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Determination of topological edge quantum
numbers of fractional quantum Hall phases
by thermal conductance measurements

Saurabh Kumar Srivastav 1,9, Ravi Kumar1,9, Christian Spånslätt 2,
K. Watanabe 3, T. Taniguchi 3, Alexander D. Mirlin4,5,6,7, Yuval Gefen4,8 &
Anindya Das 1

To determine the topological quantum numbers of fractional quantum Hall
(FQH) states hosting counter-propagating (CP) downstream (Nd) and
upstream (Nu) edge modes, it is pivotal to study quantized transport both in
the presence and absence of edgemode equilibration.While reaching the non-
equilibrated regime is challenging for charge transport, we target here the
thermal Hall conductance GQ, which is purely governed by edge quantum
numbersNd andNu. Our experimental setup is realizedwith a hexagonal boron
nitride (hBN) encapsulated graphite gated single layer graphene device. For
temperatures up to 35mK, ourmeasuredGQ at ν = 2/3 and 3/5 (with CPmodes)
match the quantized values of non-equilibrated regime (Nd +Nu)κ0T, where
κ0T is a quanta of GQ. With increasing temperature, GQ decreases and even-
tually takes the value of the equilibrated regime ∣Nd −Nu∣κ0T. By contrast, at
ν = 1/3 and 2/5 (without CP modes), GQ remains robustly quantized at Ndκ0T
independent of the temperature. Thus, measuring the quantized values of
GQ in two regimes, we determine the edge quantum numbers, which opens a
new route for finding the topological order of exotic non-Abelian FQH states.

In the quantumHall (QH) regime, transport occurs in one-dimensional
gapless edge modes, which reflect the topology of the bulk filling
factor ν. In integer QH (IQH) states and in a certain subclass of frac-
tional QH (FQH) states, only downstream edge modes (Nd of them)
exist, whose chirality is dictated by the direction of the applied mag-
netic field1,2. At the same time, the edge structure of a majority of FQH
states, including, in particular, the “hole-like” states (1/2 < ν < 1), ismore
complicated. In addition to the downstreamedgemodes, the presence
of upstreammodes (Nu) leads to complex transport behavior1–6. In this
situation, the measured values of the electrical conductance (Ge)
depends on the extent of the charge equilibration between the

counter-propagating downstream and upstreammodes. For example,
the ν = 2/3 state hosts two counter-propagating modes: a downstream
mode, ν = 1, and an upstream ν = 1/3 mode3. With full charge equili-
bration, the two-terminal conductance Ge becomes7–10 2e2/3h; on the
other hand, in the absence of charge equilibration, Ge is equal to8,10

4e2/3h. Theobservationof a crossover from4e2/3h to 2e2/3h is essential
to establish the proposed edge structure. This crossover has indeed
beenobserved in carefully engineered double-quantum-well structure,
allowing control of the equilibration11. At the same time, a similar
demonstration is lacking in experiments on a conventional edge (the
boundary of a ν = 2/3 FQH state), whereGe is always found to be 2e2/3h.
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The reason is that the small value of the charge equilibration length
makes it difficult to access the nonequilibrated regime. A small
deviation from 2e2/3h indicating a beginning of the crossover towards
4e2/3h was observed for the spin-unpolarized ν = 2/3 FQH state12.

Measurements of the thermal conductance have recently
emerged as a powerful tool to detect the edge structure of FQH
states13–18. Such measurements are highly useful for “counting” edge
modes and can also detect charge neutralMajoranamodes16,19. For IQH
states and FQH states with only downstream modes, the quantized
thermal conductance is given by GQ =Ndκ0T, where κ0 =π

2k2
B=3h, kB is

the Boltzmann constant, h is the Planck constant, and T is the
temperature14. A schematic illustration of the heat flow for such a state
(ν = 1/3 in this example) is depicted in Fig. 1a. On the other hand, for
hole-like FQH states, the presence of upstream modes renders the
value of GQ strongly dependent on the extent of thermal equilibration
between CP modes. This leads to a crossover8 of GQ from a none-
quilibrated quantized value of (Nd +Nu)κ0T to the asymptotic value of
full equilibration ∣Nd −Nu∣κ0T. While the fully equilibrated and none-
quilibrated limiting cases of GQ have been reported in disparate GaAs/

AlGaAs based 2DEG devices15,16,20, and in graphene only the none-
quilibrated values have been observed18, an in situ crossover of GQ

from the nonequilibrated to the fully equilibrated limit in a single
device has remained unattainable.

