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Cüneyd Öztürk∗, Musa Furkan Keskin†, Henk Wymeersch†, Sinan Gezici∗
∗Department of Electrical and Electronics Engineering, Bilkent University, Turkey
†Department of Electrical Engineering, Chalmers University of Technology, Sweden

Abstract—We investigate a reconfigurable intelligent surface
(RIS)-aided near-field localization system with single-antenna
user equipment (UE) and base station (BS) under hardware
impairments by considering a practical phase-dependent RIS
amplitude variations model. To analyze the localization perfor-
mance under the mismatch between the practical model and the
ideal model with unit-amplitude RIS elements, we employ the
misspecified Cramér-Rao bound (MCRB). Based on the MCRB
derivation, the lower bound (LB) on the mean-squared error for
estimation of UE position is evaluated and shown to converge
to the MCRB at low signal-to-noise ratios (SNRs). Simulation
results indicate more severe performance degradation due to
the model misspecification with increasing SNR. In addition, the
mismatched maximum likelihood (MML) estimator is derived
and found to be tight to the LB in the high SNR regime. Finally,
we observe that the model mismatch can lead to an order-of-
magnitude localization performance loss at high SNRs.

Index Terms—Localization, intelligent surfaces, hardware im-
pairments.

I. INTRODUCTION

Among the envisioned technological enablers for 6G, three
stand out as being truly disruptive: the transition from 30
GHz to beyond 100 GHz (the so-called higher mmWave and
lower THz bands) [1]–[3], the convergence of communication,
localization, and sensing (referred to as integrated sensing
and communication (ISAC) or integrated sensing, localization,
and communication (ISLAC)) [4]–[8], and the introduction of
reconfigurable intelligent surfaces (RISs) [9]–[11]. RISs are
large passive surfaces, comprising arrays of metamaterials, and
have the ability to shape the propagation environment, thus
locally boosting the signal-to-noise ratio (SNR) to improve
communication quality [12], [13]. This is especially relevant
in beyond 100 GHz to overcome sudden drops in rate caused
by temporary blockage of the line-of-sight (LoS) path.

In parallel with the benefits for communications, RISs
can similarly improve localization performance [14]. Stronger
even, RISs with known position and orientation have the
ability to enable localization in scenarios where it would
otherwise be impossible [15]. In this respect, the large aperture
of the RIS has several interesting properties. First of all, the
SNR-boosting provides accurate delay measurements when
wideband signals are used [2], [16]. Secondly, the large
number of elements provides high resolution in angle-of-
arrival (AoA) (for uplink localization) or angle-of-departure
(AoD) (for downlink localization) [2]. Third, when the user
equipment (UE) is close to the RIS (in the sense that the
distance to the RIS is of similar order as the physical size
of the RIS), wavefront curvature effects (so-called geometric
near-field) can be harnessed to localize the user [14], [17]–
[19], even when the LoS path between the base station (BS)
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Fig. 1. Configuration of a RIS-aided localization system with LoS blockage.

and UE is blocked, irrespective of whether wideband or
narrowband signals are used. Critical to the use of RIS is the
control of the RIS elements, commonly through phase shifters.
These phase shifters provide element-by-element control with
a certain resolution, and allow the designer to coherently add
up paths to or from the RIS [13], [20]. For localization,
in contrast to communication, the receiver should know the
values of the RIS phase profiles to apply suitable high-
accuracy processing methods [11]. The ability to modulate the
RIS phase profiles has additional benefits, such as separating
the controlled and uncontrolled multipath through temporal
coding [21]. Hence, the ability to control in a precise and
known manner is essential for ISLAC applications, which
necessitates the availability of accurate and simple RIS phase
control models. Such models should ideally account for the
per-element response [22], the finite quantization of the control
[13], [23], mutual coupling [24], calibration effects, as well as
power losses. Most studies on RIS localization have considered
ideal phase shifters (e.g. [15]–[17], [19], [25]), ignoring the
listed impairments. How these proposed localization studies
fare under these impairments is both unknown and important.

