involve interaction with other parties, as in “find nearby coffee shops”,
“find nearby friends”, or “find a ride”.

Preserving Privacy for Location Based Services. Current practices rely
on full trust to the LBS providers: users share their locationswith the providers
who manipulate location data on behalf of the users. For example, social
apps Facebook and Tinder require access to user location in order to check
if other users are nearby. Unfortunately, location and user data has been of-
ten breached by the LBS providers [10]. The ridesharing app Uber has been
reported to violate location privacy of users by stalking journalists, VIPs,
and ex-partners [6], as well as ex-filtrating user location information from
its competitors [16]. This raises privacy concerns over the current practices.

Privacy-Preserving Proximity Testing. To address these concerns pre-
vious research has suggested cryptographic protocols for privacy-preserving
location services. The focus of this paper is on the problem of proximity
testing, the problem of determining if two parties are nearby without re-
vealing any other information about their location. Proximity testing is a
useful ingredient for many LBS. For example, ridesharing services are often
based on determining the proximity of ride endpoints [17]. There is exten-
sive literature (discussed in Section 1.6) on the problem of proximity test-
ing [13, 19, 20, 24, 28, 29, 35, 36, 37, 38, 39, 41].

13

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

Generality and Precision of Proximity Testing. Yet general and precise
location proximity testing has been out of reach for the current research. A
major roadblock has been the requirement that proximity testing between
Alice and Bob is only possible in a pairwise fashion and both must be present
online. As a consequence, Alice cannot have a single query answered with
respect to multiple Bobs, and nor can she is able to check proximity with
respect to Bob’s preferences unless Bob is online.

The popular ridesharing service BlaBlaCar [3] (currently implemented
as a full-trust service) is an excellent fit to illustrate our goals. This service
targets intercity rides which users plan in advance. It is an important require-
ment that users might go off-line after submitting their preferences. The goal
is to find rides that start and end at about the same location. Bob (there can
be many Bobs) submits the endpoints of a desired ride to the service and goes
offline (napping). At a later point Alice queries the service for proximity test-
ing of her endpoints with Bob’s. A key requirement is that Alice should be
able to perform a one-to-many proximity query, against all Bobs, and com-
pute answer even if Bob is offline. Unfortunately, the vast majority of the
previous work [13, 19, 20, 24, 29, 35, 36, 37, 38, 39, 41] fall short of addressing
this requirement.

Another key requirement for our work is precision. A large body of prior
approaches [13, 26, 28, 29, 30, 38, 39, 41] resort to grid-based approximations
where the proximity problem is reduced to the problem of checking whether
the parties are located in the same cell on the grid. Unfortunately, grid-
based proximity suffers from both false positives and negatives and can be
exploited when crossing cell boundaries [9]. In contrast, our work targets
precise proximity testing.

This paper addresses privacy-preserving proximity testing with respect
to napping parties. Beyond the described offline functionality and precision
we summarize the requirements for our solution as follows: (1) security, in
the sense that Alice may not learn anything else about Bob’s location other
than the proximity; Bob should not learn anything about Alice’s location;
and the service provider should not learn anything about Alice’s or Bob’s lo-
cations; (2) generality, in the sense that the protocol should allow for one-to-
manymatchingwithout demanding all users to be online; (3) precision, in the
sense of a reliable matching method, not an approximate one; (2) lightweight
client computation, in the sense of offloading the bulk of work to intermedi-
ate servers. We further articulate on these goals in Section 1.2.

Contributions. This paper proposes OLIC (OffLine Inner-Circle), a novel
protocol for proximity testing (Section 1.4). We break away from the limita-

14

1.1. Introduction

tion of much of the previous workwhere the parties must be online. Drawing
on Hallgren et al.’s two-party protocol InnerCircle [20] we propose a novel
protocol for proximity testing that utilizes two non-colluding servers. One
server is used to blind Bob’s location in such a way that the other server can
unblind it for any Alice. Once they have uploaded their locations users in our
protocol can go offline and retrieve the match outcome the next time they
are online.

In line with our goals, we guarantee security with respect to semi-honest
parties, proving that the only location information leaked by the protocol is
the result of the proximity test revealed to Alice (Section 1.4.2). We then show
how to generically mitigate malicious (yet non-colluding) servers by means
of zero knowledge proofs and multi-key homomorphic signatures (Section
1.4.3). Generality in the number of users follows from the fact that users
do not need to be online in a pairwise fashion, as a single user can query
proximity against the encrypted preferences of the other users. We leverage
InnerCircle to preserve the precision, avoiding to approximate proximity in-
formation by grids or introducing noise. Finally, OLIC offloads the bulk of
work from Bob to the servers, thus reducing Bob’s computation and com-
munication costs from quadratic (in the proximity radius parameter) to con-
stant. We note, that while InnerCircle can also be trivially augmented with
an extra server to offload Bob’s computations to, this will add extra security
assumptions and make InnerCircle less applicable in practice. OLIC, on the
other hand, already requires the servers for Bob to submit his data to, and
we get offloading for free. On Alice’s side, the computation and communica-
tion costs stay unchanged. We develop a proof of concept implementation of
OLIC and compare it with InnerCircle. Our performance experiments con-
firm the aforementioned gains (Section 1.5).

On the 2Non-Colluding ServersAssumption. Weconsider this assump-
tion to be realistic, in the sense that it significantly improves on the cur-
rent practices of a single full-trust server as in BlaBlaCar, while at the same
time being compatible with common assumptions in practical cryptographic
privacy-preserving systems. For example, Sharemind [37] requires three
non-colluding servers for its multi-party computation system based on 3-
party additive secret sharing. To the best of our knowledge, OLIC repre-
sents the first 2-server solution to perform proximity testing against napping
users in ridesharing scenarios, where privacy, precision and efficiency are all
mandatory goals. Notably, achieving privacy using a single server is known
to be impossible [16]. Indeed, if Bob was to submit his data to only one server
(instead of sharing it between two, as done in OLIC), then the server could

15

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

query itself on this data and learn Bob’s location via trilateration attack.

1.2 Modeling Private Proximity Testing Using Two
Servers

The goal of private proximity testing is to enable one entity, that we will call
Alice, to find out whether another entity, Bob, is within a certain distance
of her. Note that the functionality is asymmetric: only Alice learns whether
Bob lies in her proximity. The proximity test should be performed without
revealing any additional information regarding the precise locations to one
another, or to any third party.

We are interested in designing a protocol to perform privacy preserving
proximity testing exploiting the existence of two servers. For convenience,
we name the four parties involved in the protocol: Alice, Bob, Server1, and
Server2.

Our Setting. We consider a multi party computation protocol for four par-
ties (Alice, Bob, Server1, and Server2) that computes the proximity of Al-
ice’s and Bob’s inputs in a private way and satisfies the following three con-
straints:

(C-1) Alice does not need to know Bob’s identity before starting the test,
nor the parties need to share any common secret;

(C-2) Bob needs to be online only to update his location data. In particular,
Bob can ‘nap’ during the actual protocol execution.

(C-3) The protocol is executed with the help of two servers.

In detail, constraint (C-1) ensures that Alice can look for a match in the
database without necessarily targeting a specific user. This may be relevant
in situations where one wants to check the availability of a ride ‘near by’, in-
stead of searching if a specific cab is at reach and aligns with our generality
goal towards one-to-many matching. Constraint (C-2) is rarely considered
in the literature. The twomost common settings in the literature are either to
have Alice and Bob communicate directly to one another (which implies that
either the two parties need to be online at the same time) [20], or to rely on a
single server, which may lead either to ‘hiccup’ executions (lagging until the
other party rejoins online) [29] or to the need for a trusted server. In order to
ensure a smooth executions even with a napping Bob and to reduce the trust
in one single server, we make use of two servers to store Bob’s contribution

16

1.2. Modeling Private Proximity Testing Using Two Servers

to the proximity test, that is constraint (C-3). This aligns with our goal of
lightweight client computation. We remark that, for a napping Bob, privacy
is lost if we use a single server [16].

Finally, unlike [29] we do not require the existence of a social network
among system users, to determine who trusts whom, nor do we rely on
shared secret keys among users.

Formalizing ‘Napping’. We formalize the requirement that ‘Bob may be
napping’ during the protocol execution in the following way. It is possible to
split the protocol in two sequential phases. In the first phase, Bob is required
to be online and to upload data to the two servers. In the second phase Alice
comes online and perform her proximity test query to one server, that we
call Server1. The servers communicate with one another to run the protocol
execution, and finally Server2 returns the result to Alice.

Alice

Bob
1

Bob
2

r

Bob
3

Figure 1.1: Figura-
tive representation of
the functionality imple-
mented by privacy-pre-
serving location proxim-
ity.

Ideal Functionality. We adopt an ideal func-
tionality that is very close to the one in [20]: if
Alice and Bob are within a distance r2 of each
other, the protocol outputs 1 (to Alice), other-
wise it outputs 0 (to Alice). Figure 1.1 depicts
this behavior. Alice and Bob are the only par-
ties giving inputs to the protocol. Server1 and
Server2 do not give any input nor receive any
output. This approach aligns with our goal to-
wards precision and a reliable matching method,
and brakes away from approximate approaches.
For simplicity, we assume the threshold value r2
to be set a priori, but our protocol accommodates
for Alice (or Bob) to choose this value.

Practical efficiency. Finally, we are interested in solutions that are effi-
cient and run in reasonable time on commodity devices (e.g., laptop comput-
ers, smartphones). Concretely, we aim at reducing the computational burden
of the clients—Alice and Bob—so that their algorithms can run in just a few
seconds, and can in the worst case match the performance of InnerCircle.

Attacker Model. We make the following assumptions on the four parties
involved in the protocol:

(A-1) Server1, Server2 are not colluding;

17

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

(A-2) All parties (Alice, Bob, Server1, and Server2) are honest but curious,
i.e., they meticulously follow the protocol but may log all messages
and attempt to infer some further knowledge on the data they see.

In ourmodel any party could be an attacker that tries to extract un-authorized
information from the protocol execution. However, we mainly consider at-
tackers that do so without deviating from their expected execution. In Sec-
tion 1.4.3, we show that it is possible to relax assumption (A-2) for the servers
and deal with malicious Server1, Server2 (still not colluding). In this case, the
serversmaymisbehave and output a different result thanwhat expected from
the protocol execution. However, we do not let the two server collude and
intentionally share information. While we can handle malicious servers, we
cannot tolerate a malicious Alice or Bob. Detecting attacks such as Alice or
Bob providing fake coordinates, or Alice trilaterating Bob to learn his loca-
tion,is outside our scope and should be addressed by different means. We
regard such attacks as orthogonal to our contribution and suggest to miti-
gate them by employing tamper-resistant location devices or location tags
techniques [29].

Privacy. Our definition of privacy goes along the lines of [29]. Briefly, a
protocol is private if it reveals no information other than the output of the
computation, i.e., it has the same behavior as the ideal functionality. To show
the privacy of a protocol we adopt the standard definition of simulation based
security for deterministic functionalities [12]. Concretely, we will argue the
indistinguishably between a real world and an ideal world execution of our
protocol, assuming that the building blocks are secure, there is no collusion
among any set of parties and all parties are honest but curious. This means
that none of the parties involved in the OLIC protocol can deduce anything
they are not supposed to know by observing the messages they receive dur-
ing protocol execution.

General limitations. Proximity testing can be done in a private way only
for a limited amount of requests [20, 29] in order to avoid trilateration at-
tacks [43]. Practical techniques to limit the number of requests to proxim-
ity services are available [33]. Asymmetric proximity testing is suitable for
checking for nearby people, devices and services. It is known [41] that the
asymmetric setting not directly generalize to mutual location proximity test-
ing unless an honest party runs the protocol twice, with swapped roles but
using the same location as input).

18

1.3. Recap of the InnerCircle Protocol

Alice
(xA, yA)

Bob
(xB, yB)

(pk,sk)← Gen(1λ)
AStartpk(xA, yA)

b1← a1⊞ Encpk(x
2
B + y2B)

b2← a2 � xB
b3← a3 � yB
δ← b1⊞ b2⊞ b3

LessThanpk(δ,r2)

CheckLessThansk(L)

pk,a1, a2, a3

L
(List of ciphertexts)

Figure 1.2: Diagram of the InnerCircle protocol.

1.3 Recap of the InnerCircle Protocol

We begin by giving a high-level overview of the InnerCircle protocol by
Hallgren et al. [20] and then describe its relation to our work.

The InnerCircle protocol in [20] allows two parties, Alice and Bob, to
check whether the Euclidean distance between them is no greater than a
chosen value r . The protocol is privacy preserving, i.e., Alice only learns a
bit stating whether the Bob lies closer that r or not, while it does not reveal
anything to Bob or to any external party. More specifically, Alice and Bob
execute an interactive protocol, exchange messages and at the end only Alice
receives the answer bit. To let Bob learn the answer as well, one can simply
rerun the protocol swapping the roles of Alice and Bob.

More formally, let (xA, yA) and (xB, yB) respectively denote Alice’s and
Bob’s locations. Throughout the paper, we will use the shorthand D = (xA −
xB)2+(yA−yB)2 to denote the squared Euclidean distance between Alice and
Bob and δ is an encryption of D. For for any fixed non-negative integer r ,

19

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

the functionality implemented by the InnerCircle protocol is defined by:

FInnerCircle((xA, yA), (xB, yB)) = (z,ε), where

z =

1, if D ≤ r2 (D = (xA − xB)2 + (yA − yB)2)
0, otherwise.

InnerCircle is a single round protocol where the first message is from Alice
to Bob and the second one is from Bob to Alice (see Figure 1.2).

InnerCircle has three major steps (detailed in Figure 1.3):

Step-1: Alice runs the key generation algorithm to obtain her public key pk
and the corresponding sk. She encodes her location (xA, yA) into three
values and encrypts each of the latter using her pk . The encoding is
necessary to enable meaningful multiplication between Alice’s coor-
dinates and Bob’s as we will see in a moment. Finally, Alice sends her
pk and the three ciphertexts to Bob. This step is depicted in Figure 1.3a
(the AStart algorithm).

Step-2: Bob uses his location and Alice’s pk to homomorphically compute
a ciphertext δ that encrypts the value D = (xA − xB)2 + (yA − yB)2 =
(x2A +y2A) + (x2B +y2B)−2xAxB −2yAyB. Note that at this point Bob can
not learn the value of D, since he never obtains the sk corresponding
to Alice’s pk . Similarly, if Alice would receive the ciphertext δ, she
could decrypt is with sk and learn the exact value of her distance to
Bob, which clearly is more information than just a single bit stating
whether Bob is within distance r from her. To reduce the disclosed in-
formation to what is specified in the functionality Bob runs the hiding
procedure depicted in Figure 1.3b (the LessThan algorithm). Using
this procedure, Bob produces a list L of ciphertexts to return to Alice.

The list L depends on δ in such a way that it contains an encryption of
0 if and only if D ≤ r2.

Step-3: After receiving L, Alice decrypts each ciphertext in L using her sk.
If among the obtained plaintexts there is a 0 she deduces that D ≤ r2.
This step is formalized in Figure 1.3c (the CheckLessThan algorithm).

Figure 1.3 contains the definitions of the three procedures used in InnerCircle
that will carry on to our OLIC protocol. Below we describe the major ones
(LessThan and CheckLessThan) in more detail.

20

1.3. Recap of the InnerCircle Protocol

AStartpk(xA, yA)

1 : a1← Encpk (x
2
A + y2A)

2 : a2← Encpk (2xA)

3 : a3← Encpk (2yA)

4 : return (a1, a2, a3)

(a) The AStart algorithm.

LessThanpk(δ,r2)

1 : for i ∈ {0 . . . r2 − 1}
2 : xi ← δ⊞ Encpk (−i)
3 : ti ←M\ {0}
4 : li ← xi � ti
5 : L← [l0, . . . lr2−1]

6 : return Shuffle(L)

(b) The LessThan algorithm.

CheckLessThansk(L)

1 : [l0, l2 . . . lr2−1]← L

2 : for i ∈ {0 . . . r2 − 1}
3 : v← Decsk(li)

4 : if v = 0

5 : return 1

6 : return 0

(c) The CheckLessThan algo-
rithm.

Figure 1.3: The core algo-
rithms in the InnerCircle
protocol.

The procedure LessThan (Figure 1.3b)
produces a set of ciphertexts from which
Alice can deduce whether D ≤ r2 without
disclosing the actual value D. The main
idea behind this algorithm is that given δ =
Encpk(D) Bob can “encode” whether D = i
in the value x ← δ ⊕ Encpk(−i), and then
“mask” it by multiplying it by a random el-
ement l ← x� r . Observe that if D − i = 0
then Decsk(l) = 0; otherwise ifD−i is some
invertible element of M then Decsk(l) is
uniformly distributed on M \ {0}. (When
we instantiate our OLIC protocol for spe-
cific cryptosystem, we will ensure thatD−i
is either 0 or an invertible element, hence
we do not consider here the third case when
neither of these holds.) The LessThan pro-
cedure terminates with a shuffling of the
list, i.e., the elements in L are reorganized
in a random order so that the entry index
no longer correspond to the value i .

The procedure CheckLessThan (called
inProx in [20] depicted in Figure 1.3c. This
procedure takes as input the list L output by
LessThan and decrypts one by one all of its
components. The algorithm returns 1 if and
only if there is a list element that decrypts
to 0. This tells Alice whetherD = i for some
i < r2. We remark that Alice cannot in-
fer any additional information, in particu-
lar she cannot extract the exact value i for
which the equality holds. In the LessThan
procedure Bob computes such “encodings”
l for all i ∈ {0 . . . r2} and accumulates them
in a list. So if D ∈ {0 . . . r2 − 1} is the case,
then one of the list elements will decrypt to
zero and others will decrypt to uniformly randomM\ {0} elements, other-
wise all of the list elements will decrypt to random nonzero elements. If the
cryptosystem allowed multiplying encrypted values, Bob could compute the
product of the “encodings” instead of collecting them into a list and send

21

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

only a single plaintext, but the cryptosystem used here is only additively
homomorphic and does not allow multiplications.

1.4 Private LocationProximity TestingwithNapping
Bob

Notation. We denote an empty string by ε, and a list of values by [·] and
the set of plaintexts (of an encryption scheme) byM. We order parties al-
phabetically, protocols’ inputs and outputs follow the order of the parties.
Finally, we denote the computationally indistinguishablity of two distribu-
tions D1,D2 by D1

c≡D2.

1.4.1 OLIC: Description of the Protocol

In what follows, we describe our protocol for privacy-preserving location
proximity testing with a napping Bob. We name this protocol OLIC (for Of-
fLine InnerCircle) to stress its connection with the InnerCircle protocol and
the fact that it can run while Bob is offline. More specifically, instead of ex-
changing messages directly with one another (as in InnerCircle), in OLIC

Alice and Bob communicate with (and through) two servers.

The Ideal Functionality of OLIC. At a high level, OLIC takes as input
two locations (xA, yA) and (xB, yB), and a radius value r; and returns 1 if the
Euclidean distance between the locations is less than or equal to r , and 0
otherwise. We perform this test with inputs provided by two parties, Alice
and Bob, and the help of two servers, Server1 and Server2. Formally, our
ideal functionality has the same input and output behavior as InnerCircle for
Alice and Bob, but it additionally has two servers whose inputs and outputs
are empty strings ε.

FOLIC((xA, yA), (xB, yB), ε,ε) = (res, ε,ε,ε),

where res =

1, if (xA − xB)2 + (yA − yB)2 ≤ r2

0, otherwise.
(1.1)

In our protocol we restrict the input/output spaces of the ideal functionality
of Equation 1.4.1 to values that are meaningful to our primitives. In other
words, we require that the values xA, yA,xB, yB are admissible plaintext (for
the encryption scheme employed inOLIC), and that the following values are
invertible (in the ring of plaintext) xB, yB,D − i for i ∈ {0, . . . , r2 − 1} and

22

1.4. Private Location Proximity Testing with Napping Bob

D = (xA − xB)2 + (yA − yB)2. We will denote the set of all suitable inputs as
Sλ ⊆M.

Figure 1.4 depicts the flow of the OLIC protocol. Figure 1.5 contains the
detailed description of the procedures called in Figure 1.4.

Step-0: Alice, Server1, and Server2 independently generate their keys. Alice
sends her pk to Server1 and Server2; Server1 and Server2 send their
respective public keys pk1,pk2 to Bob.

Step-1: At any point in time, Bob encodes his location using the BStart

algorithm (Figure 1.5a), and sends its blinded coordinates to Server1,
and the corresponding blinding factors to Server2.

Step-2: At any point in time Alice runs AStart (Figure 1.3a) and sends her
ciphertexts to Server1.

