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Abstract

In recent years the emergence of atomically thin nanomaterials has led to a
new research venue, revealing intriguing properties making them an excellent
platform to study many-particle quantum phenomena. Of particular interest
is the class of nanomaterials called transition metal dichalcogenides (TMDs),
where the strong light-matter coupling reveals promising opportunities in the
pursuit of novel optoelectronical devices. Additionally, the two-dimensional
nature of TMDs leads to a strong Coulomb interaction, resulting in the for-
mation of excitons, which are tightly bound electron-hole pairs. Due to their
large binding energy, they are stable at room temperature and dominate the
optical response of these materials. Furthermore, TMD monolayers can be
stacked on top of each other to form heterostructures. Introducing a twist
angle gives rise to a moiré pattern, allowing for the formation and trapping
of highly tunable moiré excitons.
The aim of this thesis is to investigate, on a microscopic footing, the moiré
exciton landscape and the many-particle mechanisms governing the optical
response of TMD heterostructures. In particular, the focus lies on the im-
pact of the moiré potential on the optical response and how the moiré exciton
landscape can be externally tuned. For this purpose, we will shed light on
the importance of interlayer hybridization in both twisted and untwisted
TMD bilayers. We show how the hybridization can be tuned by applying an
external electrical field and can turn materials into indirect semiconductors
with dark excitons becoming the lowest states. Overall, the work provides
microscopic insights into the twist-angle dependent optical fingerprint of the
technologically promising class of atomically thin nanomaterials.
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CHAPTER 1

INTRODUCTION

In 2004, the atomically thin nanomaterial graphene was successfully isolated
for the first time [1], a discovery later rewarded with the Nobel Prize for
physics [2]. The intriguing properties displayed by graphene [3] later paved
the way for a whole new class of nanomaterials called two-dimensional ma-
terials [4]. Due to the crystal dimensionality, the motion of the electron is
restricted to two dimensions in these materials, in turn leading to fascinating
new physics and promising concepts of novel technological devices. One of
the most promising materials from this new class are the transition metal
dichalcogenides (TMDs) [5, 6] (cf. Fig 1.1).

TMDs are particular interesting due to their optical properties [7]. Here,
the two-dimensional nature give rise to a reduced screening of the Coulomb
potential. Consequently, an electron in the conduction band can become
strongly bound with the electron vacancy in the valance band, most often
refereed to as holes [6]. This bound state is known as an exciton and fun-
damentally changes the optical response of the material [8]. Other bound
states involving more particles in these materials are possible, for example
trions [9, 10]. This is however outside the scope of this thesis. Furthermore,
by stacking two sheets of TMDs on top of each other to form van der Waals
heterostructures [11], long lived interlayer excitons can form [12–18]. Here,
the electron and hole is spatially separated by belonging to different layers.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of a monolayer TMD.

This in turn gives this new exciton species some intriguing properties in com-
parison to the excitons that are confined to one layer. Importantly for this
work, they exhibit an out-of-plane dipole moment which allows for exter-
nal tuning of the energies via electrical fields [19, 20]. The introduction of
vertically stacked TMDs also allows for overlapping electronic wavefunctions
between the layers, which leads to interlayer tunneling of carriers. Conse-
quently, hybrid excitons hX can form that have both an interlayer exciton
IX component and an intralayer exciton component X0 (cf. Fig 1.2).

Moreover, by twisting two vertically stacked 2D materials with a honeycomb
lattice one can introduce a moiré pattern (cf. Fig 1.3). It has been shown
that the introduction of such a moiré patterns to vertically stacked bilayer
graphene sheets lead to exotic new quantum phenomena such as Mott in-
sulating phases and unconventional superconductivity [21], in turn clearly
demonstrating exciting new opportunities to study intriguing physics in 2D
materials. The same type of moiré pattern can by applied to vertically
stacked TMDs, allowing for another way to tune the exciton physics via
the periodic moiré potential that emerges in this new superlattice [22–26].
Also here a rich landscape of interesting physics has been revealed [27], al-
lowing for flat exciton bands that trap excitons in real space, which heavily
impacts both the exciton energy landscape and the optical response [28, 29].

In this work we investigate the exciton energy landscape and its optical re-
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CHAPTER 1. INTRODUCTION

Figure 1.2: Illustration of bilayer TMD with a hybrid exciton hX made out of an
interlayer component IX and an intralayer component X0.

sponse in bilayer TMD structures. The focus lies on the interplay between
different components of the moiré potential. Furthermore, we exploit the
gained insights in order to externally tune the exciton energy landscape via
twist angle engineering or applied electrical fields. We find that the interlayer
hybridization plays a major role for of the exciton energy landscape, making
momentum dark excitons dominate in many bilayer TMDs (paper I.). Ad-
ditionally, we calculate the optical response for twisted bilayer MoSe2 under
the influence of an external electric field, revealing interlayer hybridization
as the cause for distinct regions in the photoluminescence spectra (paper
II.), dominated by either intralayer or interlayer excitons, or even dark exci-
tons. Consequently, we predict critical field strengths as a function of twist
angle where one can turn the material from a direct to an indirect semi-
conductor. Overall, our work provides novel microscopic insights into the
quantum many-body processes that govern the moiré exciton physics in this
intriguing class of nanomaterials.

The thesis has been organized in the following way. We start by introducing
the theoretical framework (chapter 2) used throughout this work, beginning
with a brief introduction into second quantization and density matrix formal-
ism, then continuing with the Hamiltonian representation of many-particle
processes that we are interested in and how excitons can be treated within
this formalism. Chapter 3 summarizes the work done in paper I. and de-
tails how the different components of the moiré potential affect the exciton
energy landscape in untwisted structures. Here, we discuss our developed
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CHAPTER 1. INTRODUCTION

Figure 1.3: Illustration of moiré pattern with twisted TMDs.

model for the interlayer hybridization and how it affects the optical response
of the material. We then investigate how the previous insights can be ex-
ploited for external tuning of the optical response of moiré excitons (paper
II.). Moreover, we generalize the framework to include twisted structures
and also applied electrical fields. We end with some concluding remarks and
outlook.
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CHAPTER 2

THEORETICAL FRAMEWORK

In this chapter we present the underlying theory used throughout the thesis
and in the appended works. Starting with a brief introduction to the density
matrix formalism and second quantization, then continuing with the many-
particle Hamiltonian in TMDs. Finally, we discuss the concept of excitons
and how the Hamiltonian can be simplified by considering a transformation
into exciton basis.

2.1 Second quantization and density matrix

formalism

Second quantization
In this work we make use of second quantization in order to model the funda-
mental statistical properties of the particles found in these condensed matter
systems. Since the topic of second quantization can be found in most con-
densed matter physics textbooks, we will only briefly cover the essentials
here.

In the many-particle systems we are interested in, we have a vast unknown
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CHAPTER 2. THEORETICAL FRAMEWORK

number of identical quantum particles. This would in quantum mechanics be
described by an N-particle wavefunction ΨN [30]. The construction and com-
putation of this N-particle wavefunction is often too tedious or difficult to be
practically feasible. In second quantization we instead capture the fundamen-
tal statistical properties with the introduction of creation a† and annihilation
operators a. Here, we can describe a many-particle state |ϕ1ϕ2...ϕN⟩ with the
use of these operators acting upon a single state a†1a

†
2...a

†
N |0⟩ [30]. We can

then interpret a†i as creating an additional particle in the single state |ϕi⟩.
Since the annihilation operator ai is the Hermitian adjoint of a†i , this can
reversely be thought of as annihilating a particle in the single state |ϕi⟩.