In this paper, we study the impact of realistic RIS control
models [22] in a geometric near-field scenario with LoS
blockage and a single-antenna UE and BS. In particular, we
employ the misspecified Cramér-Rao bound (MCRB) [26] as
a tool to assess the loss of localization performance under
model mismatch, where the algorithm assumes an ideal phase
control model, different from the real phase control [22].
Our contributions are as follows: (i) we provide a simple
expression to find the pseudo-true parameter for the consid-
ered scenario; (ii) we derive the MCRB of the pseudo-true
parameter and the lower bound (LB) of the true parameter;



(iii) we evaluate the MCRB and LB and compare with the
mismatched maximum likelihood (MML) estimator, showing
that at high SNR, the model mismatch can lead to an order-of-
magnitude localization performance degradation, both in terms
of the LB and the matching MML. In contrast, when the true
phase control model is available, localization performance is
relatively stable, for all considered model parameter settings.

II. SYSTEM MODEL

In this section, we describe the system geometry, present the
signal model and the RIS phase shift model, and formulate the
problem of interest.

A. Geometry and Signal Model
We consider a RIS-aided localization system (see Fig. 1)

with a single-antenna BS, an M -element RIS, and a single-
antenna UE having the following three-dimensional locations:
pBS denotes the known BS location, pRIS = [xR yR zR]ᵀ is the
known center of the RIS, pm = [xm ym zm]ᵀ represents the
known location of the mth RIS element for 1 ≤ m ≤M , and
p̄ = [xUE yUE zUE]ᵀ is the unknown UE location.

Without loss of generality, the BS broadcasts a narrow-
band signal st over T transmissions under the constraint of
E{|st|2} = Es. Assuming LoS blockage and the absence
of uncontrolled multipath, the signal received by the UE
involves only reflections from the RIS and can be expressed
at transmission t as

yt = ᾱaᵀ(p̄)diag(wt)a(pBS)︸ ︷︷ ︸
,bᵀ(p̄)wt

st + nt , (1)

where ᾱ is the unknown channel gain, wt = [wt,1 . . . wt,M ]ᵀ

is the RIS phase profile at transmission t, and nt is un-
correlated zero-mean additive Gaussian noise with variance
N0/2 per real dimension. Moreover, b(p̄) = a(p̄) � a(pBS),
where a(p) is the near-field RIS steering vector for a given
position p, defined as [a(p)]m = exp(−j2π(‖p− pm‖ −
‖p− pRIS‖)/λ), for m ∈ {1, . . . ,M}, in which λ denotes
the signal wavelength.

B. RIS Phase Shift Model
Following the practical phase shift model in [22], we

consider phase-dependent amplitude variations of the RIS
elements, given by

wt,m = β(θt,m)ejθt,m , (2)

with θt,m ∈ [−π, π) and β(θt,m) ∈ [0, 1] denoting the
phase shift and the corresponding amplitude, respectively. In
particular, β(θt,m) is expressed as

β(θt,m) = (1− βmin)

(
sin(θt,m − φ) + 1

2

)κ
+ βmin, (3)

where βmin ≥ 0, φ ≥ 0, and κ ≥ 0 are the constants related
to the specific circuit implementation [22].

C. Problem Description
Given the observations in yt from (1) over T transmission

instances, our goal is to derive theoretical performance bounds
for estimating the position of the UE under mismatch between
the true model in (2) and the assumed model with w̃t,m =

exp(jθt,m) (which is equivalent to assuming βmin = 1). In
other words, we aim to quantify localization performance loss
due to this model mismatch resulting from the RIS hardware
impairment specified in (2). To that end, we will resort to the
MCRB analysis [26]–[29], as discussed in the next section.

III. MISSPECIFIED CRAMÉR-RAO BOUND ANALYSIS

In this section, we introduce several notations and defini-
tions, including the MCRB and LB, before deriving the MCRB
for our scenario.

