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Abstract—5G millimeter wave (mmWave) signals have inher-
ent geometric connections to the propagation channel and the
propagation environment. Thus, they can be used to jointly
localize the receiver and map the propagation environment,
which is termed as simultaneous localization and mapping
(SLAM). One of the most important tasks in the 5G SLAM is to
deal with the nonlinearity of the measurement model. To solve
this problem, existing 5G SLAM approaches rely on sigma-point
or extended Kalman filters, linearizing the measurement function
with respect to the prior probability density function (PDF). In
this paper, we study the linearization of the measurement func-
tion with respect to the posterior PDF, and implement the iterated
posterior linearization filter into the Poisson multi-Bernoulli
SLAM filter. Simulation results demonstrate the accuracy and
precision improvements of the resulting SLAM filter.

Index Terms—5G, mmWave, SLAM, posterior linearization,
Poisson multi-Bernoulli filter.

I. INTRODUCTION

5G mmWave signals provide unique opportunities for si-
multaneous localization and mapping (SLAM), due to their
inherent geometric connection to the propagation environ-
ment [1]. Signals from the base station (BS) reach the user
equipment (UE) via multiple propagation paths. Each path is
determined by the propagation environment and the locations
of the BS and the UE. State-of-the-art channel estimators can
provide accurate estimates for those paths by using received
signals, in terms of groups of channel gain, time of arrival
(TOA), angles of arrival (AOA), and angles of departure
(AOD), which contain information needed for SLAM [2], [3].

Much work has been done in SLAM using 5G signals,
also called 5G SLAM, including geometry-based methods [4],
[5], which cannot provide uncertainty information; message
passing methods [6]–[8], which provide uncertainty informa-
tion, but are inherently sub-optimal; more powerful algorithms
using random finite set (RFS) theory [9]–[13]. The latter class
of algorithms can handle the data association (DA) problem
between measurements and landmarks [14] and have certain
optimality guarantees. In particular, probability hypothesis
density (PHD) filters are used in [9], [10], Poisson multi-
Bernoulli mixture (PMBM) filters are used in [11]–[13],
and the low-computational version Poisson multi-Bernoulli
(PMB) filters are also applied in [13]. Because PMB(M)
filters enumerate all possible DAs explicitly, they provide
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Fig. 1. 5G downlink scenario with the environment of a BS, a UE, a reflecting
surface, and a scatter point, where the UE can not only track its own state,
but also construct the map of the surrounding landmarks, by using channel
parameters estimated from received downlink signals.

more accurate results than PHD filters in 5G SLAM, as shown
in [13].

Common to all 5G SLAM studies, it is the requirement
to account for the nonlinearity of the measurement function,
which in the case of 5G mmWave signals relate TOA, AOA,
and AOD, to positions and orientations of the UE and land-
marks. To this end, [11], [12] follow a Rao-Blackwellized
approach, and utilize the particle filter (for the UE state)
[15, Ch. 7.1], and the cubature Kalman filter (CKF) (for
the landmark states, conditioned on the UE state) which
uses sigma-points drawn from the prior probability density
function (PDF) [16] to propagate through the measurement
nonlinearity [15, Ch. 5.2]. In [13], the extended Kalman filter
(EKF) is implemented into the PMB(M) SLAM filter, and
the approximation of the nonlinearity is formed by utilizing
the first-order Taylor series [15, Ch. 5.2], which is equivalent
to a linearization at the prior mean. However, these methods
either have high computational burden, or perform poorly with
nonlinear measurement functions, if the measurement noise is
low enough [17]. A more accurate and efficient linearization
method is proposed in [18], [19], which linearizes the mea-
surement function with respect to the posterior PDF, rather
than the prior PDF. To our best knowledge, the evaluation of
such an approach in 5G SLAM has not yet been conducted.