The observation of crossover in GQ has remained one of the long-
standing challenges on the path to reveal the detailed edge structure
of the FQH states. For example, for ν = 2/3, the by now “standard”
model of the edge (based on the hierarchy construction21,22) suggests
one downstream and one upstream mode3,4,23. At the same time, a 2/3
edge with two co-propagating downstream modes1 would also corre-
spond to a fully legitimate FQH edge from the point of view of general
theory23. For the first case, GQ should exhibit a crossover with tem-
perature. In the nonequilibrated regime, L≪ ‘Heq, where L is the channel
length and ‘Heq is the thermal equilibration length,GQ = 2κ0T, whereas in
the equilibrated regime, ‘Heq ≪ L, the GQ will exhibit asymptotic
value ≈0κ0T. Such a crossover of GQ is schematically depicted in
Fig. 1b, c. On the other hand, for the second case, GQ will be inde-
pendent of temperaturewith a value of 2κ0T. Similarly, the ν = 3/5 edge
model corresponding to the hierarchy construction harbors one
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Fig. 1 | Schematics of heat transport onQHedges,measurement setup, andQH
response of device. a Heat transport at the edge of ν = 1/3 state along a single
downstream mode. The chirality of the downstream mode is clockwise. b Heat
transport at the edge of ν = 2/3 state in nonequilibrated regime. Heat from the hot
reservoir is carried awaybyboth downstreamandupstreammodes. The chirality of
upstream mode is anticlockwise. c Heat transport at the edge of ν = 2/3 state in
the equilibrated regime. The gradient of the color along the edges represents the
qualitative temperature profile. In the long-length limit (L→∞), the heat carried
away from the hot reservoir comes back to it via other edgemodes, which leads to a
vanishing thermal conductance. d False colored SEM micrograph of the device,
shown with the measurement schematic. The graphene boundary is marked with a
white dashed line. For illustrative purposes, the device is depicted with a ν = 1 edge
structure. For thermal conductance measurements, currents IS and −IS are fed

simultaneously at contacts S1 and S2. Due to the power dissipation near the central,
floating contact, the electron temperature increases to TM. The electrical and
thermal conductances aremeasured respectively at low frequency (23Hz) and high
frequency (~740kHz) with an LCR resonant circuit. eQH response: The black line is
the resistance RS1 (VS1/IS1) measured at source contact ‘S1’ as a function of VBG at
B = 10 T and temperature 20 mK. The blue line shows themeasured resistance (VR/
IS1) at the contact ‘R’. The green line shows the measured resistance (VT/IS1) at the
contact ‘T’. The red curve shows the resistance VS1/IR measured at the contact ‘S1’,
while the current is injected at the contact ‘R’ and encodes the longitudinal resis-
tance. Robust fractional plateaus at 3h

e2 ,
5h
2e2,

5h
3e2, and

3h
2e2 are clearly visible. The legend

defines the current sources and voltage probes for each curve. The subscripts of I
and V correspond to the current-fed contact and the voltage-probe contact,
respectively.
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downstream and two upstreammodes7,23, and as a resultGQwill have a
crossover from 3κ0T to 1κ0T. However, there exist also alternative
topologies (encoded by so-called K-matrices23) corresponding to ν = 3/
5. In particular, one can imagine a ν = 3/5 edge with three co-
propagating downstream modes1, and in this scenario GQ would be
independent of temperature with a value of 3κ0T. Furthermore, the
value of GQ can reveal the possible edge reconstruction of the QH
states24,25. For example, for ν = 1/3, the edge reconstruction by a pair of
counter-propagating modes26 would increase the number of modes
from 1 to 3, implying a crossover of GQ from 3κ0T at low T (none-
quilibrated regime) to 1κ0T at higher T. Similarly, for ν = 2/3, the edge
reconstruction would increase the number of modes27 from 2 to 4,
which would result in GQ = 4κ0T at low temperature (nonequilibrated
regime). Thus, the observation of crossover inGQ and its precise values
can determine the exact topological number of the FQH edges.
Achieving this goal would further help to settle the topological order
of more complex non-Abelian even-denominator FQH states.