A. Preliminaries
The likelihood functions under the true and assumed models

are given, respectively, by

p(y|η) =
1

(πN0)T
e−

1
N0
‖y−µ(η)‖2 , (4)

p̃(y|η) =
1

(πN0)T
e−

1
N0
‖y−µ̃(η)‖2 , (5)

where y , [y1 . . . yT ]ᵀ, µ(η) , [µ1(η) . . . µT (η)]ᵀ, and
µ̃(η) , [µ̃1(η) . . . µ̃T (η)]ᵀ. Also, the noise-free observations
under the true and assumed models are

µt(η) , α

M∑
m=1

[b(p)]mwt,mst, (6)

µ̃t(η) , α

M∑
m=1

[b(p)]mw̃t,mst, (7)

where wt,m is defined in (2), while under the assumed model
w̃t,m = exp(jθt,m).

B. MCRB Definition
We first introduce the pseudo-true parameter

η0 = arg min
η∈R5

D (p(y|η̄)‖p̃(y|η)) , (8)

where D (p(y|η̄)‖p̃(y|η)) denotes the Kullback-Leibler (KL)
divergence between the distributions p(y|η̄) and p̃(y|η). Next,
let η̂(y) be a misspecified-unbiased (MS-unbiased) estimator
of η̄, i.e., the mean of the estimator η̂(y) under the true model
is equal to η0. Then, the MCRB is a lower bound for the
covariance matrix of any MS-unbiased estimator of η̄, η̂(y)
[26], [27], [30]:

Ep{(η̂(y)− η0)(η̂(y)− η0)ᵀ} � MCRB(η0), (9)

where Ep{·} denotes the expectation operator under the true
model p(y|η̄) and

MCRB(η0) , A−1
η0
Bη0

A−1
η0
, (10)

in which the (i, j)-th elements of the matrices Aη0
and Bη0

are calculated as

[Aη0
]ij = Ep

{
∂2

∂ηi∂ηj
ln p̃(y|η)

∣∣∣
η=η0

}
, (11)

[Bη0
]ij = Ep

{
∂

∂ηi
ln p̃(y|η)

∂

∂ηj
ln p̃(y|η)

∣∣∣
η=η0

}
, (12)

for 1 ≤ i, j ≤ 5, with ηi denoting the ith element of η. Note
that without model mismatch, Aη0

= Aη̄ = −Bη0
= −Bη̄
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so that the MCRB reverts to the classical Cramér-Rao bound
(CRB) [27].

Since the value of the pseudo-true parameter is generally not
of interest, the MCRB is used to establish the LB of any MS-
unbiased estimator with respect to the true parameter value
[26]

Ep{(η̂(y)− η̄)(η̂(y)− η̄)ᵀ} � LB(η0), (13)

where LB(η0) , MCRB(η0) + (η̄ − η0)(η̄ − η0)ᵀ. The last
term is a bias term; that is, Bias(η0) , (η̄ − η0)(η̄ − η0)ᵀ,
and it is independent of the SNR. Hence, as the SNR tends
to infinity, the MCRB term goes to zero, and the bias term
becomes a tight bound for the MSE of any MS-unbiased
estimator.

C. MCRB Derivation for RIS-aided Localization

1) Determining the Pseudo-True Parameter: To derive the
MCRB for estimating the UE position under mismatch be-
tween the amplitude models for the RIS elements, we should
first calculate the η0 parameter in (8) for the system model
described in Section II; that is, we should find the value of η
that minimizes the KL divergence between p(y|η̄) in (4) and
p̃(y|η) in (5). The following lemma characterizes η0 for the
considered system model.

Lemma 1. The value of η that minimizes the KL divergence
between p(y|η̄) in (4) and p̃(y|η), which is a parameterized
version of (5), can be expressed as

η0 = arg min
η∈R5

‖µ(η̄)− µ̃(η)‖ . (14)

Proof. See Appendix A.

Hence, the pseudo-true parameter minimizes the Euclidean
distance between the noise-free observation under the true and
assumed models, with respect to the assumed model.