Step-3: once Server1 collects Alice’s and Bob’s data it can proceed with
computing 3 addends useful to obtain the (squared) Euclidean distance
between their locations. To do so, Server1 runs CompTerms (Figure
1.5b), and obtains:

c1 = Encpk(x
2
A + y2A + (x2B + y2B + r1))

c2 = Encpk(2xA + (xB + r2))

c3 = Encpk(2yA + (yB + r3))

Server1 sends the above three ciphertexts to Server2.

Step-4: Server2 runsUnBlind (Figure 1.5c) to remove Bob’s blinding factors
from c1, c2, c3 and obtains the encrypted (squared) Euclidean distance
between Alice and Bob:

δ = c1⊞ Encpk(−r1)⊞ c2 � Encpk(r
−1
2)⊞ c3 � Encpk(r

−1
3)

= Encpk((xA − xB)2 + (yA − yB)2)

Then Server2 uses δ and the radius value r to run LessThan (as in
InnerCircle, Figure 1.3b), obtains the list of ciphertexts L and returns
L to Alice.

Step-5: Alice runs CheckLessThan (Figure 1.3c) to learn whether D ≤ r2

in the same way as done in InnerCircle.

The correctness of OLIC follows from the correctness of InnerCircle and a
straightforward computation of the input-output of BStart, CompTerms,
and UnBlind.

23

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

A
lice

(x
A
,y

A)
Server-1

Server-2
Bob

(x
B ,y

B)

(pk,sk)←
G
e
n(1

λ)
(pk

1 ,sk
1)←

G
e
n(1

λ)
(pk

2 ,sk
2)←

G
e
n(1

λ)

A
S
ta
rtpk (x

A
,y

A)
B
S
ta
rt(x

B ,y
B)

C
o
m
p
T
e
rm

s
sk

1 (pk,a
i ,b

i)

Go
offl

ine

U
n
B
lin

d
sk

2 (pk,c
i ,b ′i)

C
h
e
c
k
L
e
s
s
T
h
a
n
sk (L)

L
e
s
s
T
h
a
n
pk (δ,r

2)

pk
pk

1

pk
pk

2

a
1 ,a

2 ,a
3

(encr.loc.)

b
1 ,b

2 ,b
3

(encr.,blinded
location)

b ′1 ,b ′2 ,b ′3

(encr.random
ness)

c1 ,c2 ,c3
(encr.splitdist.)

L
(encr.list)

Figure
1.4:

O
verview

ofthe
m
essage

flow
ofour

O
L
IC

protocol.Th
e
m
essage

exchangesare
grouped

to
reduce

verticalspace;in
a
realexecution

ofthe
protocolBob

m
ay

subm
itatany

tim
e
before

C
o
m
p
T
e
rm

s
isrun.

24

1.4. Private Location Proximity Testing with Napping Bob

BStart(pk1,pk2,xB, yB)

1 : r1,←$ M

2 : r2, r3←$ M∗

3 : b1← Encpk1(x
2
B + y2B + r1)

4 : b2← Encpk1(xBr2)

5 : b3← Encpk1(yBr3)

6 : b′1← Encpk2(−r1)

7 : b′2← Encpk2(r
−1
2)

8 : b′3← Encpk2(r
−1
3)

9 : return (b1, b2, b3, b
′
1, b
′
2, b
′
3)

(a) The BStart algorithm.

CompTermssk1(pk,a1, a2, a3, b1, b2, b3)

1 : tmp1← Decsk1(b1)

2 : tmp2← Decsk1(b2)

3 : tmp3← Decsk1(b3)

4 : c1← a1⊞ Encpk (tmp1)

5 : c2← a2 � tmp2
6 : c3← a3 � tmp3
7 : return (c1, c2, c3)

(b) The CompTerms algorithm.

UnBlindsk2(pk,c1, c2, c3, b
′
1, b
′
2, b
′
3)

1 : tmp1← Decsk2(b
′
1)

2 : tmp2← Decsk2(b
′
2)

3 : tmp3← Decsk2(b
′
3)

4 : d1← c1⊞ Encpk (tmp)1
5 : d2← c2 � tmp2
6 : d3← c3 � tmp3
7 : return δ← d1⊞ d2⊞ d3

(c) The UnBlind algorithm.

Figure 1.5: The new subroutines in OLIC.

1.4.2 OLIC: Privacy of the Protocol

We prove that our OLIC provides privacy against semi-honest adversaries.
We do so by showing an efficient simulator for each party involved in the
protocol and then arguing that each simulator’s output is indistinguishable
from the view of respective party. More details on the cryptographic primi-
tives and their security model can be found in Appendix 1.A, or in [4, 12].

Theorem 1. If the homomorphic encryption scheme

HE = (Gen,Enc,Dec,Eval)

used in OLIC is IND-CPA secure and function private then OLIC securely real-
izes the privacy-preserving location proximity testing functionality (in Equation

25

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

1.4.1) against semi-honest adversaries.

We proveTheorem 1 by showing four simulators whose outputs are com-
putationally indistinguishable by nonuniform algorithms from the views of
the parties. Concretely, we will prove four lemmas, each dealing with a dif-
ferent party. Our simulators have the following structure:

simParty(Party’s input,Party’s output) = (Party’s view).

Moreover, will append a ′ symbol to denote the algorithms which return
their random bits in addition to their usual result, e.g., if the key-generation
algorithm (pk,sk) ← Gen(1λ) returns a pair of keys, then its counterpart
(pk,sk, r)← Gen′(1λ) returns the same output together with the string of
random bits r used to generate keys. Without loss of generality we will as-
sume that all four parties use exactly p(λ) random bits in one run of theOLIC

protocol, for some polynomial p(·).

Lemma 1. For all suitable inputs (xA, yA,xB, yB) ∈ Sλ for the OLIC protocol,
there exists a simulator simAlice such that:

simAlice((xA, yA),res)
c≡ viewOLIC

Alice ((xA, yA), (xB, yB), ε,ε),

where res =

1, if (xA − xB)2 + (yA − yB)2 ≤ r2

0, otherwise.

Proof. Alice receives only one message: the list L. The distribution of L is
defined by the bit res: when res = 0 the L is a list of encryptions of random
nonzero elements ofM, otherwise one of its elements (the position of which
is chosen uniformly at random) contains an encryption of zero.

This is exactly how simAlice (defined in Figure 1.6a) creates the list L
according to res. It is immediate to see that the distributions in Lemma 1
are not only computationally indistinguishable, but actually equal (perfectly
indistinguishable).

Lemma 2. For all suitable inputs (xA, yA,xB, yB) ∈ Sλ there exists a simulator
simBob such that:

simBob((xA, yA), ε)
c≡ viewOLIC

Bob ((xA, yA), (xB, yB), ε,ε).

Proof. Apart from a sequence of random bits, Bob’s view consists of two
public keys which the servers freshly generate before sending them to him.
This is exactly how simBob (in Figure 1.6b) obtains the keys it returns, so the
two distributions are not only computationally indistinguishable, but also are
equal.

26

1.4. Private Location Proximity Testing with Napping Bob

simAlice((xA, yA),res)

1 : (pk,sk)← Gen(1λ)

2 : for i ∈ {0 . . . r2 − 1}

3 : x←$M\{0}
4 : li ← Encpk (x)

5 : if res = 1

6 : i←$ {0, . . . r2 − 1}
7 : li = Encpk (0)

8 : L← [l0, l1 . . . lr2−1]

9 : r∗←$ {0,1}p(λ)

10 : return (r∗,L)

(a) The simulator for Alice.

simBob((xB, yB), ε)

1 : (pk1, sk1)← Gen(1λ)

2 : (pk2, sk2)← Gen(1λ)

3 : r∗←$ {0,1}p(λ)

4 : return (r,pk1,pk2)

(b) The simulator for Bob.

Figure 1.6: Simulators for Alice and Bob.

Lemma 3. For all suitable inputs (xA, yA,xB, yB) ∈ Sλ here exists a simulator
simS1 is such that: simS1(ε,ε)

c≡ viewOLIC
Server1((xA, yA), (xB, yB), ε,ε).

Proof. We show that the outputs produced by the two algorithms from Fig-
ure 1.7a and 1.7b are computationally indistinguishable by non uniform al-
gorithms (assuming HE is IND-CPA and circuit private). First, we observe
that the outputs of both algorithms consist of three parts which are gener-
ated independently: (pk,a1, a2, a3), (r,b1, b2, b3), r∗. It is easy to see that the
last two parts are generated in the same way by both algorithms, so the dis-
tributions are actually equal on these parts. The first part (pk,a1, a2, a3) of
both distributions are indistinguishable because of the IND-CPA property of
used encryption scheme.

Lemma 4. For all suitable inputs (xA, yA,xB, yB) ∈ Sλ there exists a simulator
simS2 such that: simS2(ε,ε)

c≡ viewOLIC
Server2((xA, yA), (xB, yB), ε,ε).

Proof. Like in the previous proof, we need to prove here that the outputs of
the functions from Figures 1.8a and 1.8b are indistinguishable. Observe that
the (rr∗, b′1, b

′
2, b
′
3) is generated independently from the rest of the output in

both algorithms, and this part is generated in the same way in both places,
so the both distributions are equal on this part. The rest of the outputs of
the two algorithms, namely (pk,c1, c2, c3), are indistinguishable from one
another because of the IND-CPA property of the used cryptosystem.

27

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

simS1(ε,ε)

1 : (pk,sk)← Gen(1λ)

2 : a1← Encpk (0)

3 : a2← Encpk (0)

4 : a3← Encpk (0)

5 : (pk1, sk1, r)← Gen′(1λ)

6 : β1←$M

7 : β2←$M∗

8 : β3←$M∗

9 : b1← Encpk1(β1)

10 : b2← Encpk1(β2)

11 : b3← Encpk1(β3)

12 : r∗←$ {0,1}p(λ)−|r |

13 : return (rr∗,pk,a1, a2, a3,

b1, b2, b3)

(a) The simulator for Server1.

viewOLIC
Server1((xA, yA), (xB, yB), ε,ε)

1 : (pk,sk)← Gen(1λ)

2 : (pk1, sk1, r)← Gen′(1λ)

3 : (a1, a2, a3)← AStartpk (xA, yA)

4 : r1,←$ M

5 : r2, r3←$ M∗

6 : b1← Encpk1(x
2
B + y2B + r1)

7 : b2← Encpk1(xBr2)

8 : b3← Encpk1(yBr3)

9 : r∗←$ {0,1}p(λ)−|r |

10 : return (rr∗,pk,a1, a2, a3,

b1, b2, b3)

(b) The view of Server1.

Figure 1.7: The simulator and view of Server1 in OLIC.

Privacy Remark on Bob. In case the two servers collude, Bob looses pri-
vacy, in the sense that Server1 and Server2 together can recover Bob’s loca-
tion (by unblinding the tmpi in CompTerms, Figure 1.5b). However Alice
retains her privacy even in case of colluding servers (thanks to the security
of the encryption scheme).

1.4.3 Security Against Malicious Servers

In Section 1.4.2 we proved that OLIC is secure against semi-honest adver-
saries. In what follows, we show how to achieve security against malicious
servers as well. We do it in a generic way, assuming two not-colluding
servers, a suitable non-interactive zero knowledge proof system (NIZK) and
employing a fairly novel cryptographic primitive called multi-key homomor-
phic signatures (MKHS) [1, 10]. The proposed maliciously secure version of
OLIC is currently more of a feasibility result rather than a concrete instan-
tiation: to the best of our knowledge there is no combination of MKHS and
NIZK that would fit our needs.

Homomorphic signatures [5, 14] enable a signer to authenticate their data

28

1.4. Private Location Proximity Testing with Napping Bob

simS2(ε,ε)

1 : (pk1, sk1, r)← Gen′(1λ)

2 : β1←$M

3 : β2←$M∗

4 : β3←$M∗

5 : b′1← Encpks (β1)

6 : b′2← Encpks (β2)

7 : b′3← Encpks (β3)

8 : (pk,sk)← Gen(1λ)

9 : c1← Encpk (0)

10 : c2← Encpk (0)

11 : c3← Encpk (0)

12 : r∗←$ {0,1}p(λ)−|r |

13 : return (rr∗,pk,b′1, b
′
2, b
′
3,

c1, c2, c3)

(a) The simulator for Server2.

viewOLIC
Server2((xA, yA), (xB, yB), ε,ε)

1 : (pk, sk)← Gen(1λ)

2 : (pk2, sk2, r)← Gen′(1λ)

3 : r1,←$ M

4 : r2, r3←$ M∗

5 : b′1← Encpk2(−r1)

6 : b′2← Encpk2(r
−1
2)

7 : b′3← Encpk2(r
−1
3)

8 : c1← Encpk (x
2
A + y2A+

x2B + y2B + r1)

9 : c2← Encpk (2xAxBr2)

10 : c3← Encpk (2yAyBr3)

11 : r∗←$ {0,1}p(λ)−|r |

12 : return (rr∗,pk,b′1, b
′
2, b
′
3,

c1, c2, c3)

(b) The view of Server2.

Figure 1.8: The simulator and view of Server2 in OLIC.

in such a way that any third party can homomorphically compute on it and
obtain (1) the result of the computation, and (2) a signature vouching for
the correctness of the latter result. In addition to what we just described,
MKHS make it possible to authenticate computation on data signed by mul-
tiple sources. Notably, homomorphic signatures and MKHS can be used to
efficiently verify that a computation has been carried out in the correct way
on the desired data without need to access the original data [10]. This prop-
erty is what we leverage to make OLIC secure against malicious servers.

At a high level, our proposed solution tomitigatemalicious serversworks
as follows. Alice and Bob hold distinct secret signing keys, skA and skB re-
spectively, and sign their ciphertexts before uploading them to the servers.
In detail, using the notation in Figure 1.4, Alice sends to Server1 the three
messages (ciphertexts) a1, a2, a3 along with their respective signatures σA

i ←
MKHS.Sign(skA, ai , ℓi), where ℓi is an opportune label.1 Bob acts similarly.
Server1 computes fi (the circuit corresponding to the computation inCompTerms

on the i-th input) on each ciphertext and each signature, i.e., ci ← f (ai , bi)

1More details on labels at the end of the section.

29

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

and σ ′i ← MKHS.Eval(f , {pkA,pkB},σA
i ,σ

B
i). The unforgeability of MKHS

ensures that eachmulti-key signature σ ′i acts as a proof that the respective ci-
phertext c′i has been computed correctly (i.e., using f on the desired inputs2).
Server2 can be convinced of this by checking ifMKHS.Verif(f , {ℓj }, {pkA,pkB}, c′i ,σ

′
i)

returns 1. If so, Server2 proceeds and computes the value δ (and its multi-
key signature σ) by evaluating the circuit g corresponding to the function
UnBlind. As remarked in Section 1.4.2, privacy demands that the random
coefficients, xi :s, involved in the LessThan procedure are not leaked to Al-
ice. However, without the xi :s Alice cannot run the MKHS verification (as
this randomness should be hardwired in the circuit h corresponding to the
function LessThan). To overcome this obstacle we propose to employ a zero
knowledge proof system. In this way Server2 can state that it knows undis-
closed values xi :s such that the output data (the list L← [l1, . . . , lr2−1]) passes
the MKHS verification on the computations dependent on xi :s. This can be
achieved by interpreting the MKHS verification algorithm as a circuit v with
inputs xi (and li).

Security Considerations. To guarantee security we need the MKHS to be
context hiding (e.g., [37], to prevent leakage of information between Server1
and Server2); unforgeable (in the homomorphic sense [10]); and the final
proof to be zero knowledge. Implementing this solution would equip OLIC

with a quite advanced and heavy machinery that enables Alice to detect ma-
licious behaviors from the servers.

A Caveat on Labels. There is final caveat on data labels [10] needed for
the MKHS schemes. We propose to set labels as a string containing the pub-
lic information: day, time, identity of the user producing the location data,
and data type identifier (e.g., (1,3) to identify the ciphertext b3, sent by Bob
to Server1, (2,1) to identify the ciphertext b′1, sent by Bob to Server2, and
(0,2) to identify Alice’s ciphertext a2—Alice only sends data to Server1). We
remark that such label information would be retrievable by InnerCircle as
well, as in that case Alice knows the identity of her interlocutor (Bob), and
the moment (day and time) in which the protocol is run.

1.5 Evaluation

In this section we evaluate the performance of our proposal in three dif-
ferent ways: first we provide asymptotic bounds on time complexity of the

2The ‘desired’ inputs are indicated by the labels, as we discuss momentarily.

30

1.5. Evaluation

algorithms in OLIC; second, we provide bounds on the total communication
cost of the protocol; finally we develop a proof-of-concept implementation
of OLIC to test its performance (running time and communication cost) and
compare it against the InnerCircle protocol. Recall that InnerCircle and
OLIC implement the same functionality (privacy-preserving proximity test-
ing), however the former requires Bob to be online during the whole protocol
execution while the latter does not.

Parameters. As described in Section 1.4.1, OLIC requires Alice to use an
additive homomorphic encryption scheme. However, no special property
is needed by the ciphertexts from Bob to the servers and between servers.
Our implementation employs the ElGamal cryptosystem over a safe-prime
order group for ciphertexts to and from Alice, while for the other messages
it uses the Paillier cryptosystem. We refer to this implementation as (non-
EC), as it does not rely on any elliptic curive cryptograpy (ECC). In order to
provide a fair comparison with its predecessor (InnerCircle), we additionally
instantiate OLIC using only ECC cryptosystems (EC), namely Elliptic Curve
ElGamal.

We note that additive homomorphic ElGamal relies on the face that a
plaintext value m is encoded into a group element as gm (where g denotes
the group generator). In this way, the multiplication of gm1 · gm2 returns an
encoding of the addition of the corresponding plaintext values m1 +m2. In
order to ‘fully’ decrypt a ciphertext, one would have to solve the discrete
logarithm problem and recover m from gm, which should be unfeasible, as
this corresponds to the security assumption of the ecryption scheme. Fortu-
nately, this limitation is not crucial for our protocol. In OLIC, indeed, Alice
only needs to check whether a ciphertext is an encryption of zero or not
(in the CheckLessThan procedure), and this can be done efficiently with-
out fully decrypting the ciphertext. However, we need to keep it into ac-
count when implementingOLICwith ECC. Indeed, inOLIC the servers need
to actually fully decrypt Bob’s ciphertexts in order to work with the corre-
sponding (blinded) plaintexts. We do so by employing a non-homomorphic
version of ElGamal based on the curve M383 in (EC) and Paillier cryptosys-
tem in (non-EC).

In our evaluation, we ignore the computational cost of initial key-generation
as, in real-life scenarios, this process is a one-time set up and is not needed
at every run of the protocol.

31

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

1.5.1 Asymptotic complexity

Table 1.1 shows both the concrete numbers of cryptographic operations and
our asymptotic bounds on the time complexity of the algorithms executed by
each party involved in OLIC. We assume that ElGamal and Paillier encryp-
tion, decryption and arithmetic operations, are performed in time O(λm)
(assuming binary exponentiation), where λ here is the security parameter
and m is the cost of λ-bit interger multiplication — depends on the specific
multiplication algorithm used, e.g., m = O(n logn loglogn) for Schönhage–
Strassen algorithm. This applies to both (EC) and (non-EC), although (EC)
in practice is used with a lot smaller values of λ.

Table 1.1: Concrete number of operations and asymptotic time complexity for each party
in OLIC (m is the cost of modular multiplication, λ the security parameter and
r the radius). In our implementation Alice decryption is actually an (efficient)
zero testing.

Party Cryptosystem operations Time bound

Alice 3 encryptions
r2 decryptions O(r2λm)

Bob 6 encryptions O(λm)

Server1
3 decryptions,

3 homomorphic operations, O(λm)

Server2
3 decryptions,

2r2 +5 arithmetic operations,
r2 encryptions

O(r2λm)

Communication cost. Thedata transmitted among parties during awhole
protocol execution amounts to r2+6 ciphertexts betweenAlice and the servers
and 6 ciphertexts between Bob and servers. Each ciphertext consists of 4λ
bits in case of (EC), and 2λ bits in case of (non-EC) (for both ElGamal and
Paillier). Asymptotically, both cases require O(λr2) bit of communication—
although (EC) is used with a lot smaller λ value in implementation.

1.5.2 Implementation

We developed a prototype implementation of OLIC in Python (available at
[32]). The implementation contains all of the procedures shown in pseu-
docode in Figures 1.3 and 1.5. To ensure a fair compare between OLIC and
InnerCircle, we implemented latter in the same environment (following the
nomenclature in Figure 1.2).

32

1.5. Evaluation

Our benchmarks for the total communication cost of the OLIC protocol
are reported in Figure 1.9. We measured the total execution time of each
procedure of both InnerCircle and OLIC. Figure 1.10 shows the outcome of
our measurements for values of the proximity radius parameter r ranging
from 0 to 100. Detailed values can be found in Appendix 1.B (Table 1.2).