In this work, we report on thermal conductancemeasurements as
a function of temperature (T) of electron-like (ν = 1/3 and 2/5) and hole-
like (ν = 2/3 and 3/5) FQH states, realized in a hBN encapsulated
graphite-gated high-mobility single layer graphene device. Our key
findings are the following: (1) At the base temperature (lowest bath
temperature Tbath, ~ 20mK), GQ for 2/3 and 3/5 is found to be 2κ0T and
3κ0T, respectively, and remain constant up to ~35mK. (2) With further
increase of temperature, GQ for 3/5 decreases, saturating at 1κ0T for
T ≳ 50mK. The similar crossover of GQ is observed for 2/3 too and GQ

drops to a value ~0.5κ0T at 60mK, continuing to decrease toward zero.
The observed values ofGQmatches with the theoreticalmodels for the
hole-like FQH states with CP modes from the nonequilibrated limit of
(Nd +Nu)κ0T to the equilibrated limit of ∣Nd −Nu∣κ0T. For ν = 2/3, the
heat transport in the equilibrated regime is of diffusive character, with
the limiting value ∣Nd −Nu∣κ0T ≈0 that is approached in a power-law
way as a function of temperature. (3) For 1/3 and 2/5 FQH states, GQ is
found to be 1κ0T and 2κ0T, respectively, independent of the electron
temperature and matches with the expected GQ =Ndκ0T without CP
modes. These observations further confirm that there is no edge
reconstruction in our device.

Results
Device schematic and response
To measure the thermal conductance, we have used a graphite-gated
graphene device, where the graphene is encapsulated between two
hBN layers. The details of the device fabrication is described in
Methods as well as in Supplementary Note 1. One of the important
length scales of the device is the separation between the graphene and
the screening graphite layer, which is ~25 nm and comparable to the
magnetic length scale. It has been theoretically predicted28 that for
such cases edge reconstruction can be avoided (see Supplementary
Note 12). We will below show that our measured GQ confirm the
absence of edge reconstruction for our device. Similar to our previous
work17,18, our device consists of a small floating metallic reservoir,
which is connected to graphene channel via one-dimensional edge
contacts, as shown in Fig. 1d. To measure the electrical conductance,
we used the standard lock-in technique whereas the thermal con-
ductance measurement was performed with noise
thermometry15–18,29,30 (see Supplementary Fig. 2). In Fig. 1e, the black
curve represents the measured resistance RS1 (VS1/IS1) at the source
contact (‘S1’) as a function of the graphite gate voltage (VBG). Well
developed plateaus appear at ν = 1

3,
2
5,

3
5, and

2
3. The blue curve shows the

measured resistance RR = VR/IS1 along the reflected path (at contact ‘R’)
from the floating contact. Similarly, the green curve shows the mea-
sured resistance RT =VT/IS1 along the transmitted path (at contact ‘T’)
from the floating contact. Measured resistances along the reflected
and transmitted paths are identical, and exactly half of the resistance
measured at the source contact, suggesting equal partitioning of

injected current to both the transmitted and reflected side (see Sup-
plementary Note 4, and Supplementary Fig. 5). In fact, the equiparti-
tion of the current on both sides of the floating contact in Fig. 1e firmly
establishes two important points: (i) it rules out the presence of any
appreciable reflection coefficient at the interface of graphene and
the floating contact (see Supplementary Fig. 6 for details), and (ii) the
positions of the plateaus at the same gate voltage suggest the same
electronic density on both sides of the floating contact. The red curve
in Fig. 1e shows the resistance RS1 =VS1/IR measured at contact ‘S1’,
while the current is injected from the contact ‘R’. This resistance in this
configuration has the same properties as a longitudinal resistance: in
the absence of bulk transport, the voltage VS1 is determined by the
equilibriumpotential of the ground contact D1. The observation of the
vanishing resistance plateaus further supports the formation of well
developed FQH states. In Supplementary Fig. 7, we show plots analo-
gous to Fig. 1e but measured at elevated temperatures within our
working temperature range—without detectable changes either in
resistancevalues or in equipartition of currents. It should benoted that
the measured resistance values in Fig. 1e at the source, reflected and
transmitted contacts suggest full charge equilibration in our device
(see Supplementary Note 6 and Supplementary Table 2).