Let γ(η) , ‖µ(η̄)− µ̃(η)‖. It is noted from (6) and (7) that
γ(η) is non-convex with respect to η; hence, it is challenging
to solve (14) in its current form. Based on (5) and (7), we can
re-write (14) as

(α0,p0) = arg min
(α,p)

‖µ(η̄)− α c(p)‖ , (15)

where [c(p)]t ,
∑M
m=1[b(p)]mw̃t,mst. The optimal complex-

valued α for any given p can be expressed as

α =
cH(p)µ(η̄)

cH(p)c(p)
· (16)

Inserting (16) into (15), the minimization problem can be
reduced to a three-dimensional search as follows:

p0 = arg max
p

µ(η̄)HΠc(p)µ(η̄) , (17)

where Πx , xxH/xHx. Therefore, η0 = [αᵀ
0 p

ᵀ
0 ]ᵀ can be

found by first performing a three-dimensional optimization as
in (17), and then calculating α0 via (16) and obtaining α0 as
α0 = [Re(α0) Im(α0)]ᵀ.
Remark 1. Note that to determine the pseudo-true parameter,
the true parameter (including the location p̄) is known; hence,

it can be used to initialize the optimization problem (17),
significantly reducing the computational complexity.

2) Deriving the MCRB: After finding η0, we compute the
matrices Aη0

from (11) and Bη0
from (12) for evaluating the

MCRB in (9). Due to page limitation, details of computation
of Aη0

and Bη0
are not presented in this manuscript. Based

on the pdf expressions in (4)–(5), (11) becomes, with ε(η̄) =
µ(η̄)− µ̃(η)

[Aη0
]ij =

∫
p(y|η̄)

∂2

∂ηi∂ηj
ln p̃(y|η)

∣∣∣
η=η0

dy (18)

=
2

N0
<
{
ε(η̄)H

∂2µ̃(η)

∂ηi∂ηj
−
(∂µ̃(η)

∂ηi

)H ∂µ̃(η)

∂ηj

} ∣∣∣
η=η0

,

(19)

where ∂2µ̃(η)
∂ηi∂ηj

,
[
∂2µ̃1(η)
∂ηi∂ηj

. . . ∂
2µ̃T (η)
∂ηi∂ηj

]ᵀ
. Similarly, after

some algebraic manipulation, the (i, j)th entry of matrix Bη0

in (12) can be written as

[Bη0
]ij =

2

N0

[
2

N0
<
{
ε(η̄)H

∂µ̃(η̄)

∂ηi

}
<
{
ε(η̄)H

∂µ̃(η̄)

∂ηj

}

+ <

{(
∂µ̃(η̄)

∂ηi

)H
∂µ̃(η̄)

∂ηj

}]∣∣∣∣∣
η=η0

. (20)

Therefore, once we have computed the first and the second
derivatives of µ̃t(η) with respect to η, we can easily compute
the matrices Aη0

and Bη0
as specified above. The derivatives

are presented in Appendix B. Based on Aη0
and Bη0

, the
MCRB in (9) and the lower bound in (13) can be evaluated
in a straightforward manner.

IV. MISMATCHED ESTIMATOR

A. Definition and Relation to MCRB
We introduce the MML estimator as [26]

η̂MML(y) = arg max
η∈R5

ln p̃(y|η). (21)

Under some regularity conditions, it is shown that η̂MML(y) is
asymptotically MS-unbiased and its error covariance matrix is
asymptotically equal to the MCRB(η0) [26, Thm. 2]. Hence,
the covariance matrix of the MML estimator is asymptotically
tight to the MCRB.