The fundamental statistical properties of particles, stemming from the spin
statistics theorem, is captured by two distinct particle descriptions. Either
the particle has integer spin - boson - or it has half-integer spin - fermion
-, where fermions obey the Pauli exclusion principle and bosons do not, i.e
two fermions can not occupy the same state. In our current framework this
translates into whether the many-particle state |ϕ1ϕ2...ϕN⟩ is symmetric or

anti-symmetric under Permutation (or exchange) P̂ [30] 1. The many-particle
state is symmetric for bosons

P̂12 |ϕ1ϕ2...ϕN⟩ = |ϕ2ϕ1...ϕN⟩ , (2.1)

and anti-symmetric for fermions

P̂12 |ϕ1ϕ2...ϕN⟩ = − |ϕ2ϕ1...ϕN⟩ . (2.2)

From this principle we can easily read of the essential commutators we need
for a and a†, thus finding that bosons commute

[a
(†)
i ,a

(†)
j ] = a

(†)
i a

(†)
j − a

(†)
j a

(†)
i = 0, [ai,a

†
j] = δij, (2.3)

and fermions anti-commute

{a(†)i ,a
(†)
j } = a

(†)
i a

(†)
j + a

(†)
j a

(†)
i = 0, {ai,a†j} = δij. (2.4)

With these simple commutation rules, the fundamental statistical properties
of the many-particle state is captured, allowing us to efficiently model the
different particles determining the physics in our nanomaterials.

1In two dimensions there are exceptions to this rule where a particle called anyon
instead has a phase and is not as restricted as the conventional fermion and boson [31, 32].
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CHAPTER 2. THEORETICAL FRAMEWORK

Density matrix formalism
In combination with second quantization we use the density matrix formal-
ism. Here, the density matrix ρ is a statistical ensemble of of many quantum
states [30],

ρ =
∑
n

pn |Ψn⟩ ⟨Ψn| , (2.5)

where pn is the corresponding probability to find a particle in state |Ψn⟩.
Within this formalism we can associate the expectation value of a quantum
mechanical observable ⟨O⟩ to the trace of the density matrix [30],

⟨O⟩ =
∑
n

pn ⟨Ψn|O|Ψn⟩ = tr(ρO), (2.6)

where tr(ρ2) = 1 for pure states and tr(ρ2) < 1 for mixed states. Using
this definition of expectation values we can separate the temporal evolution
of ⟨O⟩ into two parts, one coherent part ⟨O⟩coh and one scattering ⟨O⟩sca
part [33]. Importantly for this work, we can then recognize the coherent part
as the particle occupation probability ⟨a†iai⟩ and the scattering part as the
microscopic polarization ⟨a†iaj⟩.

2.2 Many-particle Hamiltonian in TMDs

Now when the fundamental theoretical principles has been established we
can set up a Hamiltonian for our interacting particles in the TMDs. For the
processes covered in this work we mainly focus on three particles and their
corresponding interactions; electrons, photons and phonons. Before looking
closer at the various interactions that occurs, we will first establish the free
kinetic part of the Hamiltonian.

Free Hamiltonian
The free Hamiltonian describing the kinetic energy for electrons or holes is
simply given by

Hel,0 =
∑
kλ

ελkλ
†
kλk, (2.7)

where λ = (c,v) is describing either electrons in the conduction band c or
holes in the valance band v. Here k is the momentum in the Brillouin zone

7



CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.1: Schematic for a typical TMD bandstructure. The local minima for the
conduction band and maxima for the valance band can be found along the high
symmetry points. Arrows indicate the difference in spin configuration. The figure
is adapted from Ref. [35].

and ελk is the associated kinetic energy. A schematic for a typical TMD
bandstructure can bee seen in Fig 2.1. Here, the local conduction band
minima and valance band maxima can be found around the high symmetry
points in the Brillouin zone (BZ) 2, which in general are the points of interest
when considering excitons. Furthermore, the dispersion around these high
symmetry points is well approximated by a parabolic dispersion. Thus, the
electrons and holes can be considered as free particles with an effective mass.

The second part of the free Hamiltonian is given by the free phonon part

Hph,0 =
∑
kphj

ℏΩj
kph

b†kphj
bkphj, (2.8)

where kph is the phonon momentum and j = (TA,LA,LO,TO,A1) is the
phonon mode index, which takes into account both the transverse (T) and
longitudinal (L) part, in addition the the optical (O) branch and the acoustic
(A) branch. Here, A1 is an out-of-plane optical mode. The phonon dispersion
is given by Ωkphj, where a schematic of a typical TMD phonon bandstructure
can be seen in Fig 2.2. From this figure we can see that most modes have an

2The Λ point is strictly speaking not a symmetry point, but rather the midpoint in
a symmetry line [34]. This distinction is however not important for the purpose of this
work.
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CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.2: Schematic of a typical phonon bandstructure in TMDs with the rele-
vant modes illustrated. A linear approximation is made for the acoustical modes
close to the Γ point. In the vicinity of the remaining high symmetry points a
constant approximation is made. Schematic adapted from Ref. [36].

approximate flat dispersion around each high symmetry point, the exception
being the long range acoustical modes (close to the Γ point) which can be
approximated as linear. Thus we make use of the Debye approximation for
long range acoustics phonons and the Einstein approximation (flat dispersion,
i.e constant) for the rest.

The remaining part of the free Hamiltonian is the photon dispersion which
is simply given by

Hl,0 =
∑
kσ

ℏωσ
k c̃

†
kσ c̃kσ, (2.9)

where σ is the polarization and ℏωσ
k is the photon energy.

Electron-electron Hamiltonian
The formation of excitons stems from the strong Coulomb interaction be-
tween electrons and holes, which in turn makes them a tightly bound electron-
hole pair. The Hamiltonian governing this interaction, often referred to as
the electron-electron Hamiltonian or simply the Coulomb interaction, is given
by [37]

Hel−el =
1

2

∑
kk′q
λλ′

Vqλ
†
k+qλ

′†
k′−qλ

′
k′λk, (2.10)

where we now have restricted the Hamiltonian to only include intraband pro-
cesses with small momentum transfers. Here, q is the transferred momentum

9



CHAPTER 2. THEORETICAL FRAMEWORK

and Vq is the Coulomb matrix element. When considering monolayers, the
matrix element is derived from a modified form of the Rytova-Keldysh po-
tential [38, 39], which can be obtained by solving the Poisson equation for
charges in a thin film with thickness d encased in a dielectric environment.
The obtained Coulomb potential then has the following expression [40]

Vq =
e2

2ϵ0Aqϵscr(q)
, (2.11)

where A is the lattice area, e is the charge and ϵ0 is the vacuum permittivity.
The dielectric screening ϵscr(q) is given by

ϵscr(q) = κTMDtanh(
1

2
[αTMDdq − ln

(κTMD − κsub

κTMD + κsub

)
]), (2.12)

where κ =
√
ϵ∥ϵ⊥ and α =

√
ϵ∥

ϵ⊥
. Here, ϵ∥ accounts for the in-plane compo-

nent of the dielectric tensor and ϵ⊥ accounts for the out-of-plane component.

Electron-phonon Hamiltonian
An important process when describing the dynamics of excitons is their inter-
action with phonons. For this purpose it is important to model the electron-
phonon interaction, where an electron or hole can scatter with a phonon with
some momentum transfer

Hel−ph =
∑
kq
jλ

Gλ
jqλ

†
k+qλk(b

†
j,−q + bj,q), (2.13)

where Gλ
jq is the electron-phonon matrix element given by [36, 37, 41],

Gλ
jq = gλjq

√
ℏ2

2ρAℏΩjq

. (2.14)

Here, ρ is the mass density and A is the associated density of said area. Ωjq

indicate the phonon energies, which can be extrapolated from a bandstruc-
ture like Fig 2.2. The electron-phonon coupling is given by gλjq, which in
a similar fashion as the energy is approximated as constant for all modes
except for the long range acoustical modes that are approximated as linear
in q. The material and valley specific value of these couplings are obtained
from first-principle calculations done in [36, 41].

10



CHAPTER 2. THEORETICAL FRAMEWORK

Electron-light Hamiltonian
In this work we treat the electron-light interaction in two different approaches,
depending on the process we wish to model 3. In the case for optical excita-
tion of an electron, we treat the electron-light interaction in the semi-classical
way, i.e an electron interacting with an electromagnetic field. As long as we
only consider this optical absorption in the material, this is a sufficient ap-
proach. Here the electron-light Hamiltonian reads

Hel−l = −iℏ
e0
m0

∑
kλλ′

Mλλ′

k ·A(t)λ′†
kλk, (2.15)

where Mλλ′

k = ⟨λ′k|∇|λk⟩ is the optical matrix element, A(t) is the elec-
tromagnetic vector potential. Here e0 and m0 is the elementary charge and
free electron mass respectively. Within the scope of this work, we are mainly
interested in the interband transitions, that is λ′ = c and λ = v. This then
describes the optical excitation of an electron which consequently can form
an exciton.