Thermal conductance measurement
In contrast to our previous works17,18, to measure the thermal con-
ductance, we simultaneously inject the DC currents IS and −IS at two
contacts S1 and S2, respectively. Both injected currents flow towards
the floating reservoir. This is done in order to keep the potential of the
floating contact to be the same as that of all drain contacts. In this
configuration, the dissipated power at the floating reservoir due to
Joule heating is given as P = I2S

νG0
(see Supplementary Note 3). This

power dissipation leads to increase of the electron temperature in the
floating reservoir. The new steady state temperature TM is determined
by the heat balance relation15–18,29,31,32

P = JQ = JeQðTM ,T0Þ+ Je�ph
Q ðTM ,T0Þ=0:5Nκ0ðT2

M � T2
0Þ+ Je�ph

Q ðTM ,T0Þ
ð1Þ

Here, JeQðTM ,T0Þ is the electronic contribution of the heat current viaN
chiral edge modes, and Je�ph

Q ðTM ,T0Þ is the heat loss via electron-
phonon cooling, and T0 is the electron temperature of the cold
reservoirs. The temperature TM is obtained by measuring the excess
thermal noise15–18,29 along the outgoing edge channels using the
Nyquist-Johnson relation

SI = νkBðTM � T0ÞG0 ð2Þ

For our hBN encapsulated graphite-gated device18, the electron-
phonon contribution (second term in Eq. (1)) was found to be
negligible for Tbath < 100mK (see Supplementary Note 9 and Supple-
mentary Fig. 12). From Eq. (1), one finds N, which yields the sought
thermal conductanceGQ =Nκ0T. It shouldbe noted that Eq. (2) remains
valid if there is a quasi-equilibrium state characterized by a hot Fermi
distribution function with temperature TM, which is satisfied for our
device as the dwell time for the electrons in the metallic floating
contact is longer than the electron–electron interaction time or
thermalization time (see Supplementary Note 3). In Fig. 2, we show the
detailed procedure to extract the quantized GQ at the bath
temperature, Tbath ~ 20mK. Note that for each bath temperature, we
experimentally determine the electron temperature, T0 of the device
and for our system Tbath ≈ T0 (see Supplementary Note 2, Supplemen-
tary Fig. 3, and Supplementary Table 1).

The measured excess thermal noise SI is plotted as a function of
current IS for ν = 2/3 and 3/5 in Fig. 2a, d, respectively. The resulting
heating of the floating reservoir is made manifest by the increase in
excess thermal noise with the application of the source current IS. The
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noise and current axes of Fig. 2a, d are converted to TM and JQ, yielding
Fig. 2b for ν = 2/3 and Fig. 2e for ν = 3/5, respectively. To extractGQ, the
heat current JQ is plotted as a function of T2

M � T2
0 for ν = 1/3 (red) and

2/3 (black) in Fig. 2c and for ν = 2/5 (red) and 3/5 (black) in Fig. 2f. The
solid circles represent the experimental data, while the solid lines are
the linearfits withGQ = 1.00κ0T (red) and 2.01κ0T (black) for ν = 1/3 and
2/3, respectively, in Fig. 2c and GQ = 2.02κ0T (red) and 3.02κ0T (black)
for ν = 2/5 and 3/5, respectively, in Fig. 2f. To further study the tem-
perature dependence of the thermal conductance, JQ is plotted as a
function of T2

M � T2
0 at several values of the bath temperature for ν = 2/

3 in Fig. 3a and for 3/5 in Fig. 3b. An analogous plot is shown for ν = 1/3

(solid circles) and 2/5 (solid stars) in Fig. 3c. The slopes of the linear fits
to thedata in thesefigures allowus to extract the values ofGQ.Whereas
the data for the 2/3 and 3/5 states show an explicit dependence of GQ

on bath temperature, the thermal conductance remains independent
of the temperature for the 1/3 and 2/5 states, Fig. 3c. Note that the
thermal conductance measurement was performed at the middle of
each QH plateau.