0 50 100
0

0.5

1

1.5

Radius r

A
m
ou

nt
of

da
ta

[M
B
]

(non-EC)
(EC)

Figure 1.9: Total communication
cost of OLIC.

Setup. We used cryptosystems from
the cryptographic library bettertimes
[18], which was used for benchmark-
ing of the original InnerCircle protocol.
The benchmarks were run on Intel Core
i7-8700 CPU running at a frequency of
4.4 GHz. For (non-EC) we used 2048-
bit keys for ElGamal (the same as in
InnerCircle [20]), and 2148-bit keys for
Paillier to accomodate a modulus larger
than the ElGamal modulus (so that any
possible message of Bob fits into the
Paillier message space). For (EC) we
used curves Curve25519 for additive ho-
momorphic encryption and M383 for the ciphertexts exchanged among Bob
and the servers from the ecc-pycrypto library [7]. We picked these curves
because theywere available in the library and also becauseM383 uses a larger
modulus and allows us to encrypt the big values from the plaintexts field of
Curve25519.

The plaintext ring for (non-EC) ElGamal-2048 has at least |M| ≥ 22047

elements, which allowsAlice and Bob’s points to lie on the grid {1,2 . . .21023}2
ensuring that the seqared distance between them never exceeds 22047. The
corresponding plaintext ring size for (EC) is |M| ≥ 2251 (the group size of
Curve25519), and the grid is {1,2 . . .2125}2. Since Earth equator is ≈ 226 me-
ters long, either of the two grids is more than enough to cover any location
on Earth with 1 meter precision.

Optimizations. In InnerCircle [20], the authors perform three types of
optimizations on the LessThan procedure:

(O-1) Iterating only through those values of i ∈ {0, . . . , r2 − 1} which can be
represented as a sum of two squares, i.e., such i that ∃ a,b : i = a2+b2.

(O-2) Precomputing the ElGamal ciphertexts Encpk(−i), and only for those
i described in (O-1).

33

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

(O-3) Running the procedure in parallel, using 8 threads.

We adopt the optimizations (O-1) and (O-2) in our implementation as well.
Note that (O-1) reduces the length of list L (Figure 1.4), as well as the total
communication cost. We disregard optimization (O-3) since we are inter-
ested in the total amount of computations a party needs to do (thus this op-
timization is not present in our implementations of OLIC and InnerCircle).

0 20 40 60 80 100

0

2

4

6

8

10

12

Radius r

Ti
m
e
Sp

en
t [
s]

OLIC Alice (non-EC)
OLIC Bob (non-EC)

OLIC Servers (non-EC)
InnerCircle Alice (non-EC)
InnerCircle Bob (non-EC)

OLIC Alice (EC)
OLIC Bob (EC)

OLIC Servers (EC)
InnerCircle Alice (EC)
InnerCircle Bob (EC)

Figure 1.10: Running times of each party in InnerCircle and OLIC for
both (non-EC) and (EC) instantiations. (Reported times are obtained as
average of 40 executions.)

1.5.3 Performance Evaluation

Figure 1.10 shows a comparison of the total running time of each party in
OLIC versus InnerCircle. One significant advantage of OLIC is that it of-
floads the execution of the LessThan procedure from Bob to the servers.
This is reflected in Figure 1.10, where the running time of Bob is flat inOLIC,
in contrast to quadratic as in InnerCircle. Indeed, the combined running
time of the two servers in OLIC almost matches the running time of Bob in
InnerCircle. Note that the servers have to spend total 10-12 seconds on com-
putations when r = 100, which is quite a reasonable amount of time, given

34

1.6. Related Work

that servers are usually not as resource-constrained as clients, and that the
most time-consuming procedure LessThan consists of a single loop which
can easily be executed in parallel to achieve even better speed. Finally, we
remark that the amount of data being sent (Figure 1.9) between the parties
in OLIC is quite moderate.

In case Alice wants to be matched with multiple Bobs, say, with k of
them, the amount of computations that she and the servers performwill grow
linearly with k. The same applies to the communication cost. Therefore,
one can obtain the counterparts of Figures 1.10 and 1.9 for multiple Bobs by
simply multiplying all the plots (except Bob’s computations) by k.

1.6 Related Work

Zhong et al. [41] present the Louis, Lester and Pierre protocols for location
proximity. The Louis protocol uses additively homomorphic encryption to
compute the distance between Alice and Bob while it relies on a third party
to perform the proximity test. Bob needs to be present online to perform
the protocol. The Lester protocol does not use a third party but rather than
performing proximity testing computes the actual distance between Alice
and Bob. The Pierre protocol resorts to grids and leaks Bob’s grid cell distance
to Alice.

Hide&Crypt by Freni et al. [13] splits proximity in two steps. Filtering
is done between a third party and the initiating principal. The two princi-
pals then execute computation to achieve finer granularity. In both steps, the
granule which a principal is located is sent to the other party. C-Hide&Hash
by Mascetti et al. [28] is a centralized protocol, where the principals do not
need to communicate pairwise but otherwise sharemany aspectswithHide&Crypt.
FriendLocator by Šikšnys et al. [39] presents a centralized protocol where
clients map their position to different granularities, similarly to Hide&Crypt,
but instead of refining via the second principal each iteration is done via the
third party. VicinityLocator also by Šikšnys et al. [38] is an extension of
FriendLocator, which allows the proximity of a principal to be represented
not only in terms of any shape.

Narayanan et al. [29] present protocols for proximity testing. They cast
the proximity testing problem as equality testing on a grid system of hexagons.
One of the protocol utilizes an oblivious server. Parties in this protocol use
symmetric encryption, which leads to better performance. However, this re-
quires to have preshared keys among parties, which is less amenable to one-
to-many proximity testing. Saldamli et al. [36] build on the protocol with the
oblivious server and suggest optimizations based on properties from geom-

35

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

etry and linear algebra. Nielsen et al. [30] and Kotzanikolaou et al. [26] also
propose grid-based solutions.

Šeděnka and Gasti [37] homomorphically compute distances using the
UTM projection, ECEF (Earth-Centered Earth-Fixed) coordinates, and the
Haversine formula that make it possible to consider the curvature of the
Earth. Hallgren et al. [20] introduce InnerCircle for parallizable decentral-
ized proximity testing, using additively homomorphic encryption between
two parties that must be online. The MaxPace [19] protocol builds on speed
constraints of an InnerCircle-style protocol as to limit the effects of trilater-
ation attacks. Polakis [33] study different distance and proximity disclosure
strategies employed in the wild and experiment with practical effects of tri-
lateration.

Sakib and Huang [35] explore proximity testing using elliptic curves.
They require Alice and Bob to be online to be able to run the protocol. Järvi-
nen et al. [24] design efficient schemes for Euclidean distance-based privacy-
preserving location proximity. They demonstrate performance improvements
over InnerCircle. Yet the requirement of the two parties being online applies
to their setting as well. Hallgren et al. [17] how to leverage proximity test-
ing for endpoint-based ridesharing, building on the InnerCircle protocol, and
compare this method with a method of matching trajectories.

The computational bottle neck of privacy-preserving proximity testing is
the input comparison process. Similarly to [20, 33], we rely on homomorphic
encryption to compare a private input (the distance between the submitted
locations) with a public value (the threshold). Other possible approaches
require the use of the arithmetic black box model [6], garbled circuits [25],
generic two party computations [12], or oblivious transfer extensions [8].

To summarize, the vast majority [13, 19, 20, 24, 29, 35, 36, 37, 38, 39, 41]
of the existing approaches to proximity testings require both parties to be
online, thus not being suitable for one-to-many matching. A notable excep-
tion to the work above is the C-Hide&Hash protocol by Mascetti et al. [28],
which allows one-to-many testing, yet at the price of not computing the pre-
cise proximity result but its grid-based approximation. Generally, a large
number of approaches [13, 26, 28, 29, 30, 38, 39, 41] resort to grid-based ap-
proximations, thus loosing precision of proximity tests.

There is a number of existing works, which consider the problem of com-
puting generic functions in the setting, where clients are not online during
the whole execution. Hallevi et al. [16] consider a one-server scenario and
show that the notion of security agains semi-honest adversary (which we
prove for our protocol) is impossible to achive with one server. Additionally,
the model from [16] lets all the parties know each other’s public keys, i.e.,

36

1.7. Conclusions

the clients know all the other clients who supply inputs for the protocol—
this does not allow one-to-many matching, which we achive in our work.
Further works [1, 2, 14, 15, 22] also consider one-server scenarios.

1.7 Conclusions

We have presented OLIC, a protocol for privacy-preserving proximity test-
ing with a napping party. In line with our goals, (1) we achieve privacy with
respect to semi-honest parties; (2) we enable matching against offline users
which is needed in scenarios like ridesharing; (3) we retain precision, not
resorting to grid-based approximations, and (4) we reduce the responding
client overhead from quadratic (in the proximity radius parameter) to con-
stant.

Future work avenues include developing a fully-fledged ridesharing sys-
tem based on our approach, experimenting with scalability, and examining
the security and performance in the light of practical security risks for LBS
services.

37

This page intentionally left blank.

Bibliography

[1] D. F. Aranha and E. Pagnin. The simplest multi-key linearly homomor-
phic signature scheme. In LATINCRYPT, pages 280–300. Springer, 2019.

[2] A. Beimel, A. Gabizon, Y. Ishai, E. Kushilevitz, S. Meldgaard, and
A. Paskin-Cherniavsky. Non-interactive secure multiparty computa-
tion. In J. A. Garay and R. Gennaro, editors, CRYPTO, volume 8617 of
LNCS, pages 387–404. Springer, 2014.

[3] F. Benhamouda, H. Krawczyk, and T. Rabin. Robust non-interactive
multiparty computation against constant-size collusion. In J. Katz and
H. Shacham, editors, CRYPTO, volume 10401 of LNCS, pages 391–419.
Springer, 2017.

[4] BlaBlaCar - Trusted carpooling. https://www.blablacar.com/.

[5] D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial
functions. In EUROCRYPT, pages 149–168. Springer, 2011.

[6] O. Catrina and S. De Hoogh. Improved primitives for secure multiparty
integer computation. In SCN, pages 182–199. Springer, 2010.

[7] ChangLiu. Ecc-pycrypto Library, 2019 (accessed April 14, 2020).

[8] G. Couteau. New protocols for secure equality test and comparison. In
ACNS, pages 303–320. Springer, 2018.

[9] J. Cuéllar, M. Ochoa, and R. Rios. Indistinguishable regions in geo-
graphic privacy. In SAC, pages 1463–1469, 2012.

[10] D. Fiore, A. Mitrokotsa, L. Nizzardo, and E. Pagnin. Multi-key homo-
morphic authenticators. In ASIACRYPT, pages 499–530. Springer, 2016.

[11] D. Freni, C. R. Vicente, S. Mascetti, C. Bettini, and C. S. Jensen. Pre-
serving location and absence privacy in geo-social networks. In CIKM,
pages 309–318, 2010.

39

https://www.blablacar.com/

Bibliography

[12] J. Garay, B. Schoenmakers, and J. Villegas. Practical and secure solutions
for integer comparison. In PKC, pages 330–342. Springer, 2007.

[13] C. Gentry, S. Halevi, and V. Vaikuntanathan. i-hop homomorphic en-
cryption and rerandomizable yao circuits. In Annual Cryptology Con-
ference, pages 155–172. Springer, 2010.

[14] S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homo-
morphic signatures from standard lattices. In STOC, pages 469–477.
ACM, 2015.

[15] S. D. Gordon, T. Malkin, M. Rosulek, and H. Wee. Multi-party compu-
tation of polynomials and branching programs without simultaneous
interaction. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT,
LNCS. Springer, 2013.

[16] S. Halevi, Y. Ishai, A. Jain, I. Komargodski, A. Sahai, and E. Yogev. Non-
interactive multiparty computation without correlated randomness. In
T. Takagi and T. Peyrin, editors, ASIACRYPT, volume 10626 of LNCS,
pages 181–211. Springer, 2017.

[17] S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In CRYPTO, pages 132–
150, 2011.

[18] P. Hallgren. BetterTimes Python Library, 2017 (accessed January 22,
2020).

[19] P. Hallgren, C. Orlandi, and A. Sabelfeld. PrivatePool: Privacy-
Preserving Ridesharing. In CSF, pages 276–291, Aug 2017.

[20] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. InnerCircle: A parallelizable
decentralized privacy-preserving location proximity protocol. In PST,
pages 1–6, 2015.

[21] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. MaxPace: Speed-
Constrained Location Queries. In CNS, 2016.

[22] A. Hern. Uber employees ’spied on ex-partners, politicians and Bey-
oncé’, 2016. https://www.theguardian.com/technology/2016/dec/
13/uber-employees-spying-ex-partners-politicians-beyonce.

[23] A. Jarrous and B. Pinkas. Canon-mpc, a system for casual non-
interactive secure multi-party computation using native client. In
A. Sadeghi and S. Foresti, editors, WPES, pages 155–166. ACM, 2013.

40

https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce
https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce

Bibliography

[24] K. Järvinen, Á. Kiss, T. Schneider, O. Tkachenko, and Z. Yang. Faster
privacy-preserving location proximity schemes. InCANS, volume 11124
of LNCS, pages 3–22. Springer, 2018.

[25] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit
building blocks and applications to auctions and computing minima. In
CANS, pages 1–20. Springer, 2009.

[26] P. Kotzanikolaou, C. Patsakis, E. Magkos, and M. Korakakis.
Lightweight private proximity testing for geospatial social networks.
Computer Communications, 73:263–270, 2016.

[27] D. Lee. Uber concealed huge data breach, 2017. http://www.bbc.com/
news/technology-42075306.

[28] Y. Lindell. How to simulate it–a tutorial on the simulation proof tech-
nique. In Tutorials on the Foundations of Cryptography, pages 277–346.
Springer, 2017.

[29] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia. Privacy
in geo-social networks: proximity notification with untrusted service
providers and curious buddies. VLDB J., 20(4):541–566, 2011.

[30] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh.
Location privacy via private proximity testing. In NDSS, 2011.

[31] J. D. Nielsen, J. I. Pagter, and M. B. Stausholm. Location privacy via
actively secure private proximity testing. In PerCom Workshops, pages
381–386. IEEE CS, 2012.

[32] I. Oleynikov, E. Pagnin, and A. Sabelfeld. Where are you Bob? Privacy-
preserving proximity testing with a napping party. 2020.

[33] E. Pagnin, G. Gunnarsson, P. Talebi, C. Orlandi, and A. Sabelfeld. TOP-
Pool: Time-aware Optimized Privacy-Preserving Ridesharing. PoPETs,
2019(4):93–111, 2019.

[34] I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and A. D. Keromytis.
Where’s wally?: Precise user discovery attacks in location proximity
services. In CCS, 2015.

[35] M. N. Sakib and C. Huang. Privacy preserving proximity testing using
elliptic curves. In ITNAC, pages 121–126. IEEE Computer Society, 2016.

41

http://www.bbc.com/news/technology-42075306
http://www.bbc.com/news/technology-42075306

Bibliography

[36] G. Saldamli, R. Chow, H. Jin, and B. P. Knijnenburg. Private proximity
testing with an untrusted server. In WISEC, pages 113–118. ACM, 2013.

[37] L. Schabhüser, D. Butin, and J. Buchmann. Context hiding multi-
key linearly homomorphic authenticators. In CT-RSA, pages 493–513.
Springer, 2019.

[38] J. Sedenka and P. Gasti. Privacy-preserving distance computation and
proximity testing on earth, done right. In AsiaCCS, pages 99–110, 2014.

[39] Sharemind MPC Platform. https://sharemind.cyber.ee/sharemind-
mpc/multi-party-computation/.

[40] C. Shu. Uber reportedly tracked Lyft drivers using a secret software
program named ‘Hell’. https://techcrunch.com/2017/04/12/hell-o-
uber/, 2017.

[41] L. Siksnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu. Private and flexible
proximity detection in mobile social networks. In MDM, pages 75–84,
2010.

[42] L. Siksnys, J. R. Thomsen, S. Saltenis, M. L. Yiu, and O. Andersen. A
location privacy aware friend locator. In SSTD, pages 405–410, 2009.

[43] M. Veytsman. How I was able to track the location of any tinder user,
February 2014. http://blog.includesecurity.com/.

[44] G. Zhong, I. Goldberg, and U. Hengartner. Louis, lester and pierre:
Three protocols for location privacy. In PET, pages 62–76, 2007.

42

https://sharemind.cyber.ee/sharemind-mpc/multi-party-computation/
https://sharemind.cyber.ee/sharemind-mpc/multi-party-computation/
https://techcrunch.com/2017/04/12/hell-o-uber/
https://techcrunch.com/2017/04/12/hell-o-uber/
http://blog.includesecurity.com/

Appendix

1.A Tools Used in OLIC

Homomorphic Encryption [4]. A Homomorphic Encryption scheme is
a tuple of four PPT algorithms HE = (KeyGen,Enc,Eval,Dec) that satisfy
the properties of correctness, compactness, (semantic) security and circuit
privacy. Intuitively these properties states that: given an n-input function
f and n ciphertexts cti = Enc(pk,mi), the Eval algorithm outputs a new
ciphertext ct′ that decrypts to f (m1, . . . ,mn). The ciphertext ct′ is short, and
given a ciphertext ct no PPT algorithm can guess what message is encrypted
in ct unless given access to the secret key sk for decryption.

Formally, the algorithms are as follows:

KeyGen(1λ): the key generation algorithm takes as input the security pa-
rameter λ and outputs a key pair (sk, pk). Implicitly this algorithm
also defines the set of plaintextM and of ciphertexts C.

Enc(pk,m): the encryption algorithm takes as input pk and a message m,
and it outputs a ciphertext ct.

Eval(pk, f , ct1, . . . ,ctn): the evaluation algorithm takes as input pk , a func-
tion f :Mn→M in a set of admissible functions f unc and n cipher-
texts. It returns a ciphertext ct.

Dec(sk,ct): the decryption algorithm takes sk and a ciphertext ct, and out-
puts a message m.

An additive homomorphic encryption scheme is a HE where the set of
functions f that Eval can handle is made of linear functions. Concretely this
means that given Enc(m1) and Enc(m2), and two coefficients a1, a2 ∈M , one
can efficiently compute Enc(a1m1 + a2m2).

43

1. Where are you Bob? Privacy-Preserving Proximity Testing with a Napping
Party

Function privacy. We adopt the definition of function for honest-but-
curious parties given in [4]. In a nutshell, this definition states that the
scheme is function-private if there exists an efficient simulator Sim such that
for every compatible sequence of admissible functions f = f1◦· · ·◦ft the fol-
lowing two distributions are indistinguishable Evalpk(fj , cj1)

c≡ Sim(pk,cj1,1
|fj |, (f1◦

· · · ◦ fj)(x)). For further details we refer the readers to [4], Def. 2.

1.B Detailed Measurements

Table 1.2 reports the concrete running times we obtained in our experiments.
These values are used as source to plot the overall running time of each party,
in Figure 1.10.

44

1.B. Detailed Measurements

Ta
bl
e
1.
2:

Ru
nn

in
g
tim

e
of

pa
rti

es
in

In
n
e
rC

ir
c
le

an
d
O
L
IC

.