If we instead want to consider the emission of light from the material this
semi-classical description is not sufficient. Here we instead have the emission
of a photon after an electron has been optically excited. Since we are here
dealing with the electron interacting with a single photon a more complete
quantum mechanical framework is needed. For this purpose we have the
electron-photon Hamiltonian which reads

Hel−photon =
∑

σqkλλ′

Mλλ′

kσ λ†
k+q∥λ

′
kc̃

†
q + h.c, (2.16)

where Mλλ′

kσ again is the optical matrix element and q ∥ is the momentum
that is parallel to the monolayer. In this work we mainly focus on the relax-
ation of an electron from the conduction band to the valance band, i.e v†cc̃.
This is then the Hamiltonian of interest when considering a photolumines-
cence spectrum.

3By placing the material in a cavity, the light-matter interaction can also lead to the
formation of exciton-polaritons [42, 43]. This is however outside the scope of this thesis.
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2.2.1 Equation of motion

By having complete access to the Hamiltonian that describe the system we
can calculate the temporal evolution of some observable O. This is done via
Heisenbergs equation of motion [37]4.

iℏ
d

dt
⟨O⟩ =

〈
[O,H]−

〉
. (2.17)

As mention in 2.1 we can via the density matrix approach separate the par-
ticle occupation from the microscopic polarization and thus calculate the
temporal evolution of these separately. This means when considering exci-
tons it is sufficient to commute the polarization ⟨c†v⟩ with the Hamiltonian
5

2.2.2 Cluster expansion approach

An often occurring problem in many-particle physics is higher order corre-
lations and how to truncate them. If we for example want to calculate the
temporal evolution for the microscopic polarization ⟨a†1a2⟩ we will find that
it couples to a two particle correlation ⟨a†ia

†
jakal⟩. This quantity does in turn

couple to a three particle quantity which in turn couples to higher order cor-
relations, leading to a system of differential equations which are not closed,
a problem often refereed to as the hierarchy problem. In order to solve this
equation a scheme to factorize and truncate away the higher order correla-
tions is needed. This can be done by expressing the N-particle quantity as
single particle quantities, also known as singlet, and a higher order correc-
tion. A common cluster expansion and truncation scheme is the well known
Hartree-Fock approximation [37]

⟨a†ia
†
jakal⟩ = ⟨a†ial⟩ ⟨a

†
jak⟩ − ⟨a†iak⟩ ⟨a

†
jal⟩+ ⟨a†ia

†
jakal⟩cor , (2.18)

4This is not to be confused with the von Neuman equation. Although being similar,
instead deals with the temporal evolution of the density matrix itself, not an operator.

5In this work we are mainly interested in the microscopic polarization, but importantly
for exciton diffusion [44] one can also calculate the equation of motion of the particle
occupation.
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where the two particle correlation has been factorized as singlets and a higher
order correction. We can then neglect this higher order correction and suc-
cessfully simplify the equation of motion to a single particle problem, which
can be solved.

2.2.3 Markov approximation

The optical responses studied in this work often comes in the form of phonon-
assisted photoluminescence. Here, the electron-phonon interaction is very
important and in these cases the inclusion of higher order correlations will
often be necessary. In these problems one will encounter the two particle
correlation S = ⟨a†ab†⟩, which yields the following form for the equation of
motion

Ṡ(t) = (iω − γ)S(t) + P (t). (2.19)

In order to solve this equation we make use of the Markov approximation,
where we take the standard analytical solution

S(t) =

∫ ∞

0

dτeiω−γP (t− τ), (2.20)

and neglect the past values of P (t), i.e P (t− τ) ≈ P (t)e−iωP τ . Here P is now
approximated at its current time with some temporal oscillation ωP . With
this approximation the integral can now be solved

S(t) =
P (t)

γ + i(ω − ωP )
, (2.21)

and by applying the Sokhotski–Plemelj theorem for γ → 0 we have the
following expression

S(t) = πP (t)δ(ω − ωP )− iP
( P (t)

ω − ωP

)
. (2.22)

Here, the first term is usually contributing to the scattering rate, which is
often the point of interest. P is instead the principal value which often
contributes to an energy renormalization, something which can be neglected
in most cases.
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2.3 Excitons

In the previous section we presented the relevant Hamiltonian operators for
the processes considered in this work. These Hamiltonians are, however,
given in electron hole-basis which can often become cumbersome and im-
practical to work with, especially when considering exciton dynamics. In
order to reduce the number of operators we work with and thus the complex-
ity, an additional framework is needed. In this section we go through how
one can go from the electron-hole Hamiltonian to an exciton Hamiltonian
and directly incorporate the Coulomb interaction into the free exciton part.

2.3.1 Wannier equation

An exciton becomes strongly bound due to the Coulomb interaction between
electrons and holes. In order to calculate these binding energies we need
to calculate the temporal evolution of the microscopic polarization pkk′ =
⟨c†kvk′⟩, which is done via Eq. 2.17. Importantly, by commuting this operator
quantity with the Coulomb interaction (Eq. 2.10) and then applying the
Hartree-Fock approximation (Eq. 2.18), the resulting expression is the well
known semi-conductor Bloch equation [33],

iℏṗkk′ = (εvk − εck′)pkk′ +
∑
q

Vqpk+q,k′+q + Ω̃kk′ , (2.23)

where we have assumed a low excitation regime, i.e that the occupation lies
with the valance band. The first term in the equation is simply the band
edge energy of the electron/hole pair and the second term takes into account
the Coulomb attraction between the electron and hole. Furthermore, the
last term Ω̃kk′ = iℏ e0

m0
M vc

k ·A(t)δkk′ is the Rabi frequency that accounts for
optical polarization.

The above equation can be simplified by writing it in terms of center-of-mass
coordinates Q = ke − kh, k = αkh + βke. Here, α = me/(me + mh) and
β = mh/(me +mh). The effective masses of the electrons and holes can be
approximated with a parabolic approximation around each high symmetry
point from a bandstructure calculated with first-principle calculations (such
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as Fig 2.1) [35]. Equation 2.23 then reads

iℏṗQk = −εQkpQk +
∑
q

VqpQ,k+q + Ω̃0, (2.24)

where Ω̃0 is constrained to Q = 0 from the momentum selection rules and
εQk is the kinetic energy of the electron(hole) which is given by

εQk = Egap +
ℏ2Q2

2M
+

ℏ2k2

2mred

. (2.25)

Here the center-of-mass momentum Q is shifted by some valley coordinate
ξ = (ξe,ξh) and Egap denotes the bandgap energy. Furthermore,M = me+mh

is the total mass and mred = memh/(me + mh) is the reduced mass. We
now introduce the basis change pQk =

∑
µ P

µ
QΨ

µ(k), where µ is exciton
quantum number (For the purpose of bilayers in chapter 3 and chapter 4 this
is restricted to 1s.) and Ψµ(k) is a complete set of orthogonal eigenvectors
that satisfy the following eigenvalue problem

ℏ2k2

2mred

Ψµ
ξ(k)−

∑
q

VqΨ
µ
ξ(k + q) = Eµ

ξΨ
µ
ξ(k). (2.26)

Here, the eigenvalue problem has been written specifying the valley ξ, con-
sequently we can drop the dependence on Q. This equation is then similar
to the Schrödinger equation and solves for the exciton bindings energies Eµ

ξ

and exciton wavefunctions Ψµ
ξ(k).