In Fig. 4a,weplot the thermal conductanceGQ (extracted fromthe
slope of the linear fits to the data in Fig. 3 as a function of the bath
temperature for ν = 1/3 (red), 2/5 (blue), 2/3 (magenta), and 3/5 (black).
As can be seen in Fig. 4a for ν = 1/3 (red) and 2/5 (blue), the values GQ

Fig. 2 | Thermal conductance of fractionalQH states. a Excess thermal noise SI as
a function of source current IS at ν = 2/3. The DC currents IS and −IS were injected
simultaneously at contacts S1 and S2, respectively, as shown in Fig. 1d. b The
temperature TM of the floating contact as a function of the dissipated power JQ at
ν = 2/3. c JQ (solid circles) is plotted as a function of T2

M � T2
0 at ν = 2/3 (black) and 1/

3 (red). Solid black and red lines are linear fits with GQ = 2.01κ0T and 1.00κ0T for
ν = 2/3 and 1/3, respectively. d Excess thermal noise SI as a function of source

current IS at ν = 3/5.eThe temperatureTMof thefloating contact as a function of the
dissipated power JQ at ν = 3/5. f JQ (solid circles) is plotted as a function of T2

M � T2
0

for ν = 3/5 (black) and 2/5 (red). Solid black and red lines are linear fits with GQ =
3.02κ0T and 2.02κ0T for ν = 3/5 and 2/5, respectively . The black and dashed red
arrows depict the downstream and upstream modes, respectively, for each edge
structure.

Fig. 3 | Temperature dependence of thermal conductances. a, b JQ (solid circles)
is plotted as a function of T2

M � T2
0 at ν = 2/3 (a) and ν = 3/5 (b) at several values of

the bath temperature. Solid circles show the experimental data,while solid lines are
linear fits to these experimental data points. Different colors correspond to dif-
ferent bath temperatures as shown in the legend. c JQ (solid circles) is plotted as a

function of T2
M � T2

0 for ν = 1/3 (filled circles) and ν = 2/5 (filled stars) at several
values of the bath temperature. Different colors of the symbols correspond to
different bath temperatures, (see legend). For all panels, the thermal conductance
GQ at each temperature is extracted from the slope of the linear fit.
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(1κ0T and 2κ0T, respectively) remain independent of the bath tem-
perature. The samebehavior is found for integerQH states:GQ remains
constant with temperature (see Supplementary Note 11 and Supple-
mentary Fig. 13). On the other hand, for the hole-like 3/5 state, at the
lowest bath temperature (Tbath ~ 20mK), we observe GQ ~ 3κ0T, which
remain constant up to Tbath ~ 35mK and with further increase of the
temperature, theGQdecreases and saturates to ~1κ0T forTbath ≳ 50mK.
A similar crossover is observed also for the 2/3 state. For this state, at
low temperatures, GQ ~ 2κ0T is observed. When the temperature
increases beyond 35mK, GQ starts decreasing and drops down to a
value of ~0.5κ0T at our largest temperature, Tbath ~ 60mK.

To understand these results, we show the expected edge struc-
tures and their corresponding thermal conductance values for the
studied FQH states in Fig. 4b. For the electron-like 1/3 and 2/5 states,
there are only downstreammodes with Nd = 1 and 2, respectively, and
thus, the expected GQ should be 1κ0T and 2κ0T, respectively, and will
remain independent of the temperature. This is indeed seen for our
experiment in Fig. 4a. This behavior is analogous to that for integer QH
states (See Supplementary Note 11 and Supplementary Fig. 13), where
all edgemodes also propagate downstream.On the other hand, for the
hole-like 3/5 state, the temperature dependence crossover of GQ from
one quantum value to another one rules out any possibility of having
only downstreammodes. Furtheromore, the measured values of 3κ0T
and 1κ0T, respectively, perfectly match with the nonequilibrated
((Nd +Nu)κ0T) and equilibrated (∣Nd −Nu∣κ0T) regimes of GQ with Nd = 1
and Nu = 2. Similarly, for 2/3, our observation rules out the theoretical
model with only downstreammodes, and support the crossover from
the nonequilibrated regime of GQ to the equilibrated regime with
Nd =Nu = 1. The equilibrated transport in this situation is diffusive in
nature, so that GQ is expected to tend to zero relatively slowly (as ~1/L)
in the long-length limit. Since our device channel length L is limited to
~5μm, we observe a finite value of ~0.5κ0T at Tbath ~ 60mK.
Approaching substantially closer the asymptotic value of 0κ0T for 2/3
would be very interesting but it is not a simple task. For a given length
L, this would require a further increase of temperature. However, we
find that then the electron-phonon cooling starts to contribute sig-
nificantly, spoiling the analysis (See Supplementary Note 9 and Sup-
plementary Fig. 12).