In this paper, we show that the linearization of the mea-
surement function can be done with respect to the posterior
joint PDF of the UE state and the landmark, and extend our
previous work in [13] to implement the posterior linearization
into the PMB-based 5G SLAM filter. The main contributions



of this paper are summarized as follows: (i) we develop the
iterated posterior linearization filter (IPLF) integrated to the
5G PMB SLAM filter; (ii) we show that the proposed IPL-
PMB SLAM filter can improve the mapping and positioning
accuracy and precision, while guaranteeing near real-time
operation, although a minor computational cost needs be paid.

Notations: Scalars (e.g., x) are denoted in italic, vectors
(e.g., x) in bold lower-case letters, matrices (e.g., X) in
bold capital letters, sets (e.g., X ) in calligraphic. Transpose
is denoted by (⋅)T, the union of mutually disjoint sets is
denoted by ⊎, a Gaussian density with mean u and covariance
Σ, evaluated in value x, is denoted by N (x;u,Σ), and
dx = dim(x).

II. SYSTEM MODEL

In this section, the UE model, the environment model,
and the measurement model for a 5G downlink localization
scenario, as shown in Fig. 1, are introduced.

A. User Model

A single-user scenario is considered, thus the cooperation
among UEs is out of scope of this paper. We denote the
dynamic state of the UE at time step k as sk, which at least
contains the UE position xUE,k = [xk, yk, zk]T, the heading
ϖk and the clock bias Bk. If the process noise is zero-mean
Gaussian, the transition density of sk can be expressed as

f(sk ∣sk−1) = N (sk;v(sk−1),Qk−1), (1)

where v(⋅) denotes a known transition function, and Qk−1
denotes a known covariance matrix.

B. Environment Model

We consider an environment with three different types of
landmarks, which are the BS, reflecting surfaces, and small
objects. In the environment, there is a BS with known position,
which sends downlink signals to the UE, and a few unknown
reflecting surfaces and small objects. They can reflect and
scatter the downlink signals to the UE, respectively, and are
modeled as virtual anchors (VAs) and scattering points (SPs)
(see Fig. 1). We model the landmark state as x = [xT

LM,m]T,
where xLM ∈ R3 represents the landmark location, and
m ∈ {BS,VA,SP} represents the landmark type. Therefore,
the map of the environment can be represented by a set of
landmark X = {x1, . . . ,xI}, with I representing the total
number of landmarks.

C. Measurement Model

At time step k, the UE receives downlink signals from the
BS. When considering OFDM transmissions, we can express
the received signal at subcarrier κ at time step k as [20]

Y κ,k = Cκ,kSκ +Nκ,k, (2)

where Sκ is the (possibly pre-coded) pilot signal over sub-
carrier κ, Y κ,k is the received signal over subcarrier κ, Nκ,k

is white Gaussian noise, and Cκ,k is the channel frequency
response. As the transmitted signals can reach the UE directly,

which is the line-of-sight (LOS) path, and/or reflected by
reflecting surfaces or scattered by small objects, which are
non-line-of-sight (NLOS) paths, Cκ,k can be denoted as

Cκ,k =W H
k

Ik−1
∑
i=0

gikaR(θi
k)aH

T (ϕi
k)e−ȷ2πκ∆fτ i

k , (3)

where W k represents a combining matrix, aR(⋅) and aT(⋅)
denote the steering vectors of the receiver and transmitter
antenna arrays, respectively, and ∆f denotes the subcarrier
spacing. Moreover, Ik is the number of all visible landmarks,
and we assume that there is only one path from each landmark.
The LOS path corresponds to i = 0, and the NLOS paths to
i > 0. Each path i can be described by a complex gain gik,
a TOA τ ik, an AOA pair θi

k in azimuth and elevation, and
an AOD pair ϕi

k in azimuth and elevation. Those channel
parameters depend on the hidden geometric relation among
the BS, UE and landmarks, which can be found, e.g., in [12,
Appendix A].