By solving Eq. 2.26, which is known as the Wannier equation, we can then
gain access to the exciton binding energies for a specific valley configuration.
Most commonly we think of the electron and hole sitting around the same
high symmetry point in the bandstructure. i.e the center-of-mass momentum
Q = 0, but we can also have momentum indirect excitons, known as dark
excitons (In contrast, an exciton where the electron and hole sits in the same
valley is called bright.) (cf. Fig 2.3) [45–47]. Here, the electron and hole
are separated by some momentum in the Brillouin zone and can thus not be
optically excited. As we will see later in this work however, these excitons
will become very important when describing other optical features, especially
in bilayers, thus it is important to take them into consideration.
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Figure 2.3: Schematic for different exciton valley configurations. Here we can see
the bright KK exciton and the momentum dark KΛ/ΓK exciton. The shaded lines
at the K indicate the K′ valley, which instead can form the spin-dark exciton KK′.

Applying this basis change into Eq. 2.24 we then have the semi-conductor
Bloch equation in exciton basis

iℏṖ µ
Q = −Eµ

QP
µ
Q − Ωµ

0, (2.27)

where

Eµ
Q = Egap +

ℏ2Q2

2M
+ Eµ

ξ , Ωµ
0 =

e0
m0

∑
k

Ψµ
ξ(k)

∗M vc
k ·A(t). (2.28)

The solution to this equation can then easily be found by Fourier transform-
ing the equation into frequency space, which then reads

P µ
Q(ω) =

Ωµ
0(ω)

ℏω − Eµ
0 − iγ

, (2.29)

where we have introduced the phenomenological damping γ.

2.3.2 Exciton basis

In the previous section we showed that one can transform the semi-conductor
Bloch equation into exciton basis and thus incorporate the Coulomb interac-
tion by solving the Wannier equation (2.26). A similar approach is possible
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to apply directly to the Hamiltonian [48], thus further simplifying future
calculations. First, we apply something called the pair operator expansion

P †
kk′ = c†kvk′ . (2.30)

The commutator of this operator then reads

[Pij,P
†
kl] = δjlik −Ocorr, (2.31)

where Ocorr = v†l vjδik + c†kciδjl is a correction term that accounts for the
fact that excitons are composite quasiparticles from fermions. Since this
correction scales with the occupation, we can at low density approximate an
exciton as a fully bosonic particle, i.e

[Pij,P
†
kl] ≈ δjlik. (2.32)

This also translates into intraband transitions which would transform as

c†ikcjk′ ≈
∑
mp

P †
ik,mpPjk′,mp

v†ikvjk′ ≈ δijkk′ −
∑
mp

P †
mp,jk′Pmp,ik.

(2.33)

The next step is to turn these pair operators into exciton operators. This is
done in similar manner as in the previous section where we expand with the
exciton wavefunctions

P †
kk′ =

∑
µ

X†
µ,k−k′Ψ

µ(αk′ + βk), (2.34)

where X† is the exciton creation operator and Ψµ(k) are the exciton wave-
functions. Here, µ is compound index taking into account both valley and
exciton quantum number. With this transformation we can write a diagonal
form of the free electronic Hamiltonian and the Coulomb interaction

Hel,0 +Hel−el → H0 =
∑
Qµ

Eµ
QX

†
µQXµQ. (2.35)

By solving the Wannier equation to obtain Eµ
Q (2.26) we can then turn a

problem involving the interaction between two particles into a free one par-
ticle Hamiltonian as illustrated in Fig 2.4. This transformation can then be
applied to all other Hamiltonians and thus moving the entire framework to
exciton basis instead.
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Figure 2.4: Schematic of transformation into exciton basis.

2.3.3 Elliot formula

In order to gain access to the optical response of the material we study the
linear response from an electric field E

P (ω) = ϵ0χ(ω)E(ω), (2.36)

where P (ω) is the polarization induced from the electric field and χ(ω) is the
optical susceptibility. This equation can then be rewritten

χ(ω) =
j(ω)

εω2A(ω)
. (2.37)

Here, the relationship between the electric field and the vector potential is
used E = Ȧ(ω), in combination with the relation between the polarization
and the macroscopic current j(ω) = Ṗ (ω).

In order to connect this macroscopic response to our microscopic model we
can for this purpose interpret j is the probability current, which in second
quantization reads

j(t) =
e0ℏ
Am0

∑
k

Im{Mkpkk}, (2.38)

where we now have neglected the intraband current due to its limiting impact
in the sub-THZ regime. Here, we also only focus on the imaginary part since
this describes the optical absorption. We can now combine the expression
together with the solution to the Bloch equation in exciton basis (2.29) and
plug the results into Eq. 2.37 to get the formula for optical absorption

α(ω) ∝ 1

ω

∑
µ

|Mµ|2

(ℏω − Eµ
0 )

2 + γ2
. (2.39)
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This equation which is known as the Elliot formula can then be used to
calculate the optical response of the material taking into account the exciton
features of said material [49].
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CHAPTER 3

MOIRÉ EXCITON LANDSCAPE

So far we have only dealt excitons in a monolayer. In this chapter we will
generalize our Hamiltonian in order to include the effects from having bilayers
and then summarize the resulting impact on the exciton energy landscape
from these effects (paper I.). For this purpose we will start in the monolayer
basis and add the specific bilayer effects on top of that. The two effects
that will change the monolayer exciton bandstructure due to the presence
of another layer are interlayer hybridization and the polarization-induced
alignment shift. In twisted structures these components are what makes up
the moiré potential.

Before we go into detail about these modifications to the Hamiltonian we
must first consider the new exciton species that arise by having a bilayer
TMD. Here we do not only have excitons confined to one layer, but also
interlayer excitons where the electron and hole are spatially separated in
different layers [14, 18, 50, 51] (as illustrated in Fig 1.2). Consequently, we
have to adjust the screening when solving the Wannier equation (Eq. 2.26).
This was done in Ref. [52] by Simon Ovesen et al. and this generalized
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CHAPTER 3. MOIRÉ EXCITON LANDSCAPE

screening reads

ϵll
′

scr(q) =

{
ϵinter(q), l ̸= l′

ϵlintra(q), l = l′
,

ϵinter(q) = κsubg
0
qg

1
qfq, ϵlintra(q) =

κsubg
1−l
q fq

cosh(δ1−lq/2)hl
q

.

(3.1)

Here, we use the abbreviations

fq = 1 +
1

2

[
(
κ0

κsub

+
κsub

κ0

)tanh(δ0q) + (
κ1

κsub

+
κsub

κ1

)tanh(δ1q)

+ (
κ0

κ1

+
κ1

κ0

)tanh(d0q)tanh(δ1q)
]
,

hl
q = 1 +

κsub

κl

tanh(δlq) +
κsub

κ1−l

tanh(δ1−lq/2)

+
κl

κ1−l

tanh(δlq)tanh(δ1−lq/2),

glq =
cosh(δlq)

cosh(δ1−lq/2)[1 +
κsub

κl
tanh(δlq/2)]

,

(3.2)

where κsub is the dielectric components of the substrate as the defined in
Eq. 2.12 and κl is instead for TMD layer indexed with l (i.e l = (0,1)). Here,
δl = αldl, where dl is the layer thickness of the TMD and αl also is defined in
Eq. 2.12. The dielectric components and the layer thicknesses are obtained
from Ref. [53]. The above screening can be derived by solving the Poisson
equation for two dielectric media on top of each other. With this generalized
screening formula we can calculate the decoupled binding energies for both
intra- and interlayer excitons.

3.1 Polarization-induced alignment shift

The first effect we wish to take into account is the polarization-induced align-
ment shift, sometimes also refereed to as ferroelectric potential [54]. This
alignment shift stems from the polarization between the atoms of the dif-
ferent layers, in turn inducing an electrostatic potential that will shift the
exciton bandstructure [24, 28, 55–57]. It is then intuitive to understand that
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Figure 3.1: Schematic for the different high symmetry stackings found in bilayer
TMDs.

the interlayer excitons, which harbor an out-of-plane dipole moment, will be
the exciton that is strongly affected by this shift.

Since the polarization is directly dependent on the atomic configuration, this
energy renormalization of the exciton bandstructure change with different
stackings. In bilayer TMDs we have two fundamentally different stackings,
each with three high symmetry stackings (cf. Fig 3.1), thus we will need to
calculate this shift for all stacking configurations.