B. MML Estimator for UE Location
We now investigate the MML estimator for the UE po-

sition under model misspecification regarding the RIS am-
plitudes. From (5) and (21), the MML estimator based on
the received signal y can be expressed as η̂MML(y) =
arg minη∈R5 ‖y − µ̃(η)‖. Since this problem is in the same
form as the optimization problem in (14), it can be reduced
to a three-dimensional optimization problem as discussed
in Section III-C. In order to solve the resulting problem,
initialization can be very critical as we are facing with a non-
convex optimization problem. During the estimation process,
we do not have access to the true position p̄. Hence, we
cannot use the true position vector p̄ for the initialization.
If an arbitrarily chosen position vector is used for the ini-
tialization, the global optimal solution of (21) is not always
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obtained. To find a remedy for this issue, we use the Jacobi-
Anger expansion approach discussed in [17] to obtain an
initial position vector rather than starting from an arbitrarily
generated position vector. In particular, for the position vec-
tor p̄ = ‖p̄‖ [sin(ϑ) cos(ϕ) sin(ϑ) sin(ϕ) cos(ϑ)]ᵀ, for some
N ∈ N, a(p̄) is approximated as

[a(p̄)]m ≈
N∑

n=−N
jnJn

(
−2π

λ
‖pm‖ sin(ϑ)

)
ejn(ϕ−ψm),

(22)
where pm = ‖pm‖ [cos(ψm) sin(ψm) 0]ᵀ and Jn(·) is the nth
order Bessel function of the first kind. After defining G(ϕ)
and h(ϕ) exactly as in [17], we can rewrite yt as

yt ≈ ᾱhᵀ(ϕ)G(ϑ)diag(wt)a(pBS)st + nt, (23)

By using two-step simple line searches given in [17,
Eqs. 31, 32], estimates of ϕ and ϑ are obtained.
Let ϑ̂ and ϕ̂ denote the estimates of ϑ and ϕ. After
these two steps, we generate random variables d̃ such
that d̃[sin(ϑ̂) cos(ϕ̂) sin(ϑ̂) sin(ϕ̂) cos(ϑ̂)]ᵀ are initial position
vectors for any d̃. As discussed in [17], this two-step simple
line searches have a low computational complexity and do not
add any complexity cost to the MML estimator.

V. NUMERICAL RESULTS

In this section, we first present numerical examples for
evaluating the lower bounds in various scenarios, and then
compare the performance of the MML estimator against the
lower bounds.

A. Simulation Setup
We consider an RIS with M = 2500 elements, where the

inter-element spacing is λ/2 and the area of each element is
A = λ2/4 [17]. The carrier frequency is equal to fc = 28
GHz. The RIS is modeled to lie in the X-Y plane with pRIS =
[0 0 0]ᵀ. Moreover, for the phase profile, the θt,m values are
generated uniformly and independently between −π and π.
For the model of the RIS in (3), κ = 2 and φ = 0. The BS is
located at pBS = 5.77× [−1 1 1]ᵀ meters. For given distance d
to the RIS, the UE is located at d× [1 1 1]ᵀ/‖[1 1 1]‖ meters.
We set the number of transmission to T = 50. For simplicity,
we assume that st =

√
Es for any t. The SNR is defined as

SNR =
Es ‖ᾱ‖2

TN0

T∑
t=1

|bᵀ(p̄)wt|2 . (24)

B. Analysis of Lower Bounds and MML Estimator
To solve (17) for LB computation, we employ the Glob-

alSearch algorithm of MATLAB by providing 10 different
initial points. These initial points are generated by multiplying
each component of the true position of the UE, p̄, by inde-
pendent uniform random variables between zero and one.

For the initialization of the MML estimator, N in (22) is
taken as 5 for using the Jacobi-Anger expansion approach. Let
ϑ̂ and ϕ̂ denote the estimates of ϑ and ϕ. After obtaining the
the estimates of ϑ and ϕ, for the norm of the p̄, we generate a
random variable d̃, between 0 and 1000 for 10 different seeds,
and we run the GlobalSearch algorithm of MATLAB for each
initial point.
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Fig. 2. LB versus βmin for SNR = 20 dB, 30 dB and 40 dB when the
UE distance is 5 meters. The curves marked (perfect) are nearly flat and
correspond to the the assumed model being equal to the true model for
different βmin.