At the UE side, a channel estimator, such as [21]–[25],
provides estimates of angles and delays of paths from Y κ,k.
However, the channel estimation is out of the scope of this
paper, and the UE directly utilizes output of the channel
estimator that provides the angel and delay estimates. At
time step k, a set of measurements Zk = {z1

k, . . . ,z
Îk
k } is

provided, where usually Îk ≠ Ik, as there may be some clutter
measurements and misdetected landmarks. If the measurement
noise is zero-mean Gaussian, the measurement originating
from landmark xi follows

f(zi
k ∣xi,sk) = N (zi

k;h(xi,sk),Ri
k), (4)

where h(xi,sk) = [τ ik, (θ
i
k)T, (ϕi

k)T]T represents the nonlin-
ear function that transforms the geometric information to the
TOA, AOA and AOD, and Ri

k is the measurement covariance.

III. PMB(M) SLAM FILTER

In this section, we approximate the map X conditioned on
the UE state sk as a PMB density. In other words, it is a
PMB RFS. We will now briefly introduce the basics of the
PMB(M) density and the PMB(M) SLAM filter.

A. Basics of PMB(M) Density

The PMBM RFS X can be viewed as the union of two
disjoint RFSs, XU and XD, which are the set of undetected
objects that have been never detected, and the set of detected
objects that have been detected at least once, respectively [26].
The RFS XU is usually modeled as a Poisson point process
(PPP), with the density following

fP(XU) = e− ∫ λ(x)dx ∏
x∈XU

λ(x), (5)

where λ(⋅) is the intensity function. The RFS XD is usually
modeled as a multi-Bernoulli mixture (MBM), with the den-
sity following

fMBM(XD) =∑
j∈I
wj ∑
X 1⊎⋅⋅⋅⊎Xn=XD

n

∏
i=1
f j,iB (X

i), (6)



where I is the index set of all global hypotheses and wj ≥ 0 is
the weight for j-th global hypothesis, satisfying ∑j∈Iw

j = 1
[27]; n is the number of potentially detected objects; f j,iB (⋅)
is the Bernoulli density of the i-th landmark under the j-th
global hypothesis. Each Bernoulli follows

f j,iB (X
i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − rj,i X i = ∅
rj,if j,i(x) X i = {x}
0 otherwise

(7)

where rj,i ∈ [0,1] is the existence probability, and f j,i(⋅) is
the state density. More details of the PPP and MBM densities
can be found in [26]–[28]. Then, the density of X can be
computed using the convolution formula [29, eq. (4.17)] as

f(X ) = ∑
XU⊎XD=X

fP(XU)fMBM(XD), (8)

which can also be parameterized by λ(x) and
{wj ,{rj,i, f j,i(x)}i∈Ij}j∈I, with Ij representing the index set
of landmarks (i.e., the Bernoulli components) under the j-th
global hypothesis. If there is only one mixture component in
the MBM, then (8) reduces to a PMB.

B. PMB(M) SLAM Filter

The PMBM SLAM filter follows the prediction and up-
date steps of the Bayesian filtering recursion with RFSs
[30]. In practice, instead of tracking the joint poste-
rior f(s0∶k,X ∣Z1∶k), we keep track of marginal posteriors
f(X ∣Z1∶k) and f(sk ∣Z1∶k) to reduce complexity. To do
this, the prediction of the UE state follows the Chapman-
Kolmogorov equation, given by

f(sk+1∣Z1∶k) = ∫ f(sk ∣Z1∶k)f(sk+1∣sk)dsk. (9)

As all landmarks are static, there is no prediction for the map.
By marginalizing out the map state in the joint posterior, the
update step for the UE state becomes

f(sk+1∣Z1∶k+1) = ∫ f(sk+1,X ∣Z1∶k+1)δX (10)

∝ ∫ f(X ∣Z1∶k)f(sk+1∣Z1∶k)ℓ(Zk+1∣sk+1,X )δX , (11)

whereas by marginalizing out the UE state, the map state
follows

f(X ∣Z1∶k+1) = ∫ f(sk+1,X ∣Z1∶k+1)dsk+1 (12)

