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Abstract—Terahertz (THz) communications are celebrated as
key enablers for converged localization and sensing in future
sixth-generation (6G) wireless communication systems and be-
yond. Instead of being a byproduct of the communication system,
localization in 6G is indispensable for location-aware commu-
nications. Towards this end, we aim to identify the prospects,
challenges, and requirements of THz localization techniques.
We first review the history and trends of localization meth-
ods and discuss their objectives, constraints, and applications
in contemporary communication systems. We then detail the
latest advances in THz communications and introduce THz-
specific channel and system models. Afterward, we formulate
THz-band localization as a 3D position/orientation estimation
problem, detailing geometry-based localization techniques and
describing potential THz localization and sensing extensions. We
further formulate the offline design and online optimization of
THz localization systems, provide numerical simulation results,
and conclude by providing lessons learned and future research
directions. Preliminary results illustrate that under the same
transmission power and array footprint, THz-based localization
outperforms millimeter wave-based localization. In other words,
the same level of localization performance can be achieved at
THz-band with less transmission power or a smaller footprint.

Index Terms—Terahertz, 6G, localization, CRB, channel mod-
eling, AOSA, RIS

I. INTRODUCTION

Localization is the process of estimating the position and
orientation of a target, which is vital for a variety of ap-
plications, including location-aware communications [1], au-
tonomous driving [2], industrial internet of things (IoT) [3],
and tactile internet [4]. Over the years, a plethora of localiza-
tion techniques has been proposed. These techniques utilize
different signal or measurement types that include ultrasound,
visible light, radio frequency (RF), inertial measurements, and
hybrid signals [5]. Among these modalities, RF signals are
widely used because of their ubiquity in current wireless
communication systems, where abundant cellular and wireless
local area network (WLAN) infrastructures provide added
value to user-oriented services and network management [6].
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A. Location Information: From a By-Product to an Enabler

The problem of location estimation within a communication
system has been under investigation since the first generation
of wireless mobile technology. However, more attention was
drawn to accurate localization after the admission of the U.S.
Federal Communications Commission enhanced 911 (FCC-
E911) rules [6]. Furthermore, with the introduction of the
global positioning system (GPS) and the standardization of
cellular communication systems, we now benefit from the
accuracy of ∼10 cm in rural areas and ∼1m in outdoor urban
environments [6].

In indoor environments, obtaining accurate position infor-
mation from cellular networks and GPS is challenging. Con-
sequently, WiFi- and Bluetooth-based localization methods
are developed to tackle complex indoor environments, where
multipath signal components and signal blockage degrade
the localization accuracy. By adopting ultra-wide bandwidths,
multipath signals become resolvable, which improves per-
formance [7]. Nevertheless, the main drawback of short-
range coverage still needs to be tackled [8]. Furthermore,
moving to the 400 − 790THz range of the electromagnetic
spectrum, visible light positioning (VLP) has been exploited
for localization in visible light communication (VLC) systems.
A corresponding assortment of systems and algorithms have
been developed [9], [10]. However, issues such as blockage,
limited power control, and sensitivity to the environment make
VLP system deployments challenging.

The above-mentioned localization methods are viewed as
by-products of data transmission in a communication system.
However, in the fifth generation (5G) of wireless commu-
nication systems, localization is remodeled from location-
based services to location-aware communications. Location
information can thus reduce the latency and enhance the scal-
ability and robustness of 5G communication systems [1]. This
trend continues towards future sixth generation (6G) systems,
where localization and communication need to be integrated
to achieve ubiquitous connectivity, high data rates, and low
latency over a three-dimensional (3D) network coverage [8].

B. The Importance of Localization-Communication Interac-
tion in the THz Band

With the increasing demands for higher data rates–up
to 1 terabit-per-second (Tb/s) in 2030–the terahertz (THz)
frequency band (0.1-10THz) is receiving noticeable at-
tention from the research community as an ideal enabler
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for applications involving high-speed transmissions [11]–
[13]. The first standard for sub-THz frequencies is al-
ready proposed in IEEE 802.15.3d, where the signal fre-
quency/bandwidth is pushed from 73GHz/2GHz (5G New
Radio) to 300GHz/69GHz [14]. However, the downside of
operating at high frequencies, such as the THz band, is
that propagation losses increase quadratically with the carrier
frequency. Molecular absorption losses, mainly due to water
vapor, also affect signal propagation [15]. Potential solutions
to overcome such losses are distance-aware resource allo-
cation, beamforming via ultramassive MIMO (UM-MIMO)
structures [15], [16], and reconfigurable intelligent surfaces
(RISs) [17], [18]. For distance-/angle-aware resource alloca-
tion and beamforming optimization, location information is
crucial. As for RISs, the optimization of RIS coefficients
also requires location information to allow passive devices1

to control the amplitude and phase of incident signals [17],
thus reshaping the channel [21] in a low-complexity, energy-
efficient manner. Therefore, localization is a prerequisite for
efficient THz communications.

Conversely, the mentioned approaches (e.g., UM-MIMO,
RIS) also contribute to the localization accuracy. The narrow
beamwidth through UM-MIMO beamforming provides high
angular resolution, while the wide bandwidth yields accurate
delay estimation. In addition, RISs not only increase the
received signal strength but also work as passive anchors
providing geometrical diversity. The abundant resources in fu-
ture communication systems can be exploited for localization.
From an information-sharing point of view, high-precision
localization can be achieved through cooperative localiza-
tion [22], [23] inside a network where device-to-device (D2D)
communications are supported. Furthermore, maintaining the
relative positions of different neighbor devices is beneficial for
efficient tracking and link re-establishment [24]. As a conse-
quence, various applications that demand high data rates and
high localization accuracy that current communication systems
fail to support can be satisfactorily met with the interaction
between localization and communication, especially in the
THz band.

C. Motivation and Structure of This Work

As research on 6G wireless communications is rising [27],
[46], a few tutorials on 6G systems have already been pub-
lished [42], [47]. The 6G literature covers topics such as the
role of machine-learning methods for communications [48],
broadband connectivity [49], and integrated localization and
sensing [8]. Terahertz systems, being one of the most im-
portant enablers for 6G communication, the surveys consid-
ering the key technologies [25], [30], signal processing tech-
niques [27], channel models [28], nano-communications [29],
defining features [31], and MAC protocols [26] are available.

In terms of localization, a number of surveys exist and
share the localization basics and performance metrics in
common. However, their goals are totally different and their
main focuses can be categorized based on the environment

1There are works that exploit the potential of active RISs [19] and hybrid
RISs [20]; however, only passive RISs are discussed in this tutorial.
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Fig. 1. The overall structure of the tutorial.

(indoor [32], [35], [39], [41], outdoor [2], [33], [44] or
both), techniques (SLAM [2], MDS [36], machine learning
(ML) [38]–[40], etc.), and signal types (radio signal [5],
[6], visible light [9], RFID [41], etc.). The taxonomy of
localization techniques will be detailed in Section II-A. From
the application point of view, the localization systems for
autonomous driving [2], [33], [44], emergency response [32],
network tracking [5], device-free localization [34], and pedes-
trian localization [40] are surveyed. More recent works outlook
the potential enablers in the B5G and 6G systems [42], show
the localization potential with map-based techniques [43],
describe basic localization algorithms for the 6G systems [8],
and explore the fundamental limits of ISAC. A summary of
recent THz systems-related and localization-related surveys is
shown in Table I. However, a comprehensive tutorial on high-
frequency signal localization in OFDM-based MIMO systems,
which is expected to be one of the main scenarios, is still
lacking.

Unlike the aforementioned works, this tutorial is distin-
guished by providing a detailed system modeling, performance
analysis, algorithms, and the corresponding system optimiza-
tion formulations specific to the localization problem in the
THz-band. The aim of this work is to investigate the potential
of THz localization and how it can be leveraged in future
communication systems. Towards this end, we seek answers
to the following questions:

1) What are the limitations of current communication sys-
tems (including 5G) concerning localization? What are
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TABLE I
SUMMARY OF RECENT THZ SYSTEMS AND LOCALIZATION SURVEYS/TUTORIALS

Year Ref Main Topics Type

T
H

z
Sy

st
em

s

2019 Chen
et al. [25]

Reviews on the development towards THz communications and presents key technologies faced in THz wireless
communication systems. Discusses potential application scenarios and technical challenges.

THz Comm.,
Survey

2020 Ghafoor
et al. [26]

Surveys on terahertz medium access control (MAC) protocols and discusses different applications at macro- and nano-
scales. Highlights the design requirements, issues, considerations, challenges, and research directions.

MAC protocols.,
Survey

2021 Sarieddeen
et al. [27]

Provides an overview of recent advances in signal processing techniques for terahertz communications, with a focus on
waveform design and modulation, channel estimation, channel coding, and data detection. Motivates signal processing
techniques for THz sensing and localization.

THz signal
processing,

Tutorial

2021 Han
et al. [28]

Surveys on the measurement, modeling and analysis of THz wireless channels. Elaborates on open problems and future
directions for 6G THz channels.

THz channels.,
Surveys

2021 Lemic
et al. [29]

Provides an overview of the current THz nanocommunication and nanonetworking research with the topics on supported
applications, protocol for different layers, channel models, and experimentation tools.

Nano-Comm.,
Survey

2021 Wang
et al. [30]

Surveys on key technologies in 6G THz wireless communication systems covering channel modeling, multi-beam antenna
design, front-end chip design, baseband signal processing algorithms, and resource management schemes.

THz Comm.,
Survey

2022 Chaccour
et al. [31]

Investigates seven unique defining features of THz wireless systems: 1) Quasi-opticality of the band, 2) THz- tailored
wireless architectures, 3) Synergy with lower frequency bands, 4) Joint sensing and communication systems, 5) PHY-
layer procedures, 6) Spectrum access techniques, and 7) Real-time network optimization.

THz Comm.
features,
Survey

L
oc

al
iz

at
io

n

2017 Bresson
et al. [2]

Surveys on the simultaneous localization and mapping (SLAM) techniques and different paradigms in autonomous
driving. Overviews the various large-scale experiments and discusses remaining challenges and future directions.

SLAM,
Survey

2017 Ferreira
et al. [32]

Describes the requirement, localization techniques and methods for indoor positioning systems specifically developed
for emergency response scenarios. Reviews existing system schemes, performance and discusses future directions.

Indoor Loc.,
Survey

2018 Kuutti
et al. [33]

Evaluates the state-of-the-art (SOTA) vehicle localization techniques and investigates their applicability to autonomous
vehicles. Discusses the benefits of vehicle-to-everything communications, in addition to vehicle sensory information.

Vehicle Loc.,
Survey

2018 Laoudias
et al. [5]

Provides current enabling technologies for localization in cellular systems and wireless local area networks. Overviews
the research works for IoT and mobile scenarios and highlights future research directions.

Network Loc.,
Survey

2018 Peral-Rosado
et al. [6]

Overviews the standardized localization methods from the first to the fourth generation of cellular systems. Outlines the
new research trends on 5G positioning, and the lessons learned from previous generations.

Cellular Loc.,
Survey

2018 Keskin
et al. [9]

Considers the VLP and discusses localization techniques, algorithms, system architectures and resource allocation
problems.

VLP,
Tutorial

2019 Shit
et al. [34]

Reviews and classifies device-free localization (DFL) technologies. Discusses lessons learned, applications and presents
current trends and future research directions.

DFL,
Survey

2019 Zafari
et al. [35]

Surveys recent indoor localization systems with different localization techniques and radio technologies. Provides
evaluation of system performance, and discusses remaining challenges for accurate indoor localization.

Indoor Loc.,
Survey

2019 Saeed
et al. [36]

Surveys on multidimensional scaling (MDS) and MDS-based localization techniques. Discusses centralized, semi-
centralized and distributed methods for IoT, cognitive radio networks, and 5G networks scenarios.

MDS,
Survey

2019 Wen
et al. [37]

An overview of channel parameter estimation algorithms (subspace and compressed sensing methods), SOTA localization
techniques, challenges, and opportunities in the field of massive MIMO localization.

MIMO Loc.,
Survey

2020 Burghal
et al. [38]

Surveys ML-based localization using radio frequency signals with an emphasis on the system architectures, RF features,
ML methods, and data acquisitions.

ML-based Loc.,
Survey

2020 Zhu
et al. [39]

Surveys on recent indoor localization technologies and systems based on machine learning and intelligent algorithms.
Summarizes and compares the SOTA systems. Discusses existing challenges and potential solutions.

Indoor, ML,
Survey

2021 Miramà
et al. [40]

Surveys on the SOTA ML techniques that have been adopted over the last ten years to improve the performance of
pedestrian localization systems. Highlights existing issues, challenges, and possible future directions.

Pedestrain, ML,
Survey

2021 Motroni
et al. [41]

Presents a SOTA analysis on the radio frequency identification (RFID)-based technology methods under the scenario of
indoor vehicle localization.

RFID,
Survey

2021 De Lima
et al. [42]

Identifies key enabling technologies, applications, and opportunities for 6G localization. Research challenges and open
questions are listed to achieve a convergent communication, sensing and localization system.

6G Loc.,
Survey

2021 Kanhere
et al. [43]

Describes how cm-level localization accuracy can be achieved with the use of map-based techniques and shows the
potential of data fusion, machine learning and cooperative localization techniques.

Map-based,
Survey

2022 Xiao
et al. [8]

Surveys on wireless localization basics and SOTA results, outlines promising future research directions for integrated
localization and communication systems. Tutorial

2022 Laconte
et al. [44]

Surveys on localization methods for autonomous vehicles in highway scenarios. Presents the SOTA methods for main
components (road inferring, position estimation, lane assessment) with the discussions of advantages and drawbacks.

Highway Loc.,
Survey

2022 Liu
et al. [45]

Surveys on the current research progress (e.g., systematic classification, performance metrics and bounds, open problems
and future directions) on the fundamental limits of integrated sensing and communication (ISAC).

ISAC,
Survey

This work
Overviews the localization basics, provides technical details on channel modeling (including RIS, array-of-subarray
(AOSA), spherical wave model (SWM)), performance analysis, localization algorithms and system optimization.
Highlights lessons learned and future directions.

THz Loc.,
Tutorial

*Notes: ‘Loc.’ is short for ‘localization’, ‘Comm.’ is short for ‘communication’.

the localization key performance indicator (KPI) for 6G
and the corresponding challenges?

2) What are the key properties of THz signals and systems?
How can they be utilized for localization purposes?

3) How to formulate RIS-assisted localization and sensing
problems under different system assumptions?

4) How do offline design and online optimization of a
localization system achieve the desired objectives (e.g.,
position accuracy ≤ 1cm) under specific performance
constraints (e.g., energy consumption)?

5) What are the key applications of THz localization? What
are the main future directions?

The rest of this paper is organized as follows. Section II
reviews the general localization literature, with an emphasis on
localization systems using electromagnetic signals. Section III
describes THz system and channel models, highlighting the re-
alization of THz-specific features. THz localization techniques
are then detailed in Section IV, while optimized localization
is investigated in Section V. Next, the simulation results are
shown in Section VI, followed by the lessons learned and most
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prominent future research directions in Section VII. Finally,
we draw concluding remarks in Section VIII. The sections
and main topics of this tutorial is shown in Fig. 1, and the
definitions of frequently-used abbreviations are summarized
in the Abbreviations at the end of this work.

Notations and Symbols: Italic letters denote scalars (e.g. a),
bold lower-case letters denote vectors (e.g. a), and bold upper-
case letters denote matrices (e.g. A). (·)T , (·)H , (·)−1, tr(·),
and ∥·∥ represent the transpose, Hermitian transpose, inverse,
trace, and ℓ-2 norm operations, respectively; A⊙B is the
Hadamard product of two matrices; [·, ·, · · · , ·]T=[·; ·; · · · ; ·]
denotes a column vector.

II. LOCALIZATION IN COMMUNICATION SYSTEMS

In this section, we briefly review the localization systems
and describe localization techniques with an emphasis on
geometry-based methods. We discuss localization performance
metrics and current localization systems based on electro-
magnetic waves. Furthermore, we compare THz localizatition
to millimeter wave (mmWave) localization and discuss their
merits and challenges in different aspects.

A. Localization: Definition and System Taxonomy

The localization problem can be defined as estimating
the position and orientation (with antenna arrays) of a user
equipment (UE) with the assist of one or multiple anchor base
stations (BSs) (with known position and orientation informa-
tion). More specifically, a UE can send (uplink) or receive
(downlink) known pilot signals to or from a BS. The received
signals are distorted by the propagation channel, which is
determined by the BS/UE states (position and orientation) and
the environment (signals can be reflected by a wall, a RIS
or an object)2. Based on the knowledge of the pilot signals
and a proper signal model, the channel can be estimated
and the channel parameters (angle-of-arrival (AOA), angle-of-
departure (AOD) and delay) of each path that signal propagates
can be extracted. Finally, UE position and orientation can
be estimated3 with its relative geometry relationships with
known reference anchors (e.g., BSs and RISs). More details
can be found in Section II-B. In this work, we focus on
the uplink scenario where extensions to other scenarios are
straightforward.

A variety of localization systems have been developed in
various application contexts, such as cellular networks [5], [6],
indoor scenarios [35], 5G massive MIMO systems [37], and
visible light systems [9], [50]. These systems can be catego-
rized based on the application scenario, wireless technology,
localization technique, processed signals type, functionality,
system structure, position information, information-sharing,
among others. A summary of system classifications is listed

2We call the path that a signal propagates directly from a UE to a BS the
LOS path; the path that a signal is reflected by a RIS is called as RIS path.
The none-line-of-sight (NLOS) paths are created by either a large plane (e.g.,
a wall, forming a reflected path) or an object (forming a scattered path). The
detailed channel models for different paths (LOS, RIS, and NLOS) will be
discussed in Section III.

3Usually, the estimation of UE states is called localization, and the
estimation of incidence points of the NLOS path is called mapping.

TABLE II
TAXONOMY OF LOCALIZATION TECHNIQUES

Criteria Types
Application Scenario Outdoor, Indoor
Wireless Technology GPS, Cellular systems, WLAN, WiFi

Localization Technique Geometry-based, Learning-based
Signal Type Radio waves, LED signal, LIDAR
Functionality Passive, Active

System Structure Centralized, Distributed, Clustered
Position Information Absolute position, Relative position
Information-sharing Cooperative, Non-cooperative

in Table. II. We next compare geometry-based and learning-
based localization techniques and detail the geometry-based
position/orientation estimation.