Thus, measuring the quantized values of GQ at the two regimes
helps to experimentally determine the topological edge quantum

numbers. We note that, in our previous work30, the noise measure-
ment confirmed the presence of CPmodes for hole-like FQH states in
graphene. At the same time, the approach of ref. 30 was unable to
detect exact topological edge quantum numbers. Furthermore, in
the present study, the low-temperature values of GQ rules out any
edge reconstruction in our device for all of the QH states studied. For
example, for a 1/3 edge, one would observe a crossover from 3κ0T to
1κ0T in the presence of edge reconstruction. We find, however, 1κ0T
down to lowest T, demonstrating that the edge reconstruction is not
operative. Similarly, for a 2/3 edge, the edge reconstruction would
increase the total number of edge modes from 2 to 4, and conse-
quently would give rise to 4κ0T value in the low-T limit instead of the
observed 2κ0T.

According to theoretical predictions, the crossover of GQ

between the asymptotic limits of no thermal equilibration (L≪ ‘Heq)
and perfect thermal equilibration (L≫ ‘Heq) is described by a function
of the dimensionless ratio L=‘Heq, with the thermal equilibration
length scaling as a power of temperature, ‘Heq / T�p. Explicit forms of
the crossover functions for ν = 2/3 and ν = 3/5 states are given below
inMethods. Our experimental data are well described by these forms
as shown by the solid lines in Fig. 4a. At the same time, the values of
the exponent p that are obtained from the fits turn out to be unex-
pectedly large: p = 6.3 for ν = 2/3 and p = 9.3 for ν = 3/5, well above
p = 2 expected in the vicinity of the strong-disorder fixed points6–8.
This implies that the crossover GQ(T) is surprisingly sharp as a
function of temperature. While this observation remains puzzling at
this stage, several plausible equilibration mechanisms that might
yield a large p are discussed in the next section. It is worth noting that
the asymptotic limit of GQ = 0κ0T in the equilibrated regime for 2/
3 state is expected to be achieved (within our measurement accu-
racy) around Tbath ~ 140mK [obtained by extending the fitted
magenta curve in Fig. 4a], which is virtually impossible to experi-
mentally measure due to strongly enhanced electron-phonon cool-
ing as mentioned above.

Discussion
In this section, we discuss a few additional points related to the
expected theoretical regimes of equilibration, the accuracy of our
measurement, the large temperature exponents of the thermal equi-
libration lengths, and future implications of our observations.
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Fig. 4 | Crossover from nonequilibrated to equilibrated heat transport.
a Thermal conductance GQ, as extracted from the slope of the linear fit in Fig. 3,
plotted as a function of the bath temperature for ν = 1/3 (red), 2/5 (blue), 3/5 (black),
and 2/3 (magenta). The horizontal dashed lines correspond to quantized values of
GQ. The solid curves (black andmagenta) are theoreticalfits of thedata that serve to
extract out temperature scaling exponents (seeMethods). Error bars correspond to

the standard deviation associated with the slope of the linear fit shown in Fig. 3.
b Edge structures of the studied FQH states. Solid black and dashed red arrows
represent downstream and upstream modes, respectively. The two right-most
columns show expected values of the thermal conductance GQ (in units of κ0T) in
the two limiting regimes of the heat transport.
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(1) The quantized value GQ = (Nd +Nu)κ0T of the thermal con-
ductance in the nonequilibrated regime, L≪ ‘Heq, where ‘Heq is the
thermal equilibration length, strictly holds if there is no back-
scattering of heat at interfaces with contacts. This is fulfilled under
an additional condition L≪ LT where LT ~ T−1 is the thermal length. In
the intermediate regime LT ≪ L≪ ‘Heq, a correction to this value is
expected to emerge8,20,33. Thus, the nonequilibrated regime may, in
fact, be expected to be split into two plateaus, which is, however, not
observed in our experiment.