The matrix elements governing the polarization-induced alignment shift of
the single particle states are given by

∆εαkl =

∫
drnl,αk(r)δVpol(r). (3.3)

They were computed via ab inito calculations by Christopher Linderälv in
paper I., where nl,αk is the orbital density of state |αk⟩ of monolayer l. Here,
α = (λ,ξ) is a compound index, where λ = (c,v) is the band index and ξ is
the valley index. To this end, δVpol is the solution to the Poisson equation for
the electron density difference δn (∇2δVpol−δn = 0) with δn = n1,2−n1−n2,
with the subscript indicating the layer. By calculating this for each stacking
one can add a stacking dependent renormalization to the kinetic energy part
of the exciton Hamiltonian, i.e Ẽα

lk(S) = Eα
lk+∆ελl (S). Furthermore, we can

calculate the intermediate displacements by interpolating these values with
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a continuous fit function given by Ref. [28],

Ẽλ
l (S) = Eλ

l +
(
αλ
l + βλ

l e
2πiσ1−l

3

) 2∑
n=0

eiC
(n)
3 Gl·Dl(S), (3.4)

where Eλ
l is the stacking-independent monolayer energy and σl = (−1)l for

H-type stacking, otherwise σl = 1. Here, C
(n)
3 is the three fold rotation op-

erator acting upon the reciprocal lattice vector Gl. The displacement vector
between the two layers are given by Dl(S), where S is the stacking. Further-
more, αλ

l and βλ
l determine the stacking-dependent shift. These parameters

are fitted to the band structure for the K point, obtained from first-principle
calculations ẼλK

l0 (S) = Eα
l0 +∆ελl (S), where the momentum is k = 0, i.e the

minimum of the parabolic dispersion. For the correct energetic position of
other valleys, one has to take into account the spectral valley separation and
spin orbit splitting which can be found in Ref. [35].

3.2 Exciton hybridization

The second modification to the monolayer band energies we need to take
into account is the interlayer tunneling. Here, the overlapping electron wave-
functions between the layers allows for the carriers to tunnel and thus form
hybridized exciton states, i.e a mixture between an interlayer exciton and an
intralayer exciton [29, 58–60]. A schematic illustration of this can be seen in
Fig 3.2.a and Fig 3.2.b, where the example heterostructure MoS2-WS2 dis-
plays strong hybridization around the ΓK exciton. Since the overlap between
the wavefunctions strongly depends on the interlayer distance, this modifi-
cation to the monolayer energy is also stacking dependent, thus leaving us
with a stacking dependent tunneling matrix element Tα

ll′(S).

Starting in electron/hole basis we first consider the tunneling around the K
point. Here, the conduction and valence band Bloch waves are composed
out of d-orbitals [29, 61, 62]. Using the angular symmetry of d-orbitals, the
tunneling around the three equivalent K points in an untwisted structure can
be written as [29]

Tα
ll′(S) =

2∑
n=0

tα(S) eiτ(C
(n)
3 K−K)·D(S), (3.5)
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where C
(n)
3 again denotes the three-fold rotation operator andD(S) the stack-

ing dependent lateral displacement between the layers. Furthermore, tα(S)
describes the tunneling strength and τ is a prefactor which equals 1 for the
K and −1 for the K′ point. For H-type structures, this expression obtains

the additional phase ei(−1)l
′
2π/3 for the valance band [29].

Due to the C3-symmetry, tunneling can only occur for certain stacking con-
figurations. To demonstrate this effect, we first consider tunneling around
the K point for R-type structures and apply the corresponding lateral dis-
placement vectors D(S) for each high-symmetry stacking. We find that the
tunneling term vanishes for RM

h and RX
h around the K point [63]. For an

H-type structure one of the two layers is inverted (rotated by 180◦) relative
to the R-structure. Here, the tunneling for both electrons and holes vanishes
at HM

h . In addition, hole (electron) tunneling does not occur at HX
h (Hh

h ).
This means that we only have a non-zero tunneling matrix element at the K
point for Rh

h, H
X
h (electron tunneling) and Hh

h (hole tunneling) stacking. In
these cases, Equation 3.5 simply becomes Tα

ll′(S) = 3tα(S). With the factor
3 reflecting the three equivalent K points.

For tunneling around the Γ and Λ points, there are no equivalent points
within the first Brillouin zone (BZ) and thus the tunneling matrix element
is only given by the tunneling strength Tα

ll′(S) = tα(S) [29]. This tunneling
strength can be extracted from DFT calculations of the bilayer band structure
by considering the Hamiltonian in electron/hole basis

H =
∑
αlk

Ẽα
lk(S) a

†
αlkaαlk +

∑
αk
l ̸=l′

Tα
ll′(S) a

†
αlkaαl′k, (3.6)

where l/l′ are layer indices while α = (λ,ξ) is a compound index with ξ
denoting the valley and λ = (c,v) the conduction and the valence band,
respectively. This can be thought off as a 2 × 2 matrix with respect to the
layer index l/l′. Here, the diagonal components are given by Ẽα

lk(S) and the
off-diagonal terms correspond to the tunneling Tα

ll′(S). The eigenvalues of
this matrix are given by the avoided-crossing formula

Eα
±,k(S) =

1

2

2∑
l=1

Ẽα
lk(S)±

1

2

√
∆̃α

k(S)
2 + 4|tα(S)|2, (3.7)

where ∆̃α
k(S) = Ẽα

1k(S) − Ẽα
2k(S) is the spectral difference between the
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Figure 3.2: (a) Schematic of the electronic band structure in MoS2(black)-
WS2(gray) heterostructure (a) before and (b) after hybridization. The intralayer
(X0) and interlayer (iX) excitons are marked in blue and red, respectively. The
strong tunneling of holes around the Γ point results in a pronounced hybrid exciton
state (hX, purple line). (c) Schematic for the formation of hybrid excitons. The
dashed lines are the unperturbed exciton energies that become shifted by ∆ε(S)
due to the layer polarization. Interlayer hybridization results in hybrid exciton
states denoted by Ẽη(S).

monolayer energies as extracted from DFT calculations shifted by the layer
polarization-induced alignment potential (see section 3.1). Furthermore,
|tα(S)| is the tunneling strength (see Equation 3.5) and Eα

±,k(S) are the hybrid
energies corresponding to the bilayer eigenenergies extracted from DFT cal-
culations. Exploiting Equation 3.7, the tunneling strength can be calculated
for each band, valley, and stacking, yielding

|tα(S)| = 1

2

√
(∆Eα

k (S))
2 − ∆̃(S)2, (3.8)

where ∆Eα
k (S) = Eα

+,k(S) − Eα
−,k(S) is the spectral difference between the
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Figure 3.3: Schematic for the different tunneling channels in R-type structures
(a) and H-type structures (b). Here, 2x notes that the exciton state is two-fold
degenerate. In H-type structures K′ is on top of K thus creating fundamentally
different tunneling channels. This allows for the lowest lying interlayer exciton to
hybridize with the B exciton.

hybridized electronic states.

Applying the exciton transformation from subsection 2.3.2 to the Hamilto-
nian in Eq. 3.6 we find that the tunneling matrix element reads in exciton
basis

T ξ
LL′(S) = F ξ

LL′(T
cξe
lel′e

(S)δle,l′e−1δlh,l′h

−T vξh
lhl

′
h
(S)δlh,l′h−1δle,l′e),

(3.9)

where L = (le,lh) is a compound layer index and the deltas are there to
ensure that we only have a single carrier to tunnel at a single time. Here,
F ξ

LL′ are the exciton formfactors which reads

F ξ
LL′ =

∑
k

Ψ∗
ξL(k)ΨξL′(k), (3.10)

where ΨξL(k) are the exciton wavefunctions as obtained from the generalized
Wannier equation (Eq. 2.26 and Eq. 3.1). An illustration of the hybridiza-
tion process that then occur for excitons can be seen in Fig 3.2.c. Here,
the decoupled monolayer energies of the interlayer and intralayer exciton is
shifted by the alignment shift which is then split into two hybrid exciton
states. It is important to note here that the tunneling channel for which
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intralayer excitons and interlayer exciton couple to each other change drasti-
cally with stacking. If we consider a homobilayer at Rh

h stacking we will have
two degenerate intralayer excitons (one for each layer) and two degenerate
interlayer excitons (le = 0,lh = 1 and le = 1,lh = 0) that couple to each other
via carrier tunneling (cf. Fig 3.3.a).