B. Localization Techniques

1) Geometry-based and Learning-based Localization:
Geometry-based localization is widely used in current commu-
nication systems. Techniques such as time-of-arrival (TOA)4,
time-difference-of-arrival (TDOA), and AOA are based on
measuring the distance or angle of a UE with respect to
multiple BSs with known positions [43], [51]–[53]. By adopt-
ing trilateration or triangulation algorithms, the position of
UEs can be calculated from these measurements. Furthermore,
AOD estimation can also be obtained when an antenna array is
implemented at the UE. AOD information can be used to as-
sist angle-difference-of-departure (ADOD)-based localization
and estimate orientation alongside estimated positions. Other
geometry information such as phase-of-arrival (POA) [54]
and phase-difference-of-arrival (PDOA) [55] can be treated
as TOA/TDOA with ambiguities, which we do not discuss
here. Estimating the position usually involves formulating an
objective function that contains geometric information and
solving an optimization problem with geometric constraints.
Techniques in geometry-based localization are training-free,
easy to analyze theoretically, and scalable to different envi-
ronments.

For more complex scenarios with many non-resolvable
NLOS paths, the geometry information cannot be explicitly
modeled [43], and learning-based methods are preferred. Ma-
chine learning is the study of computer algorithms that im-
prove automatically through experience [56]. Contrary to the
practical algorithms designed for geometry-based localization,
ML-based methods require offline training. Such an offline
process can sufficiently reduce online computations. However,
a large volume of data from wideband multiple-input-multiple-
output (MIMO) systems needs to be collected for training
purposes, and the trained models have to be updated to
adapt to environmental variations. Typical ML algorithms
and techniques such as random forest [57], reinforcement
learning [58], and deep neural networks [59] are potential
solutions to maintain good KPI network service levels [48].

Considering the sparsity of THz channels, we focus on
geometry-based position/orientation estimation. In addition,

4TOA is equivalent to time-of-flight (TOF) when taking the time of
transmission as a reference; we use TOA in the rest of this work.
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Fig. 2. Position estimation from different geometry information (uplink): (a)-(d) show positioning techniques utilizing four basic geometry measurements,
namely, TOA, TDOA, AOA, and ADOD; (e)-(h) illustrate positioning utilizing combinations of geometry information.

TABLE III
SUMMARY OF GEOMETRY-BASED LOCALIZATION (UPLINK)

TOA TDOA AOA ADOD
#. of BS needed
per Meas. 1 2 1 2

Geometric
Constraint
per Meas.

2D Circle Hyperbola Line Arc

3D Sphere Hyperboloid Line
Surface of arc

revolution
#. of Meas. for
Pos. Estimation

2D 3 3 2 3
3D 4 4 2 4

#. of AOD for
Ori. Estimation

1D 1 (2D position needed)
2D 1 (3D position needed)
3D 2 (3D position needed)

System
Requirements

System Syn/
RTT/RSS

BS-BS
Syn

Array
at BS Array at UE

direct extensions to tracking, and SLAM are possible, as we
discuss in Sec. IV.

2) Position Estimation: Position estimation problems can
be categorized as 2D and 3D. For better visualization, we
illustrate the estimation of 2D position from geometry infor-
mation in different uplink scenarios in Fig. 2; four types of
basic geometry information used for localization are covered:

a) TOA: The signal propagation distance can be estimated
with known channel information from the received sig-
nal strength (RSS), which can be used for TOA-based
methods. However, estimations from RSS are usually
inaccurate. Alternatively, round-trip time (RTT) estima-
tion by stamping the transmitting and receiving times of
the signal gives the TOA information. If the system is
well-synchronized, TOA can be directly inferred from the
signals with a bandwidth-dependent resolution.

b) TDOA: If only the BSs are synchronized, the estimated
TOA is no longer accurate, which contains a clock offset.
In this case, a reference BS can be utilized to obtain the
TDOA of the signal at other BSs.

c) AOA: Additional angle information can be obtained if
an antenna array is available at the BS. The AOA (1D
azimuth or 2D azimuth & elevation depending on the

dimension localization scenarios) can be used to locate
the target by getting the intersection of lines.

d) AOD: When a UE is equipped with an antenna array, the
signal AOD to a specific BS can be estimated. However,
due to the unknown orientation of the UE, the ADOD
information is more useful. The AODs at the UE are also
important in orientation estimation, as will be discussed
in Sec. II-B3.

Each of the four geometry measurements provides a candidate
area of potential UE positions, as shown in Fig. 2 (a)-(d). The
number of BSs needed for each measurement, the geomet-
ric constraint induced per measurement, and the number of
measurements needed for position/orientation estimation are
summarized in Table III.

If the candidate areas given by geometry information inter-
sect at a unique point, the UE is localizable. In practice, robust
localization algorithms need to be designed to deal with noisy
measurements. Position estimation utilizing combinations of
geometry information is also possible, as shown in Fig. 2
(e)-(h), and can reduce measurement uncertainties. Moreover,
extra constraints can help reduce the number of BS needed.
For example, in Fig. 2 (a), the UE’s position can be obtained
with only ‘B1’ and ‘B2’ if wall constraints are considered.
The downlink scenarios can be treated similarly to the uplink
ones by swapping the role of AOA and AOD.

3) Orientation Estimation: The orientation of a UE is also
of great interest in some application scenarios, and it can
be obtained if an antenna array is available at the UE. With
an estimated position, the orientation can be estimated using
AOD at the UE. We classify the orientation estimation into
1D, 2D and 3D, indicating the estimation of α, [α, β], and
[α, β, γ] of an Euler angle vector, respectively. The relationship
between the Euler angle vector and rotation matrix is detailed
in Sec. III-B.

a) 1D Orientation: The estimation of 1D orientation usually
occurs in 2D localization scenarios with uniform linear
arrays (ULAs) [60]. For example, a robot navigating
a 2D area needs to know its orientation, which can
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be directly obtained from the estimated AOD with its
position information.

b) 2D Orientation: When the 3D position of a UE and at
least one AOD angle pair (azimuth and elevation) is
available, 2D orientation can be obtained [61].

c) 3D Orientation: If the 3D position and at least two AOD
pairs are available, the 3D orientation can be estimated
by solving a manifold optimization problem [62], [63]. A
least-square estimator (LSE) and a maximum likelihood
estimator (MLE) are proposed in [63]; toolboxes such as
Manopt [64] can be used to solve this type of optimization
problems.

C. Localization Performance Metrics
When designing a localization system, improving the po-

sition and orientation accuracy can intuitively be the primary
objectives. However, other objectives such as coverage and
stability are also important to ensure the system’s overall
performance. Several localization-related objectives are noted
below:

a) Accuracy: Accuracy reflects the localization performance
(position and orientation estimation accuracy) a system
can achieve. This is usually quantified in terms of RMSE
or cumulative distribution function (CDF) of measure-
ments with an error smaller than a threshold. Given
the signal and noise models, the accuracy can be lower
bounded by the Cramér-Rao bound (CRB). Although the
CRB does not bound the actual performance unless the
estimator is efficient, we use it as an indicator to design
and optimize the localization system, as will be detailed
in Sec. V.

b) Coverage: Because high-frequency signals attenuate dras-
tically, the corresponding localization coverage can be
defined as the range of a communication link within
which the localization of a UE meets specific perfor-
mance metrics. Coverage can also be defined in terms
of areas (rather than ranges) for 2D and 3D scenarios.

c) Latency: Latency is defined as the time duration between
a UE requesting location and obtaining the results. This is
dictated by the duration of PRS used for localization and
the processing time of the adopted localization algorithm.

d) Update rate: Update rate is the time required to update a
localization measurement (usually in tracking scenarios).
This is determined by the latency (at most once per
latency) and can be chosen depending on application
scenarios.

e) Stability: Deafness is a crucial problem in high-frequency
systems with narrow beamwidths, where beam misalign-
ment can cause an outage (loss of tracking). The variance
of localization accuracy during a certain period, espe-
cially in a mobile scenario, can be defined as system
stability.

f) Scalability: Scalability is the ability of a system to adapt
to a larger number of UEs (e.g., performance as a function
of UE densities).

g) Mobility: Mobility refers to the supported speeds of UEs
in a localization system, in which the Doppler effect
should be considered.

h) System complexity: System Complexity includes hard-
ware and algorithm aspects. Depending on the application
scenario, either of the two complexities or both should be
considered. Hardware complexity involves infrastructure
deployment and hardware realization, which also deter-
mine the complexity of optimization, communication, and
localization algorithms. However, in this work, we focus
on the computational complexity at the algorithm level.

D. Current Localization Systems Using Electromagnetic Sig-
nals

We next review current electromagnetic signal-based local-
ization systems, highlighting what can be achieved in the THz
band. Based on the signal frequency band, we categorize these
systems into four groups: conventional radio-frequency (CRF)
systems (below 30 GHz), mmWave systems (30-100 GHz)5,
LED-based visible light positioning (VLP) systems (400-
790 THz), and THz systems (0.1-10 THz). In this section, we
shortly describe the localization using CRF, mmWave and VLP
systems, and THz localization will be discussed in Sec. II-E.

1) Conventional Radio Frequency Systems (below 30 GHz):
Location information is attainable in CRF communication
systems with carrier frequencies below 30 GHz. Global
navigation satellite systems (GNSS) are most widely used
for outdoor localization, where a meter-level accuracy can
be achieved with the assistance of signals from the long-
term evolution (LTE) communication systems. However, this
approach does not work for indoor scenarios due to the
corresponding complex environments and line-of-sight (LOS)
channel blockages. Alternatively, localization systems based
on ultra-wideband (UWB) [7], WiFi [66], WLAN [67] and
LoRA [68] are reported; the comparison between different
indoor localization technologies can be found in [35]. Using
CRF systems, we benefit from location-based services such as
navigation and finding surrounding services.

2) mmWave Systems (30-100 GHz): To meet the data rate
demands and overcome bandwidth scarcity, mmWave signals,
combined with hybrid MIMO structures and the corresponding
signal processing methods, play a fundamental role in 5G sys-
tems. The extended bandwidth realizes higher-rate communi-
cations with lower latency and better localization performance.
Equipped with antenna arrays at the UE, orientation estimation
becomes possible [60], [63], [69]. Additionally, by exploiting
the NLOS paths [61] and RISs [70], [71], the localization tasks
can be completed using a single BS. Such advantages make
mmWave systems attractive in communication networks [1]
and vehicular networks [72].

3) Visible Light Positioning Systems (400-790 THz): Due
to the immensely large bandwidths within the high-frequency
spectrum, VLC systems offer high data transmission rates.
Towards realizing VLC, laser diodes (LDs) and LEDs have
emerged as two widely used types of light sources [73].
LDs provide large bandwidths and concentrated energy for

5Note that the definition of mmWave signal band based on wavelength
should be 30-300 GHz. However, the upper mmWave band (100-300 GHz)
is also called the sub-THz band, based on the deliverable D2.1 [65] of the
European HEXA-X project. In this work, we consider sub-THz signals (e.g.,
0.1-0.3 THz) as THz signals.



7

TABLE IV
A COMPARISON OF 5G MMWAVE AND 6G THZ (REASONABLE GUESS) FROM A LOCALIZATION PERSPECTIVE

# Aspect 5G mmW Localization Merits Localization Challenges 6G THz Localization Merits Localization Challenges

1 Frequency,
wavelength

30-100 GHz,
3-10 mm

Few multipath compo-
nents

Range: path loss 104 ×
distance

0.1-10 THz,
0.03-3 mm

Only metallic objects
visible, miniaturization

Range: path loss 105 −
107 × distance

2 Bandwidth 400 MHz Distance resolution:
0.75 m High sampling frequency 1-10 GHz Distance resolution:

3-30 cm
ADC power consumption,
large volume of data

3 Array size 10 × 10
Angle resolution:
∼10◦

Moderate beam manage-
ment overhead 100 × 100

Angle resolution: <
1◦, probably no multi-
path effect per beam

Severe beam management
overhead

4 Array type hybrid UPA

Reduced RX overhead,
flexible TX signals, az-
imuth and elevation
angles

Scanning time ∝
beamwidth

AOSA
preferred

Low complexity, az-
imuth and elevation
angles, angle-based lo-
calization without time
measurements

Angle ambiguities, scan-
ning time ∝ beamwidth,
array calibration, mutual
coupling

5
Hardware
imperfec-
tion

Quantization
in PSs, ADCs

Reduced complexity
and power Accuracy loss IQI, PN, PA,

ADC

Possibly location-
dependent effects can
be exploited

Power limitations, wave-
form type, unable to use
standard DSP

6 Synchro-
nization <10 ns Required for time-

based measurements Challenging to maintain < 1 ns Required for time-
based measurements

Extremely challenging.
‘Synchronization by
nature solution’ preferred
(multipath and RIS)

7 Waveform OFDM
Easy to account for
multipath, structured
signal

Non-linear distortion
caused by PAPR Unknown Signal type not funda-

mental
DSP and signal design de-
pends on signal type

8 Propagation
effects

Few cluster
model

Few clusters to resolve.
LOS path can be de-
tected

Sensitive to LOS block-
age

Few paths,
BSE, near-
field

Cleaner geometric
channel, BSE and
near-field can be
exploited

The exploitation of BSE
and near-field requires new
DSP

9
Typical
positioning
method

Multi-BS,
single BS &
scatterers

Simple and scalable
Synchronization and coor-
dination between BSs, de-
ployment complexity

Multi-BS, D-
MIMO, RIS-
assisted

Relaxed synchroniza-
tion, angle-only posi-
tioning

New and dedicated RIS in-
frastructure. Careful cali-
bration is needed.

10 Positioning
signals

DL-PRS,
maybe AOD

Broadcast signals,
combine angle and
delay

Angle measurements
based on power

PRS not de-
fined in 6G;
possibly user-
specific

Better accuracy More overhead and delay,
signaling delay

*Notes: uniform planar array (UPA), AOSA, phase shifter (PS), analog to digital converter (ADC), in-phase and quadrature imbalance (IQI), phase noise (PN), power amplifier
(PA), beam split effect (BSE), distributed MIMO (D-MIMO), downlink positioning reference signal (DL-PRS), positioning reference signals (PRS), and ‘∝’ means ‘be
proportional to’.

long-distance transmissions. However, precise alignments are
needed to set up LD-based communication links. Although
light detection and ranging (LIDAR) systems utilize LD
arrays to achieve high ranging and localization accuracies;
they usually work as independent sensors and not as part
of the communication system; we do not consider LIDAR
in this work. LEDs used in current illumination systems
provide wide coverage; nevertheless, several issues render their
implementation challenging, such as blockage, limited power
control, flexibility in spatial multiplexing, and sensitivity to the
environment. Surveys on localization via visible light systems
can be found in [9], [50].

E. Terahertz Localization
1) 5G mmWave vs. 6G THz Localization: THz systems are

likely to be adopted as an extension to mmWave systems in
heterogeneous environments [74]. Consequently, we compare
the THz and mmWave systems by discussing their merits and
challenges from a localization perspective. Moving from CRF
to 5G and further to 6G systems, we expect higher frequencies,
larger bandwidths, smaller footprints, and larger array sizes.
High frequencies increase path loss and reduce multipath com-
ponents, while large bandwidths provide high delay estimation
resolutions. With a smaller wavelength, miniaturized antenna
array footprints or large array sizes with the same physical
array size6 become possible.

6We use ‘footprint’ and ‘array size’ to denote the physical size (e.g., 2×
2 cm2) and the number of array antennas (e.g., 5× 5), respectively.

Such changes in signal properties affect several system fea-
tures. For example, hardware imperfections and synchroniza-
tion issues become challenging at THz frequencies. Further-
more, the orthogonal frequency-division multiplexing (OFDM)
waveform may no longer be suitable for wideband systems
due to the high peak-to-average-power ratio (PAPR) issue
and DFT-s-OFDM is a promising alternative [75], [76]. When
designing localization algorithms, a geometric MIMO-based
channel model should account for the resultant THz BSE
and near-field conditions. Moreover, due to the high path
loss, THz signals need to be delicately designed to serve
users with different performance requirements for an energy-
efficient purpose. A comparison between 5G mmWave and
6G THz is highlighted in Table IV. In a nutshell, we expect
better localization performance in 6G THz systems. However,
new challenges in hardware design, coverage, overheads, and
computational complexity should be tackled.

2) The Role of RIS in Localization: Different from com-
munication scenarios, where RIS provides high SNR to obtain
a high data rate, the role of RIS is to enable or enhance
localization in two aspects: working as a passive anchor
to provide geometrical diversity, and providing a near-field
scenario to exploit the curvature-of-arrival (COA) information.
Localization requires geometrical diversity for a satisfactory
estimation performance, which can be fulfilled with multiple
BSs, generally providing coverage for UEs in their convex
hull. Recent emerged techniques also exploit the multipath
components (MPC) [77], [78] for high-frequency signal local-
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TABLE V
LOCALIZATION KPIS (EXPECTED) FOR 5G/6G SYSTEMS AND FOR POTENTIAL THZ LOCALIZATION APPLICATIONS

Position Orientation Coverage latency Update Rate Stability Scalability Mobility Data Rate (Peak)
5G KPIs 10 cm 10 ◦ - >1 ms - - 106 /km2 500 km/h 20 Gbps (peak)
6G KPIs ∗1 cm ∗1 ◦ - ∼0.1ms - - 107 /km2 1000 km/h >1 Tbps
Telesurgery <1 mm < 1 ◦ - - ≥ 10Hz ∗High ∗Low ∗Low -
XR & Holography <1 cm 1 ◦ 10 m 5 ms ≥ 100Hz ∗High ∗Low ∗Medium Orders of Tbps
Connected Vehicles 0.1-1 m - > 100m 1 ms 1-10 Hz ∗High ∗Medium ∗High > 100Gbps
Digital Twins 1 cm - ∼ 130m 0.1-1 ms ≥ 10Hz ∗Medium ∗High ∗Low Depends on update rate
Collaborative Robot <1 cm < 1 ◦ - 1 ms ≥ 10Hz ∗High > 5 /m3 ∗Medium -
Threat Localization 1 cm - ∼ 120m 1 ms ≥ 10Hz ∗Medium ∗Medium ∗Medium -

Data from: Table VI in [26], Table V in [31], and Table II in [49], Figure 2 in [82], and Section 3.1 in [83]. The entries with a star marker (∗) are from on our best guess.

ization. The MPCs, which are usually considered as destructive
signals, can be resolved in 5G/6G systems, thereby enabling
positioning and mapping [79], and SLAM [78] with even a
single BS. Considering the MPCs are uncontrollable and the
challenges of multiple BSs deployment (e.g., high hardware
cost, synchronization, and calibration error, RIS could be a
potential alternative. An RIS works as a passive, customizable
BS with low energy consumption, providing additional loca-
tion references and resolvable multipath measurements [71],
which can either boost or enable localization [80], [81]. In
addition, no fine synchronization between RISs is needed,
which simplifies the deployment on a large planar surface of
the environment and can hence create a near-field scenario.
As a result, RIS will likely play a game-changing role in the
future localization systems and will be discussed in detail in
the later sections of this tutorial.