Ra
di
us

r
Ti
m
e
[s
]

In
n
e
rC

ir
c
le

A
lic

e
In
n
e
rC

ir
c
le

Bo
b

O
L
IC

A
lic

e
O
L
IC

Bo
b

O
L
IC

se
rv

er
s

(E
C
)

(n
on

-E
C
)

(E
C
)

(n
on

-E
C
)

(E
C
)

(n
on

-E
C
)

(E
C
)

(n
on

-E
C
)

(E
C
)

(n
on

-E
C
)

0
0.
01

0.
00

0.
00

0.
00

0.
01

0.
00

0.
10

0.
18

0.
08

0.
04

5
0.
03

0.
02

0.
06

0.
04

0.
03

0.
02

0.
10

0.
18

0.
13

0.
08

10
0.
10

0.
04

0.
18

0.
14

0.
09

0.
04

0.
10

0.
18

0.
26

0.
18

15
0.
17

0.
08

0.
37

0.
28

0.
19

0.
08

0.
10

0.
17

0.
45

0.
32

20
0.
36

0.
13

0.
62

0.
48

0.
32

0.
12

0.
10

0.
17

0.
70

0.
51

25
0.
47

0.
16

0.
92

0.
71

0.
57

0.
18

0.
10

0.
17

1.
00

0.
75

30
0.
61

0.
30

1.
28

0.
99

0.
67

0.
23

0.
10

0.
17

1.
36

1.
03

35
0.
77

0.
30

1.
71

1.
31

0.
67

0.
29

0.
10

0.
17

1.
79

1.
35

40
1.
16

0.
44

2.
17

1.
67

1.
19

0.
42

0.
10

0.
17

2.
25

1.
71

45
1.
47

0.
52

2.
70

2.
08

1.
22

0.
61

0.
10

0.
17

2.
78

2.
12

50
1.
63

0.
63

3.
30

2.
55

1.
69

0.
72

0.
10

0.
17

3.
38

2.
59

55
2.
23

0.
69

3.
92

3.
04

1.
85

0.
74

0.
10

0.
17

4.
00

3.
08

60
2.
29

0.
95

4.
63

3.
59

2.
22

0.
95

0.
10

0.
17

4.
71

3.
63

65
2.
53

1.
12

5.
38

4.
19

2.
41

1.
05

0.
10

0.
17

5.
46

4.
22

70
3.
19

1.
20

6.
20

4.
84

3.
17

1.
24

0.
10

0.
17

6.
28

4.
88

75
3.
33

1.
34

7.
07

5.
52

3.
28

1.
33

0.
10

0.
17

7.
15

5.
56

80
3.
82

1.
64

7.
99

6.
26

4.
10

1.
43

0.
10

0.
17

8.
07

6.
30

85
4.
87

1.
84

8.
99

7.
07

4.
36

1.
83

0.
10

0.
17

9.
07

7.
10

90
5.
07

1.
67

10
.0
3

7.
91

4.
92

1.
98

0.
10

0.
17

10
.1
1

7.
95

95
5.
79

1.
74

11
.1
5

8.
79

5.
39

1.
82

0.
10

0.
17

11
.2
2

8.
83

10
0

5.
93

2.
37

12
.3
3

9.
75

5.
64

2.
43

0.
10

0.
17

12
.4
1

9.
79

45

This page intentionally left blank.

2
CatNap: Leveraging
Generic MPC for Actively
Secure Privacy-Enhancing
Proximity Testing with a
Napping Party

Ivan Oleynikov, Elena Pagnin, Andrei Sabelfeld
SECRYPT’2022

Abstract. Proximity testing is at the core of several Location-Based
Services (LBS). Despite a series of reported and confirmed abuses,

modern LBSs still demand their clients to disclose their locations in
plain in order to preform location proximity testing.
This works aims at enhancing proximity testing with privacy. We de-
sign CatNap a novel protocol that (1) implements precise Euclidean dis-
tance matching; (2) allows matching even if the clients are not online at
the same time (the “napping party” feature); (3) is secure against active
adversaries (malicious actors that corrupt up to one party); (4) makes
black-box use of generic Multi-Party Computation techniques (any fu-
ture improvement of the underlying building blocks will also boost Cat-
Nap); and (5) is efficient: servers run with about 0.03 seconds of CPU
time and 5.6MB of communication, while clients perform only a small
number of Boolean operations and need just 51 bytes of communica-
tion.

This page intentionally left blank.

2.1 Introduction

Location-Based Services (LBS) have gained a steadily increasing role in our
lives by providing personalized services based on users’ locations, e.g., dis-
playing nearby points of interest, selecting optimal services (e.g., taxi rides),
or even triggering specific location-based behaviors (e.g., smart home de-
vices). At the core of most LBS is a proximity testing (PT) protocol that allows
the system to decide whether some parties lie within a certain proximity of
one another. This paper focuses on PT by means of privacy-enhancing pro-
tocols and input coordinates (e.g., users know their own locations), which is
themain use case for LBS.We acknowledge the existence of other approaches
that implement PT via direct communication and measuring signal strength
using, e.g., Bluetooth [40] (adopted in some COVID-19 contact tracing apps).
While these solutions might provide an accurate distance calculation, they
occupy a different niche: in some LBS it might not be possible for users
to pick each other signals (e.g., planning for a shared ride between towns;
matching with a proximity radius larger than the signal range; or matching
with offline users).

Modern taxi servicesmatch drivers and passengers according to the prox-
imity of their routes, or the start and endpoints of their journeys. Messaging
apps use PT to match users who are in the same area, and online mapping
services use it to help users discover close-by places.

In current practice, LBS are full-trust centralized services: to deliver their
functionality, they require users to submit their location data to the LBS.This
way, the LBS provider knows the location of any active client in their system;
and clients cannot check if their data has been used the way they expect, and
not misused by the LBS provider or stolen by an attacker who breached the
security of LBS. For example, Snapchat employees reportedly abused their
privileges to spy on users’ location data [7], and similar cases were reported
about Uber [20], Yahoo [6], and Facebook [8]. This raises privacy concerns
over the existing practices and motivates the search for solutions that would
ensure the privacy of user data.

This paper designs a cryptographic protocol that performs proximity test-
ing in a privacy-enhancing way. Such protocol is required to be correct (pro-

49

2. CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing
Proximity Testing with a Napping Party

vide the right answer) and secure (preserve input privacy) by revealing only
the outcome of the PT, and no further information about users’ locations. In
the remainder of the paper, whenever we refer to PT, we will mean privacy-
enhancing proximity testing.

Formalizing PT. There exist multiple approaches to formalizing “loca-
tion” and “proximity” in PT. The grid-based approach [13, 26, 28, 29, 30, 38,
39, 41] divides the whole plane into a grid of cells, the clients determine the
cell they are in and then simply perform equality test on their cell identifiers.
Although it might be tempting to do PT at a cost of a simple equality test, this
approach suffers from inherent imprecision. Another alternative is polygon-
basedmatching [9], which becomes less efficient if one wants to approximate
a circle with a polygon (but may suit applications like geofencing). We fol-
low the line of work on Euclidean distance-based matching [9, 18, 31, 32],
because it is precise and it is natural to some important applications, e.g.,
messengers, social networks, and taxi. Euclidean distance may serve as an
approximation of other measures like Manhattan distance.

In this work, we consider users’ locations to be points on a (discretized)
Euclidean plane (which can approximate a small enough region of Earth’s
surface). Our functionality matches two users (outputs 1 instead of 0) if the
distance between their input locations does not exceed a threshold radius
value R, on which they agree beforehand. The threshold radius R here serves
as a parameter of the protocol, and can be chosen to be any positive integer
when instantiating the protocol; it is fixed and public, i.e. known to all the
parties prior to the protocol start. We focus on the case of 2-dimensional
client locations (i.e. belonging to a Euclidean plane) for a fair comparison
with prior work, but it is not essential for our protocol: CatNap easily gen-
eralizes to n-dimensional Euclidean distance-based matching.

Distinguishing Features of CatNap. There are three crucial features
that we achieve with CatNap but that were out of reach for previous work
[9, 18, 31] on Euclidean distance-based PT:

Offline We adopt the setting of “napping party” [31]: in addition to the
two clients who want to use the PT, we introduce two servers that will aid
the clients in it. One of the clients can connect to the servers at any moment,
submit its location (in a privacy-preserving manner) to them and go offline.
The other client will connect to them later, submit its location, wait for the
servers to perform matching, and retrieve the result. The clients connect to
the servers at possibly disjoint moments of time. In real-life applications, the
two servers can be run by independent, mutually distrusting organizations
which are providing a single LBS together. Introducing servers is neces-
sary to perform privacy-preserving PT while a client is offline. The use of

50

2.1. Introduction

two not-colluding servers allows us to remove the requirement for clients
to share keys or any other secret information before the protocol starts. As
a consequence, the data submitted by a client is not tied to a specific other
client and it is up to the servers to decide whom to match the client with.

RadiusInd In [18, 31] the protocol performance depends on R, the prox-
imity radius. This is a significant limitation that makes such protocols practi-
cal only for small enough values of R. In contrast, our CatNap’s performance
(computation, communication, and round complexity) does not depend on
the chosen value of R.

ActiveSec From the security viewpoint, for a protocol to be truly practi-
cal it needs to be secure against active adversaries (actively secure for short).
This means that the protocol preserves its security even if some of the parties
get corrupted by the adversary, who maliciously makes them deviate from
the protocol specification. As discussed by Oleynikov et al. [31], if the adver-
sary corrupts both servers, it can recover all locations submitted by clients.
In this setting, it is impossible to guarantee location privacy and clients’ input
privacy is lost. We require CatNap to have the best possible active security
in the given circumstances: to be secure as long as at least one of the two
servers is honest.

The offline feature is particularly distinguishing since most existing PT
protocols [9, 18, 19, 31, 35, 41] require the clients (whowant to perform the PT
of their locations) to communicate directly with one another. This presents a
significant limitation to the protocols’ applications: in some scenarios, users
expect to be matched with their friends or places on the map (e.g. cafes,
stores) even when the other clients are not online. Therefore it may be de-
sirable to have an intermediate entity that the clients could interact through.
While the use of servers is necessary to perform offline PT, relying on two
servers comes with an extra benefit: now the clients can reduce their work-
load by offloading computations to the servers. Although the servers do not
learn the matching outcome, they know which clients requested PT to be
run (also how many times and when the users did so); this is a necessary
compromise since perfectly hiding the user identities to the servers would
introduce an unrealistic performance overhead and negate all the benefits of
Offline feature. Concrete server policies for choosing clients to match are
very application-specific and are out of the scope of this work. It must be
noted that such a policy can be correctly enforced as long as at least one of
the two servers honestly follows it; which is realistic in our model, where
the protocol security already requires one of the servers to be honest.

Table 3 summarizes the features achieved by our protocol, CatNap, com-
pared to the most relevant recent works. The InnerCircle protocol by Hall-

51

2. CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing
Proximity Testing with a Napping Party

gren et al. [18] involves two clients who communicate with one another di-
rectly, its main drawbacks are passive security and performance proportional
to R2. The protocols ABYC

Y and ABYC
AY by Järvinen et al. [9] have perfor-

mance that is independent of the radius value R, but use passively secure
two-party computation techniques which implicitly demand clients be on-
line at the same time and interact. The OLIC protocol by Oleynikov et al. [31]
is essentially an adaptation of InnerCircle to the two-server setting, and thus
it is the first protocol to provide the Offline feature. It inherits some of the
drawbacks of InnerCircle [18]: passive security and R2-dependent perfor-
mance. These works are further discussed in section 2.5. This paper presents
CatNap, the first protocol for privacy-enhancing location PT to achieve all
the above three properties.

Table 3: Comparison of CatNap features to the related protocols

Protocol O
ffl

in
e

R
ad

iu
sI

nd

A
ct

iv
eS

ec
InnerCircle

[18] − − −

ABYC
Y and ABYC

AY [9] − + −
OLIC [31] + − −
CatNap + + +

Our contribution. This paper presents CatNap, a novel, actively secure
protocol for server-aided privacy-enhancing PT. CatNap is the first actively
secure PT protocol to achieve practical performance. We provide a formal de-
scription of the CatNap protocol and its building blocks. We formally prove
its security in Canetti’s hybrid model [4], as long as one of the two servers is
honest. In addition, we develop a proof of concept implementation of CatNap
and compare its performance against InnerCircle [18], OLIC [31], ABYC

Y and
ABYC

AY [9]. Although the InnerCircle, ABYC
AY, and ABYC

Y protocols [9, 18]
do not work in the same setting as CatNap (their clients talk directly to one
another and are required to be online at the same time), we still include them
to see how CatNap compares with server-less PT.

Our evaluations show that CatNap’s demands on the servers in terms of
amortized computation and communication are quite moderate. For exam-
ple, performing 2000 matchings requires 0.03 seconds of CPU time (ignoring
the network latency) and 6 MB of communication in total per matching. We
stress that taking into account only the amortized complexity is practical

52

2.1. Introduction

since in real-life scenarios LBS providers will be matching large numbers of
users and will be able to run a longer precomputation phase. It is worth not-
ing that the improved amortized performance of our protocol comes solely
from the MPC techniques edaBits [2], SPDZ2k [1], Tinier [3] which tend to
perform better when run multiple times, not the construction we present
here. The computation and communication cost for clients is negligible, we
ignore it in our benchmarks.

Overview of our technique. We build CatNap using generic Multi-
Party Computation (MPC) techniques provided out of the box by the MP-
SPDZ framework [24]. In our protocol, the clients “outsource” the function-
ality computation to the servers using the technique of Jakobsen et. al. [7]:
each of the two clients secret-shares its location between the servers; the
servers input the shares into an MPC protocol, reconstruct them there and
evaluate the PT functionality; after that, the servers use a simple masking
technique to deliver the result to one of the clients without learning it them-
selves. Since the PT involves both arithmetic (computing distance between
the clients) and non-arithmetic (comparing the distance to the threshold ra-
dius R) operations, we combine two MPC protocols: SPDZ2k [1] and Tinier
[3], using the former for computation in the arithmetic domain, and the lat-
ter for the binary domain. To convert values from arithmetic to binary and
vice versa we use the daBits [34] and edaBits [2] techniques.

Assumptions. CatNap is not a fully-featured protocol that can be used
for a real-life LBS implementation out of the box, it is best seen as a fun-
damental building block that can be used by an LBS. CatNap works in the
standard setting of MPC protocols [27], the same setting was used for a num-
ber of previous PT protocols [9, 18, 31] albeit the (passive) adversary was
more limited in those protocols. The assumptions of this model are: parties
communicate through secure point-to-point channels (which can be imple-
mented in real life by means of Public Key Infrastructure), at the beginning of
the protocol the (active) adversary can corrupt some of the parties and arbi-
trarily change their behavior attempting to learn something about the other
parties’ inputs and cause the other parties’ outputs to be incorrect. CatNap
ensures that the adversary can not do this as long as both servers are not
corrupted at the same time.

Scope. The setting of CatNap does not address the data leakage that
is allowed by the functionality itself, e.g., knowing whether some user is
close to you or not inevitably reveals something about that user’s location,
or when two users perform the matching the servers will learn the fact that
matching happened (since they know what users they communicated with
and when) but not the result of that matching. CatNap does not define how

53

2. CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing
Proximity Testing with a Napping Party

clients specify whom they want to be matched with; such a selection process
highly depends on the application, and, as a consequence, should not be im-
plemented by a sub-routine such as CatNap. Also, CatNap does not protect
against attacks by a user who might probe the protocol with different mali-
ciously crafted locations trying to learn something about the other users. To
mitigate this in a real-life instantiation, it may be necessary to apply some
policy similar to MaxPace [19] limiting the queries that a client is allowed
to make. Also, CatNap trivially supports replacing two servers with more
while still allowing all of them except one to be corrupted. This setting re-
laxes the security assumption at the cost of extra performance overhead; a
similar model with multiple servers is offered by the Sharemind [37] frame-
work.

2.2 Preliminaries

Ideal Functionality. To model the mixed arithmetic-binary MPC, we make
black-box usage of the functionality FAB-MPC shown on Figure 11. This func-
tionality is implemented by the edaBits [2] technique. Most of the commands
in FAB-MPC repeat the functionality on which the edaBits is built, except for
the commands ConvertA2B and Compare which are implemented using the
edaBits technique itself. The Compare is obtained by combining the other
commands of FAB-MPC, but there are multiple ways to do that (e.g., using a
Boolean comparison circuit or with probabilistic truncation [2]). For the sake
of generality, we define Compare as a standalone command and leave its
specification up to specific implementations. The edaBits [2] is implemented
in MP-SPDZ [24] framework (which we use for our benchmarks).

Notation We will use the notation JxK2m for value x ∈ Z2m being in-
put into the FAB-MPC with type = arithmetic, and JxK2 for value x ∈ {0,1}
with type = binary (the variable names x are assumed to be unique over
both arithmetic and binary domains). When describing protocols that use
FAB-MPC in pseudocode, we will use the listed message types as procedure
names, e.g., JxK2m ← ConvertB2A(JyK2)means sending (ConvertB2A,“x”,“y”)
to the FAB-MPC. We will also use values J·K2m in arithmetic expressions andJ·K2 in Boolean expressions (i.e., arithmetics over F2), implying evaluation of
the corresponding expressions using Mult and LinComb. For a vector of bits
v = (v0, . . . vk−1)wewill write J−→v K2 to denote a vector of bits (Jv0K2, . . .Jvk−1K2),
all of which are in the binary domain of FAB-MPC.

For example, consider the Boolean inner product function IP(u,v) =∑k−1
i=0 uivi =

⊕k−1
i=0 ui ∧ vi . If we have the vectors u and v input into the bi-

nary domain ofFAB-MPC as J−→u K2 = (Ju0K2, . . .Juk−1K2) and J−→v K2 = (Jv0K2, . . .Jvk−1K2),
54

2.3. The CatNap Protocol

Input: On input (Input,Pi , type, id,x) from Pi and (Input,Pi , type, id) from all other
parties, with id a fresh identifier, type ∈ {binary,arithmetic} and x ∈ Z2 or x ∈
Z2k (depending on type), store (type, id,x).

Linear Combination: On input (LinComb, type, id, (idi)mi=1, (cj)
m
j=0), where each idj

is stored in memory and cj ∈ Z2 if type = binary or cj ∈ Z2k if type =
arithmetic, retrieve ((type, id1,x1), . . . (type, idm,xm)), compute y = c0 +∑m

i=1 xi · ci modulo 2 if type = binary and modulo 2k if type = arithmetic, and
store (type, id, y).

Multiply: On input (Mult, type, id, id1, id2) from all parties (where id1, id2 are present
in memory), retrieve (type, id1,x), (type, id2, y), compute z = x · y modulo 2 if
type = binary and modulo 2m if type = arithmetic, and store (id, z).

From Binary to Arithmetic: On input (ConvertB2A, id, id′) from all parties, retrieve
(binary, id′ ,x) and store (arithmetic, id,x).

From Arithmetic to Binary: On input (ConvertA2B, id0 . . . idl−1, id
′) from all par-

ties, retrieve (arithmetic, id′ ,x), bit-decompose it into (x0, . . .xk−1) and store
((binary, id0,x0), . . . (binary, idl−1,xl−1)).

Compare: On input (Compare, id, id′ , y) from all parties, where y ∈ Z2m , retrieve
(arithmetic, id,x), store (binary, id′ ,1) if x ≤ y or (binary, id′ ,0) otherwise.

Output: On input (Output, type, id) from all honest parties (where id is present inmem-
ory), retrieve (type, id, y) and output it to the adversary. Wait for an input from
the adversary; if this is Deliver then output y to all parties, otherwise output
Abort.

Figure 11: Ideal functionality FAB-MPC of MPC arithmetic blackbox mod-
ulo 2 and modulo 2k [2]

we can write JbK2 ← IP(J−→u K2,J−→v K2) to denote the computation of inner
product inside FAB-MPC via the operations

Jp0K2←Mult(binary,Ju0K2,Jv0K2)
. . .Jpk−1K2←Mult(binary,Juk−1K2,Jvk−1K2)

c← (0,1, . . . ,1) ∈ Fk+1
2

(The next line is computing the sum of all JpiK2)JbK2← LinComb(binary,J−→p K2, c).
2.3 The CatNap Protocol

The CatNap protocol is built by combining the previous works in a blackbox
way, i.e., relying only on their most standard properties. Figure 12 gives an

55

2. CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing
Proximity Testing with a Napping Party

Tinier SPDZ2k

edaBits

Outsourcing Technique
from [7]

FAB-MPC

CatNap

Figure 12: The diagram of blackbox applications of previous works that
yields CatNap protocol and the FAB-MPC functionality that we use to build
CatNap.

overview of the order in which the existing techniques are applied to one
another. Here, Tinier provides MPC computations in the binary domain,
SPDZ2k provides computations in the arithmetic domain, edaBits combines
the two to implement a single MPC capable of doing both and converting
between them, and, finally, the outsourcing technique allows the clients to
securely transfer their data into the edaBits MPC and then get back the result
even if one of the servers is untrusted. The rest of this section shows the
operations done by CatNap in greater detail; it essentially unfolds the last
step from Figure 12 to show how the inputs and outputs are transferred to
and from edaBits MPC, and it also shows how the squared distance between
parties is computed and compared to the radius. The edaBits is still treated
as a blackbox in this section, since unfolding that one as well would yield too
much detail and harm the high-level exposition.

Parameters: a positive numberR, the radius of proximity testing; k, the bit width of clients’
coordinates.
Setup: Four parties, Alice, Bob, Server-1, Server-2. Alice and Bob hold inputs (xa, ya) ∈
Z2
2k

and (xb , yb) ∈ Z2
2k

respectively

1. Receive (xa, ya) from Alice, and (xb , yb) from Bob. Ensure that each value xa, ya,
xb , yb consists of exactly k bits; if not, abort.

2. Receive Deliver from both servers. If one of them sends something else, abort.
3. Send ρ = 1 to Alice if (xa − xb)2 + (ya − yb)2 ≤ R2, and ρ = 0 otherwise.
4. Send Received to both servers.