(2) The experimental determination of the thermal conductance
follows the approach of several preceding works that use two implicit
assumptions: (i) current fluctuations propagating from the central
contact satisfy the thermal equilibrium distribution, implying the
Johnson-Nyquist relation between the contact temperature and the
noise; (ii) all power dissipated close to the central contact heats it.
When all modes propagate downstream, both these assumptions
strictly hold. However, for edges with CP modes, the situation may be
somewhatmore delicate and somedeviations from the assumptions (i)
and (ii) may emerge. This issue was discussed in ref. 20, where cor-
rections to the procedure of extraction of GQ were obtained that
slightly reduce the experimental value of GQ. We do not include these
corrections in the present work. First, they would not affect the iden-
tification of the asymptotic regimes. Second, the values of GQ that we
find without including these corrections agree remarkably with the
quantized values, both for the nonequilibrated regime (as was also
found for bilayer graphene in ref. 18) and in the equilibrated limit. It
remains to see which features of our device favor this remarkable
agreement.Wewould like to note that the precise determination ofGQ

depends on the accuracy of electron temperature and gain of the
amplification chain, which are shown in details in Supplementary
Note 2 and Supplementary Fig. 3.

(3) It was pointed out above that the temperature-driven cross-
over from nonequilibrated to equilibrated regime is remarkably sharp
in our experiment, i.e., the parameter p controlling the scaling of the
equilibration length (‘Heq / T�p) is unusually large. Theoretically, the
value of p is controlled by irrelevant operators within the
renormalization-group framework. Various mechanisms correspond-
ing to such operators are known that may lead to large values of p in
correlated 1D systems. In particular, this may happen if the energy
relaxation is dominated by complex (multiparticle) interchannel
processes7,23,34 or by nonlinearities of the quasiparticle and plasmon
spectrum at the edge35–41. We leave a detailed investigation of this issue
in the present context to future research.

(4) Observing a crossover of the thermal conductance between
two asymptotic limits of the thermal equilibration is an important step
towardpinpointing the topological order ofmorecomplex FQH states.
Of particular interest is the ν = 5/2 state, whose topological order is a
subject of active debate. Specifically, the anti-Pfaffian state should
demonstrate a crossover from 4.5 to 1.5κ0T, whereas the PH-Pfaffian
state should demonstrate a crossover from 3.5 to 2.5κ0T. For the
Pfaffian state, GQ = 3.5κ0T independent of temperature.

The findings of this work are a notable manifestation of an inter-
play of equilibration (or absence thereof) and topology in FQH trans-
port. While the charge transport is in the equilibrated regime, the heat
transport crosses over from the nonequilibrated to equilibrated
regime, with both asymptotic limits characterized by topologically
quantized heat conductances determined by edge quantum numbers.
We expect that this physics should be relevant also to other FQH states
and materials. In particular, interpretation of the experimentally
measured thermal conductance 5

2 κ0T at the non-Abelian ν = 5/2 state
requires assumptions about the presence, absence, or partial character
of thermal equilibration42–46. Measurement of the full crossover from
the nonequilibrated to equilibrated regime would permit to unam-
biguously resolve this problem.

Methods
Device fabrication and measurement scheme
In our experiment, an encapsulated device (heterostructure of hBN/
single layer graphene(SLG)/hBN/graphite) was made using the stan-
dard dry transfer pickup technique47. Fabrication of this hetero-
structure involvedmechanical exfoliation of hBN and graphite crystals
on oxidized silicon wafer using the widely used scotch tape technique.
First, a hBN of thickness of ~25 nmwas picked up at 90 °C using a Poly-
Bisphenol-A-Carbonate (PC) coated Polydimethylsiloxane (PDMS)
stamp placed on a glass slide, attached to tip of a home built micro-
manipulator. This hBN flake was aligned on top of previously exfo-
liated SLG. SLG was picked up at 90 °C. The next step involved the
pickup of bottomhBN (~25 nm). This bottomhBNwas picked up using
the previously picked-up hBN/SLG following the previous process.
This hBN/SLG/hBN heterostructure was used to pick up the graphite
flake following the previous step. Finally, this resulting hetros-
tructure (hBN/SLG/hBN/graphite) was dropped down on top of an
oxidized silicon wafer of thickness 285 nm at temperature 180 °C. To
remove the residues of PC, this final stack was cleaned in chloroform
(CHCl3) overnight followed by cleaning in acetone and iso-propyl
alcohol (IPA). After this, Poly-methyl-methacrylate (PMMA) photo-
resist was coated on this heterostructure to define the contact
regions in the Hall probe geometry using electron beam lithography
(EBL). Apart from the conventional Hall probe geometry, we defined
a region of ~5.5 μm2 area in the middle of SLG flake, which acts as
floating metallic reservoir upon edge contact metallization. After
EBL, reactive ion etching (mixture of CHF3 and O2 gas with flow rate
of 40 sccm and 4 sccm, respectively at 25 °C with RF power of 60W)
was used to define the edge contact. The etching time was optimized
such that the bottom hBN did not etch completely to isolate the
contacts from bottom graphite flake, which was used as the back
gate. Finally, thermal deposition of Cr/Pd/Au (3/12/60 nm) was done
in an evaporator chamber having base pressure of ~1–2 × 10−7 mbar.
After deposition, a lift-off procedure was performed in hot acetone
and IPA. This results in a Hall bar device along with the floating
metallic reservoir connected to the both sides of SLG by the edge
contacts. The schematics of the device and measurement setup are
shown in Fig. 1d. The distance from the floating contact to the ground
contacts was ~5 μm (see Supplementary Fig. 1 for optical images). All
measurements were done in a cryo-free dilution refrigerator having a
base temperature of ~20mK. The electrical conductance was mea-
sured using the standard lock-in technique, whereas the thermal
conductancewasmeasuredwith noise thermometry basedon an LCR
resonant circuit at resonance frequency ~740 kHz. The signal was
amplified by a home-made preamplifier at 4 K followed by a room
temperature amplifier, and finally measured by a spectrum analyzer.
Details of the measurement technique are discussed in the Supple-
mentary Fig. 2.