∝ ∫ f(X ∣Z1∶k)f(sk+1∣Z1∶k)ℓ(Zk+1∣sk+1,X )dsk+1, (13)

where ℓ(Zk+1∣sk+1,X ) is the RFS likelihood function, given
by [26, eqs. (5)–(6)], and ∫ ψ(X )δX refers to the set integral
[27, eq. (4)]. In practice, (9), (10), (12) are usually translated
into prediction and update steps of the PMBM parameters
λ(x) and {wj ,{rj,i, f j,i(x)}i∈Ij}j∈I. As the number of DAs
increases very rapidly over time, the exact PMBM SLAM
filter has high complexity. To mitigate this, the PMB SLAM
filter is often used, which approximates the PMBM density to
a PMB density at the end of each time step by marginalizing
over DAs.

C. EK-PMB(M) SLAM Filter
The EK-PMB(M) SLAM filter from [13] computes (10)-

(13) by determining the γ ≥ 1 most likely DA hypotheses
with corresponding weights. For each DA, the joint posterior
of the UE state and landmarks is computed by the EKF
approximation around the prior mean. These posteriors are
marginalized and finally fused according to their weights. This
leads to an efficient implementation, amenable for near real-
time implementation.

IV. POSTERIOR LINEARIZATION

In the PMB(M) SLAM filter, we need to update the state
of UE and the map jointly for each DA. To linearize the non-
linear measurement function of the joint state of the UE and
landmarks is important. In this section, we will introduce the
basics of linearization, argue that linearization should be done
with respect to the posterior PDF instead of at the prior mean,
and propose a method to realize the posterior linearization. We
drop the time index and the DA index for simplicity. Hence,
we can denote the joint state of the UE and landmarks given
a certain DA as š, the corresponding measurement function
as ȟ(š), and the associated measurement vector as ž. More
details can be found in [13, Section. IV.D].

A. Linearization Principle
To linearize the nonlinear measurement function ȟ(š) is to

approximate it by a linear function with a zero-mean Gaussian
noise, as

ȟ(š) ≈Hš + b + e, (14)

where H ∈ Rdž×dš denotes the linearized matrix, b ∈ Rdž×1

denotes the bias vector, and e ∈ Rdž×1 denotes a zero-
mean Gaussian distributed variable with covariance matrix
Ω that is independent of š and the measurement noise. In
other words, to linearize ȟ is to select suitable (H,b,Ω) for
(14) by minimizing a problem-specific objective function (see
Section IV-B). Once the linearization in (14) is performed,
measurement ž follows N (ž;Hš + b,Ω + Ř), where Ř
is the overall measurement noise covariance. Moreover, if
the prior follows N (š;m−,P −), the posterior PDF becomes
N (š;m+,P +) with [18]

m+ =m− +K(ž −Hm− − b), (15)
P + = P − −KHP −, (16)

where K = P −HT(HP −HT+Ω+Ř)−1 is the Kalman gain.

B. Prior and Posterior Linearization
1) Prior Linearization with the EKF: In the EKF, ȟ(š)

is approximated by the first-order Taylor series, and (14) is
linearized at the prior mean with Ω = 0, and H representing
the Jacobian of ȟ(⋅) with respect to š, evaluated at the prior
mean of š. However, this approach does not make use of the
measurement, thus its performance may deteriorate in some
cases. Comparatively, it provides worse approximation than
methods that use all available information, especially for non-
linear measurement functions with relatively low measurement
noise [18].
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Fig. 2. An example of a nonlinear measurement function and its linearization
at the prior mean and with respect to the posterior. The length of linearizations
represents the 95% confidence interval of the PDFs. The measurement
function is set as h(x) = −0.1x2

+ 3 + η, where the variance of the
measurement noise η is 0.1. The prior follows a Gaussian distribution with
mean as 3 and variance as 4, and we analyse the case where the measurement
is 0.5.