Figure 13: The FPT ideal functionality

CatNap involves four parties: two servers Server-1 and Server-2; and
two clients Alice and Bob. Alice and Bob know their respective locations

56

2.3. The CatNap Protocol

(xa, ya) and (xb, yb), and will input these at the start of the protocol. At the
end of its execution, CatNap returns to Alice a bit ρ; ρ = 1 if her distance to
Bob is less than or equal to a given public value R, otherwise ρ = 0. Follow-
ing the offline feature introduced by OLIC, in CatNap clients never exchange
messages with one another directly: all of Bob’s interaction happens before
any interaction from Alice (i.e., Bob acts as a “napping party” during the ac-
tual proximity test). Figure 13 shows the formal definition of the ideal func-
tionality FPT that CatNap implements, while Figure 15 shows how CatNap
implements FPT in the real world.

CatNap achieves the FPT functionality in three major steps. First, the
client inputs are transferred into the FAB-MPC functionality. Remember that
clients cannot communicate with the FAB-MPC directly, only servers do that.
To transfer its input, each client authenticates it using AMD (Algebraic Ma-
nipulation Detection code) and secret-shares z, its authentication key, and
tag between the servers [7]. The servers input the shares together with the
authentication tags into FAB-MPC, verify that the shares are correct, and re-
construct them inside the functionality. Second, the servers compute the
squared Euclidean distance between the clients’ input locations:

D = (xa − xb)2 − (ya − yb)2. (2.1)

Subsequently, the servers compare D to R2, obtaining a single bit ρ ∈
{0,1}, where ρ = 1 if D ≤ R2, and ρ = 0 otherwise. We remark that all com-
putations performed by the servers so far are implemented trivially using the
arithmetic and comparison operations supported by FAB-MPC. This means
that the servers never see D or the client inputs in plain, yet by interact-
ing with the FAB-MPC functionality they can operate on these values without
seeing them. Third, the servers transfer the result ρ to one of the clients in
a safe way. This is achieved via the technique of Jakobsen et al. suggest in
[7]. None of the three steps reveals anything about the clients’ inputs or ρ
to the servers; all of the values the servers work with are either blinded with
random masks or are inside FAB-MPC.

The transferring of client inputs into the FAB-MPC functionality men-
tioned above is done in bit-decomposed form: each coordinate is represented
as a bit-vector, the vectors of all coordinates are concatenated and the result
is transferred (using Transfer shown below) into FAB-MPC. This has a use-
ful side-effect: we can naturally bound inputs of each client by limiting the
number of bits in their representation (Transfer accepts only fixed number
of bits). This way, a malicious client cannot input values that are too large
and cause an overflow modulo 2m in the computation of D (Equation (2.1)).
We limit each client coordinate to k bits, where k is any positive integer such

57

2. CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing
Proximity Testing with a Napping Party

that 2k +3 ≤m (this ensures that there is no overflow in the expression for
D from Equation (2.1)). I.e. for all meaningful values of R, it must hold that
0 ≤ R ≤ 2k

√
2.

TheTransfer Sub-protocol. Figure 14 shows the sub-protocol that trans-
fers the clients’ inputs intoFAB-MPC. This happens between a client (who can
be either Alice or Bob) and the two servers. The purpose of this sub-protocol
is to transfer a vector z ∈ Fl

2 from the client into the binary domain of the
FAB-MPC functionality (without revealing it to the servers). Formally, this
protocol can work for values z of any length. In practice, each client will
execute this sub-protocol exactly once with z being the concatenation of the
bit-decomposition of their input locations (Alice will additionally concate-
nate a random bit ρ to her z, which will be used in the last step of the whole
CatNap protocol. More on this on Figure 15).

The Transfer routine starts with a client, say, Alice authenticating her
input z using AMD with a freshly generated key (step 2), then she secret-
shares the value z, the picked key and the authentication tag between the two
servers using XOR (steps 1 and 3). The servers input the shares and tags into
FAB-MPC (step 4). At this point, the servers can simply reveal the keys to each
other (steps 5), since they cannot modify the shares nor the tags they input
into the functionality. After that, the servers recompute the authentication
tag J−→u K2 (step 6) and compare it to the one that the servers have input (step
7).

Computing AMD is essentially free since it uses only linear operations
(as shown in Appendix 2.A). On the other hand, the equality check is the
heaviest step computations-wise, because this comparison requires non-linear
Boolean operation

∨
. The servers reveal the result JcK2 of the equality check

and abort if JcK2 = 0 (step 8). This completes the authentication check, now
each server is convinced that the other one has not cheated while inputting
the client data into FAB-MPC. Now, they can reconstruct the secret-shared
value J−→z K2 (without revealing it yet), which is the result of running this
sub-protocol.

TheCatNap Protocol Figure 15 provides a detailed overview of our Cat-
Nap protocol. We recall that CatNap implements the FPT functionality from
Figure 13. The protocol starts with both clients transferring their inputs into
FAB-MPC using Transfer (step 1). They do so by running the Transfer pro-
tocol on the concatenation of the bit-decomposition of their inputs. Alice
additionally transfers a random bit µ that will be used in the final stage of
CatNap to privately transfer the matching outcome ρ from FAB-MPC back to
her. The servers convert the clients’ inputs from the binary domain into the
arithmetic domain, as required in theFAB-MPC functionality (step 1c). Alice’s

58

2.3. The CatNap Protocol

mask µ remains in the binary domain.

Once the clients’ inputs are in FAB-MPC and ready to be used, the servers
can compute the squared distance and compare it to R2 (step 2). All this is
trivially done using commands supported by FAB-MPC. The outcome of this
comparison, ρ, which is also the result of matching, is stored in JρK2 inside
FAB-MPC. At this point, the only thing that needs to be done is revealing the
result JρK2 to Alice (without leaking anything to anyone else). To achieve
this, we mask it with Alice’s random bit µ and open the masked value ρ′

(step 3) to both servers. Since the value is masked, the servers cannot learn
anything about it. Moreover, since both servers hold a copy of the masked
result, none of them can modify it without getting caught. Both servers for-
ward ρ′ to Alice (step 4), who makes sure that both servers sent the same
value, and unmasks it to obtain the matching result ρ (step 5).

2.3.1 Security Proof

To prove the security of CatNap (Figure 15) we must show that it securely
implements [27] the functionality FPT (Figure 11) in the presence of static
active adversary who can corrupt any subset of parties as long as one of the
servers is not corrupted.

Since the protocol CatNap is modular and is built from off-the-shelf MPC
techniques (shown on Figure 12), we prove its security by combining the
proofs of the corresponding techniques. Showing here all the details would
be too technical and not very insightful, therefore we only give an overview
of the major steps (but we encourage a curious reader to go through the
formal definitions of the used techniques [1, 2, 3, 7] and check the details).
The main objective of this section is to show that the techniques from Figure
12 fit each other.

Combining of edaBits with Tinier and SPDZ2k is trivial, since the lat-
ter two are the standard MPC protocols working over their corresponding
domains, and edaBits was intended to work with exactly this type of proto-
cols. It is also worth noting that the combination of these three techniques
is implemented out of the box by the MP-SPDZ [24] framework.

59

2. CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing
Proximity Testing with a Napping Party

Parameters: a positive number R, the radius of proximity testing; k, the bit width of client
coordinates.
Setup: Alice, Bob and the two servers. The servers have access to the FAB-MPC function-
ality (depicted in Figure 11). It must hold that 2k + 3 ≤ m, where Z2m is the arithmetic
domain of FAB-MPC. Alice and Bob receive (xa, ya) and (xb , yb) as inputs.

1. Inputs outsourcing phase.

(a) Bob bit-decomposes his input coordinates xb and yb , represents them as a
single 2k bit string, and runs the Transfer protocol (Figure 14) on it.

(b) Alice samples a random bit µ, bit decomposes her inputs xa and ya, and
represents all of them as a single string of 2k + 1 bits. Then she runs the
Transfer protocol on it.

(c) The servers convert the client inputs into the arithmetic domain

JxaK2m ←ConvertB2A(J−→xa K2)JyaK2m ←ConvertB2A(J−→ya K2)JxbK2m ←ConvertB2A(J−→xb K2)JybK2m ←ConvertB2A(J−→yb K2).
The value JµK2 stays in the binary domain.

2. The Servers compute the squared distance between Alice and Bob and compare
it to R2:

(a) JDK2m ← (JxaK2m − JxbK2m)2 + (JyaK2m − JybK2m)2
(b) JρK2←Compare(JDK2m ,R2).

3. The servers mask the bit ρ with µ and reveal the result:

(a) Jρ′K2← JρK2 ⊕ JµK2
(b) ρ′ ←Output(Jρ′K2).

4. Both servers forward the obtained ρ′ to Alice.
5. Alice ensures that both servers have sent the same value of ρ′ , unmasks it to get

the final result ρ = ρ′⊕µ, which she outputs.

Figure 15: The CatNap protocol

Combination of edaBits with the outsourcing of computation technique
is not as straightforward: outsourcing of computation can be applied to ei-
ther an arithmetic MPC or a binary one, but edaBits (which implements the
ideal functionality FAB-MPC shown on Figure 11) combines both. This issue
is resolved by noting that outsourcing of computation does not restrict the
operations that the employed MPC allows are supported (as long as field ad-
dition and multiplication are available). This allows us to present edaBits to
the outsourcing technique as if it was only binary MPC; input and output

60

2.4. Evaluation

operations that CatNap performs (Figures 14 and 15) on FAB-MPC work with
bits while all the arithmetic operations are done only inside FAB-MPC.

2.4 Evaluation

To evaluate the performance of CatNap, we implemented it in the MP-SPDZ
[24] cryptographic framework and made it available online [30]. We com-
pare its performance to InnerCircle, ABYC

AY and ABYC
Y , OLIC. Because of the

inherent similarity between InnerCircle and OLIC, we run only OLIC in our
benchmarks and argue that most of the conclusions we make here about
OLIC hold for InnerCircle as well. For the performance comparison, we fo-
cus total execution time (on a single CPU core) and on total data exchanged
by parties.

To achieve a fairer comparison, we ran all the protocols on the same
Linux machine having Intel(R) Core(TM) i7-8700 CPU and 32 GB of RAM.
For each of the protocols we run here we use the implementation provided
by their original papers: the C++ implementation using ABY [10] framework
for ABYC

AY and ABYC
Y , the Python implementation using the GMP library for

OLIC. Although the protocols are implemented using different tools, the bulk
of their computations is done by low-level C libraries (and the communica-
tion cost is independent of the tools), such comparison is useful nevertheless.
We do not introduce any intentional network latency, all the parties are ex-
ecuted on the same machine (one CPU core per party) and communicate
through loopback network device. The following list shows the parameters
with which we instantiated each of the protocols.

OLIC. We use the most efficient one of the two instantiations presented in
the original paper [31], namely, the (EC)which is based on Curve25519
and M383 elliptic curves.

ABYC
AY and ABYC

Y . We use ABY [10] parameters of the original paper [9]:
bits = 64, secparam = 128. In other words, the values domain is 264
and the symmetric security key length is 128 bits.

CatNap. We instantiate DPDZ2k and Tinier with the security parameter of
64 bits, and plaintext values of SPDZ2k consist of 64 bits. The statis-
tical security parameter for edaBits is 40.

We do not include the performance of clients in our benchmarks of Cat-
Nap since it is negligible; as can be seen on Figures 15 and 14, the total com-
munication cost for each client does not exceed 2(3σ +4k + 1) bits (which

61

2. CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing
Proximity Testing with a Napping Party

is 51 bytes for k = 20 and σ = 40), and the computation cost constitutes a
small number of Boolean operations.

Figure 16 shows the amortized performance of server in CatNap depend-
ing on the number of times the protocol is executed. These measurements
include both setup time and the actual protocol execution. As the number
of repetitions approaches 4000, the amortized execution time reaches 0.03
seconds, and the total communication cost reaches 5.6MB.We use these two
numbers as constants in the next plots, where we compare CatNap to other
protocols. The B parameter present on the plots is internal to the edaBits;
smaller values of B are expected to provide better asymptotic performance.

The performance of OLIC depends on the specific value used for the ra-
diusR, this is reflected in the measurements presented on Figure 17. The pro-
tocols that have performance independent of R are shown there as straight
horizontal lines. Notably, CatNap is less efficient than ABYC

AY and ABYC
Y (we

consider it a minor price to pay since CatNap achieves active security), but
it still becomes more efficient than OLIC for large enough values of R.

2.5 Related Work

Zhong et al. [41] propose the Louis, Lester and Pierre protocols for location
proximity. The Louis protocol computes the distance between Alice and Bob
using additively homomorphic encryption. It relies on a third party to per-
form the PT, and Bob must be present online to perform the PT. The Lester
protocol does not use a third party but rather than performing PT computes
the actual distance between Alice and Bob. The Pierre protocol divides the
space into a grid of cells and reveals the cell distance between Alice and Bob.
All three protocols are only passively secure.

Narayanan et al. [29] present protocols for PT. They cast the PT prob-
lem as equality testing on a grid system of hexagons. One of the proposed
protocols utilizes an oblivious server. Parties in this protocol use symmetric
encryption, which leads to better performance. However, this requires hav-
ing preshared keys among parties, which is less amenable to one-to-many
PT. Saldamli et al. [36] build on the protocol with the oblivious server and
suggest optimizations based on properties from geometry and linear alge-
bra. Nielsen et al. [30] and Kotzanikolaou et al. [26] also propose grid-based
solutions.

Hide&Crypt by Freni et al. [13] splits proximity into two steps. First, it
performs filtering between a third party and the initiating principal. Second,
the two principals execute computation to achieve finer granularity. In both
steps, the granule in which a principal is located is sent to the other party. C-

62

2.5. Related Work

Hide&Hash by Mascetti et al. [28] is a centralized protocol, where the princi-
pals do not need to communicate pairwise but otherwise share many aspects
with Hide&Crypt. FriendLocator by Šikšnys et al. [39] is a centralized pro-
tocol where clients map their positions to different granularities, similarly to
Hide&Crypt, but instead of refining via the second principal, each iteration
is done via the third party. VicinityLocator also by Šikšnys et al. [38] is an
extension of FriendLocator, which allows the proximity of a principal to be
represented not only in terms of any shape.

Šeděnka and Gasti [37] homomorphically compute distances using the
UTM projection, ECEF (Earth-Centered Earth-Fixed) coordinates, and the
Haversine formula that makes it possible to consider the curvature of the
Earth. Hallgren et al. [18] introduce InnerCircle for parallelizable decentral-
ized PT, using additively homomorphic encryption between two parties that
must be online. The MaxPace [19] protocol builds on the speed constraints
of an InnerCircle-style protocol as to limit the effects of trilateration attacks.
Polakis [33] study different distance and proximity disclosure strategies em-
ployed in the wild and experiment with practical effects of trilateration.

Sakib andHuang [35] explore PT using elliptic curves. They require Alice
and Bob to be online to be able to run the protocol. Järvinen et al. [9] design
efficient schemes for Euclidean distance-based privacy-preserving location
proximity, as well as schemes for polygon-based matching. They demon-
strate performance improvements over InnerCircle. Yet the requirement of
the two parties being online applies to their setting as well. Hallgren et
al. [17] show how to leverage PT for endpoint-based ridesharing, building
on the InnerCircle protocol, and compare this method with a method of
matching trajectories. Oleynikov et al. [31] build OLIC, a natural extension
of InnerCircle to the two-server setting to perform Euclidean distance-based
matching. They also propose the “napping party” model with two servers
that formalizes the possibility for parties to submit their locations at indepen-
dent moments of time. The “napping party” setting requires that the clients
communicate with servers at disjoint intervals of time and that they do not
share any secret data (e.g. cryptographic keys) before the protocol starts. It is
necessary to have at least two servers to achieve this property. As shown by
Hallevi et al. [16], using one server for this purpose will leak the clients’ data
to it. Further works on generic MPC in client-server settings [1, 2, 14, 15, 22]
also consider one-server scenarios. Some of these protocols are mentioned
in Table 3.

The main challenge of Euclidean distance-based PT is efficiently combin-
ing the arithmetic operations (like computing the squared distance) with the
comparison operation; many existing tools for multiparty computation tend

63

2. CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing
Proximity Testing with a Napping Party

to be efficient only for one of the two kinds of operations, and performing the
other one introduces great overhead. To overcome this, we use state-of-the-
art MPC techniques: SPDZ2k protocol for arithmetic computation [1], Tinier
[3] for Boolean computation and edaBits [2] for converting values between
Boolean and arithmetic domains.

In the wake of the COVID-19 pandemic, privacy-preserving PT witness
a boom of protocols that rely on Bluetooth communication [40]. These so-
lutions realize PT without relying on knowing the exact location of clients.
Such solutions are effective only for shorter radius (Bluetooth range) and the
distance between users cannot be accurately computed (e.g., signal strength
varies in the presence of physical barriers and with weather conditions). In
contrast, this work does not rely on a specific technology (e.g., Bluetooth
communication) and aims at providing precise matching using the Euclidean
distance. Protocol-based solutions which are the focus on this work aim to
privately implement the partial functionality of global services like social
networks, messengers and taxi services.

To summarize, most [9, 13, 18, 19, 29, 31, 35, 36, 37, 38, 39, 41] of the
existing approaches to proximity testings require both parties to be online
or requires clients to share common keys before the protocol starts, thus
not being suitable for one-to-many matching, and also provide only passive
security, limiting the practical applicability of the protocol. A notable excep-
tion to the work above is the C-Hide&Hash protocol by Mascetti et al. [28],
which allows one-to-many testing, yet at the price of not computing the pre-
cise proximity result but its grid-based approximation. Generally, a large
number of approaches [13, 26, 28, 29, 30, 38, 39, 41] resort to grid-based ap-
proximations, thus losing precision of proximity tests.

2.6 Conclusion

Wepresented CatNap, a secure and privacy-enhancing protocol for PT,which
performs exact Euclidean distance-based matching. CatNap solves some of
the major issues previous similar works suffered from: its performance does
not depend on the proximity radius; it is secure against active adversaries;
and it does not require clients to be simultaneously online for the PT to run.
Our evaluation results confirm that the amortized performance of CatNap
is practical: the running time per repetition is close to negligible, and the
communication cost is around a few megabytes.

Our approach is trivially augmentable to support time-based matching
[32], i.e. to allow clients to submit the time interval during which they plan
to be in the specified location and make the protocol match them only if

64

2.6. Conclusion

the locations are close and the time intervals intersect. This can be useful for
friend-finding services as well as taxi applications (e.g. BlaBlaCar [3]), where
drivers need to pick up the passengers at the right time (and get the actual
passenger location if the matching succeeded). We also allow one-to-many
matching via the “napping party” feature, since the servers can reuse Alice
andBob’s locationsmultiple times. For example, Bob can submit his location
to the servers and let them match him with any of his friends, yielding a
single bit of the result or a list of all of his friends who are nearby. In the case
of one-to-many matching, the overhead of our approach will grow linearly
in the number of clients for the servers and stay constant for the clients.
Also, since the protocol already relies on one of the servers being honest,
this fact can be used to implement a fine-grained policy to control whom a
certain client can be matched with, track the exact time when the client has
submitted their location to the servers (to show the other clients how fresh it
is), or let the client see who requested matching with them while they were
offline; these features are orthogonal to our work and are dependent on a
specific application scenario.

CatNap can be easily generalized to use more than two servers, so that it
stays secure as long as at least one of the servers is honest. This significantly
weakens the security assumption it depends on, making the protocol more
reliable at a cost of some performance overhead. Since the real-life purpose of
having two servers was to allow distributing trust between two independent
organizations that are providing the LBS together, distributing it over a larger
number of organizations makes breaking it harder.

We leave a more extensive evaluation of CatNap’s performance in the
presence of realistic network latency for the future work, as well as the eval-
uation of time-based matching. Other possible directions of future work in-
clude building protocols for server-less PT, which would be based on black-
box use of generic MPC; and improving the efficiency of the MAC construc-
tion based on Toeplitz matrix that we use in CatNap.

Acknowledgments This work was partially supported by the Wallen-
berg AI, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strate-
gic Research (SSF), the Swedish Research Council (VR), and the Excellence
Center at Linköping – Lund in Information Technology (ELLIIT).

65

2. CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing
Proximity Testing with a Napping Party

Setup: One client (Alice or Bob) and the two servers (Server-1 and Server-2). The servers
have access to the FAB-MPC functionality (of Figure 11).
Initial condition: The client knows its input z ∈ Fl2, which is a sequence of l bits. σ is a
statistical security parameter.
Final condition: The bits of z are input into FAB-MPC functionality as J−→z K2.