3) Applications and Key Performance Indicators (KPIs):
As reported in the European 6G project Hexa-X, represen-
tative use cases envisioned for 6G are categorized into five
groups: sustainable development, massive twinning, telepres-
ence, robots to cobots, and local trust zones [84]. From
the THz localization point of view, it not only improves
the communication performance by aiding beamforming with
location information, but also enhances physical layer security
with narrow beamwidth, distance-dependent attenuation [15],
multipath exploitation [85], and new counter-measure tech-
niques [86]. When narrowing down to the location-aware
services, potential applications that need high-accuracy local-
ization information, such as telesurgery, XR and holography,
connected vehicles, digital twins, etc., will be enabled [8],
[26], [31], [82], [83].

Based on the objectives defined in Section II-C, the KPIs
which are necessary to evaluate the performance of local-
ization schemes can be outlined. A summary of important
localization KPIs (expected) and their value ranges for 5G/6G
systems, and typical applications that require THz localization
is presented in Table V [49], [72], [82], [83]. The data rate
requirements for some applications are also presented for
reference. We notice that the applications that require high
accuracy and data rates beyond what can be achieved in 5G
communication systems are projected to thrive in 6G systems.

4) Current Research in THz Localization: Researchers have
started working on THz localization by addressing system
structures, localization algorithms, and simulation platforms.
In [87], an AOA estimation method based on a forward-
backward algorithm is developed for dynamic indoor THz

channels by measuring and developing different human move-
ment models. Furthermore, a tracking approach is developed
for time-variant channel modeling in indoor THz communica-
tions by using extended Kalman filtering [88]. Cooperation-
aided localization approaches are also proposed to provide
high estimation accuracy and alleviate the deafness problem in
2D scenarios [89]. In [90], a delay-phase precoding structure
is proposed, and a beam zooming mechanism is adopted for
THz beam tracking, demonstrating the ability to track multiple
users by one radio-frequency chain (RFC) and substantially
reduce the beam training overhead. In [91], a near-field model
is considered with large antenna arrays to leverage the COA
as an extra degree of freedom for inferring the source po-
sition. Besides geometry-based methods, deep learning-based
methods using recurrent neural networks (RNNs) for 3D THz
indoor localization are proposed in [92]. Here, a localization
accuracy of 0.27 m (mean distance error) is reported in NLOS
environments, demonstrating a 60% enhancement over the
SOTA techniques.

The mentioned localization works focus on different THz
localization challenges such as misalignment, tracking, coop-
eration, BSE, near-field effects, and large amounts of data to be
processed. However, THz localization-related research is still
in its infancy, and critical issues still need to be identified and
addressed despite all these efforts. The question of how THz-
band signals can improve localization performance remains
unanswered. In the next sections, we describe the THz system
model, formulate localization and system optimization prob-
lems, and evaluate the potential of THz localization through
simulations.

III. TERAHERTZ SYSTEM MODEL

This section describes the proposed THz system model,
emphasizing the AOSA UM-MIMO structure. We start by
summarizing the latest advances in THz devices to justify
the system model components. Then, we detail the system
geometry and the corresponding MIMO channel model. We
further detail the proposed THz signal model with AOSA
structures that consist of the LOS, RIS, and NLOS channels.
We end the section by discussing additional model features
such as beam split and hardware imperfections.

A. Advances in THz Devices

The fundamental advances in THz technology are still
taking place at the device level, bridging the so-called “THz
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TABLE VI
SUMMARY OF SYMBOLS

Notation Description
pQ Global position, Q ∈ {B,R,U,N} (BS, RIS, UE, NLOS)

pq/p̃q Global/local position of the qth element, q ∈ {b, r, u}
p̃q̊ Local position of the q̊th AE at SA
NQ Number of elements, Q ∈ {B,R,U}
N̊Q Number of antennas per SA in AOSA structures Q ∈ {B,U}
LN Number of NLOS paths
RQ Rotation matrix, Q ∈ {B,R,U}
oQ Euler angles (orientation vector) Q ∈ {B,R,U}
t/t̃ Global/local direction vector

φ/φ̃/φ̊ Global/local/beamforming angles
H/H Channel matrix for conventional MIMO/AOSA-based MIMO
ρe−jξ Complex channel gain of each path

GB/GU Antenna gain of the BS/UE
K Number of subcarriers (for pilot signals)
W Bandwidth
G Number of transmissions
B Synchronization offset
A Array factor of the SA

Ka/KN Attenuation coefficient/NLOS reflection coefficient
s State vector
γ Measurement vector

gap”. Recently, multiple candidate technologies have demon-
strated compact THz signal sources and detectors that achieve
good power and sensitivity. In particular, recent electronic
and photonic THz transceivers have achieved efficient signal
generation, modulation, and radiation [93]–[96].

1) Electronic Solutions (compact, relatively high power):
Electronic THz-band solutions [97], [98] are mainly based on
silicon devices [99], [100] which have already been utilized in
mmWave systems. In particular, silicon complementary metal-
oxide-semiconductor (CMOS) and silicon-germanium (SiGe)
BiCMOS technologies [101]–[104] have exhibited good com-
patibility with fabrication processes and high compactness.
However, CMOS devices have lower power handling capabili-
ties, and their unity maximum available power gain frequency
(fmax) is still limited to 320GHz. Higher frequencies are
achievable with III-V-based high electron mobility transis-
tors (HEMTs) [105]–[107], heterojunction bipolar transistors
(HBTs) [108], [109], and Schottky diodes [110]. High array
gains are required to combat the power limitations in CMOS
and extend the coverage; therefore, MIMO-based systems are
typical with electronic solutions. The corresponding MIMO
arrays can still be compact, with AEs being proportional to the
wavelength. Sufficient spatial resolution can be provided via
beamforming, and conventional MIMO localization techniques
can be applied.

2) Photonic Solutions (bulky, low power, high rates):
Higher carrier frequencies and higher data rates are supported
with photonic THz solutions [94]. However, photonic devices
are limited in power and integration capabilities, as they tend
to have relatively large form factors. Optical downconver-
sion systems [94], photoconductive antennas [111], quantum
cascade lasers [112], and uni-traveling carrier photodiodes
[113] have demonstrated operations beyond 300GHz. Further-
more, integrated hybrid electronic-photonic systems are being

proposed [95], such as by combining photonic transmitters
and III-V electronic receivers. Nevertheless, more delicate
synchronization is required between transmitters and receivers
in such solutions. As a result, MIMO-based photonic solutions
are challenging, especially in UEs. However, the BSs can
still achieve high coverage with high-power devices that are
bulky in size. Beamsweeping-based methods using mechanical
rotations could be an alternative to MIMO-based solutions.

3) Plasmonic Solutions (much smaller footprints, very
high reconfigurability): Novel plasmonic materials, such as
graphene, are also being considered as candidate THz device
technologies [114], [115], supporting high reconfigurability
solutions. Since the resonant wavelengths of surface plasmon
polariton (SPP) waves in plasmonics are much smaller than
free space wavelengths, much more compact and flexible
antenna array designs can be realized [116], [117]. Plas-
monic transceivers can operate at THz frequencies without
upconversion and downconversion, where the generation of
energy-efficient short pulses is particularly favorable [118].
The inherent compactness and frequency-interleaving prop-
erties [119] of plasmonic solutions make them favorable for
flexible system designs and on-site reconfiguration. However,
the limitation on power output makes plasmonic solutions
tailored for nanocommunication scenarios with a limited range
(several tens of millimeters) [114], [116], which is not practical
for localization purposes.

4) THz RIS Material Properties: Since THz MIMO config-
urations are not yet mature, with experimental demonstrations
limited to 2×2 MIMO [120], we argue that advances in THz-
operating materials could favor THz-band RIS deployments.
THz-RIS CMOS deployments are low power consuming and
easy to integrate. However, they suffer from limited clock
speeds and parasitic capacitance leakage [121], [122]. Micro-
electro-mechanical systems (MEMSs) are also considered for
THz RIS [123], [124], but they are limited by switching
speeds, control signaling, and relatively large footprints. Sim-
ilarly, plasmonic (graphene-based) technologies are promis-
ing for RIS deployments, as they are low-power-consuming,
easy to integrate, and possess simple biasing circuits [125].
Graphene-based metasurfaces utilize electrostatic biasing to
control the chemical potential of reflecting elements, varying
the complex conductivity for phase control [126].

Compact and lightweight metasurfaces support THz signal
beam steering over a wide range of angles [127]. Furthermore,
THz-operating metasurfaces provide the option of generating
orbital angular momentum and polarization conversion [128].
THz-operating HyperSurfaces [129] are also gaining popular-
ity, where a stack of virtual and physical components generates
lens effects and custom reflections. Moreover, thermally- or
electrically-tunable vanadium dioxide and liquid crystals can
also realize efficient THz signal steering [128]. Given the
THz high directionality and blockage issues, THz-operating
metasurfaces that support higher reconfigurability and sensing
accuracy are crucial for spatially-sensitive THz communica-
tions and localization.

Such advances in THz devices facilitate the design and real-
ization of THz systems. However, novel calibration algorithms,
beamforming optimizations, and distributed control processes
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(e.g., optical internetworking [129]) are desired to benefit from
antenna arrays and RISs in a THz system. In this work, we
only consider a system model with one RIS and one BS, as
will be detailed in Sec. III-C.

B. System Geometry

1) Global Coordinate Systems: Consider a MIMO system
containing a BS, an RIS, and a UE as shown in Fig. 3. We
define the array center pQ = [xQ, yQ, zQ]

T as the location
of a device containing NQ elements, where Q ∈ {B,R,U}
represents BS, RIS, and UE, respectively. Here, the element
is defined as the minimum communication element (e.g., an
antenna of a conventional array, a subarray (SA) inside an
AOSA structure, or an RIS element), and the position of each
element is pb (pr, pm). Assume LN NLOS paths are generated
in the channel, where the lth NLOS path corresponds to a
scatterer with an unkown location p(l)

N . The scatterer could
also be a reflector or a diffractor that creates signal paths.

2) Local Coordinate Systems: For a planar array, we define
the array center to be its local coordinate origin and the array
norm to be the X-axis (e.g., a planar array lies on the YZ
plane). For Q ∈ {B,R,U}, an Euler angle (3D orientation)
vector oQ = [αQ, βQ, γQ] (αQ ∈ (−π, π], βQ ∈ [−π/2, π/2],
γQ ∈ (−π, π]) and a rotation sequence Z-Y-X are used to
describe the array orientation in the global coordinate system.

The relationship between the 3D global position, pq , and
the 3D local7 position of the qth element on the array, p̃q

(q ∈ {b, r, u}), can be expressed as

pq = RQp̃q + pQ, (1)

where pQ is the center of the array in which pq is located,
and RQ is the rotation matrix that could be obtained using an
orientation vector, oQ, as

RQ =

cαcβ cαsβsγ − cγsα sαsγ + cαcγsβ
cβsα cαcγ + sαsβsγ cγsαsβ − cαsγ
−sβ cβsγ cβcγ

 , (2)

where cα represents cos(αQ) and sα is short for sin(αQ).
Accordingly, the 3D local location can also be obtained as

p̃q = R−1(pq − pQ). (3)

3) Direction Vector and AOA/AOD: Consider a signal trans-
mitted from a UE located at pU = [xU, yU, zU]

T to a BS
located at pB = [xB, yB, zB]

T , the distance between the UE
and BS array center can be calculated as

dBU = ∥pU − pB∥, (4)

and the global direction vector from BS to UE, tBU, can be
expressed as

tBU = −tUB =

tBU,x

tBU,y

tBU,z

 =
pU − pB

dBU
. (5)

7In the remainder of this work, symbols marked with a ‘tilde’ (e.g., θ̃)
indicate parameters in the local coordinate system (in contrast to the global
parameters, e.g., θ), whereas symbols marked with a ‘ring’ (e.g., θ̊) indicate
parameters related to SAs in AOSA-based systems (detailed in Table VI).

The local direction vector can then be obtained using the
rotation matrix RB of BS and the direction vector t of (5)
as

t̃BU = R−1
B tBU = RT

BtBU. (6)

The AOA/AOD angle pairs of a signal are defined using
an azimuth angle ϕ ∈ (π, π] (angle between the projection of
the vector t on the XY-plane and the Y-axis) and an elevation
angle θ ∈ [−π/2, π/2] (the angle between t and the XY-plane)
as shown in Fig. 3. These angle pairs can be defined in both the
global and local coordinate systems; however, the angles can
only be measured locally at the array (e.g., using AOA/AOD
estimation algorithms). We use φ̃=[ϕ̃, θ̃]T and φ=[ϕ, θ]T to
represent local and global AOA/AOD angles, respectively.

From the definitions of the azimuth and elevation angles,
the local direction vector, t̃BU defined in (6), can be easily
expressed in terms of the AOA/AOD angles ϕ̃BU and θ̃BU as

t̃BU = t(φ̃BU) =

cos(ϕ̃BU) cos(θ̃BU)

sin(ϕ̃BU) cos(θ̃BU)

sin(θ̃BU)

 , (7)

where t(φ) is the function that maps the AOA/AOD angles
to a direction vector. Conversely, the AOA/AOD φBU from
UE to BS can be obtained from the direction vector t̃BU =
[t̃BU,x, t̃BU,y, t̃BU,z] as

φ̃BU =

[
ϕ̃BU

θ̃BU

]
=

[
arctan 2(t̃BU,y, t̃BU,x)

arcsin(t̃BU,z)

]
, (8)

where arctan 2(·) is the four-quadrant inverse tangent, and
the global AOA/AOD can be similarly obtained with a global
direction vector t.

We have described the signal propagation distance dBU,
global/local direction vectors tBU/t̃BU, and angle pairs
φBU/φ̃BU for the BS-UE LOS channel. Similar descriptions
apply to the BS-RIS, RIS-UE, and the lth NLOS channel
parameters (e.g., dBR, drm, d(l)

BN, and d(l)

NU). We next describe
a far-field MIMO channel model based on these geometry
parameters.

C. Far-field MIMO Channel Model

An accurate channel model is essential for system con-
figuration and performance analysis. Deterministic, statisti-
cal, and hybrid methodologies can be applied for channel
modeling [130]. For localization purposes, we start with
a deterministic far-field8 channel model for a multi-carrier
MIMO system. Assume an uplink scenario, the channel matrix
H ∈ CNB×NU can be decomposed into three parts as

H = HL +HR +HN. (9)

Here, HL, HR, and HN are the LOS channel matrix, RIS
channel matrix, and NLOS channel matrix, respectively.

8Far-field scenarios consider a planar wave model (PWM), while near-field
scenarios assume an SWM.
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Fig. 3. Illustration of the proposed THz localization system model.

1) BS-UE LOS Channel: The passband BS-UE LOS chan-
nel matrix HL can be expressed as9 [131]

HL(t, f) =ρL(f)e
−j2π(fτBU−νBUt)

×GB(φ̃BU)GU(φ̃UB)aB(f, φ̃BU)a
T
U(f, φ̃UB),

(10)

where ρL(f) is the path gain of the LOS path at signal
frequency f , νBU is the Doppler shift, τBU is the signal delay
(including the propagation delay dBU/c and the clock offset
B, as will be detailed later) of the LOS path, and GB/GU and
aB/aU are respectively the antenna gains and steering vectors
of the BS/UE, which depend on the local AOA/AOD pairs, as
will be detailed shortly.

The LOS path gain, ρL(f), can be expressed as [60]

ρL(f) =
c

4πfdBU
Ka(f, dBU), (11)

where Ka(f, dBU) is the attenuation coefficient depending
on the signal frequency and distance. For mmWave signals,
Ka = Katm(f, d) is the atmospheric attenuation [60]. How-
ever, for THz-band signals, molecular absorption caused by
water vapor and other gases increases the path loss, where
Ka = e−

1
2Kabs(f)d is the absorption coefficient that can

be obtained from the high-resolution transmission molecular
absorption (HITRAN) database [132].

By using an ideal sector model (ISM) [133], the antenna
gains GB/GU of the LOS channel at BS/UE can be obtained
as

GQ(φ̃) =

{ √
G0

Q, ϕ̃ ∈ [−ϕh
2 ,

ϕh
2 ], θ̃ ∈ [− θh

2 ,
θh
2 ],

0, otherwise,
(12)

where G0
Q is the antenna gain, φ̃ is the local AOA/AOD

defined in (8), and ϕh, θh are the half-power beamwidth
(HPBW) at E-plane and H-plane, respectively. For omnidi-
rectional antennas, GQ(θ̃, ϕ̃) = 1 and can hence be ignored.

9Note that if the direction vectors at the Tx/Rx are chosen to be identical
(e.g., tT = tR), aT has to be changed to a∗, as expressed in [131]. The
channel matrix can be ignored if the corresponding path does not exist.
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Fig. 4. Examplar top view of multiple BSs and UEs.

For highly directional antennas, however, the directivity can
be approximated as G0 ≈ 4π

θhϕh
[134]. A top-view illustration

of the antenna sector gain is shown in Fig. 4. Note that the
beamforming HPBWs ϕh,bf/θh,bf in Fig. 4 are different from
ϕh/θh that are decided by the array size. The antenna gain can
also be characterized by a Gaussian beam model (GBM) [135].

The frequency-dependent steering vectors aB(φ̃BU) and
aTU(φ̃UB) can be described as

aQ(φ̃) = [aQ(1), · · · , aQ(q), · · · , aQ(NQ)]
T , (13)

where the qth element can be obtained as

aQ(q) = ej
2πf
c Ψq(φ̃) = ej

2πf
c p̃T

q t(φ̃) (14)

= ej
2πf
c (RT

Q(pq−pQ))T (RT t(φ)) = ej
2πf
c (pq−pQ)T t(φ).

(15)

The mapping from angles to a direction vector t(φ) can be
found in (7). Equations (14) and (15) describe the steering
vectors using local and global angle pairs, respectively; this
steering vector applies to arrays of arbitrary layouts.

In this work, we assume identical attenuation coefficients
across all subcarriers, K(f, d) = K(fc, d), and ignore the
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Doppler effect. The resultant frequency-flat fading channel at
the kth subcarrier can be expressed from (10) as

HL[k] = ckρLe
−jξLe−j2π∆fkτLaB(φ̃BU)a

T
U(φ̃UB), (16)

where ck = fc
fk

is the frequency ratio between the cen-
tral frequency and subcarrier frequency, fk = fc +∆fk =
fc+

(2k−1−K)W
2K is the frequency of the kth subcarrier, and

aB(φ̃BU) and aU(φ̃UB) are the steering vectors of the kth
subcarrier that can be obtained from (13) by replacing f with
fk. The complex channel gain ρLe

−jξL and the signal delay
τL of the LOS path are

ρL =
λc

4πdBU
Ka(fc, dBU)GB(φ̃BU)GU(φ̃UB), (17)

ξL = 2πfcτL, (18)

τL =
dBU

c
+B. (19)

Here, c is the speed of the light and B is the synchronization
offset.

Remark 1. By setting B = 0, we assume the system is well-
synchronized. The synchronization B is identical for all the
channels over a BS-UE communication link. However, for a
localization system with multiple asynchronized BSs, each BS
may have its own synchronization offset.