2) Posterior Linearization: To obtain a better approxima-
tion in (14), the linearization should be done with respect to
the posterior PDF rather than at the prior mean [18]. The
main reason is that the posterior PDF is always narrower
than the prior PDF, especially if the measurement noise
is low. Therefore, it is possible that linearization of the
nonlinear measurement function at the prior mean makes
the approximation lying outside the support of the posterior
PDF. Fig. 2 provides examples of linearization of a given
measurement function at the prior mean and with respect to
the posterior PDF. It is obvious that the linearization with
respect to the posterior PDF provides better approximation
and less uncertainty, as the linearization is more closer to the
measurement function in the 95% confidence interval, and the
95% confidence interval is much shorter. The limitation is that
the posterior is not yet available.

3) Iterative Posterior Linearization Filter: A practical ap-
proach to implement posterior linearization is the IPLF [18],
which iteratively approximates (H,b,Ω) by solving the op-
timization problem [18]

argmin
H,b

E[(ȟ −Hš − b)T(ȟ −Hš − b)], (17)

Ω =E[(ȟ −Hš − b)(ȟ −Hš − b)T], (18)

where E[⋅] represents the expectation with respect to the
posterior PDF. From (17), we find the optimal (H,b) that can
give the best linearization of ȟ in the sense of minimizing its
mean square error (MSE), and the corresponding MSE matrix
is then recovered as Ω in (18).

To solve this optimization problem, we can perform (17)
and (18) with respect to iterative approximations of the pos-
terior PDF, starting from the prior PDF. After each iteration,
we obtain an improved approximation to the posterior PDF,
from which we can obtain an improved linearization. Given
an approximation, the expectation in (17) can be computed
using sigma point principle of the CKF [16]. The entire IPLF
procedure is summarized in Algorithm 1. The integration of
the IPLF is summarized in Fig. 3.
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Fig. 3. The flowchart of the integration of the PMB SLAM filter from [13]
with the IPLF.
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Fig. 4. Comparison of mapping performances for VAs between two SLAM
filters.

V. RESULTS

A. Simulation Scenario

Simulations are performed for a 5G application scenario at
28 GHz with a single known BS and an unknown vehicle,
which does a counterclockwise constant turn-rate movement
around the BS. The transmitter at the BS side and the
receiver at the vehicle side are both equipped with a uniform
rectangular array (URA) with 8×8 antennas. Every time step,
the transmitter downlinks OFDM signals to the vehicle, with
16 symbols, 64 subcarriers, and 200 MHz bandwidths. Apart
from the BS and the vehicle, there are 4 VAs, and 4 SPs in the
scenario. We implemented the IPLF into the PMB SLAM filter
as in Fig. 3, which we denote as the IPL-PMB SLAM filter.
We compared the proposed IPL-PMB SLAM filter with the
EK-PMB SLAM filter [13], which both consider the 10-best
data associations every time step. We evaluated the mapping
performance by the generalized optimal subpattern assignment
(GOSPA) distance [31] for both VAs and SPs, and positioning
performance by the root mean squared error (RMSE) and
standard deviation over time. We also measured the execution
time of the two SLAM filters. More details and parameter
settings can be found in [13]. The results were averaged
over 100 Monte Carlo simulations. All codes were written in
MATLAB, and simulations were run on a MacBook Pro with
a 2.6 GHz 6-Core Intel Core i7 processor and 16 Gb memory.

B. Results and Discussion

Fig. 4 and Fig. 5 shows the comparison of GOSPA results
between the proposed IPL-PMB SLAM filter with the EK-
PMB SLAM filter for VAs and SPs, respectively. We observe



Algorithm 1 IPLF
Input: Prior mean m and covariance P ;
Output: Posterior mean m and covariance P ;

1: repeat
2: Factorize the covariance P by

P =GGT; (19)

3: for c ∈ {1,⋯,2dš} do
4: Compute cubature point

šc =Gδš,c +m; (20)

5: Compute the propagated cubature point

žc = ȟ(šc); (21)