1. The client authenticates its input z using AMD with freshly chosen key:

(a) κ←$ F2σ

(b) t = AMDκ(z)

2. The client secret-shares its input z, the authentication key and tag input z using
AMD with freshly chosen key:

(a) r(1)←$ F2l , κ
(1)←$ F2σ

(b) r(2) = z⊕ r(1)

(c) κ(2) = κ⊕κ(1)

(d) t(1)←$ F2σ

(e) t(2) = t ⊕ t(1)

3. The client sends (r(1),κ(1), t(1)) to Server-1, and (r(2),κ(2), t(2)) to Server-2.

4. The servers input shares r(·) and the tags t(·) into the FAB-MPC

(a) Jr(1)i K2← InputServer-1(r
(1)
i) for i ∈ {0 . . . l − 1}

(b) Jr(2)i K2← InputServer-2(r
(2)
i) for i ∈ {0 . . . l − 1}

(c) Jt(1)i K2← InputServer-1(t
(1)
i) for i ∈ {0 . . .σ −1}

(d) Jt(2)i K2← InputServer-2(t
(2)
i) for i ∈ {0 . . .σ −1}.

5. The servers send κ(1) and κ(2) to one another and recover κ = κ(1) ⊕κ(2).
6. The servers recompute the tag for the z inside the FAB-MPC:

(a) J−→u K2 = AMDκ(J−−−→r(1) K2 ⊕ J−−−→r(2) K2)
7. The servers check that the computed tags match the expected values:

JcK2← EQ(J−→u K2,J−−−→t(1) K2 ⊕ J−−−→t(2) K2),
where EQ((a0 . . . al−1), (b0 . . . bl−1)) = ¬

∨l−1
i=0 ai ⊕ bi is the logical formula that

compares two sequences of bits for equality.
8. The servers reveal the bit c←Output(JcK2) and abort if c = 0.

9. The servers reconstruct the value J−→z K2 = J−−−→r(1) K2 ⊕ J−−−→r(2) K2, which is the result
of this sub-protocol.

Figure 14: The Transfer sub-protocol

66

2.6. Conclusion

0 1,000 2,000 3,000 4,000 5,000

5

10

15

20

25

Number of repetitions

To
ta
lc

om
m
un

ic
at
io
n
[M

B
] Communication for B = 4

Communication for B = 5

(a) Total communication

0 1,000 2,000 3,000 4,000 5,000

0.02

0.04

0.06

0.08

0.1

0.12

Number of repetitions

W
al
l-c

lo
ck

ru
nn

in
g
tim

e
[s
] Running time for B = 4

Running time for B = 5

(b) Running time

Figure 16: Amortized performance of CatNap by the number of repeti-
tions

67

2. CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing
Proximity Testing with a Napping Party

0 100 200 300 400 500
100

101

102

103

104

Radius R

To
ta
lc

om
m
un

ic
at
io
n
[K

B
]

CatNap
OLIC

ABYC
Y

ABYC
AY

0 20 40 60 80 100

10−2

10−1

100

101

Radius R

W
al
l-c

lo
ck

ru
nn

in
g
tim

e
[s
]

OLIC servers
OLIC clients

CatNap servers

ABYC
Y clients

ABYC
AY clients

Figure 17: Comparison of CatNap with OLIC, ABYC
Y and ABYC

AY

68

Bibliography

[1] A. Beimel, A. Gabizon, Y. Ishai, E. Kushilevitz, S. Meldgaard, and
A. Paskin-Cherniavsky. Non-interactive secure multiparty computa-
tion. In CRYPTO, LNCS, 2014.

[2] F. Benhamouda, H. Krawczyk, and T. Rabin. Robust non-interactive
multiparty computation against constant-size collusion. In CRYPTO,
LNCS, 2017.

[3] BlaBlaCar - Trusted carpooling. https://www.blablacar.com/, 2022.

[4] R. Canetti. Security and composition of multi-party cryptographic pro-
tocols. ePrint, 1998. https://eprint.iacr.org/1998/018.

[5] S. Cole. Yahoo engineer used insider access to get private photos
of women. https://www.vice.com/en/article/59nwyk/yahoo-
engineer-used-insider-access-to-get-private-photos-of-women,
2019. [Online; accessed 22-Mar-2022].

[6] J. Cox. Snapchat employees abused data access to spy on users.
https://www.vice.com/en/article/xwnva7/snapchat-employees-
abused-data-access-spy-on-users-snaplion, 2019. [Online; accessed
22-Mar-2022].

[7] J. Cox and M. Hoppenstedt. Sources: Facebook has fired multiple em-
ployees for snooping on users. https://www.vice.com/en/article/
bjp9zv/facebook-employees-look-at-user-data, 2018. [Online; ac-
cessed 22-Mar-2022].

[8] R. Cramer, I. Damgard, D. Escudero, P. Scholl, and C. Xing. Spdz2k:
Efficient mpc mod 2k for dishonest majority. In CRYPTO, 2018.

[9] D. Demmler, T. Schneider, and M. Zohner. ABY - A framework for
efficient mixed-protocol secure two-party computation. In NDSS, 2015.

69

https://www.blablacar.com/
https://eprint.iacr.org/1998/018
https://www.vice.com/en/article/59nwyk/yahoo-engineer-used-insider-access-to-get-private-photos-of-women
https://www.vice.com/en/article/59nwyk/yahoo-engineer-used-insider-access-to-get-private-photos-of-women
https://www.vice.com/en/article/xwnva7/snapchat-employees-abused-data-access-spy-on-users-snaplion
https://www.vice.com/en/article/xwnva7/snapchat-employees-abused-data-access-spy-on-users-snaplion
https://www.vice.com/en/article/bjp9zv/facebook-employees-look-at-user-data
https://www.vice.com/en/article/bjp9zv/facebook-employees-look-at-user-data

Bibliography

[10] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved
primitives for mpc over mixed arithmetic-binary circuits. In CRYPTO,
2020.

[11] T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl. A unified approach
to mpc with preprocessing using ot. In ASIACRYPT, 2015.

[12] D. Freni, C. R. Vicente, S. Mascetti, C. Bettini, and C. S. Jensen. Pre-
serving location and absence privacy in geo-social networks. In CIKM,
2010.

[13] S. D. Gordon, T. Malkin, M. Rosulek, and H. Wee. Multi-party compu-
tation of polynomials and branching programs without simultaneous
interaction. In EUROCRYPT, LNCS. Springer, 2013.

[14] S. Halevi, Y. Ishai, A. Jain, I. Komargodski, A. Sahai, and E. Yogev. Non-
interactive multiparty computation without correlated randomness. In
ASIACRYPT, LNCS, 2017.

[15] S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In CRYPTO, 2011.

[16] P. Hallgren, C. Orlandi, and A. Sabelfeld. PrivatePool: Privacy-
Preserving Ridesharing. In CSF, Aug 2017.

[17] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. InnerCircle: A parallelizable
decentralized privacy-preserving location proximity protocol. In PST,
2015.

[18] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. MaxPace: Speed-
Constrained Location Queries. In CNS, 2016.

[19] A. Hern. Uber employees ’spied on ex-partners, politicians and be-
yoncé’. https://www.theguardian.com/technology/2016/dec/13/
uber-employees-spying-ex-partners-politicians-beyonce, 2016. [On-
line; accessed 22-Mar-2022].

[20] T. P. Jakobsen, J. B. Nielsen, and C. Orlandi. A framework for outsourc-
ing of secure computation. In ACM CCSW, 2014.

[21] A. Jarrous and B. Pinkas. Canon-mpc, a system for casual non-
interactive secure multi-party computation using native client. In
WPES. ACM, 2013.

70

https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce
https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce

Bibliography

[22] K. Järvinen, A. Kiss, T. Schneider, O. Tkachenko, and Z. Yang. Faster
privacy-preserving location proximity schemes for circles and poly-
gons. IET Information Security, 14, 10 2019.

[23] M. Keller. Mp-spdz: A versatile framework for multi-party computa-
tion. In ACM SIGSAC, 2020.

[24] P. Kotzanikolaou, C. Patsakis, E. Magkos, and M. Korakakis.
Lightweight private proximity testing for geospatial social networks.
Computer Communications, 2016.

[25] Y. Lindell. How to simulate it - a tutorial on the simulation proof tech-
nique. ePrint, 2016. https://eprint.iacr.org/2016/046.

[26] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia. Privacy
in geo-social networks: proximity notification with untrusted service
providers and curious buddies. VLDB J., 2011.

[27] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh.
Location privacy via private proximity testing. In NDSS, 2011.

[28] J. D. Nielsen, J. I. Pagter, and M. B. Stausholm. Location privacy via
actively secure private proximity testing. In PerCom Workshops. IEEE
CS, 2012.

[29] I. Oleynikov, E. Pagnin, and A. Sabelfeld. Where are you Bob? Privacy-
Preserving Proximity Testing with a Napping Party. In ESORICS, 2020.

[30] I. Oleynikov, E. Pagnin, and A. Sabelfeld. Catnap: Leveraging generic
mpc for actively secure privacy-enhancing proximity testing with a
napping party (extended version), 2022. https://www.cse.chalmers.
se/research/group/security/catnap/.

[31] E. Pagnin, G. Gunnarsson, P. Talebi, C. Orlandi, and A. Sabelfeld. TOP-
Pool: Time-aware Optimized Privacy-Preserving Ridesharing. PoPETs,
2019.

[32] I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and A. D. Keromytis.
Where’s wally?: Precise user discovery attacks in location proximity
services. In CCS, 2015.

[33] D. Rotaru and T. Wood. Marbled circuits: Mixing arithmetic and
boolean circuits with active security. In INDOCRYPT 2019, 2019.

71

https://eprint.iacr.org/2016/046
https://www.cse.chalmers.se/research/group/security/catnap/
https://www.cse.chalmers.se/research/group/security/catnap/

Bibliography

[34] M. N. Sakib and C. Huang. Privacy preserving proximity testing using
elliptic curves. In ITNAC, 2016.

[35] G. Saldamli, R. Chow, H. Jin, and B. P. Knijnenburg. Private proximity
testing with an untrusted server. In WISEC. ACM, 2013.

[36] J. Sedenka and P. Gasti. Privacy-preserving distance computation and
proximity testing on earth, done right. In AsiaCCS, 2014.

[37] Sharemind MPC Platform. https://sharemind.cyber.ee/sharemind-
mpc/multi-party-computation/, 2022.

[38] L. Siksnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu. Private and flexible
proximity detection in mobile social networks. In MDM, 2010.

[39] L. Siksnys, J. R. Thomsen, S. Saltenis, M. L. Yiu, and O. Andersen. A
location privacy aware friend locator. In SSTD, 2009.

[40] C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion,
W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli, et al. Decentralized
privacy-preserving proximity tracing. arXiv preprint arXiv:2005.12273,
2020.

[41] G. Zhong, I. Goldberg, and U. Hengartner. Louis, lester and pierre:
Three protocols for location privacy. In PET, 2007.

72

https://sharemind.cyber.ee/sharemind-mpc/multi-party-computation/
https://sharemind.cyber.ee/sharemind-mpc/multi-party-computation/

Appendix

2.A Algebraic Manipulation Detection Code

In this section, we define the Algebraic Manipulation Detection (AMD) code
employed in the outsourcing technique [7] used in CatNap to transfer the
client inputs into the functionality FAB-MPC.

TheAMD code allows one to authenticate some data with a private key in
way that is similar to Message Authentication Code (MAC), but with a differ-
ent security property. In the case of MAC, the adversary (who doesn’t know
the key) is allowed to obtain a number of messages with their corresponding
authentication tags; and the adversary’s task is to forge the authentication
tag for some new message of its choice. In case of AMD codes, the adversary
must forge the authentication of a message by introducing additive error into
each of message, key and tag; the following definition states this property
formally.

Definition 1 ([7]). The function fk(x1, . . .xl) = t, where k,xi , t ∈ F for some
finite field F, is called an Algebraic Manipulation Detection code if for any
(x1, . . .xl) ,εt , εk , εxi the following holds with negligible probability

fk(x) + εt = fk+εk (x1 + εx1 ,x2 + εx2 , . . . ,xl + εxl),

for k chosen uniformly at random.

In the definition above, the values εk , εt , and εxi are the errors chosen by
the adversary and introduced to the equation t = fk(x1, . . .xl). The adversary
breaks the AMD only if the equation still holds after introducing the errors.

Together with the definition we replicate above, Jakobsen et. al. [7] have
also suggested an efficient construction of an AMD code:

fk(x1,x2 . . .xl) = kl+2 +
l∑

i=1

xik
i .

73

2. CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing
Proximity Testing with a Napping Party

The f function satisfies the Definition 1, where the log|F| acts as the
security parameter (the adversary’s winning probability is bounded using
this value).

The values that we authenticate using f in CatNap are represented as
bits, therefore we need to map bit vectors into some large enough field F
to authenticate them. Here, we also use a trick from Jakobsen et. al.: take
F to be F2σ = F2[x]/(p(x)), i.e., the field of polynomials with coefficients
from F2 = {0,1} where all the field operations are performed modulo an
irreducible polynomial p(x) with degp = σ . Any vector v = (v0, . . . , vσ −1)
is now mapped to the polynomial qv(x) =

∑σ −1
i=0 vix

i , the addition of the
polynomials is simple component-wise XOR of the corresponding vectors,
and the multiplication is the usual polynomial product reduced modulo p(x).

The key feature of this mapping is that it preserves linearity. The func-
tion (qv 7→ quqv) can be computed using only XORs of the qv ’s coefficients.
It means that we can compute such funcitons inside FAB-MPC (Figure 11) vir-
tually for free, and the performance overhead of AMD validation is going to
be low.

Next, we define the complete AMD code that can handle bit vectors of
arbitrary length by the function AMDk(b1, . . . , bd). This is the function used
on Figure 14.

AMDk(b1, . . . , bd) = fk(qb1,...,bσ , qbσ +1,...,b2σ , . . . , qbd−σ +1,...,bd).

The definition above assumes without loss of generality that d is a mul-
tiple of σ (otherwise, the can pad b1 . . . bd with enough zeroes).

74

3
Outsourcing MPC Precom-
putation for Location Pri-
vacy

Ivan Oleynikov, Elena Pagnin, Andrei Sabelfeld
EuroS&P Location-Privacy Workshop’2022

Abstract. Proximity testing is at the core of several Location-Based
Services (LBS) offered by, e.g., Uber, Facebook, and BlaBlaCar, as

it determines closeness to a target. Unfortunately, modern LBS demand
not only that clients disclose their locations in plain, but also to trust
that the services will not abuse this information. These requirements
are unfounded as there are ways to perform proximity testing without
revealing one’s location.
We propose POLAR, a protocol that implements privacy-preserving
proximity testing for LBS. POLAR is suitable for clients running mobile
devices, and relies on a careful combination of three well-established
multiparty computation protocols and lightweight cryptography. A
point of originality is the inclusion of two servers into the proximity
testing. The servers may aid multiple pairs of clients and contribute to-
wards enhancing privacy, improving efficiency, and reducing the run-
ning time of clients’ procedures.

This page intentionally left blank.

3.1 Introduction

Location-Based Services (LBS) are any services that rely on user location data
to operate. For example, a mapping service needs a client’s location to sug-
gest the relevant places nearby, a taxi service needs a client’s location to
match it with the nearest drivers, smart home devices may use the owner’s
location to turn on light, music, and air conditioning when they enter their
home.

Proximity testing (PT) is the problem of deciding whether a two or more
inputs lie within a certain distance of one another. This paper focuses on lo-
cation proximity testing by means of privacy-enhancing protocols operating
on user locations. There exist approaches to PT that implement it by means
of direct communication andmeasuring signal strength using, e.g., Bluetooth
[5, 40] (adopted in some COVID-19 contact tracing apps). While these solu-
tions might provide an accurate distance calculation, our approach occupies
a different niche: indeed, in some LBS it might not be possible for users to
pick each others’ signals (e.g., planning for a shared ride between towns;
matching with proximity radius larger than the signal range; or matching
with offline users).

Modern ridesharing and taxi services match drivers and passengers ac-
cording to the proximity of their routes, or of the start and endpoints of their
journeys so that the passenger can easily walk the remaining distance to
reach the desired destination. Messaging and dating apps use proximity test-
ing to match users who are in the same area, and online mapping services
use it to help users discover close-by places (e.g. coffee shops, supermar-
kets). Geofencing apps for children, pets, vehicles, and vessels also draw on
proximity testing.

In current practice, the widely adopted LBS are centralized and require
full-trust from the clients in order to deliver the desired functionality. A
client is expected to reveal their location to the service; and clients cannot
check if their data has been used the way they expect, whether it has been
misused by the LBS provider or stolen by an attacker who breached the se-
curity of LBS provider. For example, Snapchat employees reportedly abused
their privileges to spy on users’ location data [7], and similar cases were

77

3. Outsourcing MPC Precomputation for Location Privacy

reported about Uber [20], Yahoo [6] and Facebook [8]. This raises privacy
concerns over the existing practices and motivates the search for solutions
that would ensure the privacy of user data.

This paper considers the problem of constructing a cryptographic pro-
tocol that performs PT in a privacy-enhancing way. A privacy-enhancing
PT protocol is required to be correct (provide the right answer); and secure
(preserve input privacy) by revealing only the outcome of the proximity test,
and no further information about users’ concrete locations. In the remainder
of the paper, whenever we refer to proximity testing, we will mean privacy-
enhancing proximity testing.

Formalizing Proximity Testing. There exist multiple approaches to
formalizing what location is and what is proximity in proximity testing. The
grid-based approach [13, 26, 28, 29, 30, 38, 39, 41] divides the whole location
space into a grid of cells, the clients determine the cell they are in and then
simply perform equality test on their cell identifiers. Although it might be
tempting to do proximity testing at a cost of a simple equality test, this ap-
proach suffers from inherent imprecision since the clients arematched only if
they are in the same grid cell. Another alternative is polygon-based match-
ing [9], which is also imprecise and becomes less efficient if one wants to
approximate a circle with a complex polygon. We follow the line of work
on Euclidean distance based matching [9, 18, 31, 32], because it is precise
and it naturally arises in some important applications, e.g., messengers and
social networks suggesting friends nearby to a user, geofencing. Euclidean
distance may serve as an approximation of other distance measures like road
distance on a given map or Manhattan distance.

In this work, we consider users’ locations to be points on a (discretized)
Euclidean plane (which can be used to approximate distance on a small enough
region of Earth surface). Our functionality matches two users (outputs 1 in-
stead of 0) if the distance between their input locations does not exceed a
threshold radius value R, on which they agree beforehand. The threshold
radius R here serves as a parameter of the protocol, and can be chosen to be
any positive integer when instantiating the protocol; it is fixed and public,
i.e. known to all the parties prior to protocol start. We focus on the case of
2-dimensional client locations (i.e. belonging to a Euclidean plane) for a fair
comparison with prior work, but it is not essential for our protocol which
easily generalizes to n-dimensional Euclidean distance based matching.

Tools we use. In a nutshell, the protocols we consider here are expected
to compute the function (where (xA, yA) comes fromAlice, (xB, yB) from Bob,
and the result 0 or 1 goes to Alice):

78

3.1. Introduction

f ((xA, yA), (xB, yB)) =

1, if (xA − xB)2 + (yA − yB)2 ≤ R2,

0, otherwise.
(3.1)

SecureMulti-Party Computation (MPC) protocols allow parties to secret-
share some values between each other, do some operations on the shared
values and then reconstruct the shares of the result. MPC essentially imple-
ments a secure, trusted virtual machine that accepts some values on input,
performs computations and returns the result. Actively secure MPC pro-
tocols stay secure even in the presence of malicious adversaries that may
change the behavior of corrupted parties that participate in the computation.

Actively secure MPC is as a natural tool to implement functionalities that
involve relatively few operations, like the one in Equation (3.1). Until now,
the high demands imposed by actively secureMPC on computation and com-
munication have prevented it from being applied to efficient and scalable PT
solutions. In this work, we finally bypass this obstacle by leveraging the fact
that many MPC protocols run in two phases: first heavy precomputation
phase (which is often too heavy for resource-constrained mobile devices)
that does not depend on the actual inputs of the parties, but merely gener-
ates correlated randomness; and, secondly, a relatively fast online phase that
uses the correlated randomness from the previous phase and the party in-
puts to compute the final output. Our approach is to include two servers in
the PT and offload to these all precomputations run in the first phase. This
way, the heaviest burden is done by the servers allowing clients to run only
the light online phase. The privacy cost of this speedup is moderate: even
though the servers are involved in the protocol, they never get to handle any
data that is derived from client inputs and therefore the impact of corrupted
servers is limited. It is important to note that in our proposed technique none
of the servers can see or modify the precomputed data that the two of them
are generating: the servers run another MPC protocol between them that
produces the precomputed data, and then they transfer it properly masked
and authenticated to the clients without ever seeing the data themselves (as-
suming that only one of the two servers is corrupted, and the other one is
honest).