Normally we only think of the KK exciton, also known as the A exciton, but
we also have the B exciton (K′K′). Due to the large spin-orbit coupling in
TMDs these excitons are very far up in energy and can thus be neglected
usually, which is the case in R-type structures (see XB and IX′ in Fig 3.3.a).
However, in H-type structures the K′ point lie above the K point of the other
layer. This breaks the degeneracy of the excitons with respect to the tunnel-
ing channel and now the A exciton couples to the B exciton. Consequently,
we have a new set of interlayer excitons that in turn can hybridize with the
B exciton (cf. Fig 3.3.b).

3.3 Energetic landscape

Taking into account the two bilayer modifications to the monolayer energy
we have discussed, the exciton Hamiltonian then reads

H =
∑
ξQ
LL′

(Eξ
LQ(S)X

ξ†
LQX

ξ
LQδLL′ + T ξ

LL′(S)X
ξ†
LQX

ξ
L′Q), (3.11)

where Eξ
LQ(S) takes into account the energies of the excitons, the relative

valley position and the polarization induced alignment shift. Here, T ξ
LL′(S)

is the tunneling matrix element as discussed in the previous section. We now
wish to find a diagonal form of this Hamiltonian. For this purpose we expand
the exciton operator into a hybrid exciton basis [28, 29]

Y †
ξηQ =

∑
L

Cξη∗
L (Q)Xξ†

LQ, (3.12)

where η is the new hybrid exciton quantum number, Y †
ξηQ are the hybrid

exciton operators and Cξη
L (Q) are the mixing coefficients revealing the rela-

tive contribution between intra/interlayer exciton states. Since the mixing
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Figure 3.4: (a) Lowest lying exciton state for each exciton valley configuration
as a function of stacking for the MoS2-WS2 heterostructures on a SiO2 substrate.
All energies are expressed in relation to the bright K-K exciton at Rh

h. Note that
K-K and K-K′ as well as Γ-K and Γ-K′ are almost degenerate. (b) Degree of
hybridization for each exciton valley as a function of stacking. (c) Schematic for
R-type stacking configurations, where blue indicates the WS2 and red the MoS2
layer.

coefficients are eigenvectors to the Hamiltonian they fulfill the following re-
quirements ∑

L

Cξη1∗
L (Q)Cξη2

L (Q) = δη1η2∑
η

Cξη∗
L (Q)Cξη

L′ (Q) = δLL′ .
(3.13)

Applying the following transformation to the exciton Hamiltonian gives us
the hybrid exciton eigenvalue equation

Eξ
LQ(S)C

ξη
LQ +

∑
L′

T ξ
LL′(S)Cξη

L′Q = Eξ
ηQ(S)C

ξη
LQ. (3.14)
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Here, Eξ
ηQ(S) are the the final hybrid exciton energies. Solving this numer-

ically, which is the equivalent of diagonalizing a 4×4 matrix, we obtain the
diagonal form of the interaction free bilayer exciton Hamiltonian.

H0 =
∑
Qξη

Eξ
ηQ(S)Y

†
ξηQYξηQ. (3.15)

This was done for the van der Waals heterostructure MoS2-WS2 in paper I. for
different R-type stackings and valleys. The resulting exciton bandstructure
is shown in Fig 3.4.a, where the lowest lying exciton for each valley is shown
as a function of stacking (cf. Fig 3.4.c). Here we can see the strong impact
of the carrier tunneling, consequently making the ΓK exciton the lowest
lying one. The variation in energy between different stackings can mainly be
explained by the varying interlayer distance, which in turn heavily impacts
the tunneling strength. In Fig 3.4.b we see how the degree of hybridization
changes with stacking, revealing a very small change for the momentum dark
excitons. Interestingly, we find that the intralayer KK exciton no longer is
the lowest lying one when going between RM

h to RX
h . Here, the alignment

shift blueshifts this exciton sufficiently for the low lying interlayer exciton to
become the lowest lying one.

3.4 Optical response

Now when we have access to the hybrid exciton energy landscape we wish to
know what the corresponding optical response is. In the example material
used here (MoS2-WS2), the momentum dark excitons are by far the lowest.
Consequently, this exciton energy landscape is not directly accessible via
optical absorption or via direct emission of a photon. Instead, the exciton
will first need to scatter with a phonon to virtual bright state and then emit a
photon. This phonon-assisted recombination of said exciton will then result
in multiple phonon sidebands emerging from the scattering process, in turn
giving us the optical response of the material via the photoluminescence (PL)
spectra. This phonon-assisted PL formula was first derived by Samuel Brem
et al. in Ref. [64] and then later generalized to bilayers in Ref. [29]. More
information concerning the exact expression for this phonon-assisted PL can
be found in the appended papers as well (paper I.,II.).
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Figure 3.5: (a) Normalized photoluminescence spectra as a function of tempera-
ture and energy for Rh

h-stacking in the MoS2-WS2 heterostructure. PL spectra at
70 K for (b) Rh

h, (c) R
M
h and (d) RX

h stacking. The green and the red shaded areas
indicate the phonon sidebands of the Γ-K exciton and the K-K intralayer exciton,
respectively. Phonon sidebands stemming from emission (−) and absorption (+)
of optical (Op) and acoustical (Ac) phonons are labeled accordingly.

The phonon-assisted PL was calculated in Fig 3.5.a for Rh
h stacking, corre-

sponding to the hybrid exciton bandstructure shown in Fig 3.4. Here, one
can see the the clear domination of the phonon-assisted PL peaks at low
temperatures and at higher temperatures the KK exciton will again dom-
inate the spectrum. This is due to the Boltzmann nature of the exciton
distribution1, where the direct emission, which corresponds to the leading
order term, will gain a larger occupation. This in turn will affect the PL
intensity for said peaks. At the lower temperatures the process of emitting

1The exciton distribution will in reality follow a Bose-Einstein distribution, but can be
well approximated as a Boltzmann distribution at low densities [29, 64].
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a phonon is the dominating one. This is due to the number of phonons
scaling with temperature. In the intermediate temperature range, we can
see phonon absorption appearing as well. Furthermore, we can see the clear
splitting between the optical and acoustical phonon modes since these will
not have the same phonon energies [36, 41]. The hybrid exciton energies
have then been redshifted(blueshifted) with these phonon energies, which
then determines the relative position to A exciton (KK) peak2. This peak is
in turn fitted to experimental observations since calculating the absolute PL
peak position would require reliable first principle calculations concerning
the band gap. For the purpose of this PL calculation, the linewidth has been
phenomenologically modeled in accordance with Ref. [67].

Looking at Fig 3.5.a to Fig 3.5.c we see the how this optical response varies
with stacking, again reflecting the strong variation of tunneling strength due
to the changing interlayer distance. The above calculated results are in good
agreement with experimental findings, where two predicted phonon sidebands
have been observed about 300 meV below the bright K-K exciton in MoS2-
WS2 [68]. This corresponds well to the calculated PL at RM

h - and RX
h -

stacking, which is the energetically most favorable R-type stackings.

2Additional energy renormalizations will appear due to exciton-exciton interactions,
but since these only become significant at higher densities they have been neglected here
[65, 66].
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EXTERNAL TUNING OF MOIRÉ EXCITONS

In the previous chapter we summarized the results from paper I. where the
hybrid exciton landscape was modeled, taking into account the bilayer modi-
fications to the monolayer exciton energies. In this chapter we will investigate
how one can exploit these insights in order to externally tune the optical re-
sponse of the material. We do this by studying the interplay between twist
angle engineering and applied electrical fields. This chapter consequently
summarizes the theory and results from paper II..

4.1 Generalizing to moiré exciton Hamilto-

nian

The first thing we need to do is generalize our exciton Hamiltonian for the
inclusion of twist angles. Since both the polarization-induced alignment shift
and the tunneling is dependent on the atomic configuration these will be
periodic in real space (cf. Fig 4.1). Our aim is then to generalize the model
so that it will incorporate these periodic features over the whole superlattice.