6: end for
7: Compute approximations of innovation z̃, innovation

covariance Sžž and cross-covariance Sšž by

z̃ ≈ 1

2dš

2dš

∑
c=1

žc, (22)

Sžž ≈
1

2dš

2dš

∑
c=1
(žc − z̃)(žc − z̃)T, (23)

Sšž ≈
1

2dš

2dš

∑
c=1
(šc −m)(žc − z̃)T; (24)

8: Compute (H,b,Ω) by

H = ST
šžP

−1, (25)
b = z̃ −Hm, (26)

Ω = Sžž −HPHT; (27)

9: Update m and P using (15) and (16);
10: until m and P converge [18, eq. (30)];
Notation: δš,c =

√
dš[Idš×dš ,−Idš×dš]1∶dš,c, with Idš×dš

representing a dš × dš identity matrix.
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Fig. 5. Comparison of mapping performances for SPs between two SLAM
filters.

that solid lines are below dashed lines in both figures, which
shows the proposed IPL-PMB SLAM filter has better mapping
performance. The reason is that the linearization is done
at the prior mean in the EK implementation, which does
not use the information provided by the measurement and
provides worse approximation. Unlike the EK implementation
ignores the measurement in linearization, the proposed IPL-

TABLE I
AVERAGE STANDARD DEVIATIONS OF THE UE STATE OF THE TWO SLAM

FILTERS.

Filter x [m] y [m] heading [deg] bias [m]
IPL-PMB 0.109 0.109 0.158 0.086
EK-PMB 0.192 0.201 0.252 0.151

TABLE II
AVERAGE COMPUTATION TIME IN MILLISECONDS OF THE PREDICTION

AND UPDATE STEPS OF THE TWO SLAM FILTERS.

Filter Prediction Update Total
IPL-PMB 0.35 28.1 28.5
EK-PMB 0.34 13.6 13.9

PMB filter makes use of the measurement, and linearizes
the measurement function with respect to the posterior PDF,
which provides more accurate and precise approximation to
the measurement function, as we discussed in Section IV-B.
This is also the reason why the IPL-PMB filter has slightly
better accuracy in positioning performance, as its RMSEs
are lower in Fig. 6. Although the accuracy is not improved
significantly, the IPL implementation provides much more
precise results, as standard deviations of the UE state decrease
to half of what EK-PMB SLAM filter provides approximately,
shown in Table I.

Table II displays the execution time of the two SLAM
filters. Since two algorithms have the exactly same prediction
step, the prediction time is nearly identical. The proposed
IPL-PMB SLAM filter takes longer time than the EK-PMB
SLAM filter in the update step, with 28.1 ms and 13.6 ms per
time step, respectively. The reason is that the linearization
is done iteratively, and the sigma point principle is used
to approximate innovation, innovation covariance, and cross-
covariance between state and innovation in Algorithm 1, while
the EKF directly linearizes the measurement function by using
the first-order Taylor series at the prior mean. This leads to
(2dš × A)-fold complexity in updating the joint state under
each DA, where A represents the number of iterations and
is 5.3 on average over time and DAs in our implementation.
Although the IPL-PMB takes longer time, online and real-
time operation of the filter could still be guaranteed with more
accurate and precise performance.

VI. CONCLUSIONS

In this paper, we have provided the update details of the
IPLF, implemented the posterior linearization into the PMB-
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Fig. 6. Comparison of UE state estimation between two SLAM filters.



based SLAM filter in a 5G downlink scenario, which utilizes
the measurement to linearize the measurement model with
respect to the posterior PDF, and proposed the IPL-PMB
SLAM filter. Via simulation results, we demonstrate that the
proposed IPL-PMB SLAM filter is the same as the EK-
PMB SLAM filter that can map the environment and estimate
the UE simultaneously. Our results also indicate that the
implementation of the posterior linearization helps the PMB
SLAM filter acquire more accurate and precise estimates.
Although additional computational cost is needed to obtain
such performance gain, online and near real-time operation
of the filter could still be guaranteed.
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