In other words, compared to the server-less setting of the previous pro-
tocols [9, 18, 32], our setting allows better client performance at the cost of
introducing an extra assumption that at least one of the servers must be hon-
est. Our setting has an additional practical benefit: a single pair of servers
can supply multiple pairs of clients with precomputed data, and generate the
data in bigger batches more efficiently (the amortized cost of precomputation

79

3. Outsourcing MPC Precomputation for Location Privacy

phase usually goes down if one increases the amount of precomputation that
must be done in one run). This can be thought of as an analogue of the econ-
omy of scale: the more clients you serve, the less computation you have to
pay with for each client pair.

Albeit we demonstrate the application of this two-server aided precom-
putation setting by applying it to location privacy problem, we argue it may
be useful in other fields as well. Any setting where resource-constrained
clients want to run an actively secure MPC protocol with few operations in
it may benefit from augmenting it with two servers to outsource the precom-
putation phase to. For example, such setting can naturally arise in a housing
rental app, phonebook contact discovery (used by messengers), collaborative
planning apps (which may have more than two users).

Overview of our protocol. In our proposed POLAR (Precomputation
fOr LocAtion pRivacy) protocol, the clients run a combination of Tinier [3],
SPDZ [9] and edaBits [2] in order to compute the proximity testing function-
ality. And the servers use the same combination of protocols (Tinier + SPDZ
+ edaBits), in order to create the precomputation data for the clients. All four
parties use the outsourcing technique of [7] to transfer the precomputed data
from the servers’ MPC protocol to the clients without revealing it to any of
the two servers.

Our contribution. This paper presents POLAR, a novel, actively secure
protocol for server-aided privacy-preserving location proximity testing. In
detail, we provide a formal description of the POLAR protocol and its build-
ing blocks. We argue its security in Canetti’s hybrid model [4]. In addition,
we develop a proof of concept implementation of POLAR and compare its
performance against OLIC [31] which also uses two servers (but for a dif-
ferent purpose), ABYC

Y and ABYC
AY [9] which work in the server-less setting.

Given that POLAR is the first server-precomputation aided PT protocol, there
is no clear competitor for comparison. We thus compare against server-less
and server-aided protocols to see how much of a performance improvement
can one gain by offloading the precomputation to the servers.

Our evaluations show that the client cost of running POLAR is negligi-
ble (around 10 ms CPU time and under 2 KB communication). While the
resources required from the servers are quite moderate: below 0.5 seconds
CPU time and 84MB communication per runwhen amortized over 2000 runs.
84 MB per client pair is an acceptable amount of communication for servers,
it is equivalent to streaming a short video. When compared to other pro-
tocols, POLAR’s main advantages are active security and unmatched client
performance (around 2 ms of CPU time and 2 KB of total communication).
The server performance of POLAR also beats the server performance of OLIC

80

3.2. Preliminaries

for large enough values of radius R (the performance of OLIC depends on R),
but still stays a lot heavier than the client performance of ABYC

AY and ABYC
Y .

3.2 Preliminaries

The clients in POLAR run a combination of MPC protocols in order to im-
plement the PT functionality (Equation 3.1). In the following, we explain
what this combination cosists of and how we model it using a blackbox idea
functionality.

MPC protocols are usually limited to operations in one specific domain.
Arithmetic MPC protocols work with integers modulo some value (prime
number p in our case), binary MPC protocols work with bits. Arithmetic do-
main is particularly good for computations that use a lot of numeric additions
and multiplications, while the binary domain can represent numbers in their
bit-decomposed form and cheaply evaluate Boolean circuits on them (e.g.
comparison, bit shifts, sorting, indexing). The function that clients want to
compute (shown on Equation 3.1) in our protocol tends to mix the two types
of operations: on one hand, it has additions and multiplications, on the other
hand, it has comparison. Therefore, to evaluate it efficiently we combine two
MPC protocols to work over both domains and we use edaBits [2] technique
to convert the values between two domains.

Ideal Functionality. To model the mixed arithmetic-binary MPC, we
make black-box usage of the functionality FAB-MPC shown on Figure 18. This
functionality can be implemented by the edaBits [2] technique. Most of
the commands in FAB-MPC repeat the functionality on which the edaBits is
built, except for the commands ConvertA2B and Compare which are im-
plemented using the edaBits technique itself. The Compare is obtained by
combining the other commands of FAB-MPC, but there are multiple ways to
do that (e.g., using a Boolean comparison circuit or with probabilistic trun-
cation [2]). For the sake of generality, we define Compare as a standalone
command and leave its specification up to specific implementations. The
FAB-MPC functionality is implemented by MP-SPDZ [24] framework (which
we use for our benchmarks) using the techniques of daBits [34] and edaBits
[2].

Notation We will use the notation JxKp for value x ∈ Zp being input
into the FAB-MPC with type = arithmetic, and JxK2 for value x ∈ {0,1} with
type = binary (the variable names x are assumed to be unique over both
arithmetic andbinary domains). When describing protocols that useFAB-MPC
in pseudocode, we will use the listed message types as procedure names,
e.g., JxKp ← ConvertB2A(JyK2) means sending (ConvertB2A,“x”,“y”) to

81

3. Outsourcing MPC Precomputation for Location Privacy

the FAB-MPC. We will also use values J·Kp in arithmetic expressions and J·K2
in Boolean expressions (i.e., arithmetics over F2), implying evaluation of the
corresponding expressions usingMult andLinComb. For a vector of bits v =
(v0, . . . vk−1)we will write J−→v K2 to denote a vector of bits (Jv0K2, . . .Jvk−1K2),
all of which are in the binary domain of FAB-MPC.

For example, consider the Boolean inner product function IP(u,v) =∑k−1
i=0 uivi =

⊕k−1
i=0 ui ∧ vi . If we have the vectors u and v input into the bi-

nary domain ofFAB-MPC as J−→u K2 = (Ju0K2, . . .Juk−1K2) and J−→v K2 = (Jv0K2, . . .Jvk−1K2),
we can write JbK2 ← IP(J−→u K2,J−→v K2) to denote the computation of inner
product inside FAB-MPC via the operations

Jp0K2←Mult(binary,Ju0K2,Jv0K2)
. . .Jpk−1K2←Mult(binary,Juk−1K2,Jvk−1K2)

c← (0,1, . . . ,1) ∈ Fk+1
2

(The next line is computing the sum of all JpiK2)JbK2← LinComb(binary,J−→p K2, c).
In real-life, theFAB-MPC will be implemented by a combination of edaBits,

SDPZ [9] and Tinier [3]. Note that all three techniques rely on preprocess-
ing data (correlated random values held by the parties) to operate. When the
clients implement FAB-MPC, they will use preprocessing data generated for
them by the servers. The servers will generate the data using an MPC pro-
tocol and then transfer it to the clients without any of the two servers being
able to see or modify the data (as long as the other server is honest).

The servers’ MPC that generates and transfers the precomputation data
to the clients is modelled byFOut-MPC ideal functionality shown on Figure 19.
The precomputed data for the clients generated by this functionality consists
of SPDZ [9] multiplication triples, Tinier [3] multiplication triples, random
Tinier shares (to allow the clients to input values into Tinier), daBits [34] and
edaBits [2]. In practice, the FOut-MPC functionality will be implemented by
applying the outsourcing technique [7] to the combination of edaBits, SPDZ
and Tinier (distinct instances, not the ones used by clients). The servers,
unlike clients, generate their own preprocessing data using the relatively ex-
pensive precomputation protocols. We do not show how FOut-MPC is im-
plemented in detail, because it is trivial and unnecessarily technical for our
presentation. Full details can be found in the source code of our implemen-
tation.

82

3.3. The POLAR Protocol

Setting: the ideal setting consists of FAB-MPC functionality and the parties P1 …Pn using
it.

Input: On input (Input,Pi , type, id,x) from Pi and (Input,Pi , type, id) from all other par-
ties, with id a fresh identifier, type ∈ {binary,arithmetic} and x ∈ Z2 or x ∈ Zp
(depending on type), store (type, id,x).

Linear Combination: On input (LinComb, type, id, (idi)mi=1, (cj)
m
j=0), where each idj is

stored in memory and cj ∈ Z2 if type = binary or cj ∈ Zp if type = arithmetic,
retrieve ((type, id1,x1), . . . (type, idm,xm)), compute y = c0 +

∑m
i=1 xi · ci modulo

2 if type = binary and modulo p if type = arithmetic, and store (type, id, y).
Multiply: On input (Mult, type, id, id1, id2) from all parties (where id1, id2 are present

in memory), retrieve (type, id1,x), (type, id2, y), compute z = x · y modulo 2 if
type = binary and modulo p if type = arithmetic, and store (id, z).

From Binary to Arithmetic: On input (ConvertB2A, id, id′) from all parties, retrieve
(binary, id′ ,x) and store (arithmetic, id,x).

From Arithmetic to Binary: On input (ConvertA2B, id0 . . . idl−1, id
′) from all par-

ties, retrieve (arithmetic, id′ ,x), bit-decompose it into (x0, . . .xk−1) and store
((binary, id0,x0), . . . (binary, idl−1,xl−1)).

Compare: On input (Compare, id, id′ , y) from all parties, where y ∈ Zp , retrieve
(arithmetic, id,x), store (binary, id′ ,1) if x ≤ y or (binary, id′ ,0) otherwise.

Output: On input (Output, type, id) from all honest parties (where id is present in mem-
ory), retrieve (type, id, y) and output it to the adversary. Wait for an input from the
adversary; if this is Deliver then output y to all parties, otherwise output Abort.

Figure 18: Ideal functionality FAB-MPC of MPC arithmetic blackbox mod-
ulo 2 and modulo p [2]

3.3 The POLAR Protocol

Tinier [3]

SPDZ [9]

edaBits [2] Outsourcing [7]

FAB-MPC

FOut-MPC

Figure 20: The diagram of blackbox applications of previous works that
yields the functionalities that we use in our hybrid model.

83

3. Outsourcing MPC Precomputation for Location Privacy

This functionality works with two servers Server-1 and Server-2, and two clients Alice
and Bob.

Eval. On command Eval from both servers, generate the precomputation data for the
clients. Save Alice’s data as zAlice and Bob’s data as zBob. Output Eval to the
adversary. If Alice and Bob are corrupted, deliver the corresponding z· to the
corrupted clients.

Output. On command (Deliver,C) from the adversary where C is either Alice or Bob,
deliver zC to the corresponding client.

Figure 19: Functionality FOut-MPC for outsourced evaluation of precom-
putation data for FAB-MPC. It is implemented by the outsourcing technique
[7, Figure 3].

Formally, we describe our protocol in the (FOut-MPC,FAB-MPC)-hybrid model
[27]. We model it as an interaction of clients Alice and Bob, the two servers
and the ideal functionalities FOut-MPC (Figure 19) and FAB-MPC (Figure 18). In
practice, the two ideal functionalities will be replaced by the corresponding
protocols that implement them [2, 7] and yield a protocol that implements
our functionality on four parties. TheFAB-MPC functionality allows Alice and
Bob to compute the function they want (Equation 3.1). But implementing
FAB-MPC directly would be too costly for them, therefore they also use the
FOut-MPC together with the servers which computes the precomputation data
(needed for FAB-MPC) and delivers it to the clients (without revealing it to the
servers). In practice, the FOut-MPC will be implemented via an MPC protocol
(similar to FAB-MPC, but with different parameters; we do not focus on it
much here) ran by the servers which delivers its result to the clients; while
FAB-MPC will be implemented by an MPC protocol ran by the clients that
uses the precomputation data from FAB-MPC to ease the computation and
communication load of the clients.

Figure 20 gives an overview of the order in which the existing techniques
are applied to one another by the clients in order to obtain the ideal function-
alities that we use. Here, Tinier prodives MPC computations in the binary
domain, SPDZ provides computations in arithmetic domain, edaBits com-
bines the two to implement a single MPC capable of doing both and convert-
ing between them, and, finally, the outsourcing technique allows the clients
to securely receive their precomputed data from the edaBits MPC even if one
of the servers is untrusted. In the following, we give an overview of how the
POLAR protocol works.

84

3.3. The POLAR Protocol

FOut-MPC

Server-1 Server-2

Alice Bob
FAB-MPC

Figure 21: Diagram of the hybrid set-
ting we describe our protocol POLAR
in.

POLAR involves four parties
(Figure 21): two servers Server-
1 and Server-2; and two clients
Alice and Bob. They also have
access to the mentioned FAB-MPC
(only for Alice and Bob) and
FOut-MPC functionalities. Alice
andBob know their respective lo-
cations (xa, ya) and (xb, yb). At
the end of the protocol execution,
Alice gets a bit ρ; ρ = 1 if her dis-
tance to Bob is less than or equal
to a given public value R, oth-
erwise ρ = 0. Figure 22 shows
the formal definition of the ideal
functionality FPT that POLAR implements, while Figure 23 shows how PO-
LAR implements FPT in our hybrid setting.

Parameters: a positive number R, the radius of proximity testing; k, the bit width of clients’
coordinates.
Setup: Four parties, Alice, Bob, Server-1, Server-2. Alice and Bob hold inputs (xa, ya) ∈
Z2
p and (xb , yb) ∈ Z2

p respectively
1. Receive (xa, ya) from Alice, and (xb , yb) from Bob. Ensure that each value xa, ya,

xb , yb consists of exactly k bits; if not, abort.
2. Receive Deliver from both servers. If one of them sends something else, abort.
3. Send ρ = 1 to Alice if (xa − xb)2 + (ya − yb)2 ≤ R2, and ρ = 0 otherwise.
4. Send Received to both servers.

Figure 22: The FPT ideal functionality

Figure 19 shows the workings of POLAR in detail. The core idea of the
protocol is making the clients use FAB-MPC to compute the proximity test-
ing function (Equation 3.1), but reducing their computation and communi-
cation overhead by letting the servers precompute the correlated randomess
for them (using FOut-MPC). The first steps 1 and 2 provide the clients with the
precomputed data, in the following steps the clients use FAB-MPC to compute
their desired functionality. The precomputed data is not used by the clients in
the hybrid model with ideal functionalities available, but it is used when we
replace the ideal functionalities by their implementations for the real-world
implementation. In that case, the clients will use the precomputed data to
speed-up their implementation of FAB-MPC.

85

3. Outsourcing MPC Precomputation for Location Privacy

Parameters: a positive number R, the radius of proximity testing.
Setup: Alice, Bob and the two servers. Alice and Bob access to the FAB-MPC functionality,
all four parties have access to FOut-MPC functionality. Alice and Bob receive (xa, ya) and
(xb , yb) as inputs.

1. The servers send Eval to FOut-MPC functionality.
2. FOut-MPC sends the precomputed data to the clients Alice and Bob.
3. The clients input their inputs xa, ya,xb , yb into the FAB-MPC.
4. The clients compute

JDKp ← (JxaKp − JxbKp)2 + (JyaKp − JybKp)2
using LinComb and Mult operations of FAB-MPC.

5. The clients compare JDKp to R2 via

JρK2←Compare(JDKp ,R2).

6. The clients output the JρK2 to Alice.

Figure 23: The POLAR protocol

3.4 Security Analysis

To prove the security of POLAR (Figure 23) we show that it securely im-
plements the functionality FPT (Figure 22) in the presence of static active
adversary who can corrupt any subset of parties as long as one of the servers
is not corrupted. Formally, it is stated by Theorem 2.

Theorem 2. The protocol POLAR securely computes FPT with abort in the
presence of staticmalicious adversary [27] who is allowed to corrupt any subset
of parties as long as at least one of the servers is not corrupted.

Informally, the theorem above states that whatever an adversary (non-
uniform polynomial time algorithm) can achieve by corrupting parties in PO-
LAR, can be also achieved by some simulator who corrupted the same parties
in FPT (as long as the adversary does not capture both servers at the same
time). In the case of trivial adversary which does not interfere with the pro-
tocol’s execution, this ensures that both POLAR and FPT produce the same
result. This way, the FPT serves as a specification of both correctness and
security of POLAR; and whatever leakage is allowed by FPT, can also hap-
pen in POLAR. More details on this simulation paradigm can be found in the
tutorial by Lindell [27].

Since the protocol POLAR is modular and is built from off-the-shelf MPC
techniques (shown on Figure 20), our proof argument simply combines the

86

3.5. Evaluation

proofs of the corresponding techniques. Showing here all the details would
be too cumbersome and technical, therefore we only give an overview of the
major steps (but we encourage a curious reader to go through the formal
definitions of the used techniques [2, 3, 7, 9] and check the details). The main
objective of this section is to show that the techniques from Figure 20 fit each
other.

Combining of edaBits with Tinier and SPDZ is trivial, since the latter two
are the standard MPC protocols working over their corresponding domains,
and edaBitswas intended toworkwith exactly this type of protocols. It is also
worth noting that the combination of these three techniques is implemented
out of the box by the MP-SPDZ [24] framework.

Combination of edaBits with the outsourcing of computation technique
is not as straightforward: outsourcing of computation can be applied to ei-
ther an arithmetic MPC or a binary one, but edaBits (which implements the
ideal functionality FAB-MPC shown on Figure 18) combines both. But it is
easy to resolve since outsourcing can be applied to both binary and arith-
metic domains independently, then both types of values can be outsourced.

We also claim that if the two servers are corrupted while both clients are
honest, then only the correctness of the end result can be violated, but the ad-
versary can learn nothing about the client inputs. This is due to servers never
receiving any messages that would depend on client data; in fact, the proto-
col flow can be reordered so that all the interaction of clients with servers
happens without clients ever using their inputs. Note that this claim is not
captured by the statement of theTheorem 2, which requires one of the servers
to stay uncorrupted.

3.5 Evaluation

To evaluate the performance of POLAR, we implemented the algorithms of
servers and clients in the MP-SPDZ [24] cryptographic framework and made
it available online1. We compare it to the performance of ABYC

AY and ABYC
Y

[9], OLIC [31]. The former two are the state of the art in server-less proximity
testing and the latter one is a server-aided protocol, but the servers in OLIC
are involved in the protocol to a greater extent and actually do computations
on the client data.

For the performance comparison, we focus on total execution time (on a
single CPU core) and on total data exchanged by parties.

To achieve a more fair comparison, we ran all the protocols on the same
Linux machine having Intel(R) Core(TM) i7-8700 CPU and 32 GB of RAM.

1https://www.cse.chalmers.se/research/group/security/polar/

87

https://www.cse.chalmers.se/research/group/security/polar/

3. Outsourcing MPC Precomputation for Location Privacy

We used the implementation provided by the original paper for each of the
protocols: the C++ implementation using ABY [10] framework for ABYC

AY
and ABYC

Y , the Python implementation using the GMP library for OLIC. Al-
though the protocols are implemented using different tools, the bulk of their
computations is done by low-level C libraries (and the communication cost is
independent of the tools), therefore such comparison is useful nevertheless.
We do not introduce any intentional network latency. For each protocols, all
the parties are executed on the same machine (one CPU core per party) and
communicate through loopback network device. The following list shows
the parameters with which we instantiated each of the protocols.

ABYC
AY and ABYC

Y . We use ABY [10] parameters of the original paper [9]:
bits = 64, secparam = 128. In other words, the values domain is
264 and the symmetric security key length is 128 bits, as used by the
original implementation. We do not increase the key lenght to keep
our analysis conservative, since doing so could make these protocols
slower.

OLIC. We use the most efficient one of the two instantiations presented in
the original paper [31], namely, the (EC)which is based on Curve25519
and M383 elliptic curves.

POLAR. For the FAB-MPC executed by the clients, we instantiate SPDZ and
Tinier with the security parameter of 48 bits, and plaintext of values
SPDZ consist of 64 bits.
For the FAB-MPC that is executed by the servers (as part of FOut-MPC),
the SPDZ plaintext values are 64 bits (modulo a prime), and all the
other parameters are as above. The statistical security parameter for
edaBits is 40, the bucket size is B = 4. The preprocessing protocols
used for SPDZ is MASCOT [25].

We do not include the performance of clients in our benchmarks of PO-
LAR since it is negligible: the CPU time is under 2 ms while the total com-
munication is under 2 KB.

Figure 24 shows the amortized performance of servers in POLAR depend-
ing on the number of times the protocol is repeated. These measurements
include both setup time and the actual protocol execution. As the number
of repetitions approaches 5000, the amortized execution time reaches 0.4
seconds, and the total communication cost reaches 80.5 MB. We use these
two numbers as constants in the next plots, where we compare POLAR to
other protocols. (There is an unusual spike at 5200 repetitions, which we

88

3.5. Evaluation

speculate was caused by some internal details of MP-SPDZ library which we
use. It could be due to MP-SPDZ generating precomputation data in large
batches, and 5200 could be the threshold which causes an extra batch to be
generated.)