This is done by starting with a real space representation of the two bilayer

33



CHAPTER 4. EXTERNAL TUNING OF MOIRÉ EXCITONS

Figure 4.1: Schematic of a twisted bilayer TMD superlattice.

modifications to the exciton landscape. Both of these effects are what consti-
tutes the moiré potential [56] and we will thus call the combined Hamiltonian
the moiré Hamiltonian. In electron-hole basis this reads

HM =
∑
iλr

V λ
ii (r)Ψ

λ†
i (r)Ψλ

i (r) +
∑
i ̸=j
λr

T λ
ij(r)Ψ

λ†
i (r)Ψλ

j (r) + h.c. (4.1)

Here, i(j) = (l,ξ) is a compound index, r is the real space coordinate in the
superlattice and Ψ(†) are annihilation(creation) operators. The first term ac-
counts for the periodic alignment shift (section 3.1) and the second term
accounts for the interlayer tunneling (section 3.2). We can approximate
the wavefunctions in the vicinity of high symmetry points as plane waves
Ψλ†

i (r) =
∑

k e
ik·rλ†

i,k due to the effective mass approximation made in 2.2.3.
This is analogous to Fourier transforming the Hamiltonian to momentum
space

HM =
∑
iλ
kg

vλii(g)λ
†
i,k+gλi,k +

∑
i ̸=jλ
gkq

tλij(g)λ
†
i,k+gλj,k + h.c,

(4.2)

where g are the reprical lattice vectors of the mini Brillouin zone (mBZ)
that emerges due to the real space superlattice (cf. Fig 4.2). This vector is
consequently defined as g = G1 − G2, where Gl are the reciprocal lattice
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Figure 4.2: Schematic of the mini Brillouin zone that emerges due to the emergence
of a real space superlattice and a schematic interpretation of the hybrid moiré
excitons that will be heavily affected by the twist angle.

vector of layer l. The above equation is obtained by expanding the periodic
moiré potential as a Fourier series

V λ
ii (r) =

∑
g

vλii(g)e
ig·r. (4.3)

Here, the mBZ lattice vectors g are the eigenmodes of this expansion. Con-
sequently, the matrix elements in Eq. 4.2 are simply the Fourier coefficients
of this expansion and can be obtained by solving the following integral

vλii(g) =
1

AM

∫
AM

dre−ig·rV λ
ii (r), (4.4)

where AM is the unit area of the superlattice. Here, the polarization-induced
alignment shift is used an example, but the same approach is done for the
tunneling as well.

With the above approach we only need to know how the moiré potential
looks in real space. Assuming a rigid lattice model (i.e the lattice constant
remains the same as in the monolayer case) we can smoothly interpolate
between the high symmetry stackings. Since these values were previously
obtained for both the tunneling and the alignment shift in chapter 3 (paper
I.) this becomes a simple question of using a similar scheme as in Eq. 3.4 in
order to obtain the intermediate moiré potential landscape [28].

V λ
ii (r) = Re

[
vλi + (Aλ

i + Bλei2π/3)
2∑

n=0

eign·r
]
, (4.5)
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where vλi , Aλ
i and Bλ are the parameters which we fit to the known alignment

shifts/tunneling strengths.

Applying the exciton transformation from subsection 2.3.2 we can now write
down the complete interaction-free exciton Hamiltonian

H0 =
∑
LQξ

Eξ
LQX

ξ†
L,QX

ξ
L,Q +

∑
LQξ
g

V ξ
L (g)X

ξ†
L,Q+gX

ξ
L,Q

+
∑
LL′
Qξg

T ξ
LL′(g)X

ξ†
L,Q+gX

ξ
L′,Q + h.c,

(4.6)

Here, the first term accounts for the dispersion

Eξ
LQ = ℏ2

(Q− [ξe − ξh])
2

2[me +mh]
+ εcξe0 − εvξh0 + Eb

ξ , (4.7)

where Eb
ξ are the exciton binding energies and ελξλ is the valley splitting (Ref.

[35]).

The matrix element of the polarization-induced alignment shift is given by

V ξ
L (g) = vcle(g)F

ξ
LL(βLLg)− vvlh(g)F

ξ∗
LL(−αLLg), (4.8)

where vλlλ(g) are the Fourier coefficients as obtained from Equation 4.4 and

Fξ
LL′(q) are the form factors given by

Fξ
LL′(q) =

∑
k

Ψξ∗
L (k)Ψξ

L′(k + q). (4.9)

The tunneling matrix element is similarly given by

T ξ
LL′(g) =

[
δlh,l′h(1− δle,l′e)t

cξe
lel′e

(g)Fξ
LL′(βLL′g)

−δle,l′e(1− δlh,l′h)t
vξh
lhl

′
h
(g)F∗ξ

LL′(−αLL′g)
]
,

(4.10)

where the delta functions ensure that only an electron or hole can tunnel
at the same time and tλξλlλlλ′

(g) are the Fourier coefficients of the real space
tunneling landscape, in analogy to Equation 4.4.
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In a similar fashion as in chapter 3 we want to find a diagonal form for the
Hamiltonian in Eq. 4.6. Before we can to this we must first deal with the
additional periodicity of the superlattice. This is done by considering the
well known zone folding scheme. Here, we restrict our summation over the
center-of-mass momentum Q to the mBZ and then fold the dispersion back
in again with the mBZ lattice vectors g [28, 29].

H0 =
∑
LQξ
g

Eξ
LQ(g)X

ξ†
L,Q+gX

ξ
L,Q+g +

∑
LQξ
gg′

V ξ
L (g

′)Xξ†
L,Q+g+g′X

ξ
L,Q+g

+
∑
LL′Q
ξgg′

T ξ
LL′(g

′)Xξ†
L′,Q+g+g′X

ξ
L,Q+g + h.c,

(4.11)

where Eξ
LQ(g) = Eξ

LQ+g and the summation over Q ∈ mBZ. We simplify the

above expression by introducing the zone-folding operators F ξ
LQg = Xξ

L,Q+g

and apply them to the Hamiltonian

H0 =
∑
LQξ
g

Eξ
LQ(g)F

ξ†
LQgF

ξ
LQg +

∑
LQξ
gg′

V ξ
L (g,g

′)F ξ†
LQg′F

ξ
LQg

+
∑
LL′Q
ξgg′

T ξ
LL′(g,g

′)F ξ†
LQg′F

ξ
LQg + h.c.

(4.12)

Here, T ξ
LL′(g,g′) = T ξ

LL′(g′ − g) is used as an abbreviation.

In order diagonalize this Hamiltonian we introduce a similar basis change
as in chapter 3, but with the additional mBZ lattice vector as an index
Y †
ξηQ =

∑
gL C

ξη∗
Lg (Q)F ξ†

LQg. Here, C
ξη∗
Lg (Q) not only gives us the relative con-

tribution between intra/interlayer excitons, but also the relative contribution
between the different sub-bands that emerge due to the zone-folding. These
coefficients then fulfill ∑

Lg

Cξη1∗
Lg (Q)Cξη2

Lg (Q) = δη1η2∑
η

Cξη∗
Lg (Q)Cξη

L′g′(Q) = δLL′δgg′ .
(4.13)

Expanding the Hamiltonian with the mixing coefficients and summing over
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the quantum index η gives us the moiré eigenvalue equation

Eξ
LQ(g)C

ξη
Lg(Q) +

∑
g′

V ξ
L (g,g

′)Cξη
Lg′(Q)

+
∑
L′g′

T ξ
LL′(g,g

′)Cξη
L′g′(Q) = Eξ

ηQC
ξη
Lg(Q).