Remark 2. Note that even though the complex channel gains
of the LOS channel (ρL/ξL) can be expressed using geometry
information, they are usually treated as unknowns to be
estimated [60], [61], [136] due to the hardware imperfection
(e.g., antenna gain, phase noise) and dynamic communication
environments. We call this scenario as ‘unknown’ channel
model. In addition, we define a ‘partially known’ model as
one where only ξ is treated as unknown). Here, the range
information can be inferred from the channel gain ρ, which
will be discussed in Sec. VI-C.

2) RIS Channel: In the RIS channel, the transmitted signal
first arrives at an RIS through an RIS-UE channel. With its
amplitude and phase changed by the RIS elements, the signal
is then transmitted to the receiver via a BS-RIS channel. The
RIS channel matrix HR can be expressed as [17], [137]

HR = HBRΩHRU, (20)

where HBR ∈ CNB×NR is the BS-RIS channel matrix,
and HRU ∈ CNR×NU is the RIS-UE channel matrix that
can be similarly obtained from (16). The coefficient matrix
Ω ∈ CNR×NR is a diagonal matrix that can be denoted as
Ω ≜ diag(β1e

jω1 , · · · , βNR
ejωNR ), where ωn ∈ [0, 2π) and

βn ∈ [0, 1] are the phase shift and the reflection coefficient,
reflectively [138]. By assuming the power radiation pattern
and the RIS element gain is equal to 1, and assuming the area
of each element to be λ2

4π , the RIS channel can be modeled
from [139] (equation (3)) as

HR[k] =c2kρRe
−jξRe−j2π∆fkτR

× aB(φ̃BR)a
T
R(φ̃RB)ΩaR(φ̃RU)a

T
U(φ̃UR),

(21)

where

ρR =
λ2
c

16π2dBRdUR
Ka(fc, dBR)Ka(fc, dUR)

×GB(φ̃BR)GR(φ̃RB)GR(φ̃RU)GU(φ̃UR),

(22)

ξR = 2πfcτR (23)

τR =
dBR + dUR

c
+B. (24)

3) NLOS Channels: The transmitted signal might be re-
flected by other objects and arrive at the receiver through
NLOS paths. In addition to the channel gains, reflection
coefficients should be considered. For mmWave systems, the
reflection coefficients can be obtained based on the reflector
geometry and the reflection loss statistics [61], [140], [141].
For terahertz-band systems, the NLOS channels differ in
two aspects: firstly, the NLOS paths become increasingly
sparse and lossy [142]; secondly, the surfaces that are con-
sidered smooth at lower frequencies become rough, so NLOS
paths can also be generated by scattered rays and diffracted
rays [143]. The THz NLOS channels can be characterized
using stochastic models [144], [145], or ray-tracing mod-
els [145]. More details are obtained from real measurements
by evaluating the partition losses for different materials under
different frequencies [146]–[148].

For localization purposes, we consider LN resolvable re-
flectors between the BS and UE with NLOS coefficients K(l)

N ;
no intra-cluster rays are considered (i.e., one ray for each re-
flector). We ignore second-order reflections where attenuation
is more than 15 dB [145]. The NLOS matrix can be expressed
as the sum of all the LN paths, HN =

∑LN

l=1 H
(l)

N , where the
channel matrix of the lth NLOS path is

H(l)

N [k]=ckρ
(l)

N e−jξ
(l)
N e−j2π∆fkτ

(l)
N aR(φ̃RU)a

T
U(φ̃UR), (25)

and where

ρN =
λc

4πd(l)

N

K(l)

N K(l)

a (fc, d
(l)

N )G(l)

B (φ̃BN)G
(l)

U (φ̃UM), (26)

ξ(l)

N = 2πfcτ
(l)

N , (27)

τ (l)

N =
d(l)

BN + d(l)

NU

c
+B. (28)

The scattered and diffracted paths are modeled in [143], with
the major difference being the NLOS coefficient ρN.

So far, we have described the LOS channel, RIS channel,
and NLOS channels of a far-field MIMO system in (16), (21),
and (25), respectively. In the next subsection, we will describe
two received signal models, namely, conventional MIMO and
AOSA-based MIMO.

D. Received Signal Model

1) MIMO Architectures: In low-frequency systems, signal
processing is mainly performed at the baseband. In this case,
each antenna is connected to an RFC, and the received signal
at each antenna can be obtained directly through a low-pass
filter and an ADC. With the increased carrier frequency, an
antenna array with a large dimension is preferred to benefit
from the beamforming gain; such conventional architectures
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are impractical in the aspects of hardware realization and
power consumption [131].

Hybrid MIMO structures that provide a good tradeoff be-
tween system performance and cost are described in [131]. The
data symbols are first precoded by a baseband (digital) pre-
coder, followed by analog beamforming using phase-shifters,
switchers, or a lens antenna [131], [149]. A fully connected
array and AOSA are two possible hybrid structures. For
instance, with phase-shifter-based fully-connected arrays, each
available RFC is connected to all antennas via an individual
group of phase-shifters [16]. In the AOSA-based structure,
each RFC can only drive a portion of the antennas forming an
SA. It is shown in [16] that compared with the fully connected
array, AOSA structures perform better in spectral efficiency
and energy efficiency and hence are more suitable for terahertz
UM-MIMO systems [15], [16], [27], [133], [150]–[152]. In the
following, we detail the received signal models using fully-
connected and AOSA-based structures.

2) Fully-digital MIMO Model: Assume that in a MIMO
system, each antenna is connected to an independent RFC. Let
P be the average transmission power (in mW). Based on the
proposed far-field MIMO channel from (9)-(28), the received
signal at the kth subcarrier and the gth transmission (OFDM
symbols), y(g)[k], can be expressed as

y(g)[k] =
√
PH[k]x(g)[k] + n(g)[k]

= µ(g)[k] + n(g)[k],
(29)

where µ(g)[k] ∈ CNB×1 is the noise-free version of the
received signal, n(g)[k] ∈ CNB×1 is the additive white Gaus-
sian noise (AWGN) vector with a complex normal distribu-
tion CN (0, σ2

n), and the normalized transmitted signal vector
x(g)[k] ∈ CNU×1 (∥x(g)[k]∥2 =1)10 can be chosen randomly
or obtained using a directional beamforming matrix with PRSs
as discussed in [60], [61], [70], [153]. Although this MIMO
structure is impractical when the array size is large, it helps
derive the fundamental limits of MIMO localization systems
and is thus widely used in localization works [60], [61], [70],
[79], [153], [154]. We use (29) as the benchmark MIMO
signal model for mmWave systems. Next, we detail the hybrid
MIMO model, namely, the fully-connected hybrid model and
the AOSA-based MIMO model.

3) Fully-connected Hybrid MIMO Model: Due to the hard-
ware cost and complexity, it is impractical to connect each
antenna with an RFC. Usually, a smaller number of MB/MU

RFCs are implemented to connect all the NB/NU antennas at
the BS/UE arrays (MB≤NB, MU≤NU). The received signal
can be changed from (29) as

y(g)[k] =
√
PWT

BH[k]WUx
(g)

0 [k] +WT
Bn

(g)[k], (30)

where WB ∈ CNB×MB is the RF combiner matrix at the
BS, WU ∈ CNU×MU is the RF precoder matrix at the UE,
and x

(g)
0 [k] ∈ CMU×1 is the signal symbol vector before

the precoder. Let x(g)[k] = WUx
(g)

0 [k] be the transmitted
signal vector, the transmission power constraint still holds

10If total transmission energy across all the subcarriers and transmissions
is assumed, the transmitted signal is normalized as ∥x(g)[k]∥2= 1

KG .

as ∥x(g)[k]∥2 = 1. Note that the baseband combiner/precoder
matrices are not discussed here as we process the measurement
from the RFCs directly for localization. All the entries of
WB and WU correspond to the coefficients of phase-shifters
with amplitudes |[WB,rf ]i,j | = 1√

NB
and |[WU]i,j | = 1√

NU
.

The fully-connected MIMO structures are widely-adopted in
mmWave systems. However, this type of hybrid structure is
impractical and inefficient for THz systems because of the lim-
itation of the transmit power and circuit feeding ability [16].
Next, we explain the AOSA-based structure, which is more
favored in THz systems.

4) AOSA-based MIMO Model: In AOSA-based MIMO
structures, the antenna array is divided into several SAs [16].
Each SA effectively represents the minimum communication
element, which is driven by an independent RFC. Compared
with the conventional MIMO structure, the number of RFCs
needed equals the number of SAs rather than the number of
antennas. And differing from the fully-connected hybrid struc-
ture, each RFC is connected to a subset of the antennas instead
of all the antennas. Within each SA, analog beamforming is
used to focus a signal in a certain direction. Consequently, the
system benefits from the beamforming gain, and optimizing
phase-shifters per antenna element (AE) reduces optimizing
the beamforming angles per SA. Note that all the phase-
shifters in a SA can be arbitrarily optimized to perform
beamforming in different directions. However, independently
optimizing each phase-shifter increases the system’s compu-
tational complexity and interference with other users. It is
thus practical to treat each SA as a minimal communication
element with a fixed beamforming angle with high carrier
frequencies [16], [133]. Note that AOSA architectures can
also be applied to mmWave communications, but they are
more of a requirement at extremely high frequencies where
a minimum beamforming gain has to be met to achieve
reasonable communication distances.

Without loss of generality, we use AQ(φ̃, φ̊) to repre-
sent the array factor of a specific SA containing N̊Q AEs
(Q ∈ {B,U}). The array factor reflects the beamforming gain
obtained by a specific SA with beamforming angle φ̊, in a
specific channel with local AOA/AOD φ̃; we have [133]

AQ(φ̃, φ̊) =
1√
N̊Q

aTst(φ̃)abf(φ̊)

=
1√
N̊Q

N̊Q∑
q̊=1

ej
2πf
c (Ψq̊(φ̃)−Ψq̊(φ̊)).

(31)

Here, Ψq̊(φ̃) = p̃T
q̊ t(φ̃) is the signal delay at the q̊th element

with respect to the SA center. The SA level steering vector
ast(φ̃) and beamforming vector abf (φ̊) can be similarly
obtained from (32) as

ast(φ̃) = [ast(1), · · · , ast(q̊), · · · , ast(N̊Q)]
T , (32)

ast(q̊) = ej
2πf
c Ψq̊(φ̃) = ej

2πf
c p̃T

q̊ t(φ̃), (33)
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and

abf(φ̊) = [abf(1), · · · , abf(q̊), · · · , abf(N̊Q)]
T , (34)

abf(q̊) = e−j 2πf
c Ψq̊(φ̊) = e−j 2πf

c p̃T
q̊ t(φ̊). (35)

Note that the beamforming angle of the qth SA, φ̊q , does
not depend on the geometry information of other devices, and
A(φ̃, φ̊) achieves the maximum beamforming gain when φ̊=
φ̃. Both the steering and beamforming vectors can also be
expressed using global angles and positions as in (15).

The signal model of an AOSA-based MIMO structure can
be expressed as

y(g)[k]=H[k]x(g)[k] + n(g)[k], (36)

where H[k] ∈ CNB×NU (NB and NU are the number of SAs
in the AOSA structure) is the effective AOSA channel

H =AL⊙HL[k]+(ABR⊙HBR[k])Ω(ARU⊙HRU [k])

+

LN∑
l=1

A(l)

N ⊙H(l)

N [k].

(37)

In each path, the effective AOSA channel matrix can be
expressed as the Hadamard product of an array factor matrix
AL (or ABR, ARU A(l)

L ) and an SA level channel matrix
HL (or HBR, HRU, H(l)

N ) by taking the SA as the basic
communication element. The SA level channel matrices (H)
can be obtained from the AE level far-field MIMO channel
matrices (H) from (16), (21), and (25) by changing the
parameters from AE to SA (e.g., number of SAs, the position
of SA centers, and SA spacing). The array factor matrices
describe the beamforming gains of each SA as

AL,bu = AB(φ̃BU, φ̊b)AU(φ̃UB, φ̊u), (38)
ABR,br = AB(φ̃BR, φ̊b), (39)
ARU,ru = AU(φ̃UR, φ̊u), (40)
A(l)

N,bu = A(l)

B (φ̃(l)

BN, φ̊
(l)

b )A(l)

U (φ̃(l)

UN, φ̊
(l)

u ). (41)

In this subsection, we provided two receive signal mod-
els, namely, conventional fully-connected and AOSA-based
MIMO models, in far-field scenarios. In what follows, we
describe the extension of the signal model into near-field
by assuming a spherical wave model (SWM). Other channel
features are also discussed to make the signal model flexible
enough for different types of signals.

E. Additional Model Features

1) Near-field Channel Model: The far-field model is con-
sidered when the range between the transceivers is much larger
than the size of the array [155]. The near-field region is
usually defined as the range between the Fresnel boundary
0.62

√
D3/λ and Fraunhofer distance 2D2/λ, where D is

the diameter of the antenna array [91]. With higher carrier
frequencies (e.g., THz-band signals), even a small footprint
can result in a larger array size (in terms of wavelength, see
footnote 6) and hence a larger near-field range. In the latter
case, a far-field channel model is no longer accurate. We next
describe the near-field channel model.

In the near-field channel model, we also make the assump-
tion that all the antennas receive the same signal strength
(the amplitude ρ applies to all array antennas). Then, what
differentiates it from a far-field model is the phase change
of the received signals. Take the LOS channel HL[k], for
example, and ignore the clock offset B. Each element of the
matrix, hL,bu[k] (bth row, uth column), under the SWM and
PWM assumptions can be written as

hSWM

L,bu [k] = ckρLe
−j

2πfk
c dbu = ckρLe

−j
2πfk

c ∥pb−pu∥, (42)

hPWM

L,bu [k] = ckρLe
−j

2πfk
c (∥pB−pU∥−p̃T

b t(φ̃BU)−p̃T
u t(φ̃UB)),

(43)

respectively. Note that equation (43) is identical to the far-
field channel model as (16). By extracting the common parts
for different subcarriers into complex channel gain ρe−jξ, the
elements of near-field channel matrices in (42) can be written
from (16), (21), and (25) as

hSWM

L,bu [k] = ckρLe
−jξLe−j2π(∆fkτL+fk∆τbu), (44)

hSWM

R,bu[k] = ckρRe
−jξR

NR∑
r=1

e−j2π(∆fkτR+fk∆τbru), (45)

h(l)SWM

N,bu [k] = ckρ
(l)

N e−jξ
(l)
N e−j2π(∆fkτ

(l)
N +fk∆τ

(l)
bnu), (46)

where

∆τbu = τbu−τL =
dbu − dBU

c
, (47)

∆τbru = τbru − τR =
dbr + drm − dBR − dRU

c
, (48)

∆τ (l)

bnu = τ (l)

bnu − τ (l)

N =
d(l)

bn + d(l)
nu − d(l)

BN − d(l)

NU

c
. (49)

For the near-field AOSA-based MIMO model in (37), we
further assume that the channel model for each SA follows a
PWM. The SWM is then captured by the phase differences
between the SAs. This is a reasonable assumption since the
size of SAs is relatively small compared to that of the whole
array. Hence, the array factor matrices can be updated as

AL,bu = AB(φ̃bu, φ̊b)AU(φ̃ub, φ̊u), (50)
ABR,br = AB(φ̃br, φ̊b), (51)
ARU,ru = AU(φ̃ur, φ̊u), (52)
A(l)

N,bu = A(l)

B (φ̃(l)

bn, φ̊
(l)

b )A(l)

U (φ̃(l)

nu, φ̊
(l)

u ). (53)

Compared with the array factors in (38)-(41) where the
AOA/AOD pairs are calculated based on the array center, the
near-field array factors need to calculate the angles for each
of the SA pairs.

2) Beam Split Effect: The BSE, also known as the beam
squint effect, is caused by frequency-independent (constant)
phase shifts in analog beamforming [131], [151], [156]. For a
narrow band system, the steering vectors calculated from (13)
and (32) are frequency-independent (i.e., f = fc). However,
for a wideband system, the steering vectors are frequency-
dependent. When pure phase-shifters are utilized, the phase
shift is constant for different subcarriers in analog beamform-
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ing. The array factor in (31) is then modified by multiplying
Ψq̊(φ̃) with 1/ck = fk/fc as

AQ(φ̃, φ̊) =
1√
N̊Q

N̊Q∑
q̊=1

ej
2πfc

c (
fk
fc

Ψq̊(φ̃)−Ψq̊(φ̊)). (54)

The beam split is affected by three factors, namely, ar-
ray size (in wavelength), bandwidth, and beamforming an-
gle [152]. From equation (54), the highest beamforming gain

reaches
√

N̊Q only at the central frequency fc where the
beamforming angle vector φ̊ equals the steering angle vector
φ̃, whereas the other subcarriers suffer from performance loss.
Several techniques such as true-time delays (TTD) [157] and
delay-phase precoding (DPP) [90] can be utilized to overcome
beam slit. However, we retain this feature in channel modeling
to account for the systems with pure phase-shifters. Note that
the BSE can also be considered in the RIS channel and the
coefficient matrix Ω in (20) will be frequency-dependent.

3) Hardware Imperfections: Hardware imperfections are
caused by components mismatch and manufacturing de-
fects [158] and may occur in the RFC, phase-shifters, and RIS
elements. We model several types of hardware imperfections
that can affect localization performance.

• RFC impairments: The impairment noise caused by RFCs
distorts the signal at the transmitter and the receiver [159].
The received signal can be modeled as

y = H(x+ nt) + nr + n, (55)

where nt ∼ CN (0, κ2
t P̄ ), nr ∼ CN (0, κ2

rP̄ |h|2) are the
distortion noises from impairments at Tx and Rx. κt, κt,
P̄ , |h|2 are the Tx impairment coefficient, Rx impairment
coefficient, average transmission power and instantaneous
channel gain, respectively [27], [159], [160].

• Phase noise (PN): The presence of PN has a significant
impact on localization performance, especially when the
target resolution is high [161]. The PS can be modeled
as

y = ΩPHx+ n, (56)

where ΩP ≜ diag([ejωP,1 , · · · , ejωP,Nr ]) contains the
phase noise information and Nr is the number of an-
tennas at the receiver array. The PN vector ωP =
[ωP,1, · · · , ωP,Nr

] typically follows a zero mean jointly
Gaussian distribution with ωP ∼ N (0, σ2

θINr
), where σ2

θ

(in rad2) is the oscillator variance.
• Quantization error: The material and hardware properties

limit the accuracy and control speed of the RIS profile
(element coefficients) [71]. For a quantized RIS element,
however, the phase value ω in the coefficient matrix Ω
can only be chosen from a set of quantized values Q
(e.g., Q = {0, π/2, π, 3π/2} for a 2-bit quantization).
Although at the expense of accuracy loss, the power
cost and system complexity can be reduced with such
quantizations. Similar quantization can be added to phase-
shifters (resulting in a quantized beamforming angle) and
ADCs.