C. Results and Discussion
In Fig. 2, we show LB as a function of βmin for SNRs of

20, 30, and 40 dB when the UE distance is 5 meters from
the center of the RIS. In addition, for comparison purposes,
the lower bounds in the presence of the perfect knowledge
of the βmin values are also presented (marked as “Perfect” in
the figure).1 We observe from the figure that as βmin decreases,
i.e., as the mismatch between the true and the assumed models
increases, the LB increases and raising the SNR level does not
improve the LB values significantly. In addition, the sensitivity
to the model mismatch is more pronounced at higher SNR,
while for an SNR of 20 dB, the performance is relatively
insensitive for βmin > 0.7. Interestingly, we note that when the
true model is known (i.e., in the presence of perfect knowledge
of βmin), the value of βmin does not influence the LB values
notably.

In Fig. 3, to understand the impact of the number of RIS
elements, by averaging 200 different random phase profiles,
average LB values versus RIS size are shown at an SNR
of 30 dB. We consider βmin ∈ {0.3, 0.5, 0.7}. Moreover, the
average lower bounds under the perfect knowledge of the
βmin values are plotted. We observe that as the RIS size
increases or as βmin increases, we obtain lower LB values
in general. Interestingly, the curves for different βmin values
are almost parallel. We note the significant price we pay
under mismatch: with perfect knowledge of a RIS with 1000
elements attains similar performance as a RIS with 7000
elements when βmin = 0.5 under mismatch.

Finally, in Fig. 4, we show the performance of the MML
estimator versus SNR for βmin = 0.3 and 0.7 when the UE
distance is 5 meters. In addition to the performance of the
MML estimator, the LB, and the MCRB, the bias term values
are also plotted. We observe that the MML estimator exhibits
three distinct regimes: a low-SNR regime where MML is

1To obtain these curves, it is assumed that for any given βmin, the perfect
knowledge of the RIS amplitudes is available. Hence, this bound reduces to
the classical CRB expression as in [17, Eq. 9]. As µ changes with respect
to the true value of βmin, this expression is computed for each βmin value.
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Fig. 3. Average LB versus RIS size for βmin ∈ {0.3, 0.5, 0.7}, when SNR
= 30 dB, and the UE distance is 5 meters.
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Fig. 4. MML, LB, MCRB, and bias term versus SNR (dB) for βmin ∈
{0.3, 0.7} when the UE distance is 5 meters.

limited by noise peaks and thus far away from the LB; a
medium-SNR regime where MML is close to the LB, which
itself is dominated by the MCRB; and a high-SNR regime,
where the MML and LB are limited by the bias term Bias(η0).

VI. CONCLUDING REMARKS

We have considered the problem of RIS-aided near-field
localization in the presence of model misspecification account-
ing for mismatch between ideal and realistic RIS amplitude
models. In particular, we have focused on a scenario in which
the exact model for the amplitudes of the RIS elements is
unknown and the amplitudes are assumed to be constant
(unity). Based on the realistic amplitude model given in [22],
we have first derived the theoretical performance bounds for
estimating the UE position when the belief and the reality of
the RIS amplitude models do not match. We have observed
that the amplitude knowledge becomes crucial in the high SNR
regime. Moreover, when the true model is known, the value
of βmin does not affect the theoretical bounds notably. Lastly,
we have implemented the MML estimator for the considered
problem, and observed that the MML estimator can achieve
the LB in the high SNR regime, as expected.

ACKNOWLEDGMENT

This work was supported, in part, by the EU H2020 RISE-
6G project under grant 101017011 and by the MSCA-IF grant
888913 (OTFS-RADCOM).