(4.14)

Solving this eigenvalue problem numerically will then yield us the energies
for the diagonal form of the interaction-free hybrid moiré Hamiltonian

H0 =
∑
Qξη

Eξ
ηQY

†
ξηQYξηQ. (4.15)

4.2 Electrical and twist angle tuning of moiré

excitons

We have now generalized the interaction-free Hamiltonian to include twist
angles, thus allowing for one method of external tuning of the excitons land-
scape. We are also interested in the effects of applying on out-of-plane electric
field. The addition of an external electric field is straight forward and the
Hamiltonian in electron-hole basis can to leading order be approximated as

Hfield = −
∑
kl
λ

e0z
λ
l Ezλ

†
klλkl, (4.16)

where e0 is the elementary charge and zλl is the real space position in z-
direction of electrons (holes) in layer l. Here, Ez is the electric field strength
in out-of-plane direction. By transforming this Hamiltonian into exciton
basis (subsection 2.3.2), we have the following expression

HX−l = −
∑
ξQL

dLEzX
ξ†
Q,LX

ξ
Q,L, (4.17)

where dL = e0uL is the dipole moment and uL = zcl − zvl the dipole length.
This is intuitively understood as the potential energy of a dipole moment
within an electrical field, sometimes referred to as the Stark shift of an exciton
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Figure 4.3: Exciton band structure for R-type stacked MoSe2 homobilyer for
the bright KK (left) and dark KΛ excitons (right). Multiple moiré subbands are
shown in faded colors. Only the interlayer and the hybrid exciton exhibiting a
dipole moment become red-shifted in presence of an electrical field (lower panel).
Dashed lines indicate the original position of the corresponding excitons without
an electrical field. The calculation is performed for a twist angle of θ = 2◦ and an
electrical field of Ez = 0.1 V/nm.

[69, 70]. This equation can then easily be incorporated into Equation 4.7 and
consequently be taken into account when solving Eq. 4.14.

In paper II. we investigated the interplay between the two presented methods
for external tuning by solving Eq. 4.14. This was done for hBN encapsulated
MoSe2 for both R-type stacking and H-type stacking. Here, in the top row
of Fig 4.3 we see the exciton bandstructure for the KK exciton and the
strongly hybridized KΛ exciton in a twisted R-type structure. Both the KK
interlayer exciton and the KΛ exciton are heavily affected by the periodic
moiré potential and will thus exhibit a flat bandstructure. The interlayer
nature of these excitons are shown via the color gradient on the right where
we can clearly see the strong hybrid nature of the KΛ exciton.

By applying an electric field we will then redshift(blueshift) the excitons
that exhibit an out-of-plane dipole moment. Since the hybrid KΛ exciton
only partially carries an interlayer component it will have a weighted shift
proportional to this component |CIX|2. We see from the bottom row of Fig 4.3
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Figure 4.4: Photoluminescence spectra as a function of electrical field strength at
the twist angles of (a) θ = 0◦, (b) θ = 1◦ and (c) θ = 4◦ at 4K. We observe three
distinct energy regions, which are dominated by the A exciton XA, the phonon
sidebands of the dark KΛ exciton and the interlayer exciton IX, respectively. The
inset in (c) shows the critical electrical field strength Ecrit

z as a function of the twist
angle for the transition between different spectral regions (XA to KΛ and XA to
IX-dominated region). The shaded area indicates the range, where the dark KΛ
excitons dominate the PL.

that by applying an electric field we can shift the KΛ exciton to become the
lowest lying one instead of the intralayer KK, demonstrating the possibility to
tune which exciton state will dominate the optical response of this material.

In Fig 4.4, the optical response for the material is calculated in the form of
PL spectra. Here we sweep over the electrical field strength, consequently
shifting both the KΛ exciton and the KK interlayer exciton downwards in the
bandstructure. This results in three distinct optical regions in the spectra.
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By first looking at the untwisted case (cf. Fig 4.4.a) we see that the A exciton
(KK intralayer) dominates at very small electric field strengths. Then rapidly
the spectra changes to show phonon sidebands of the KΛ exciton. This is due
to the KΛ exciton being redshifted sufficiently to gain enough occupation to
dominate the optical response. By increasing the field strength even further
the KK interlayer exciton IX is now dominating instead. Since the pure
KK interlayer exciton is very weakly hybridized it carries a larger dipole
moment and will thus have a steeper slope with respect to the electric field,
guaranteeing a crossing between the KΛ exciton and IX at some point.

Furthermore, by introducing a twist angle (cf. Fig 4.4.b and Fig 4.4.c) we
can tune the energetic position of the excitons that are heavily affected by
the moiré potential. With the larger momentum transfer g that comes with
an increased twist angle, the effects that redshifts these exciton will be sup-
pressed, consequently shifting the IX and KΛ exciton upwards in the band-
structre. This allows us to calculate the critical fields necessary for a given
twist angle when the KΛ exciton dominates the spectra. In turn we predict
when the material is transformed from a direct semiconductor (KK) to an
indirect semiconductor (KΛ). Moreover, by looking at smaller twist angles
(cf. Fig 4.4.b) we can see additional features due to the multiple subbands
that emerge in this regime. Here, the rotation of the Brillouin zone puts
the energetic minimum of the interlayer exciton IX outside of the light cone,
allowing for very weak phonon sidebands. The apparent oscillations that
appear around the position of the A exciton is also due to the small twist
angle. Here, the higher lying subbands of IX will be redshifted and hybridize
with the A exciton when on top of it, consequently affecting the oscillator
strength of the A exciton.
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CHAPTER 5

CONCLUSION

In this work we have presented a fully microscopic quantummechanical model
for the exciton energy landscape and exciton optics in vertically stacked tran-
sition metal dichalcogenides. With the use of input from density functional
theory we have calculated the exciton energy landscape for different homo-
and heterobilayers in the presence of the moiré potential, taking into account
both the hybridization component and the stacking dependent alignment
shift. We reveal a strong impact from the hybridization, consequently mak-
ing the momentum forbidden dark excitons the most energetically favorable
in many bilayer TMDs. Furthermore, we investigate how one can tune the
optical response of the exciton energy landscape in the form of twist angle
engineering and applied electrical fields, in turn revealing distinct optical re-
gions in the PL spectrum, allowing for both intra- and interlayer excitons,
and even dark excitons. Moreover, we predict critical electrical fields as a
function of twist angle where one can tune the material from a direct into
an indirect semiconductor, which is of importance in many optoelectrical de-
vices. Overall, the work provides microscopic insights into the twist-angle
dependent exciton landscape that governs the optical response in this tech-
nologically promising class of nanomaterials.

So far we have assumed a rigid lattice model for the calculation of the exciton
energy landscape. This assumption holds quite well for twist angles above
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θ = 1◦. However, when investigating smaller twist angles the lattice will
be strained to more energetically favorable stackings. Consequently, distinct
regions within the moiré supercell will emerge, each region corresponding to
a high symmetry stacking [71–74]. This atomic reconstruction could have a
significant impact on the optical response of the material, especially in twist
angles close to θ = 0◦. This opens up another aspect of twist tuning bilayer
TMDs, were the dimensionality of the trapped excitons could potentially be
tuned [75].

Furthermore, in this work we have mainly focused on the tunability of the
interaction-free Hamiltonian. The introduction of a twist angle should also
have a significant impact on the dynamics of excitons. Investigating how the
twist angle dependent hybridization impacts the exciton-phonon scattering
rate could potentially lead to interesting insights about the relaxation dy-
namics of these material [76]. Similarly, the moiré potential should also have
a significant impact on the transport properties of excitons, which to a large
degree is governed by density dependent exciton-exciton interactions [77, 78].

We have in this work investigated how one can tune the exciton energy
landscape via twist angle engineering and applied electrical fields. Another
way to externally tune the exciton bandstructure is by applying strain to
the TMD sheet [79, 80], allowing for the Λ valley to be shifted in opposite
direction with respect to the K valley. This would allow for another experi-
mentally accessible knob when tuning the exciton energy landscape in bilayer
TMDs. Especially intriguing is the interplay between atomic reconstruction
and strain, where the reconstructed lattice gives rise to localized strain in the
supercell and could potentially lead to a rich variation of the exciton energy
landscape within the supercell itself [81].

Finally, experimental studies have reported the observation of correlated in-
sulating states at fractional fillings when the twist angle is sufficiently small
to create flat bands [82]. A microscopic study of these so-called Wigner crys-
tals [83], taking into account the moiré excitons in twisted bilayers could
potentially reveal interesting insights into the intriguing topic of correlated
states in moiré structures.
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[35] Andor Kormányos, Guido Burkard, Martin Gmitra, Jaroslav Fabian,
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