Other sources of the impairments, such as I/Q imbalance
and non-linearities, should also be modeled [160]. With the

introduced hardware imperfection, there will be a performance
loss by using a mismatched model (ideal model without
hardware imperfections) on the true data (observation of
an impaired system) [162]. Misspecified Cramér-Rao bound
(MCRB) can be used to derive the lower bound of using a
mismatched model and related works can be found in [163]–
[165].

F. Summary

In this section, we formulate an AOSA-based THz system
model and highlight its unique features compared to traditional
MIMO models:

• We describe the system geometry to represent the re-
lationships between the position and direction vectors,
Euler angles and rotation matrices, and local and global
AOAs/AODs.

• Building on a mmWave MIMO channel model, we detail
a near-field effective AOSA channel model that reduces
the complexity of UM-MIMO systems, which are poten-
tial structures in THz systems.

• We propose a THz signal model comprised of LOS, RIS,
and NLOS channels.

• We discuss additional THz features such as beam split
and hardware imperfections.

In the next section, we utilize the proposed signal model to
formulate THz-band localization problems.

IV. TERAHERTZ-BAND LOCALIZATION

In this section, we first formulate the localization problem
and present the CRB derivation based on our system model.
Then, we describe geometry-based localization, such as di-
rect localization and multi-stage localization. Afterward, we
discuss potential extensions of THz localization and sensing,
namely, learning-based localization, cooperative localization,
tracking, and SLAM. Recent localization works using radio
signals and their features are summarized in Table VII.

A. Localization Problem Formulation

We define the localization problem as estimating the posi-
tion and orientation of a UE. Different localization pilot signals
will be sent depending on the prior UE state information.
Usually, random pilots or pilots from a predefined codebook
are used if the prior location information is unknown (e.g., a
new UE seeks to access the network). However, if the prior in-
formation (e.g., UE state information from prediction or other
sources of observations) is available, elaborately optimized
signals can be used to achieve better performance. At the
gth transmission/measurement, a signal symbol vector x(g) is
transmitted and a signal symbol vector y(g) is observed. For an
AOSA structure, beamforming angle matrices φ̊(g)

B ,φ̊(g)

U need
to be selected for each transmission (φ̊B = [φ̊1; · · · ; φ̊NB

],
φ̊U = [φ̊1; · · · ; φ̊NU

]), which affect the equivalent array
response as shown in (31). From the observed signal symbol
vector Ŷ ∈ CGKNB×1, which is a concatenation of the
received symbols from all the G transmissions, K subcarriers,
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TABLE VII
SUMMARY OF RADIO SIGNAL BASED LOCALIZATION WORKS

Year Ref fc Link System C
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Techniques/Features

C
R

F

2015 [166] 100 MHz Downlink SIMO Single 3D ✓ 1D ✓ ✓ ✓ FIM analysis
2017 [167] 300 MHz Uplink SIMO Multi 2D ✓ ✓ CNN
2017 [168] 7 GHz Uplink SIMO Single 2D ✓ ✓ Direct localization
2018 [169] - Uplink SIMO Single 2D ✓ ✓ ✓ Direct localization
2018 [170] 2 GHz Uplink SIMO Single 2D ✓ ✓ ✓ Channel charting
2019 [171] - D2D - - 2D ✓ ✓ ✓ Cooperative, DRL
2020 [137] 28 GHz Downlink SISO Multi 2D ✓ ✓ FIM analysis
2020 [154] 28 GHz Uplink SIMO Multi 2D ✓ ✓ ✓ ✓ Multi-stage
2020 [153] 28 GHz Uplink MIMO Multi 3D ✓ ✓ ✓ 3D ✓ FIM analysis

m
m

W
av

e

2015 [69] 60 GHz Both MIMO Single 2D 1D ✓ FIM analysis
2017 [60] 60 GHz Downlink MIMO Multi 2D ✓ 1D ✓ Multi-stage
2018 [136] - Downlink MIMO Single 2D ✓ ✓ 1D Multi-stage, mapping
2018 [61] 38 GHz Both MIMO Single 3D ✓ 2D ✓ FIM analysis
2018 [172] 60 GHz Two-way SISO Single 2D ✓ Sweeping
2018 [173] - Downlink SIMO Single 2D ✓ ✓ SLAM
2019 [174] 73 GHz Downlink MISO - 2D ✓ ✓ ✓ ✓ Map-assist, RT-toolbox
2020 [70] 60 GHz Downlink MIMO Multi 2D ✓ 1D ✓ FIM analysis
2020 [175] 38 GHz Two-way MIMO Single 3D ✓ 2D ✓ FIM analysis
2020 [176] 60 GHz Uplink MIMO Multi 2D ✓ 1D ✓ Fingerprinting
2021 [80] 30 GHz Downlink SISO Multi 3D ✓ ✓ ✓ FIM analysis
2021 [91] 30 GHz Uplink SIMO Single 3D ✓ ✓ ✓ ✓ CoA, PF
2021 [177] 30 GHz Both MIMO Multi 3D ✓ CoA, PF

T
H

z

2017 [88] 300 GHz Downlink MISO - 3D ✓ ✓ ✓ Tracking, RT-toolbox
2019 [89] 275 GHz Uplink SIMO Single 2D ✓ ✓ ✓ ✓ Tracking
2020 [178] 100 GHz Downlink MIMO Multi 3D ✓ ✓ ✓ ✓ RNN, RT-toolbox
2020 [179] 275 GHz Two-way SISO Single 3D ✓ ✓ RFID, UAV, SLAM
2021 [180] 142 GHz Downlink MISO Multi 2D ✓ ✓ ✓ ✓ Map-based, field data
2021 [181] 400 GHz Both MIMO Single 2D ✓ Leaky wave antenna
2021 Ours 300 GHz Uplink MIMO Multi 3D ✓ ✓ ✓ ✓ 3D ✓ ✓ ✓ AOSA, RIS, SWM

and NB RFCs at BS, we want to estimate the localization
parameters of the UE.

We define the localization parameters as a state parameter
vector s and a measurement parameter vector γ. The state
vector contains the position, orientation, and channel informa-
tion (e.g., channel gain and the position of the scatters) of
interest, which can be further be separated into a UE state
vector sU and a nuisance state vector sN (sU ∪ sN = s). The
measurement vector contains intermediate measurements (e.g.,
TOA and AOA that can be obtained directly from the received
signal). The definitions of the state and measurement vectors
depend on the system structure, signal frequency, bandwidth,
and localization algorithms.

To highlight the different localization parameters, we dis-
cuss the state and measurement vectors in three typical sce-
narios: a multi-BS CRF system, a far-field mmWave system
with LOS/NLOS channels, and a near-field THz system with
LOS/RIS/NLOS channels. We assume a fully digital MIMO
structure for mmWave systems to exploit the fundamental
limits of the localization system. However, we assume a
hybrid AOSA-based structure for THz systems due to its
reduced complexity and its crucial beamforming gains, without
which the THz coverage would be very limited in distance.
Nevertheless, the AOSA structure is not THz-specific and can
also be used for mmWave systems. Therefore, the distinct
models are reasonable for the corresponding frequency bands,
and they are also chosen on purpose to facilitate comparing
the measurement and state vectors. The assumptions on the lo-
calization models (e.g., measurement types, PWM/SWM, and
RIS channels) should thus be application-scenario-specific.

1) Multi-BS CRF System: Localization in low-frequency
systems relies mainly on geometric measurements from mul-
tiple BSs. The UE usually does not have an antenna array, so
only the position can be estimated. The state vector and the
measurement vector can be defined as

sU = [pU], (57)
s = [pU;ρ; ξ;B], (58)
γ = [ρ; ξ; τ ; φ̃BU;B], (59)

where ρ, ξ, and τ are the vectors containing the channel
amplitudes, phases, and delays of all the paths, respectively
(e.g., τ = [τ1; τ2; · · · ]); φ̃BU = [φ̃1; φ̃2; · · · ] is the angle
vector measured from the available BSs. Note that the global
angle vector φBU can be obtained with a known BS rotation
matrix. In addition, different types of measurements (e.g.,
delay and angle) may not be available all the time, and
the measurement vector can only be formed using available
information.

2) Far-field mmWave System: With the implementation of
antenna arrays, orientation estimation becomes possible. In
addition, at high carrier frequencies, the NLOS paths are fewer
and more resolvable, which makes the localization of UEs
and SLAM possible with even a single BS. Other channel
information, such as the complex channel gain and clock
offset, can also be estimated. The state and measurement
vector can thus be defined as

sU = [pU;oU], (60)
s = [pU;oU;ρ; ξ;pN;B], (61)
γ = [ρ; ξ; τ ; φ̃BU; φ̃UB; φ̃BN; φ̃UN], (62)
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where pN = [p1;p2; · · · ;pLN
], φ̃BN = [φ̃(1)

BN; · · · ; φ̃
(LN)

BN ],
φ̃UN = [φ̃(1)

UN; · · · ; φ̃
(LN)

UN ], contain the position and angle
information of all LN NLOS paths.

Note that the state vector s in (61) contains all unknowns
(UE state parameters and channel state parameters). If we
are only interested in the position/orientation of the UE, the
state vector can be divided into a state vector of interest
sU = [pU;oU] and a nuisance state vector sN = [ρ; ξ;pN;B].
The corresponding CRB of the sU can be obtained using an
equivalent FIM (EFIM), as will be discussed in Sec. IV-B3.

3) Near-field THz System with RIS: THz systems are more
likely to be in the near-field given the larger array sizes.
Moving to the THz band (or changing from PWM to SWM)
does not change the state vector described in (61) too much.
If SWM and RISs are considered in the system, the vectors s
and γ can be rewritten as

sU = [pU;oU], (63)
s = [pU;oU;ρ; ξ;pN;B], (64)
γ = [ρ; ξ; τ ;φBU;φRU;φBN;φNU;oU]. (65)

Compared to (62), the local angle vectors φ̃ are replaced by
the global angle vectors φ and the orientation of UE oU.
Although φ̃UB, φ̃UR, and φ̃UC can still be estimated, their
CRLBs cannot be derived directly in near-field scenarios; this
is because the calculation of antenna distances for an SWM
depends on the global position instead of the local angles, as
shown in (42) and (43).

4) Parameters in Direct Localization: In direct localization,
the parameters are estimated directly by optimizing an objec-
tive function. The measurement parameter vector is identical
to the state parameter vector [153], i.e.,

γDirect = s. (66)

It is worth noting that the vectors in (58)-(66) are not exclusive
lists of all the parameters. Other parameters such as BS/RIS
position and orientation errors or BS-RIS synchronization
offsets can also be included. In addition, not all the parameters
need to be estimated from the localization algorithm point of
view. A portion of the parameters can be selected depending
on the signal model, geometry model, or estimation algorithm,
among others. With a smaller parameter vector size, the
computational complexity can be reduced at the expense of
a performance loss.

B. Cramér-Rao Bound

1) Error Bounds: From a localization perspective, we are
more interested in a UE’s position and orientation accuracy.
Positioning accuracy is usually measured in terms of the
mean-squared error (MSE) or the root-mean-squared error
(RMSE)–the error is defined as the Euclidean distance between
the estimated location and the ground truth. For orientation
estimation, rotation error is defined as the angular difference
between the estimation and the true angle. Both position and
rotation errors are affected by the noise level. These two errors
are lower-bounded by the position error bound (PEB), and
the orientation error bound (OEB), which are derived from
the CRB and are often used by geometry-based localization

methods as effective tools to evaluate performance [60]. For
more complicated techniques such as fingerprinting [170],
[176], the bound is less tractable, and the corresponding
systems often provide a tradeoff between algorithm complexity
and positioning accuracy.

The CRB analysis for pulse-based signals can be found
in [182], where the analysis is based on the time-domain sig-
nal. When working on OFDM-based systems in the frequency
domain, the multipath can be easily dealt with. However, the
analysis of time and frequency domain signals is fundamen-
tally the same. From the THz systems point of view, carrier-
based signals can carry localization tasks more realistic since
THz-pulses are typically of very low power, which is only
suitable for nanocommunication scenarios [118]. In the rest of
the work, we only discuss OFDM-based MIMO systems based
on our channel model developed in Section III. Reported CRB
results for mmWave MIMO systems cover both 2D and 3D
scenarios. In [60], the position and orientation bound in LOS
and NLOS scenarios for a 2D 5G mmWave MIMO system are
derived and verified with a multi-stage localization algorithm.
The error bound for 3D scenarios is analyzed in [61], where
the differences between uplink and downlink are discussed.
Recent works have also explored the potential of positioning
with RISs, which are also called intelligent reflective surfaces
(IRSs) [17], large intelligent surfaces (LISs) [70], where
promising results are noted [70], [137], [153], [183]. Near-field
propagation conditions with RISs are further analyzed in [153].
However, practical RIS optimization methods and RIS-assisted
localization algorithms have yet to be developed. In addition,
the CRB derivation and analysis of AOSA-based THz systems
are still lacking, and new bounds considering THz-specific
features (such as beam split, distance-dependent bandwidth,
and spherical wave propagation) need to be developed.

2) Position and Orientation Error Bounds: Given the signal
model in (29), both direct and multi-stage approaches will have
the same CRB for the state vector if all available measurements
(variables in γ) are considered [153]. The CRLBs for the
measurement vector can also be calculated, which is useful
for system design and optimization. The CRB on the UE state
vector can be written as [153]

CRB ≜ [I(s)]
−1

=
[
JT
S I(γ)JS

]−1
, (67)

where I(s) is the Fisher information matrix (FIM) of the state
vector that can be obtained from the FIM of measurement
vector, I(γ), based on the chain rule. The Jacobian matrix,
JS, and the FIM of measurement vector, I(γ), are

JS ≜
∂γ

∂s
, (68)

I(γ) =
2

σ2

G∑
g

K∑
k

Re

{
(
∂µ(g)[k]

∂γ
)H(

∂µ(g)[k]

∂γ
)

}
, (69)

where G is the number of measurements/transmissions.
From the CRB, the position error bound (PEB) and orien-

tation error bound (OEB) can be written as

PEB =
√

tr([CRB]1:3,1:3), (70)

OEB =
√

tr([CRB]4:6,4:6). (71)
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3) Equivalent FIM (EFIM): The FIM of the state vector
I(s) contains the information for all the channel parameters,
e.g., in (58), (61), and (64)). Each element in the matrix I(s) is
I(s)i,j = I(si, sj) (i, j ≤ length(s)), which can be obtained
from (67)-(69). If we are only interested in the UE state vector
sU, EFIM can be used. More specifically, we can rearrange
I(s) into a block-diagonal structure as

I(s) =

[
I(sU) I(sU, sN)

I(sU, sN)
T I(sN)

]
, (72)

where sU, sN contain the UE state parameters and nuisance
parameters from the rest of the state vector s (more details
can be found in [61]). The EFIM of sU is then given by

IE(sU) = I(sU)− I(sU, sN)I(sN)
−1I(sU, sN)

T , (73)

where I(sU, sN)i,j = I(sU,i, sN,j) (i ≤ length(sU), j ≤
length(sN)). The PEB and OEB can be similarly obtained
from (70) and (71).

4) Constrained CRB for Far-field OEB: The calculation of
the OEB using (67)-(71) does not work for 3D orientation
estimation in far-field scenarios because the orientation oU

in (61) cannot be individually mapped from the angles in (62).
Alternatively, the OEB can be obtained from the estimated
DOD angle vector θ̃ = [φ̃UB; φ̃UR; φ̃UN] using the con-
strained CRB as discussed in [63]. When an unknown vector
η ∈ RNη×1 is constrained to lie on a manifold f(η) = 0
defined by 0 ≤ Kη < Nη non-redundant constraints. The
constrained CRB I−1

const(η) can be expressed as [63]

I−1
const(η) = M(MT I(η)M)−1MT . (74)

Here, I(η) is the EFIM of the unconstrained parameters
and M ∈ RN×(N−K) is an orthonormal basis for the null-
space of the gradient matrix ∂f(η)/∂ηT satisfying MTM =
IN−K [63].

For far-field orientation estimation, M can be chosen
as [184]

M =

−r3 03×1 r2
03×1 −r3 −r1
r1 r2 03×1

 , (75)

where r1, r2, and r3 are the first, second, and third columns
of the rotation matrix in (2), respectively. By forming r =
vec(R) = [r1; r2; r3]. The FIM of the rotation matrix I(r)
can be obtained from the FIM of the measured DOD angle
vector I(θ̃) as

I(r) =

(∂θ̃

∂r

)T

I(θ̃)

(
∂θ̃

∂r

) . (76)

Hence, the OEB can be obtained as

OEB =
√
trace([Iconst(r)]−1). (77)

Note that the OEB in (77) is defined using rotation matrix
(∥R− R̂∥F ), which is different from the OEB defined in (71)
using Eular angles (∥o− ô∥). However, both definitions can
be used as indicators of the system orientation estimation
performance. With the derived PEB and OEB, we are able to
benchmark and evaluate the designed localization estimators.
Next, we describe geometry-based localization.

5) CRB for an LOS Channel: It is difficult to express
the CRB considering all the paths and system parameters;
however, it would be insightful to show the relationship
between CRB and system parameters for a single LOS path
in a closed-form. Consider a 2D uplink scenario with perfect
synchronization, the PEB, and OEB can be expressed as [61],
[185]

PEBLOS =

√
N0Wd2

NBNUGPλ2

(
c2ζτBU

W 2
+

d2ζϕBU

N2
B

)
, (78)

OEBLOS =

√
N0Wd2

NBNUGPλ2

(
ζϕBU

N2
B

+
ζϕUB

N2
U

)
. (79)

Where ζτBU , ζϕBU , and ζϕUB are the components contributing
to the error bound, which are determined by delay, AOA and
AOD of this LOS channel, respectively. The common term
in (78) and (79) shows the SNR component of the system,
which is determined by the noise level (N0W ), path loss
(d/λ), number of antennas (NB, NU), number of transmissions
(G) and the transmission power (P ). The components inside
the parenthesis in (78) indicate that the PEB is decided by
the delay and AOA, and the effect of ζτBU

, ζϕBU
on the

PEB can be reduced by increasing the bandwidth and array
size at the BS, respectively. Similarly, the AOA and AOD
affect the OEB of the UE and the contributions of ζϕBU and
ζϕUB can be mitigated by increasing NB and NU. Note that
equations describe the relationship between PEB/OEB and an
ideal single LOS channel. Although the formulation is not
applicable for all the scenarios (e.g., multipath, RIS channels),
the relationship can be treated as a reference for deriving the
scaling laws and designing localization systems.

C. Geometry-based Algorithms

1) Direct Localization: Geometry-based localization algo-
rithms can be categorized into direct localization and multi-
stage algorithms. In direct localization, the state vector s is es-
timated directly from the received signals, without estimating
any intermediate parameters [37], [168]. Given the transmitted
signal, and assuming no prior information is available on
the UE’s positions, the direct localization problem can be
formulated as a maximization of the likelihood function

ŝdirect = argmax
s

p(Ŷ|s) = argmax
s

ln(p(Ŷ|s))

= argmin
s

[(Ŷ − µ(s))HΣ−1

Ŷ
(Ŷ − µ(s))].