APPENDIX A
PROOF OF LEMMA 1

Based on the definition of the KL divergence and the system
model in Section II, (8) can be expressed as

η0 = arg min
η∈R5

∫
p(y|η̄) ln

(
p(y|η̄)

p̃(y|η)

)
dy (25)

= arg min
η∈R5

−
∫
p(y|η̄) ln p̃(y|η) dy (26)

= arg min
η∈R5

∫
p(y|η̄) ‖y − µ̃(η)‖2 dy (27)

where the second equality is due to the independence of p(y |
η̄) from η, and the last equality is obtained from (5). Then,
it can be shown that the following equations hold:∫

p(y|η̄) ‖y − µ̃(η)‖2 dy =

T∑
t=1

∫
p(y|η̄) |yt − µ̃t(η)|2 dy

=

T∑
t=1

∏
t′ 6=t

∫
p(yt′ |η̄) dyt′


︸ ︷︷ ︸

=1

(∫
p(yt|η̄) |yt − µ̃t(η)|2 dyt

)

=

T∑
t=1

∫
p(yt|η̄) |yt − µ̃t(η)|2 dyt. (28)

We now introduce εt(η) = µt(η̄) − µ̃t(η), so that
|yt − µ̃t(η)|2 = |yt − µt(η̄) + εt(η)|2, and the integral ex-
pression in (28) can be manipulated as follows:∫

p(yt|η̄) |yt − µ̃t(η)|2 dyt

=

∫
p(yt|η̄) |yt − µt(η̄)|2 dyt + |εt(η)|2

∫
p(yt|η̄) dyt

+ 2

∫
p(yt|η̄)< ((yt − µt(η̄))∗εt(η)) dyt. (29)

Since yt ∼ CN (µt(η̄), N0) and
∫
p(yt|η̄) dyt = 1, the

expression in (29) can be simplified as∫
p(yt|η̄) |yt − µ̃t(η)|2 dyt = N0 + |εt(η)|2 . (30)

By combining (27), (28) and (30), we finally obtain that

η̄ = arg min
η∈R5

T∑
t=1

(
N0 + |εt(η)|2

)
= arg min

η∈R5

T∑
t=1

|εt(η)|2 ,

which completes the proof.

APPENDIX B
DERIVATION OF ENTRIES IN THE MCRB

Let η be given by η = [αr αi x y z]ᵀ. Also, define p ,
[x y z]ᵀ, bm , [b(p)]m, and α , αr + jαi. We also introduce
u =

p−pRIS
‖p−pRIS‖

and for any 1 ≤ m ≤M , um = p−pm

‖p−pm‖
, where

5



u = [ux uy uz]
ᵀ and um = [um,x um,y um,z]

ᵀ.Then, the first
and second derivatives of µ̃t(η) with respect to η are given
as follows:

∂µ̃t(η)

∂αr
=

M∑
m=1

bmw̃t,mst,
∂µ̃t(η)

∂αi
= j

M∑
m=1

bmw̃t,mst.

For ν ∈ {x y z}, we can write

∂µ̃t(η)

∂ν
= −j 2π

λ
α

M∑
m=1

bm (um,ν − ux) w̃t,mst,

∂2µ̃t(η)

∂αr∂ν
= −j 2π

λ

M∑
m=1

bm (um,ν − uν) w̃t,mst,

∂2µ̃t(η)

∂αi∂ν
= j

∂2µ̃t(η)

∂αr∂ν
,

∂2µ̃t(η)

∂ν∂ν
= −α4π2

λ2

M∑
m=1

bm (um,ν − uν)
2
w̃t,mst

− j 2π

λ
α

M∑
m=1

bm

(
1− u2

m,ν

‖p− pm‖
− 1− u2

ν

‖p− pRIS‖

)
w̃t,mst.

Moreover, if ν1, ν2 ∈ {x y z} and they correspond to different
coordinates, it is possible express that

∂2µ̃t(η)

∂ν1∂ν2
= −α4π2

λ2

M∑
m=1

bm (um,ν1 − uν1) (um,ν2 − uν2) w̃t,mst

+ j
2π

λ
α

M∑
m=1

bm

(
um,ν1um,ν2
‖p− pm‖

− uν1uν2
‖p− pRIS‖

)
w̃t,mst.
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