Description of the crossover from the nonequilibrated to equi-
librated regime
When edge modes are not thermally equilibrated, i.e. for edge lengths
L satisfying L≪ ‘Heq, the thermal conductance becomes quantized as

GQ = ðNd +NuÞκ0T , ð3Þ

whichmeans that every edgemodegives a contribution 1κ0T toGQ. For
filling factors ν = 1/3, ν = 2/5, ν = 2/3, and ν = 3/5, the corresponding
values of the thermal conductance are GQ/κ0T = 1, 2, 2, and 3, respec-
tively. In fact, the validity of Eq. (3) requires that L also satisfies L≪ LT,
where LT ~T−1 is the thermal length. In the intermediate regime
LT ≪ L≪ ‘Heq, a correction to this value emerges due to back-scattering
of heat at interfaces with contacts8,20,33. For the sake of simplicity, we
discard this correction in our analysis in the present work.
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In the regime of full thermal equilibration, L≫ ‘Heq, the thermal
conductance becomes topologically quantized as

GQ = ∣Nd � Nu∣κ0T : ð4Þ

For ν = 1/3 and 2/5we haveNu = 0, so that Eqs. (3) and (4) coincide.
For such FQH edges, with only downstream modes, the thermal con-
ductance is thus predicted to be GQ =Ndκ0T, independent of tem-
perature. This is exactly what is observed in our experiment. On the
other hand, for FQH edges with CP modes, i.e., with Nu >0, the equi-
librated value (4) is smaller than the nonequilibrated value (3), so that
there is a nontrivial crossover of GQ between the two limits. This is the
case for ν = 2/3 and ν = 3/5.

For ν = 3/5, we have Nd = 1 and Nu = 2, so thatGQ/κ0T = 1. It is worth
noting that in this case, Nd −Nu = − 1, implying that the heat flows
upstream on the equilibrated edge, i.e., against the charge flow
direction. However, the present experimental setup onlymeasures the
absolute value of GQ and does not reveal the heat flow direction on
individual edge segments. The crossover function between the none-
quilibrated and equilibrated regime is found to be8,9,18

GQ

κ0T
=

2 + e�L=‘Heq

2� e�L=‘Heq
=

2 + e�kTp

2� e�kTp , ð5Þ

where L=‘Heq = kT
p. Fitting our experimental data to Eq. (5) with fit

parameters k and p, we obtain p ≈ 9.34 (in Fig. 4a).
For the ν = 2/3 state, we have Nd =Nu = 1, so that the equilibrated

limiting value of GQ, Eq. (4), is zero. In this case, the crossover takes
place between ballistic heat transport in the nonequilibrated regime
and heat diffusion in the equilibrated regime8,9,18:

GQ

κ0T
=

2‘Heq
L+ ‘Heq

=
2

1 + kTp : ð6Þ

Fitting the experimental data to this form, we get the exponent
p ≈ 6.34 (in Fig. 4a).

Data availability
Additional information related to this work is available from the cor-
responding author upon reasonable request. Source data are provided
with this paper.
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