(80)

Here, ΣŶ is the covariance matrix of the received symbols,
which can be ignored if independent identical Gaussian distri-
bution of noise vector in (29) is assumed for different antennas
and measurements.

Direct localization is applicable to both quasi-synchronous
(only BSs are synchronized) and asynchronous (none of the
devices are synchronized) systems [9]. However, the com-
putational complexity of solving the optimization problem
formulated in (80) is high due to non-convexity and the large
search space. Prior information is important in this case to
limit the search area.
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2) Multi-stage Localization: The multi-stage localization
procedure divides direct localization into a geometry infor-
mation estimation stage and a position/orientation estimation
stage, which reduces the complexity of calculating all the
unknowns from the received data. More specifically, the mea-
surement vector γ is first estimated and then the state vector
is extracted from it [60], [69]. Similar to (80), a multi-stage
localization problem can be formulated as

ŝmulti−stage = argmax
s

p(γ̂|s)

= argmin
s

[(γ̂ − γ(s))HΣ−1
γ̂ (γ̂ − γ(s))],

(81)

where Σγ̂ is the covariance matrix of the measurement
vector and γ̂ is the estimated measurement vector from
channel estimation. Multi-stage approaches are inherently
sub-optimal [168] and usually inferior to direct localization.
However, by considering all multipath components, multi-
stage localization can reduce the performance gap with direct
localization, and it is hence pursued in many works [60], [69].

In multi-stage localization, the parameter vector γ needs
to be estimated first. Each element in γ (e.g., AOA/AOD,
channel gains, and signal delay for each path) can be obtained
independently or jointly. The channel gain can be estimated
by solving a least-squares (LS) problem [60]. AOA/AOD
can be estimated using subspace-based methods (e.g,. MU-
SIC) [186], compressed sensing (CS) [187], deep learning
(DL) [188], or Bayesian inference [87]. TOA can be estimated
using correlation-based [189] or energy-based methods [190].
The channel parameters can also be estimated jointly using
multidimensional channel parameter estimation via rotational
invariance techniques (MD-ESPRIT) [191], [192]. In general,
the performance of AOA/AOD estimation depends on the
array size of the device, while TOA estimation benefits from
synchronization and wideband signals. In addition, the error
in different stages propagates and may affect the localization
performance, which should be considered in system design for
a better tradeoff of processing time and performance.

3) Practical Algorithms for Geometry-based Localization:
With the geometry information γ̂ obtained from channel
estimation, multi-stage localization problems can be formu-
lated using (81) (direct localization only requires Ŷ as in
(73)). An analytical closed-form solution might be obtained
by setting the derivative of an objective function equal to
zero and solving for the position parameters. However, this
approach is impractical considering the non-convexity of the
cost function. We discuss two practical categories of optimiza-
tion algorithms: convergent iterative methods and heuristic
methods [48], [193].

• Convergent iterative methods: If the gradient informa-
tion from the signal model is known, gradient- or
Hessian-based algorithms can be implemented. Other
iterative algorithms such as alternative projection [194]
and expectation-maximization [60] are also practical so-
lutions to reduce the computational burden. Within a
few iterations, such deterministic algorithms converge to
an optimum of the objective function. The convergence
depends on the formulation of objective functions and

iteration parameters (e.g., step size), where local solutions
can be reached.

• Heuristic/metaheuristics methods: Heuristic methods are
capable of dealing with non-differential nonlinear ob-
jective functions and reaching near-optimal solutions
faster. Popular algorithms include swarm intelligence,
tabu search, simulated annealing, genetic algorithms, and
so on [55], [195], [196].

Given the sparsity of high-frequency channels and a large
number of measurements (due to large bandwidth and array
sizes/RFCs), we expect that multi-stage localization will be
favored in THz localization. However, for applications that
require high localization accuracy, a practical approach is
to determine an initial position via multi-stage algorithms
and then refine it using direct localization. Next, we discuss
learning-based localization.

D. Learning-based Algorithms

In the previous subsection, we discussed geometry-based lo-
calization. In challenging environments where geometric mod-
els cannot be formulated (e.g., many non-resolvable NLOS
paths), or when geometry-based localization cannot handle the
processing speed requirements of the system, learning-based
methods can be used. In this subsection, we briefly describe
the implementations of ML-based localization algorithms in
two categories, namely, direct localization and multi-stage
localization. Then, practical ML-based algorithms will be
discussed.

1) Direct Localization: ML-based localization involves two
phases, offline training of the model f(·) and online processing
of the observation to obtain a position estimation p̂ = f(y).
During the training phase, a training data set D = ⟨Dy,Dp⟩
(including |D| signal-position pairs ⟨ytrain

i ,ptrain
i ⟩, (1 ≤ i ≤

|D|, ytrain
i ∈ Dy, ptrain

i ∈ Dp) is needed to train the model f(·)
(optimize the parameters of this function) in order to reduce
the loss function L(f(ytrain),ptrain). Take the mean squared
error (MSE) cost function for example, we can have

L(f(Dy),Dp) =

|D|∑
i

∥f(ptrain
i )− ptrain

i ∥2. (82)

After the training, the model f(·) can be used to output end-
to-end location information by taking the raw observation data
as the input.

Fingerprinting (or pattern matching) is an approach that
utilizes a database of fingerprints to find the best position
match for a particular signal measurement [6]. The channel
state information (CSI) and RSS could be used as the entries
to construct the database. While RSS suffers from limited
accuracy and CSI requires high computational power, spatial
beam SNRs are adopted as a mid-grained intermediate channel
measurement [176]. For the retrieval process, deep learning
methods such as deep neural networks (DNN) and convo-
lutional neural networks (CNN) are valuable tools to obtain
effective models for location estimations [167], [176].

In this category, all the information is maintained and will
provide accurate results if the data in the implementation
scenario matches the training data set. However, the drawbacks
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are the data collection in the training phase, and the scalability
issue as one model only works for a specific scenario.

2) Multi-stage Localization: Similar to the geometry-based
localization, the direct localization task can be decomposed
into several sub-tasks (e.g., signal pre-processing, intermediate
geometry parameters estimation, and localization). Each sub-
task can be solved using learning-based methods with a much
smaller training dataset. In the first stage, learning-based
methods can be used to reduce the effect of the hardware
impairments (HWIs) such as antenna spacing error [197],
IQI [198], mutual coupling (MC) [199], and power amplifier
nonlinearity (PAN) [200]. The distorted signal due to the
impairments can be recovered or compensated during the
data pre-processing stage. In channel parameter estimation,
learning-based methods have been implemented to estimate
the angle [201], [202] and delay [203], [204]. In terms of the
localization stage, machine learning has shown the potential
to improve localization performance via NLOS identifica-
tion [205], and global fusion profile [206].

Considering the high dimension of the system parameters
and the complexity of the environment, the training of an end-
to-end localization model may not be practical. The design of
learning-based algorithms for sub-tasks reduces the training
cost. These trained models are also flexible to adapt to different
scenarios (e.g., a trained model in MIMO systems may not
fit a MISO system, but range or angle estimation are more
general). Nevertheless, the propagation of the error caused at
each stage needs to be considered while adopting learning-
based methods.

3) Practical ML algorithms: Machine learning algorithms
are usually classified into supervised learning (used for solv-
ing classification and regression problems) and unsupervised
learning (used for data clustering) [38]. Other approaches,
including semi-supervised learning, reinforcement learning,
transfer learning, and federated learning, are designed to solve
the issues faced by the supervised and unsupervised learning
algorithms, which will be discussed as follows.

• Supervised Learning: Traditional machine learning algo-
rithms, such as random forest, support vector machine,
and recent popular deep learning, belong to supervised
learning. Due to the wide application scenarios in many
fields, a lot of toolboxes such as Tensorflow [207] and
PyTorch [208] make the implementation simple for the
researchers. However, two challenges exist. One is the
data collection of the offline phase, where sufficient real
data are not easy to obtain, and synthesized data may not
be accurate. Another is the selection of model parameters;
for example, the number of layers and neurons, as well as
model structures, make deep learning often an art rather
than a science.

• Unsupervised learning: Without the need for well-labeled
datasets, unsupervised learning is widely used for clus-
tering, and dimension reduction (or feature extraction).
A novel framework called channel charting is proposed
in [170], which learns CSI in a fully unsupervised manner
and can map a high-dimensional point set (the channel
features) into a low-dimensional point set (the channel

chart). However, this category can only perform data pre-
processing, and location information cannot be obtained.

• Other approaches: By combining the two above-
mentioned categories, semi-supervised learning can train
the model with partially labeled data (e.g., |Dp| << |Dy|
in the training dataset D). For the scenario without a
clear objective function (only a reward is known after
taking action) reinforcement learning is preferred, which
is suitable for training without a clear cost function using
online data. Transfer learning is able to take advantage
of the existing model to reduce the training time, and
federated learning works in a distributed manner and
hence protects user privacy. More details of ML-based
localization can be found in [38]–[40], [42], [209], [210].

In summary, despite the channel at THz frequencies being
more deterministic than at lower frequencies, which suits
geometry-based methods well, we argue that learning-based
methods still have advantages in two aspects. Firstly, pro-
cessing large volumes of data (due to a wide bandwidth)
necessitates faster algorithms for localization, and ML algo-
rithms are efficient at feature extraction and hence speed up
the processing. Secondly, hardware impairments are severe
in high-frequency systems, and the mismatch between the
theoretical and actual system models affects the performance,
which needs to be mitigated by learning-based methods with
onsite data.

E. Tracking and SLAM Algorithms

While this paper is focused on the snapshot localization
problem, this is generally part of a wider tracking [211] or
SLAM [212] routine, which the UE performs sequentially,
based on its own mobility model and periodic measurements.
For completeness, we briefly describe their operation in the
following sections.

1) Tracking: In mobile applications, initial access is only
needed for the first several frames or when the communication
link is lost. Once initial access is completed, the UE goes
into tracking mode. Mathematically, the model for a tracking
problem can be expressed as

sU,t ∼ p(sU,t|sU,t−1) (83)
γ̂t ∼ p(γt|sU,t), (84)

where sU,t is the UE state vector at time t, which depends on
the previous state sU,t−1 via a stochastic mobility model, and
γ̂t is the measurement vector at time t as defined in Sec. IV-A,
which depends on the UE state at time t. The observation
contains the estimated angles and delays related to LOS and
RIS paths. In addition, a prior p(sU,0) is assumed to be given.

Solving the tracking problem refers to determining the
posterior of the state p(sU,t|γ̂1:t) given all the collected
measurements up till the current time. Several filters exist to
solve the tracking problem, though they are all approximate
(unless the mobility and measurement models are linear and
Gaussian). These filters include:

• Filters based on the Kalman filter (KF): the KF provides
a recursive solution for linear filtering problems. For
nonlinear problems, an extended Kalman filter (EKF) can
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be used, which approximates the state distribution using
a Gaussian random variable and propagates analytically
through the first-order linearization [213]. Other exten-
sions of the KF families include the unscented Kalman
filter (UKF) and the cubature Kalman filter (CKF), where
the former addresses the approximation issues of the
EKF [213], and the CKF suits high-dimensional state
estimation [214]. The KF-based filters generally have low
complexity but are unable to cope with highly nonlinear
models or multi-modal distributions.

• Filters based on the particle filter (PF): the PF is another
widely-used filter that exploits the representation of an
arbitrary probability density function (PDF) by a set of
particles [215]. PFs have the advantage of dealing with
highly nonlinear and non-Gaussian models, but at the
cost of high computational complexity, as the number of
particles grows exponentially in the state dimensionality.

An added advantage of tracking is that the transmitted signals
and the precoders, combiners, and RIS coefficients can be
optimized to account for the a priori information on the UE
state. This topic will be covered in more detail in Section V.

2) SLAM: While not considered in this work, the mea-
surements γ̂t at each time step t also provide information
about the location of the scatter points (landmarks in SLAM
parlance), shown in Fig. 3. In turn, this knowledge can improve
estimating the UE state, which is the main idea behind SLAM.
SLAM has been widely applied in robotics [216], [217] and
autonomous driving [2], where an agent locates itself and
constructs the unknown map at the same time [173]. With the
wide bandwidth and MIMO structure implemented in 5G/6G
systems, this topic draws the attention of the communication
community with several mmWave systems proposed. The
SLAM systems can broadly be classified into two categories,
infrastructure-based [173] and non-infrastructure-based sys-
tems [218]. In the infrastructure-based systems, the positions
of UE and scatters are estimated from the signals transmitted
from the BS, as mentioned in (64). In a situation where no
BSs are deployed, the UE sends a sequence of signals and then
processes the received signal reflected from the surrounding
environments [218]. The SLAM problem is inherently chal-
lenging since the data association between the landmarks and
measurements is unknown (i.e., which landmark generated
which delay or angle measurements).

In our THz context, to infer the locations of scatter points
and execute SLAM, the following modifications are needed.
First of all, the channel model H(l)

N from (25) should be
expressed as a function of the scatter location, say p(l)

N [78],
[219], [220]. Secondly, the local and global data associa-
tions between the angles and delays in γ̂t and the landmark
locations p(l)

N should be enumerated and their likelihoods
should be calculated. This calculation should account for the
hidden UE state as well as the possibility of false alarms
(spurious measurements) and missed detections (landmarks
without measurements at the current time). Finally, the joint
posterior of the UE state and the landmark state should be
computed in an iterative manner, with well-defined predic-
tion and correction steps, accounting for all or a subset of
most likely data associations. Common methods in this field

are FastSLAM [221], GraphSLAM [222], belief propagation
SLAM [223], and random finite set theory-based SLAM [220],
[224]. These mainly differ in how the data associations
are computed, how the prediction and correction steps are
performed, how the UE state is represented (e.g., particles
or a parametric density), and how the map is represented
(e.g., parametric, grid maps, feature maps, topological maps,
semantic maps, appearance maps, and hybrid maps [217]).

In summary, tracking in THz systems is challenging due to
the narrow beamwidths resulting from beamforming with large
array sizes. Adaptive beamwidth design could thus be adopted
for different tracking scenarios (e.g., high speed, confident
prior information). Nevertheless, the accuracy of both tracking
and SLAM improves with narrow beamwidths resulting in
a high angular resolution. Furthermore, with dense network
deployments and wide bandwidths, an unparalleled SLAM
performance can be achieved in THz systems.

F. Summary

In this section, we formulate the localization problems,
describe the CRB, and detail some localization techniques.
In particular:

• We describe the localization parameters as a state vector
and a measurement vector. Different vectors can be
defined based on application scenarios and algorithm
selections.

• We introduce the CRB for position and orientation esti-
mation based on the state and measurement vectors.

• We formulate geometry-based methods, namely, direct
localization and multi-stage localization, and discuss sev-
eral channel estimation and localization algorithms.

• We discuss several THz localization and sensing exten-
sions, namely, learning-based localization, tracking, and
SLAM. These techniques can deal with different local-
ization scenarios and improve localization performance.

In the next section, we formulate system design and opti-
mization problems and discuss the relationships between the
variables to be optimized and the affected objectives.

V. LOCALIZATION SYSTEM DESIGN AND OPTIMIZATION

System design and optimization are essential for deter-
mining the fundamental limits of attainable localization per-
formance. We start by presenting the optimization problem
formulation based on the desired system objectives. Then, we
discuss the high-level design considerations of the system.
Afterward, we detail two groups of system design problems:
offline optimization and online optimization. Finally, we con-
clude this section with simulations and system evaluation.

A. Optimization Problem Statement

1) Motivation: Optimization is essential in communication
systems to meet different objectives of signal-to-interference-
plus-noise ratio (SINR), energy efficiency, maximum through-
put, Etc. For localization purposes, the PEB and OEB defined
in IV-B2 are used when accuracy is chosen as an objective
in system design. Although this criterion is valid only when
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the estimator is efficient, it is still a tractable and effective
tool for analyzing performance in the asymptotic region.
Other objectives described in Sec. II-C are also important in
certain scenarios. However, the definition of an objective is not
always straightforward and is not unique; objectives need to
be defined based on the application scenario. Due to different
formulations of objective functions, we have to make compro-
mises, especially when optimizing joint communication and
localization systems.

In low-frequency localization systems, PRSs are broadcast
by the BSs, and the corresponding system design is mainly
offline (such as BS layout and antenna array design). In
mmWave MIMO systems, localization performance benefits
from the beamforming gain. However, beamforming requires
the location knowledge of receivers. Hence, online design of
precoding and combining matrices, as well as resource alloca-
tion, are of great importance. Such knowledge of transceiver
locations is crucial in UM-MIMO THz systems with narrow
beams. For AOSA-based THz systems, the optimization of
precoder/combiner is at the SA level instead of the antenna
level. Thus, in addition to the data symbols from the RFCs,
the SA beamforming angles should also be well-designed.
Furthermore, the optimization of RIS coefficients and re-
source allocation inside a dense network (possibly in near-
field scenarios) requires effective algorithms. In summary,
offline and online optimizations are equally important in future
communication systems. We next formulate the optimization
problem and discuss the effect of different variables on system
objectives.

2) Problem Formulation: Different localization scenarios
have different performance requirements (or objectives, such
as accuracy, coverage, and so on, as defined in Sec. II-C).
In most cases, these objectives are related, and tradeoffs have
to be made. For example, increased coverage may increase
Latency, and increased update rate may affect accuracy. A
system may seek one or several objectives to be optimized
while meeting other practical constraints.

A general optimization problem formulation of THz local-
ization systems, consisting of an objective function f(V) and
a constraint function g(V), can be expressed as

V =argmin
V

f(V),

s.t. g(V) ≤ 0.
(85)

Here, V is a set of variables that could be chosen from the
number of devices LQ, positions pQ, antennas per array NQ

and SA N̊Q, SA spacing ∆, AE spacing ∆̊, beamforming
angles φ̊, RIS coefficient Ω, number of transmissions G,
etc. Rather than choosing a single objective or constraint,
multiple objective optimization (MOO) problems can also be
considered, implying that f(V) and g(V) could comprise a set
of objectives and constraints.

The objective functions depend on the system requirements
for localization performance discussed in Sec. II-C, while the
constraints reflect the types of variables (e.g., discrete variables
or continuous variables) and the search space (e.g., positions
within a specific area) of the variables to be optimized. In
different scenarios, a parameter could either be an objective

TABLE VIII
OBJECTIVES OF DIFFERENT DESIGN/OPTIMIZATION CONSIDERATIONS
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Directionality G0 ✓ ✓ ✓
Quantization Q ✓ ✓
Codebook C ✓ ✓ ✓
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Time/ #. of Meas. T,G ✓ ✓ ✓ ✓ ✓
Bandwidth B,K ✓ ✓ ✓ ✓ ✓ ✓
Power P, s ✓ ✓ ✓ ✓
Beamforming Angles φ̊ ✓ ✓ ✓ ✓ ✓
RIS Coefficients Ω ✓ ✓ ✓ ✓ ✓ ✓

or a constraint. For example, localization accuracy can be
used as an objective to be optimized, but it could also be
accounted for as a constraint to be met (e.g., the minimum
required accuracy) alongside other objectives to be optimized
(e.g., energy efficiency).

