This errata sheet lists the errors for the doctoral thesis written by Ida Järlskog, titled *Occurrence of Traffic-Derived Microplastics in Different Matrices in the Environment*. Chalmers University of Technology. ISSN: 0346-718X

Page, Chapter	Original text	Correction
49, 4.8.2	The tire wear varied between 59–171 g/vkm (average 95–136 g/vkm)	The tire wear varied between 0.059–0.171 g/vkm (average 0.095–0.136 g/vkm)
Paper I, 3.2	Fig 7. The boxplots showing the MP in stormwater is wrong since it shows the <20 μm instead of <100 μm. The text is correct.	1000 Plastic Paint TBIWP 100 - No old P
Paper II, 3.6	(Tian et al., 2021). The median lethal concentration of this substance is as low as 0.8 $\mu g/L$.	The median lethal concentration of the transformation product of the 6PPD,, named 6PPD quinone, was as low as 0.8 μ g/L while the 6PPD was found to be lethal for salmons at concentrations of 251 μ g/L (Tian et al., 2021).
Paper III, 3.3	The results showed a relative number concentration(2–20 μ m \bar{x} = 78%, 20–125 μ m \bar{x} = 74%) followed by the sum of Trip (2–20 μ m \bar{x} = 19%, 20–125 μ m \bar{x} = 22%).	The results showed a relative number concentration (2–20 μ m \bar{x} = 78%, 20–125 μ m \bar{x} = 74%) followed by the sum of TBiWP (2–20 μ m \bar{x} = 19%, 20–125 μ m \bar{x} = 22%).