The performance of OLIC depends on the specific value used for the ra-

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
80

90

100

110

Number of repetitions

To
ta
lc

om
m
un

ic
at
io
n
[M

B
] Communication

(a) Total communication

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

0.45

0.5

Number of repetitions

W
al
l-c

lo
ck

ru
nn

in
g
tim

e
[s
] Running time

(b) Running time

Figure 24: Amortized performance of servers in POLAR by the number of
repetitions

89

3. Outsourcing MPC Precomputation for Location Privacy

diusR, this is reflected in the measurements presented on Figure 25. The pro-
tocols that have performance independent of R are shown there as straight
horizontal lines. Notably, POLAR is less efficient than ABYC

AY and ABYC
Y , but

it still becomes more efficient than OLIC for large enough values of R. We
consider it a minor price to pay given that POLAR is the only protocol that
achieves malicious security (all other works are only passively secure, and in
OLIC the servers work with client data directly).

3.6 Related Work

Zhong et al. [41] propose the Louis, Lester and Pierre protocols for location
proximity. The Louis protocol computes the distance between Alice and Bob
using additively homomorphic encryption. It relies on a third party to per-
form the proximity test, and the thirst party is trusted with handling user
data; in particular it learns the result of protocol execution. The Lester pro-
tocol does not use a third party but rather than performing proximity testing
computes the actual distance between Alice and Bob. The Pierre protocol di-
vides the space into a grid of cells and reveals the cell distance between Alice
and Bob. All three protocols are only passively secure.

Narayanan et al. [29] present protocols for proximity testing. They cast
the proximity testing problem as equality testing on a grid system of hexagons.
One of the proposed protocols utilizes an oblivious server that aids clients
in computations on their data. Parties in this protocol uses symmetric en-
cryption, which leads to better performance. However, this requires having
preshared keys among parties, which is less amenable to one-to-many prox-
imity testing. Saldamli et al. [36] build on the protocol with the oblivious
server and suggest optimizations based on properties from geometry and
linear algebra. Nielsen et al. [30] and Kotzanikolaou et al. [26] also propose
grid-based solutions.

Hide&Crypt by Freni et al. [13] splits proximity into two steps. First, it
performs filtering between a third party and the initiating principal. Second,
the two principals execute computation to achieve finer granularity. In both
steps, the granule in which a principal is located is sent to the other party. C-
Hide&Hash by Mascetti et al. [28] is a centralized protocol, where the princi-
pals do not need to communicate pairwise but otherwise share many aspects
with Hide&Crypt. FriendLocator by Šikšnys et al. [39] is a centralized pro-
tocol where clients map their positions to different granularities, similarly to
Hide&Crypt, but instead of refining via the second principal, each iteration
is done via the third party. VicinityLocator also by Šikšnys et al. [38] is an
extension of FriendLocator, which allows the proximity of a principal to be

90

3.6. Related Work

represented not only in terms of any shape.
Šeděnka and Gasti [37] homomorphically compute distances using the

UTM projection, ECEF (Earth-Centered Earth-Fixed) coordinates, and the

−200 0 200 400 600 800 1,0001,2001,4001,6001,8002,0002,200
100

101

102

103

104

105

Radius R

To
ta
lc

om
m
un

ic
at
io
n
[K

B
]

POLAR
OLIC

ABYC
Y

ABYC
AY

0 20 40 60 80 100

10−2

10−1

100

101

Radius R

W
al
l-c

lo
ck

ru
nn

in
g
tim

e
[s
]

OLIC servers
OLIC clients

POLAR servers

ABYC
Y clients

ABYC
AY clients

Figure 25: Comparison of POLAR with OLIC, ABYC
Y and ABYC

AY

91

3. Outsourcing MPC Precomputation for Location Privacy

Haversine formula that makes it possible to consider the curvature of the
Earth. Hallgren et al. [18] introduce InnerCircle for parallelizable decentral-
ized proximity testing. They use linerly homomorphic encryption to perform
proximity testing between two clients. The MaxPace [19] protocol builds on
the speed constraints of an InnerCircle-style protocol as to limit the effects of
trilateration attacks. Polakis [33] study different distance and proximity dis-
closure strategies employed in the wild and experiment with practical effects
of trilateration.

Sakib and Huang [35] explore proximity testing using elliptic curves.
They do not use any third party. Järvinen et al. [9] design efficient schemes
for Euclidean distance-based privacy-preserving location proximity, as well
as schemes for polygon-based matching. They demonstrate performance im-
provements over InnerCircle. Yet their protocol offers only passive security.
Hallgren et al. [17] show how to leverage proximity testing for endpoint-
based ridesharing, building on the InnerCircle protocol (and also being only
passively secure), and compare this method with a method of matching tra-
jectories. Oleynikov et al. [31] build OLIC, a natural extension of InnerCir-
cle to the two-server setting to perform Euclidean distance based matching.
They also propose the “napping party” model with two servers that formal-
izes the possibility for parties to submit their locations at independent mo-
ments of time. The “napping party” setting requires that the clients commu-
nicate with servers at disjoint intervals of time and that they do not share any
secret data (e.g. cryptographic keys) before the protocol starts. It is necessary
to have at least two servers to achieve this property. As shown by Hallevi
et al. [16], using one server for this purpose will leak the clients’ data to it.
Further works on generic MPC in client-server settings [1, 2, 14, 15, 22] also
consider one-server scenarios. Even though in OLIC the clients use the help
of the two servers in order to run the protocol, the computational and com-
municational requrements on clients there are quite high. And the servers
still handle (encrypted, masked) clients data; and in case both server collude,
they will be able to learn some extra information about client data.

The main challenge of Euclidean distance based proximity testing is ef-
ficiently combining the arithmetic operations (like computing the squared
distance) with the comparison operation; many existing tools for multiparty
computation tend to be efficient only for one of the two kinds of operations,
and performing the other one introduces great overhead. We overcome this
in our POLAR by mixing the MASCOT [25] and Tinier [3] MPC protocols for
computations in the two different domains, and the edaBits [2] technique to
convert between the two domains. All three mentioned techniques are quite
efficient in the amortized sense: i.e. when the number of MPC operations

92

3.7. Discussion

done is high, the cost of running the MPC protocol per operation is low. This
is a major challenge to applying these techniques to a client-client setting
where clients want to compute a relatively simple functionality. We over-
come this obstacle by introducing a pair of servers and letting the servers do
the heavy precomputation phase for many different pairs of clients in one
batch, taking advantage of the amortization.

Very recently, in lieu of preventing the spreading of COVID-19, privacy-
preserving proximity testing witness a boom of protocols that rely on Blue-
tooth communication, e.g., [5, 40]. These solutions realize proximity testing
without relying on knowing the exact location of clients. Such solutions are
effective only for shorter radius (Bluetooth range) and the distance between
users cannot be accurately computed (e.g., signal strength varies in the pres-
ence of physical barriers andwith weather conditions). In contrast, this work
does not want to rely on a specific technology (e.g., Bluetooth communica-
tion) and aims at providing precise matching using the Euclidean distance.
We remark that purely protocol-based solutions which are the focus on this
work aim to privately implement the partial functionality of global services
like social networks, messengers and taxi services.

To summarize, most [9, 13, 18, 19, 29, 31, 35, 36, 37, 38, 39, 41] of the
existing approaches to proximity testings offer protocols with limited prac-
tical applicability since they either not actively secure, or are too heavy to be
executed to resource-constrained clients. POLAR is also modular and is com-
posed of state of the art MPC techniques, so any performance improvement
to those techniques will automatically improve POLAR as well.

3.7 Discussion

Assumptions. POLAR is not yet a fully-featured protocol to implement LBS
out of the box. Rather, it is best seen as a fundamental building block that
can be used by a privacy-enhancing LBS. It works in the standard setting
of MPC protocols [27], the same setting was used for a number of previous
proximity testing protocols [9, 18, 31, 32] albeit the (passive) adversary was
more limited in those protocols. The assumptions of this model are: parties
communicate through secure point-to-point channels (can be implemented
in real life by means of a Public Key Infrastructure). In the beginning of the
protocol the (active) adversary can corrupt some of the parties and arbitrarily
change their behavior attempting to learn something about the other parties’
inputs and cause the other parties’ outputs to be incorrect. As long as one
of the servers is honest, POLAR ensures the security and the correctness of
the protocol. But even if both servers are corrupted, they can only interfere

93

3. Outsourcing MPC Precomputation for Location Privacy

with the protocol result, but not learn anything about client data. The only
case when the adversary can infer something about client inputs is if both
servers and one of the clients is corrupted at the same time.

Scope. The setting of POLAR does not address the data leakage inherit to
the functionality itself, e.g., knowingwhether some user is close to you or not
inevitably reveals something about that user’s location, or when two users
perform the matching the servers will learn the fact that matching happened
(since they knowwhat users they communicated with and when) but not the
result of that matching.

Generalizations. Our approach is trivially augmentable to support time-
based matching [32], i.e. to allow clients to submit the time interval during
which they plan to be in the specified location and make the protocol match
them only if the locations are close and the time intervals intersect. This
can be useful for friend-finding services as well as ridesharing and taxi ap-
plications (e.g. BlaBlaCar [3]), where drivers need to be close to pick up
the passengers at the right time (and get the actual passenger location if the
matching succeeded).

POLAR can be easily generalized to use more than two servers, so that
it stays secure as long as at least one of the servers is honest. This signifi-
cantly weakens the security assumption it depends on, making the protocol
more reliable at a cost of certain server-side performance overhead. Since
the real-life purpose of having two servers was to allow distributing trust
between two independent organizations that are providing the LBS together,
distributing it over a larger number of organizations makes the task of com-
promising the whole system a lot harder.

3.8 Conclusion

We presented POLAR, a secure and privacy-enhancing protocol for proxim-
ity testing, which performs exact Euclidean distance basedmatching. POLAR
introduces two servers to the client-to-client setting to aid in protocol. This
allows the clients to run an actively secure MPC protocol offloading the MPC
protocol’s precomputations to the servers.

Our evaluation results confirm that the amortized performance of POLAR
is practical: the clients running time per client pair is close to negligible, and
the communication cost is around 84MB (if amortized over 2000 repetitions)
which is acceptable given that in real life the servers will not be as resource
constrained as clients; and 84 MB is equivalent to streaming a short video.

We leave a more extensive evaluation of POLAR’s performance in the
presence of realistic network latency for the future work, as well as the eval-

94

3.8. Conclusion

uation of time-based matching. Another direction for future work is to ap-
ply the proposed server-aided precomputation technique to other problems
where resource-constrained clients want to run a lightweight MPC protocol.

Acknowledgments This work was partially supported by the Wallen-
berg AI, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strate-
gic Research (SSF), the Swedish Research Council (VR), and the Excellence
Center at Linköping – Lund in Information Technology (ELLIIT).

95

This page intentionally left blank.

Bibliography

[1] A. Beimel, A. Gabizon, Y. Ishai, E. Kushilevitz, S. Meldgaard, and
A. Paskin-Cherniavsky. Non-interactive secure multiparty computa-
tion. In J. A. Garay and R. Gennaro, editors, CRYPTO, volume 8617 of
LNCS, pages 387–404. Springer, 2014.

[2] F. Benhamouda, H. Krawczyk, and T. Rabin. Robust non-interactive
multiparty computation against constant-size collusion. In J. Katz and
H. Shacham, editors, CRYPTO, volume 10401 of LNCS, pages 391–419.
Springer, 2017.

[3] BlaBlaCar - Trusted carpooling. https://www.blablacar.com/.

[4] R. Canetti. Security and composition of multi-party cryptographic
protocols. Cryptology ePrint Archive, Report 1998/018, 1998. https:
//eprint.iacr.org/1998/018.

[5] C. Castelluccia, N. Bielova, A. Boutet, M. Cunche, C. Lauradoux,
D. Le Métayer, and V. Roca. Robert: Robust and privacy-preserving
proximity tracing. 2020.

[6] S. Cole. Yahoo engineer used insider access to get private photos
of women. https://www.vice.com/en/article/59nwyk/yahoo-
engineer-used-insider-access-to-get-private-photos-of-women,
2019. [Online; accessed 16-May-2021].

[7] J. Cox. Snapchat employees abused data access to spy on users.
https://www.vice.com/en/article/xwnva7/snapchat-employees-
abused-data-access-spy-on-users-snaplion, 2019. [Online; accessed
16-May-2021].

[8] J. Cox and M. Hoppenstedt. Sources: Facebook has fired multiple em-
ployees for snooping on users. https://www.vice.com/en/article/
bjp9zv/facebook-employees-look-at-user-data, 2018. [Online; ac-
cessed 16-May-2021].

97

https://www.blablacar.com/
https://eprint.iacr.org/1998/018
https://eprint.iacr.org/1998/018
https://www.vice.com/en/article/59nwyk/yahoo-engineer-used-insider-access-to-get-private-photos-of-women
https://www.vice.com/en/article/59nwyk/yahoo-engineer-used-insider-access-to-get-private-photos-of-women
https://www.vice.com/en/article/xwnva7/snapchat-employees-abused-data-access-spy-on-users-snaplion
https://www.vice.com/en/article/xwnva7/snapchat-employees-abused-data-access-spy-on-users-snaplion
https://www.vice.com/en/article/bjp9zv/facebook-employees-look-at-user-data
https://www.vice.com/en/article/bjp9zv/facebook-employees-look-at-user-data

Bibliography

[9] I. Damgard, V. Pastro, N. Smart, and S. Zakarias. Multiparty computa-
tion from somewhat homomorphic encryption. In R. Safavi-Naini and
R. Canetti, editors, Advances in Cryptology – CRYPTO 2012, pages 643–
662, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[10] D. Demmler, T. Schneider, and M. Zohner. ABY - A framework for ef-
ficient mixed-protocol secure two-party computation. In 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2015. The Internet Society, 2015.

[11] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved
primitives for mpc over mixed arithmetic-binary circuits. Cryptology
ePrint Archive, Report 2020/338, 2020. https://eprint.iacr.org/2020/
338.

[12] T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl. A unified approach
to mpc with preprocessing using ot. Cryptology ePrint Archive, Report
2015/901, 2015. https://eprint.iacr.org/2015/901.

[13] D. Freni, C. R. Vicente, S. Mascetti, C. Bettini, and C. S. Jensen. Pre-
serving location and absence privacy in geo-social networks. In CIKM,
pages 309–318, 2010.

[14] S. D. Gordon, T. Malkin, M. Rosulek, and H. Wee. Multi-party compu-
tation of polynomials and branching programs without simultaneous
interaction. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT,
LNCS. Springer, 2013.

[15] S. Halevi, Y. Ishai, A. Jain, I. Komargodski, A. Sahai, and E. Yogev. Non-
interactive multiparty computation without correlated randomness. In
T. Takagi and T. Peyrin, editors, ASIACRYPT, volume 10626 of LNCS,
pages 181–211. Springer, 2017.

[16] S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In CRYPTO, pages 132–
150, 2011.

[17] P. Hallgren, C. Orlandi, and A. Sabelfeld. PrivatePool: Privacy-
Preserving Ridesharing. In CSF, pages 276–291, Aug 2017.

[18] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. InnerCircle: A parallelizable
decentralized privacy-preserving location proximity protocol. In PST,
pages 1–6, 2015.

98

https://eprint.iacr.org/2020/338
https://eprint.iacr.org/2020/338
https://eprint.iacr.org/2015/901

Bibliography

[19] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. MaxPace: Speed-
Constrained Location Queries. In CNS, 2016.

[20] A. Hern. Uber employees ’spied on ex-partners, politicians and be-
yoncé’. https://www.theguardian.com/technology/2016/dec/13/
uber-employees-spying-ex-partners-politicians-beyonce, 2016. [On-
line; accessed 16-May-2021].

[21] T. P. Jakobsen, J. B. Nielsen, and C. Orlandi. A framework for outsourc-
ing of secure computation. In Proceedings of the 6th edition of the ACM
Workshop on Cloud Computing Security, pages 81–92, 2014.

[22] A. Jarrous and B. Pinkas. Canon-mpc, a system for casual non-
interactive secure multi-party computation using native client. In
A. Sadeghi and S. Foresti, editors, WPES, pages 155–166. ACM, 2013.

[23] K. Järvinen, A. Kiss, T. Schneider, O. Tkachenko, and Z. Yang. Faster
privacy-preserving location proximity schemes for circles and poly-
gons. IET Information Security, 14, 10 2019.

[24] M. Keller. Mp-spdz: A versatile framework for multi-party compu-
tation. Cryptology ePrint Archive, Report 2020/521, 2020. https:
//eprint.iacr.org/2020/521.

[25] M. Keller, E. Orsini, and P. Scholl. Mascot: Faster malicious arithmetic
secure computation with oblivious transfer. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, page 830–842, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[26] P. Kotzanikolaou, C. Patsakis, E. Magkos, and M. Korakakis.
Lightweight private proximity testing for geospatial social networks.
Computer Communications, 73:263–270, 2016.

[27] Y. Lindell. How to simulate it - a tutorial on the simulation proof
technique. Cryptology ePrint Archive, Report 2016/046, 2016. https:
//eprint.iacr.org/2016/046.

[28] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia. Privacy
in geo-social networks: proximity notification with untrusted service
providers and curious buddies. VLDB J., 20(4):541–566, 2011.

[29] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh.
Location privacy via private proximity testing. In NDSS, 2011.

99

https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce
https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce
https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046

Bibliography

[30] J. D. Nielsen, J. I. Pagter, and M. B. Stausholm. Location privacy via
actively secure private proximity testing. In PerCom Workshops, pages
381–386. IEEE CS, 2012.

[31] I. Oleynikov, E. Pagnin, and A. Sabelfeld. Where are you Bob? Privacy-
Preserving Proximity Testing with a Napping Party. In ESORICS, 2020.

[32] E. Pagnin, G. Gunnarsson, P. Talebi, C. Orlandi, and A. Sabelfeld. TOP-
Pool: Time-aware Optimized Privacy-Preserving Ridesharing. PoPETs,
2019(4):93–111, 2019.

[33] I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and A. D. Keromytis.
Where’s wally?: Precise user discovery attacks in location proximity
services. In CCS, 2015.

[34] D. Rotaru and T. Wood. Marbled circuits: Mixing arithmetic and
boolean circuits with active security. Cryptology ePrint Archive, Re-
port 2019/207, 2019. https://eprint.iacr.org/2019/207.

[35] M. N. Sakib and C. Huang. Privacy preserving proximity testing using
elliptic curves. In ITNAC, pages 121–126. IEEE Computer Society, 2016.

[36] G. Saldamli, R. Chow, H. Jin, and B. P. Knijnenburg. Private proximity
testing with an untrusted server. In WISEC, pages 113–118. ACM, 2013.

[37] J. Sedenka and P. Gasti. Privacy-preserving distance computation and
proximity testing on earth, done right. In AsiaCCS, pages 99–110, 2014.

[38] L. Siksnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu. Private and flexible
proximity detection in mobile social networks. In MDM, pages 75–84,
2010.

[39] L. Siksnys, J. R. Thomsen, S. Saltenis, M. L. Yiu, and O. Andersen. A
location privacy aware friend locator. In SSTD, pages 405–410, 2009.

[40] C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion,
W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli, et al. Decentralized
privacy-preserving proximity tracing. arXiv preprint arXiv:2005.12273,
2020.

[41] G. Zhong, I. Goldberg, and U. Hengartner. Louis, lester and pierre:
Three protocols for location privacy. In PET, pages 62–76, 2007.

100

https://eprint.iacr.org/2019/207

	Introduction
	Bibliography
	Where are you Bob? Privacy-Preserving Proximity Testing with a Napping Party
	Introduction
	Modeling Private Proximity Testing Using Two Servers
	Recap of the InnerCircle Protocol
	Private Location Proximity Testing with Napping Bob
	OLIC: Description of the Protocol
	OLIC: Privacy of the Protocol
	Security Against Malicious Servers

	Evaluation
	Asymptotic complexity
	Implementation
	Performance Evaluation

	Related Work
	Conclusions
	Bibliography
	Appendix
	Tools Used in OLIC
	Detailed Measurements

	CatNap: Leveraging Generic MPC for Actively Secure Privacy-Enhancing Proximity Testing with a Napping Party
	Introduction
	Preliminaries
	The CatNap Protocol
	Security Proof

	Evaluation
	Related Work
	Conclusion
	Bibliography
	Appendix
	Algebraic Manipulation Detection Code

	Outsourcing MPC Precomputation for Location Privacy
	Introduction
	Preliminaries
	The POLAR Protocol
	Security Analysis
	Evaluation
	Related Work
	Discussion
	Conclusion
	Bibliography