To achieve the system objectives while sustaining the con-
straints, we classify the system design and optimization into
offline and online. The corresponding variables and the effect
on the system objectives are summarized in Table VIII. Before
discussing these two categories, we detail design considera-
tions.

B. Design Considerations

When designing a localization system, we consider aspects
such as the selection of network structures, the cooperative
strategy, and algorithms determined by the application scenar-
ios.

1) Network Topology: In previous sections, we described
a communication system consisting of an LOS channel, an
RIS channel, and multiple NLOS channels. However, multiple
BSs/RISs/UEs (e.g., LB/LR/LU) should be involved as den-
sification is one of the main features in future communication
systems. THz communication system topologies can be clas-
sified into three types: centralized, distributed, and clustered.
The clustered architecture is mainly seen in nanonetwork
environments where short communication distances and high
energy efficiency are favored [26]. For macro scenarios where
the communication distance is large, centralized and dis-
tributed structures are usually used. The centralized structures
can yield better overall performance with proper scheduling,
while the distributed ones protect user privacy.

2) Network Structure: For macro scenarios, three structures
can be considered to improve system performance:

• Heterogeneous network: Future networks are likely to
be heterogeneous where different wireless (and wired)
protocols coexist [225]. Such a multi-band network can
sufficiently alleviate the deafness issue and reduce the
initial access delay.
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• RIS-assisted network: Passive RISs can reshape the chan-
nel and increase coverage. The footprints of RISs oper-
ating at THz frequencies are expected to be small due to
short wavelengths, which can provide extra flexibility in
deployment.

• Cell-free network: UM-MIMO systems provide beam-
forming gains and energy efficiency [226]. However,
performance is limited by the THz channel due to its
lower-rank and poorer, sparser structure of multipath
propagation [31]. By adopting a distributed MIMO sys-
tem with multiple BSs (probably with a smaller array
size) without cell boundaries, UE could have a high
coverage probability [227], and the geometrical diversity
of the BSs can also improve the localization performance.

Such infrastructure enablers can improve the localization per-
formance, assuming proper protocols, useful network manage-
ment overheads, and efficient real-time processing.

3) Cooperative Strategies: Although frequent communi-
cations between the UEs cause overheads and energy con-
sumption, cooperative localization improves the localization
accuracy and the localization coverage [8]. The corresponding
performance metrics should thus be defined for a reasonable
tradeoff. In addition to cooperation between BSs, RISs, and
UEs, other types of cooperation, including UAV-assisted lo-
calization [228] and data fusion from other types of sensors
such as IMUs [229] and cameras [230], are also important.

4) Hardware Selection: In order to achieve a good tradeoff
between hardware cost and system performance, hardware se-
lection is involved in offline system design. Hardware selection
considers the directionality of antennas, the quantization of
phase-shifters (or RIS coefficients), and the effect of hard-
ware imperfection. In [231], the effect of the antenna model,
blockage, absorption, density on the interference, and SNR
are analyzed for THz systems. This analysis provides insight
into device density and antenna directionality selection for
THz network design. In general, omnidirectional antennas are
used at the service discovery phase, and directional antennas
are used for message transmissions and localization [232]. In
addition, the amplitude and phase control of RISs are not
continuous in practice, where a quantized model should be
considered in system design [233].

5) Signal Design: Implementing single-carrier versus
multi-carrier modulation in THz systems is still not con-
clusive. Wideband single-carrier modulation has low com-
plexity and could be used in scenarios with frequency-flat
channels (e.g., limited multipath components). However, due
to the frequency-dependent molecular absorption loss and
multipath (mainly in indoor environments), multi-carrier sys-
tems are still preferred at the cost of high complexity and
low power efficiency. OFDM can serve as a direct off-the-
shelf solution, and discrete-Fourier-transform spread OFDM
(DFT-s-OFDM) [75], [76] can be used to reduce the PAPR
effect. Other multi-carrier modulations such as orthogonal
time-frequency space (OTFS) modulation (suitable for highly
dynamic channels) [234], hierarchical bandwidth modula-
tions [235] (mitigate the effect of molecular absorption),
spatial [236] and index modulations [237] (improve spectral
efficiency) are also considered for certain scenarios. THz non-

orthogonal multiple access is also being studied [238], [239].
In this work, we want to compare THz systems and mmWave
systems directly; hence, OFDM modulation is assumed.

From a communication point of view, the selection of signal
parameters, such as carrier frequency, bandwidth, and packet
length, affects the data rate or spectrum efficiency. These
parameters are also crucial for localization to obtain specific
objectives. A large bandwidth is helpful to separate paths in
the delay domain, but the increased sampling rate and data
size should not exceed the hardware limit. The packets should
be long enough to capture enough energy but short enough to
meet delay constraints, especially in mobile scenarios. The
design considerations directly affect the performance of a
localization system; we evaluate some signal parameters via
simulations in Sec. VI.

C. Offline Optimization
In an offline design, no knowledge of the posi-

tion/orientation information of UEs is available. However, the
surrounding environment information could be available. The
offline design includes layout optimization, array design, and
codebook optimization.

1) Layout Optimization: If the number of BSs/RISs/UEs
is determined, their positions can be optimized based on the
CRB derived using a predefined codebook. Environmental
information (e.g., the geometry of the detection area and
position of the blockage) can also be used to optimize the
layouts and achieve the best localization performance. For the
BSs with antenna arrays or directional antennas, the orientation
should also be optimized.

2) Array Design: Increasing the number of antennas in an
array yields higher angular resolution and beamforming gains.
However, more antennas indicate higher system complexity
and power cost. When adopting an AOSA structure, the
design of SA size is also important. A large number of AE
per SA increases beamforming gain and improves accuracy,
but narrow beamwidths reduce coverage and cause deafness
issues.

3) Codebook Optimization: IA is the procedure in which a
new UE establishes a physical link with a BS to switch from
an idle mode to a connected mode [240]. We can treat the
IA procedure as localization without UE prior information.
The narrow beams in THz systems make IA challenging
due to deafness (transmit-receive beams do not point to each
other) and blockage (channel drop caused by obstacles, device
movement, or rotation) [241]. Hence, effective initial access
procedures and dedicated codebook design are needed [242].

The design of codebooks depends on the search strategies,
which can be broadly classified into several categories:

• Exhaustive search: The BS/UE transmits/receives data
symbols by beamforming in different directions [243].

• Iterative search: Hierarchical codebooks can be designed
to transmit pilots over wider sectors at the beginning and
then narrow down the beams to find the best angular
space [244]–[246].

• Scene-aware search: If the position prior or environmental
information is available, the beams can be learned for
each partitioned area to reduce IA delay [240], [247].
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For these strategies, an exhaustive search provides the best
coverage and hardware feasibility, but the discovery delay
grows linearly with beamforming gain [248], [249]. Iterative
search reduces the discovery delay at the expense of limited
coverage. Considering the potential of THz SLAM, we expect
a scene-aware search to be used.

4) Offline Design Example: Consider an RIS placement
problem in which we want to minimize the localization
coverage area with UE’s PEB greater than an error thresh-
old ϵ (e.g., 0.1 u), given BS locations and orientations. For
each possible RIS placement (position pR and orientation
oR) and each possible UE location pU (assuming an om-
nidirectional antenna), there exist a FIM J(pU,η|pR,oR)
and corresponding PEB(pU,η|pR,oR) that can be obtained
from (70). Here, η contains nuisance parameters (e.g., channel
gains, clock biases), which are replaced with nominal values
(e.g., η(pU,pR,oR) obtained from channel models). Similar
assumptions need to be made for other variables such as
precoders, combiners, and RIS coefficients. We can then
formulate the RIS placement problem as

maximize |R(pR,oR)|
s.t. pR ∈ R3,oR ∈ SO(3),

(86)

where R(pR,oR) = {pU ∈ R3|PEB(pU,η|pR,oR) ≤ ϵ}
is the localization coverage area, and |R(pR,oR)| denotes
the volume of the coverage area (e.g., a set of discrete UE
positions). Such a problem is generally non-convex and grid-
search techniques can be applied.

Offline optimization in THz systems differs from low-
frequency systems in several aspects. Firstly, the pre-
coders/combiners and RIS coefficients need to be optimized
first before layout optimization. Furthermore, optimization
with multiple BSs/RISs is highly non-convex, and it is thus
hard to obtain globally optimal solutions. Heuristic algorithms
could be alternative time-saving options to get satisfactory sub-
optimal results. Note that the optimization problem formulated
in (86) is a simplified case in which the antenna at the UE
is assumed to be omnidirectional. In general, however, the
orientation of the UE needs to be considered when optimizing
the layout.

D. Online Optimization

Unlike the offline design, where no prior information is
available, online optimization is performed with known UE
position/orientation information (or with prior information in
the tracking scenario). Online optimization can be formulated
as minimizing the worst-case localization performance (e.g.,
PEB) [250]. We consider online optimization in three aspects:
resource allocation, active beamforming optimization, and RIS
coefficient optimization.

1) Resource Allocation: Resource allocation is an essential
phase in the operation of a communication network serving
multiple UEs or conducting multiple tasks. This subsection
focuses on three types of resources: time, bandwidth, and
power (the space resource is discussed in Sec. V-D2 and
Sec. V-D3.

• Time Resource: For single-user communication, a trade-
off between transmission time and overhead needs to be
made. Intuitively, more transmissions/measurements yield
better localization accuracy at the cost of increasing the
latency and overhead. The allocation strategy should also
consider UE speed and channel coherence. The allocation
of time slots (or transmissions) for multiple users aims at
meeting the positioning quality-of-service (QoS) within
the served area.

• Frequency Resource: Due to the variation of vapor ab-
sorption coefficients at different frequencies, the THz
spectrum is divided into a set of distance-varying spectral
windows [130]. The size of the effective bandwidth
window gets smaller with increasing link distance. In THz
communications, the effective bandwidth is expected to
support hierarchical bandwidth modulation [235], opti-
mizing device density to maximize capacity [251]. From
a localization point of view, suitable subbands and sub-
carriers need to be selected and assigned to the UEs at
different distances.

• Power Allocation: For most applications, localization
accuracy is a constraint rather than an objective to be
optimized. For example, an accuracy of, say 1 cm is
sufficient for a mobile user to know its location inside
an office building. Hence, there is no reason to increase
the transmission power to achieve an accuracy of 1mm.
With proper power allocation, different performance re-
quirements of different UEs can be met with minimal
resource utilization.

Resource allocation is usually expressed as constraints for
active and passive beamforming optimizations, as we describe
shortly.

2) BS/UE Beamforming Optimization (Active Beamform-
ing): With prior location information, setting the beamforming
angles to point to the receiver increases the power of the
received signal, which is beneficial for communication. How-
ever, this SNR increment does not guarantee an improvement
in localization performance. More practical solutions utilize
the CRB as an indicator. Given the uncertainty range of the
target directions, the optimal precoders for tracking the DOA
and DOD are derived in [252] by solving a formulated convex
optimization problem. With multiple measurements, iterative
location estimation and beamforming optimization can also be
performed [253].

By implementing AOSA structures and directional antennas,
space resource allocation reduces the assignment of beams
(SAs). The optimization of the analog beamforming angles
directly affects the accuracy and coverage of the system. For
scenarios with multiple UEs, the SAs need to be assigned
wisely to different UEs, completing both the localization
and communication tasks. The SA selection is especially
important in localization, where accuracy depends on the array
layout. For a communication network with multiple BSs, joint
beamforming optimization is also needed to achieve a better
overall system performance.

3) RIS Coefficients Optimization (Passive Beamforming):
The optimization of RIS coefficients is as crucial as active
beamforming at the BS/UE arrays to enhance signal gain
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in RIS-assisted systems. When the UE position is unknown,
multiple transmissions with random symbols or beamforming
angles can be used for localization purposes. With prior infor-
mation of the UE position/orientation, beamforming angles at
the BS/RIS/UE can be jointly optimized.

The coefficients of RIS elements can be optimized to serve
communication or localization purposes [250]. The elements in
an RIS can be optimized to maximize the SNR at the receiver
for a higher data rate. However, a high SNR does not indicate
a lower CRB. By analyzing the FIM, [250] optimizes the RIS
elements in a 2D SISO localization system to reduce the PEB.
However, the optimization algorithms for 3D MIMO systems
are not yet available.

4) Online Optimization Example: We again consider the
case with RIS, where we aim to optimize the RIS phase
profiles Ω1, . . . ,ΩG for different transmissions, given a certain
precoder at the UE and a combiner at the BS. We assume
that the UE location is known to be in some region with
pU ∈ R∗ ⊂ R3. By introducing ωg =diag(Ωg) ∈ CNR×NR

and using η to indicate the estimated values of other nuisance
parameters, we can compute the FIM J(p̂U,η|ω1, . . . ,ωG)
and its corresponding PEB. An online optimization can then
be formulated as

minimize ε

s.t. PEB(pU,η|ω1, . . . ,ωG) ≤ ε

pU ∈ R∗

|ωr,g| = 1,∀r, g.

(87)

This problem can be solved by first removing the unit norm
constraint so that a convex problem can be obtained. Then the
solution needs to be projected onto the appropriate manifold.

In THz systems with wide bandwidths, more time-frequency
blocks will be available. These resources need to be allo-
cated wisely to serve a large number of users with different
communication and localization performance requirements. In
addition, joint beamforming optimization for BS/RIS/UE is
crucial since THz systems are expected to rely heavily on
RISs due to severe blockage. Furthermore, the optimization
at the SA level in an AOSA structure is different from the
optimization at the antenna level in traditional MIMO systems.
Consequently, novel online optimization algorithms are called
for in THz systems to assist in accurate tracking.

E. Summary

In this section, we formulate the optimization problems
and discuss several aspects of localization system design and
optimization, which can be summarized as follows:

• We start by motivating system optimization and formu-
lating the optimization problem with a set of variables
related to different objective functions.

• We discuss high-level system considerations such as
network topology, network structure, cooperative strategy,
hardware selection, and signal design, which is dependent
on the application scenario.

• We divide system design into offline design and online
optimization, and discuss the challenges for THz systems
compared with low-frequency systems.

TABLE IX
DEFAULT SIMULATION PARAMETERS

Parameters Simulation Values
mmWave / THz Frequency fc 60GHz / 0.3THz

Transmission Power P 10 dBm

Noise PSD −173.86 dBm/Hz

Noise Figure 13 dBm

Array Footprint (BS/RIS/UE) 2×2 cm2 / 10×10 cm2 / 1×1 cm2

AE Spacing ∆̊ λc/2

Bandwidth W 100MHz

Number of Transmissions G 10
Synchronization Offset B 10 us (for Simulation D/E/F/G)
Number of Subcarriers K 10

Signal Wave Model SWM (near-field)
Localization Scenario 2D Position, 1D Orientation

mmWave Array Dim NQ (BS/RIS/UE) 4×4/ 20×20 / 2×2

THz Array Dim NQN̊Q (BS/RIS/UE) 20×20/ 100×100 / 10×10

THz SA Dim N̊B /N̊R/ N̊U 5×5 / 1×1 / 5×5

Position pB / pR / pU [0, 0, 0]T / [5, 5, 0]T / [10, 0, 0]T

Orientation oB / oR / oU [0, 0, 0]T / [−π
2 , 0, 0]T / [ 5π6 , 0, 0]T

The next section provides simulations to show the effect of
parameters on the system CRB.

VI. SIMULATION AND EVALUATION

In this section, we provide several simulations to evaluate
the effect of system parameters on localization performance.
A 0.3THz sub-THz system and a 60GHz mmWave system in
an uplink scenario are considered with the default parameters
listed in Table IX. These parameters are the default setting
for the rest of the simulations unless otherwise specified.
Simulations A/B/C/D (Sec. VI-A to VI-D) consider only LOS
channels, while the effects of RIS and NLOS channels are
discussed later in simulations E/F/G (Sec. VI-E to VI-G).
Matlab code is available in [254].

A. A Comparison between mmWave and THz Systems

We first compare the PEB and OEB between two systems
with different array configurations. To make a fair comparison,
we fix variables such as transmission power, time, and maxi-
mum footprint. A fully connected antenna array is adopted in
the mmWave system, while an AOSA structure is used for the
THz system. All the RFCs send different random data symbols
with normalized energy.

In this comparison, the system is assumed to be synchro-
nized 11, while for simulations D/E/F/G a synchronization off-
set is assumed. We also assume that no prior information of the
UE is available, and hence the beamforming angles at the SA
(AOSA systems) are set randomly as ϕ̃, θ̃ ∈ (−90◦, 90◦) for
different transmissions. We use CRB (PEB/OEB) to evaluate
the fundamental limit of the localization systems as shown in
Fig. 5. This figure illustrates the potential of THz localization
(lower PEB and OEB), where ∼5 (∼20) times better position-
ing performance without (with) prior information is expected

11If only an LOS channel is considered in a far-field model, synchronization
between the BS and the UE is needed for delay estimation. However, if more
paths are available, e.g., extra LOS paths provided by other BSs, RIS, or
NLOS paths, synchronization is not a requirement. One typical example is
TDOA-based localization.
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Fig. 5. PEB/OEB vs. the number of BS antennas/SAs. (a) PEB; (b) OEB; (c)
Illustration of different array configurations. By moving the carrier frequency
from 60 Ghz to 300 GHz, the error bound increases due to high path losses.
Furthermore, increasing the antenna spacing from 0.5λ to 2.5λ (maintaining
the same footprint as the mmWave system) improves the performance. Adopt-
ing an AOSA structure with an SA size of 5× 5 introduces a beamforming
gain, and the error bounds outperform the benchmark mmWave system.
The bounds can be even lower with a larger bandwidth (1 GHz rather than
100 MHz) and prior information (e.g., setting the beamforming angle of the
BS to the direction of a UE).

to be achieved with the same power and footprint compared
with mmWave systems. In other words, to achieve the same
performance as that of mmWave localization systems, less
resources (e.g., power, footprint) are needed. However, to fully
exploit the potential of THz localization systems, multiple
transmissions and prior knowledge are required to solve the
deafness issue. We evaluate the effect of transmission numbers
on the CRB in the next subsection.

2 4 6 8 10 12
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Fig. 6. PEB vs. number of transmissions with a fixed total transmission
energy. The number of transmissions has a minor effect on the benchmark
mmWave systems. However, multiple transmissions are needed for the AOSA
structures adopting analog beamformings, especially when the SA dimension
is large. (N is the number of SA, and N̊ is the number of AE per SA.)

B. The Effect of Transmission Numbers on CRB

We simulate the effect of transmission numbers (G) on the
PEB with different SA dimensions using fixed total transmis-
sion energy and the number of RFCs. Although the AOSA
structure can also be adopted in mmWave systems, we use
a fully digital array with 4 × 4 antennas for benchmarking
purposes. For THz systems, we simulate different SA dimen-
sions with N̊B = N̊U = 2 × 2, N̊B = N̊U = 5 × 5, and
N̊B = N̊U = 10 × 10, respectively. The results are shown in
Fig. 6.

We notice that the number of transmissions has a minor
effect on the benchmark mmWave systems because of the large
beamwidth generated from a small array size. By incorporating
the AOSA structures, the computational and hardware cost
can be reduced. However, multiple transmissions are needed
to obtain a lower bound, where the G needed for the bound
to converge increases with the SA dimension. With more
transmissions, the deafness issues can be solved, and a UE
can thus be located more accurately. In the next subsection,
we discuss the effects of PWM/SWM and Syn/Asyn on the
CRB of the system.

C. The Evaluation of PWM/SWM for Different Channel Mod-
els

We have discussed several system assumptions, namely
synchronized or asynchronized systems (Remark 1), unknown
or partially-known channel gains (Remark 2), and SWM/PWM
(Sec. III-E1). These assumptions affect the channel realization,
system model, and CRB. The PEB for Asyn/Unknown/PWM
are not included because the position cannot be estimated in
this scenario. For simulation purposes, we assume a single-
antenna UE and evaluate the PEBs for different channel
models by changing the position of the UE on the x-axis xU

with fixed yU = zU = 0. The simulation results are shown in
Fig. 7.

We can see that the boundary between the far-field and
near-field is at around 1 m. With the increasing distance, the
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Fig. 7. PEB vs. distance for different localization models assumptions. The
PEBs of the systems using different signal models (e.g., SWM and PWM)
have a mismatch when the distance from the BS is smaller than 1 m. In
addition, a synchronized system performs better, especially when the distance
is large.

PEBs of SWM and PWM models are converging. However,
the SWM is a more accurate signal model (at the expense of
high computational complexity), which is advantageous when
the UE is close to the BS. In addition, the SWM can help in
synchronization (by exploiting the curvature of arrival) and the
PEBs of asynchronized and synchronized systems converge in
the near-field.

D. Evaluation of the Beam Split Effect

To evaluate the effect of beam split on the CRB, we
assume that prior position information is known, and hence
the beamforming angle at the BS is set as pointing to the UE.
The orientation of the BS is set as 15◦ and 45◦, and an asyn-
chronized UE is located at [2, 0, 0]T . The PEBs for channel
models with and without (w/o) the beam split effect are shown
in Fig. 8. Beam split affects the signal gain and is not preferred
in communications. However, this ‘split’ phenomenon may
provide extra geometry information (e.g., beams at different
subcarriers are pointing to different directions) that can lower
the error bound, especially in wide bandwidth systems.

So far, our discussions are limited to LOS channel. In the
following, we discuss the effect of RIS and NLOS channels
on localization performance.

E. The Effect of RIS on CRB

We simulate the effect of RIS dimensions on the
PEB of a THz system. For a better visualization of the
convergence, we use scaled positions of BS/RIS/UE as
[0, 0, 0]T /[0.5, 0.5, 0.1]T /[0.5, 0.4, 0.05]T , and keep other pa-
rameters as in Table IX. Assuming prior information is known,
the RIS coefficients can be optimized using the method
in [70] to maximize the SNR of the received signal. The
beamforming angles of each SA at the BS (UE) are set to
the directions of either the RIS or UE (BS). For a BS with
NB SAs, the total beams assigned to RIS (bR) and UE (bU)
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Fig. 8. CRB vs. bandwidth for the systems with/without the beam split effect.
The mismatch between different models (solid vs. dashed curves) is larger
with increased beamwidth, array size (blue dot vs. green triangle), and angles
(blue dot vs. red square).
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Fig. 9. CRB vs. the number of RIS elements (NR) for different scenarios
(‘QTZ’ is short for ‘quantization’). ‘bR=0’ means the SAs at BS/UE are
beamforming to UE/BS with prior information; ‘bR=16’ indicates all the
NB/NU SAs at BS/UE are beamforming to the RIS; ‘Adaptive’ utilizes an
optimal beam assignment with grid search).

satisfies NB = bR + bU. Note that such directional beams
and SNR-based RIS coefficient optimization is not optimal for
localization purposes; however, we use it as a benchmark for
further optimization algorithms. Other scenarios also include
quantized coefficients (1-bit and 2-bit quantization on the
RIS coefficients), and the corresponding simulation results are
shown in Fig. 9.

The figure shows that a large RIS with optimized coeffi-
cients improves the performance, and a 2-bit quantization on
the RIS coefficient is sufficient to assist localization (PEB is
close to the setup with continuous phases). Without beam-
forming to the RIS, an increased number of RIS elements
has almost no effect on the PEB of the system. However,
with the AOSA structure, the PEB is also affected by the
SA beamforming angles (e.g., assigned beams to RIS bR) and
more efforts are needed to jointly optimize active and passive
beamforming.



28

0 5 10
-6

-4

-2

0

2

4

6

BS UE

(a) Layout

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

(b) PEB

0 0.2 0.4 0.6 0.8 1

2

2.5

3

(c) OEB

0 0.2 0.4 0.6 0.8 1

10
-1

10
0

10
1

(d) RPEB

Fig. 10. CRB vs. NLOS coefficients. The layout of the BS, UE and possible
reflectors is shown in (a), where l1 and l4 are not resolvable. The NLOS
paths are harmful to the CRB when the reflection coefficients are small. When
increasing the coefficients, PEB, OEB, and RPEB get lower. We also notice
that even if the positions of the reflectors are not resolvable (L = {l1, l2, l4}),
the OEB is still lower than in a setup with a weaker NLOS path (L =
{l1, l2, l3}). However, the RPEB of l1 in the unresolvable scenario is much
higher than in other layouts.

F. The Effect of NLOS Paths

We also evaluate the effect of NLOS signals on the CRB
with different number of reflectors (LN = 0, 1, 2, 3) as shown
in Fig. 10. Four layouts of the landmarks (incident points) are
considered, namely, {l1}, {l1, l2}, {l1, l2, l3} and {l1, l2, l4},
where l1-l4 are located at [5,−5, 0]T , [1, 4, 0]T , [9,−4, 0]T

and [5.1,−5, 0]T , respectively. By changing the reflection
coefficients of all the reflectors (assumed to be equal) from
0 to 1, the PEB/OEB of the UE and the reflector position
error bound (RPEB) are shown in Fig. 10 (b)-(d).

This figure shows that the NLOS paths are helpful if they
are resolvable and the reflection coefficient is large (which
depends on the shape and the material of an object). THz
channels are expected to have fewer NLOS paths due to the
high path loss and narrow beamwidth. With fewer NLOS
paths, the number of localization parameters (e.g., the position
of reflectors) and non-resolvable paths are reduced. Fewer
NLOS paths reduce the computational complexity, but lose
geometrical diversity. Hence, more transmission times are
needed to improve the localization performance and to map
the whole environment.

G. The Visualziation of PEB for Different UE Positions

We visualize the 2D PEB (zU = 0) for different setups
by changing the position of UE within a 5 × 5m2 area. The
positions of the BS/RIS/reflector are [0, 0, 0]T , [2.5, 2.5, 0]T

and [2.5,−2.5, 0]T , respectively. The number of the BS/UE
elements is NB = 4 × 4/NU = 2 × 2, and the reflection
coefficient is set as 0.9. The PEB is obtained with a single
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Fig. 11. 2D PEB visualization for different setups. (a) A conventional 4× 4
MIMO system and a 20× 20 RIS (5× 5 cm footprint); (b) An AOSA-based
THz system with 20× 20 antennas (N̊B = N̊U = 5× 5) and an 100× 100
RIS (same footprint as scenario (a)); (c) The same parameters as in (b) are
used. By assuming the prior information of the UE position is known, the
coefficients of the RIS elements are chosen to maximize the SNR, and 1/4
of the SA beams at the BS/UE are set to point to the RIS; (d) The same
setup as (c) THz-1 by changing the UE orientation from oU = [0, 0, 0]T to
oU = [5π/6, 0, 0]T .

snapshot (G = 1), which only works for systems with multiple
RFCs.

In Fig. 11 (a) and Fig. 11 (b), the transmitted symbols,
beamforming angles, and RIS coefficients are chosen ran-
domly. The THz system generally shows a lower PEB, and
even lower PEBs appear when the UE is close to the BS or
RIS. Due to the implementation of analog beamforming in
the AOSA structure, there exist a ‘blind area’ in (b) (e.g.,
yU = 0). In Fig. 11 (c) and Fig. 11 (d), fixed beamforming
angles are utilized with prior information. This beam allocation
strategy is obviously not optimal, and efficient beamforming
optimization algorithms are needed.

H. Summary

In this section, we perform extensive simulations to illustrate
the potential of THz systems in localization and sensing. With
the incorporation of the RIS, a better localization performance
is expected. However, joint optimization of AOSA active
beamforming and RIS components is a challenging problem
that requires more investigation in the future. Next, we discuss
several potential research directions for THz localization,
which can assist in algorithm and system design and further
improve localization performance.

VII. LESSONS LEARNED AND FUTURE DIRECTIONS

Until now, we have discussed important topics of THz
localization and performed extensive simulations with some
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interesting results observed. In this section, we would like
to highlight the lessons learned from the simulations in Sec-
tion VI, and discuss the future directions from the aspects
of channel modeling, localization, and optimization in Sec-
tions III-V.

A. Lessons Learned

1) Deal with SWM and PWM wisely in channel modeling
and performance analysis. SWM requires high compu-
tational complexity since the phase change cannot be
described using a simple steering vector, and there could
be amplitude variations across the array. As a result,
PWM is usually preferred, with possible performance loss
in the near-field. From the CRB analysis point of view,
the SWM and PWM are also different. In the far-field, the
local AOA and AOD can be estimated directly, whereas
the UE state is integrated into the channel model as shown
in (62) and (65).

2) A similar concept of AOSA can be used in the RIS
channel realization. A large number of RIS elements
is needed to combat the high path loss of the RIS
channel. This is even more challenging in high-frequency
signals (e.g., 200× 200 RIS elements can be fitted into a
10× 10 cm2 area in a 0.3THz system). With segmented
sub-RIS and equivalent array response, the complexity
can be reduced.

3) Be aware of the model mismatch. We have seen the CRB
mismatch between the SWM and the PWM models. Since
PWM is an approximation, the model is inaccurate in the
near field and should be avoided if possible. In addition to
the channel model mismatch, the mismatch caused by the
mobility of the UE and HWI should also be considered.
The MCRB could be used as a tool to analyze such
mismatches.

4) Tradeoff between coverage and beamforming gain needs
to be taken care of in system design. When designing a
system, the directionality of the antenna and the size of
SA should be considered to achieve a high beamforming
gain. However, the gain in SNR will affect the coverage
of the system, and severe misalignment will occur. These
two aspects need to be well-designed depending on the
application scenarios.

5) Performance (CRB) analysis is an important step for
algorithm evaluation and system optimization. However,
the lower bound may not be reached in some scenarios,
for example, low SNR scenarios and the existence of
multiple non-resolvable paths. In addition to the CRB,
other types of bound such as CCRB, and MCRB are also
important in different scenarios.

B. Future Directions

By moving from mmWave to THz, a better localization
performance is expected. However, new issues and challenges
need to be rethought to benefit from the system in this
band. First, new KPIs may need to be defined for specific
applications (e.g., quality of service rather than localization

error). Also, position integrity12 and availability13 may become
more important in localization, especially for the scenarios
that need highly reliable position information. In addition,
we need to have methods that are scalable, given a large
number of antennas/RIS elements and a large volume of data.
Regarding the RIS, this new enabler brings topics such as
the synchronization to other network elements, information-
sharing between operators, and the roles at different frequen-
cies (should RIS operate in the same way at mmWave-band
and THz-band or not). More problems will need to be tackled
when we are moving to a higher frequency.

The research on THz localization is still at the early stage,
with many directions to be explored. We list a few directions
from the aspects of the channel model (1-2), localization
performance analysis and algorithm design (3-6), and system
optimization (7-9):

1) Stochastic model analysis: We have formulated a deter-
ministic channel model in this work. In realistic scenarios,
however, the AOAs and amplitudes of scattered signals
are stochastic. The effect of randomized NLOS signals
needs to be modeled, and the effect of scatters on the
localization performance can be evaluated. The stochastic
model is also helpful for object/reflector detection and
classification in sensing tasks.

2) Accurate channel modeling: Channel model is the foun-
dation of geometry-based localization. Currently, we use
an extrapolation of mmWave models by introducing
features in high-frequency systems such as atmosphere
attenuation, SWM, wideband effect and AOSA structure.
However, the effects of HWIs and other THz-specific
aspects may not be captured in the channel model (in-
cluding the LOS, RIS, and NLOS channel models). These
model mismatches degrade the localization performance,
and thus, a more accurate channel model is important.

3) BS/RIS calibration. In most of the localization tasks, we
are interested in the position and orientation of UEs by
assuming the known anchor information (e.g., BS/RIS
position and orientation). For the scenarios with more
than one anchor, there could be calibration errors in the
rest of the anchors compared to the reference anchor. In
this case, jointly UE localization and BS/RIS calibration
would be of great interest.

4) Doppler estimation: In addition to position and orienta-
tion, the Doppler effect of the UE is not discussed in
this work, which is crucial for mobile scenarios. This
additional type of channel parameter can contribute to the
tracking and SLAM tasks. In addition, by introducing the
Doppler effect, localization can be done within a longer
integration time.

5) Cooperative localization. Coverage is one of the challeng-
ing issues in high-frequency communication and localiza-
tion. As a result, D2D communication and cooperative

12Positioning integrity: is a measure of the trust in the accuracy of the
position-related data provided by the positioning system and the ability to
provide timely and valid warnings to the location service client when the po-
sitioning system does not fulfill the condition for the intended operation [255].

13Availability: is defined as the fraction of the time that the estimated
localization error is below the alert limit [83].
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localization can help even if there is an outage between
the UE and the BS. As for SLAM, the collaboration
between UEs can complete the mapping tasks within a
shorter period of time.

6) Advanced performance analysis tools: We have discussed
various types of CRBs (e.g., CRB, CCRB) for position
and orientation estimation. Nevertheless, other bounds
should be studied and enter more widespread use to
account for phase ambiguities (e.g., in carrier phase-
based localization), low-SNR operation, model mismatch,
and with prior information. These advanced performance
analysis tools will enable the algorithm development and
system design for THz-band localization.

7) Scene-aware localization: From the SLAM algorithm,
surrounding map information could be available. In ad-
dition to the map, the probability density functions of
past access locations can also be used to perform scene-
aware localization. Beamforming vectors at the BS/UE
and RIS element coefficients can be optimized to avoid
obstacles and take advantage of the strong reflectors for
localization purposes. In this topic, how to maintain a
map with minimum resources and update the map with
time is a problem to be solved.

8) Dynamic deployment optimization. It is straightforward
to optimize the deployment of static BSs for coverage
or accuracy purposes. In temporal high traffic situations
as in stadiums or conference halls, the BS could also
be dynamically deployed, e.g., attached to UAVs. The
location and route of the UAVs need to be optimized to
meet the communication and localization requirements of
the UEs. However, the connectivity in dynamic THz UAV
networks is also challenging, which should be addressed
carefully.

9) AI-based methods: Model-based methods are easy to
analyze, but when unknown model mismatches exist, AI-
based methods are more preferred to learn or to mitigate
the effect of such mismatches. In the latter case, access
to common databases is needed to compare and evaluate
different approaches. Furthermore, the collection, sharing,
and storage of a large amount of data, transfer a learned
model into another domain to reduce the training dura-
tion, and the protection of user privacy are urgent issues
that need to be solved.

In summary, we need to put more effort in three aspects in
order to improve THz localization accuracy and efficiency: (a)
develop a more accurate system model (directions 1, 2, 3), (b)
utilize other types of information (directions 4, 5, 7, 8), and
(c) develop more advanced tools for analysis and optimization
(directions 6, 9).

VIII. CONCLUSION

This work explores the potential of the 6G THz system
from a localization point of view, emphasizing comparisons
with 5G mmWave localization systems. Comparisons include
system and signal properties, channel modeling and assump-
tions, localization problem formulation, and system design and
optimization. Preliminary simulations are carried out to show

the potential of THz localization compared with mmWave
systems, in terms of the PEB and OEB. This tutorial out-
lines recommendations on efficient and practical localization
algorithm design for RIS-assisted AOSA-based MIMO sys-
tems, providing insights into other research directions. With
joint localization and communication systems operating at
the terahertz band, data-hungry and high localization accu-
racy demanding applications such as intelligent networks,
autonomous transportation, and tactile internet are anticipated
in future communication systems.

ABBREVIATIONS
3D three-dimensional
5G fifth generation
6G sixth generation
ADC analog to digital converter
ADOD angle-difference-of-departure
AOA angle-of-arrival
AOD angle-of-departure
AOSA array-of-subarray
BS base station
BSE beam split effect
CDF cumulative distribution function
CKF cubature Kalman filter
COA curvature-of-arrival
CRB Cramér-Rao bound
CSI channel state information
D-MIMO distributed MIMO
D2D device-to-device
DFL device-free localization
DFT-s-OFDM discrete-Fourier-transform spread OFDM
DL-PRS downlink positioning reference signal
EKF extended Kalman filter
GPS global positioning system
HWI hardware impairment
IoT internet of things
IQI in-phase and quadrature imbalance
ISAC integrated sensing and communication
KF Kalman filter
KPI key performance indicator
MAC medium access control
MC mutual coupling
MCRB misspecified Cramér-Rao bound
MDS multidimensional scaling
MEMS micro-electro-mechanical system
MIMO multiple-input-multiple-output
ML machine learning
mmWave millimeter wave
MPC multipath components
NLOS none-line-of-sight
OFDM orthogonal frequency-division multiplexing
OTFS orthogonal time-frequency space
PA power amplifier
PAN power amplifier nonlinearity
PAPR peak-to-average-power ratio
PDF probability density function
PDOA phase-difference-of-arrival
PF particle filter
PN phase noise
POA phase-of-arrival
PRS positioning reference signals
PS phase shifter
PWM planar wave model
RF radio frequency
RFC radio-frequency chain
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RFID radio frequency identification
RIS reconfigurable intelligent surface
RNN recurrent neural network
RSS received signal strength
RTT round-trip time
SA subarray
SLAM simultaneous localization and mapping
SOTA state-of-the-art
SPP surface plasmon polariton
SWM spherical wave model
TDOA time-difference-of-arrival
THz terahertz
TOA time-of-arrival
TOF time-of-flight
UE user equipment
UKF unscented Kalman filter
UPA uniform planar array
VLC visible light communication
VLP visible light positioning
WLAN wireless local area network
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