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Abstract. Since the behavior of a neural network model is adversely
affected by a lack of diversity in training data, we present a method
that identifies and explains such deficiencies. When a dataset is labeled,
we note that annotations alone are capable of providing a human inter-
pretable summary of sample diversity. This allows explaining any lack of
diversity as the mismatch found when comparing the actual distribution
of annotations in the dataset with an expected distribution of annota-
tions, specified manually to capture essential label diversity. While, in
many practical cases, labeling (samples → annotations) is expensive, its
inverse, simulation (annotations→ samples) can be cheaper. By mapping
the expected distribution of annotations into test samples using paramet-
ric simulation, we present a method that explains sample representation
using the mismatch in diversity between simulated and collected data.
We then apply the method to examine a dataset of geometric shapes to
qualitatively and quantitatively explain sample representation in terms
of comprehensible aspects such as size, position, and pixel brightness.

Keywords: Sample selection bias · Explainability · Outlier detection.

1 Introduction

Choosing the right data has always been an important precondition to deep
learning. However, with increasing application of trained models in systems
which are required to be dependable ([20], [2]), there is increasing emphasis
on making this choice well-informed ([4], [36]). Consider the perception system
of a self-driving vehicle which is partially realized using deep learning and is
expected to dependably detect pedestrians. To ensure that the system meets
such an expectation, it is necessary to choose training and validation sets that
adequately cover critical scenarios ([31], [34]) like residential areas and school
zones, where the vehicle is likely to meet pedestrians. Choosing, conversely, a
dataset that contains only scenes of motorway traffic, which does not cover many
scenarios involving pedestrians, is likely to produce a trained model that violates

? Work supported by the Wallenberg Artificial Intelligence, Autonomous Systems and
Software Program (WASP), funded by the Knut and Alice Wallenberg Foundation.
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2 Parthasarathy and Johansson

expectations on pedestrian detection. Scenarios covered by a dataset may be con-
sidered sufficient when samples of adequate variety are represented in it. With
practical image datasets typically being high-dimensional and large, posing and
evaluating explicit conditions on the adequacy of sample representation is not
straightforward.

Interpretable assessment of sample representation Consider a traffic
dataset S of images Xi ∼ P (X|Y ) and annotations Yi ∼ P (Y ). A major practical
concern in such datasets is whether it adequately represents corner cases like in-
tersections with stop signs, roundabouts with five exits, etc. With the true/target
distribution of traffic scenes P (X,Y ) clearly containing instances of such cases,
any under-representation in S can be broadly framed as shortcomings in data
collection and processing, otherwise known as sample selection bias([37]). Given
that the dataset is eventually used to train a model that is deployed in a safety-
critical system, engineers may actively seek to properly comprehend and account
for such bias. But how does one express such bias in human interpretable terms?
One clue comes from annotations Yi ∼ P (Y ). In typical traffic datasets, Y en-
codes object class labels and bounding box positions. If necessary and feasible,
Y can be expanded to contain information such as location, lighting conditions,
weather conditions, etc. When Y is adequately detailed, the distribution of an-
notations PS(Y ) clearly becomes a reasonable, low-dimensional, and therefore a
human interpretable measure of sample representation in S. Engineers can ex-
ploit this notion to specify a distribution of annotations PT (Y ), expressing the
sample representation that is expected in the dataset. While the target distribu-
tion of annotations P (Y ) may be unknowable, PT (Y ) is an explicit declaration of
the sub-space that the dataset is expected to cover at the minimum. If S is equiv-
alently labeled, then selection bias (and thereby sample under-representation)
is simply given by the mismatch between expectations PT and reality PS . In
practice, however, due to the effort and expense involved in labeling, S may
either lack labels or may be completely unlabeled, meaning that PS(Y ) is often
unavailable. Combining simulation, outlier detection, and input attribution, we
show that it is possible to explain sample representation in a comprehensible
low-dimensional form, even when annotations are not explicitly available in S.

Contributions Delving into the less-explored area of explaining sample repre-
sentation in a dataset, we demonstrate a method that

– explains sample representation in interpretable terms for annotated data

– uses parametric simulation and outlier detection to do the same for non-
annotated data

In addition to visualization, we propose a quantitative explanation of sample
under-representation using an overlap index. Also, unlike existing methods that
mainly address imbalances in available data, ours can explain gaps in the avail-
ability of data. Such an explanation helps engineers better understand data as a
crucial ingredient of the training process. Downstream, this helps them re-asses
data collection methods and to verify, reason, or argue about – at times a re-
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quirement for standards compliance [3] – the overall dependability of the model
trained with this data. Data and code used in this work are publicly available3.

2 Explaining sample representation using annotations

Visualizing sample representation We now introduce a simple running ex-
ample of examining sample representation in a dataset S containing images of
two hand-drawn shapes4 – circles and squares (Figure 1). With the shape as the
sole available label, one can define S = {(Xi, Y

1
i )}, i = 1...N , where Xi is a

grayscale image of size (128, 128) and Y 1
i ∈ K = {0, 1} is the shape label, corre-

sponding to circle and square respectively. Understanding sample representation
in this dataset may be necessary when it is a candidate for training a model
that, for example, either recognizes or generates shapes. To ensure dependable
model performance, system designers may want to confirm that images of ade-
quate variety are represented in S. In a dataset of grayscale geometric shapes,
it is intuitive to analyze sample representation in terms of concerns such as the
size and position of the shapes on the image canvas, and the average brightness
of pixels in the shape. All these concerns can be captured by defining a 6-d an-
notation vector Y = (Y 1, ..., Y 6), including shape-type, which is known. With U
denoting the discrete uniform distribution, designers can begin with defining an
expected spread of shape-size using a latent label Y S ∼ U{30, 120}, denoting the
side-length in pixels of a square box bounding the shape. This can be followed
by defining expectations on the spread of (i) the top-left corner of the bounding
box, Y 2, Y 3 ∼ U{0, 128−Y S}, (ii) the bottom-right corner of the bounding box
Y 4, Y 5 ∼ U{Y S , 128}, and (iii) the average pixel brightness Y 6 ∼ U{100, 255}.
Put simply, PT (Y ) expects shapes of a specified range of sizes and brightness to
be uniformly represented in the dataset S. All positions are also expected to be
uniformly represented, as long as the shape can be fully fit in the image canvas.

1 0 1 0

0 1 1 1

Fig. 1: Samples from the dataset S. Only the class label Y 1 is available

To illustrate the idea of explaining sample representation using annotations,
an automatic labeling scheme Yi = L(Xi) is used to produce complete 6-d an-
notations for Xi. For circles and squares, it is easy to define a scheme that looks

3 https://github.com/dhas/SpecCheck
4 Collected from Quick, Draw! with Google – https://quickdraw.withgoogle.com/data
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at the extent of the shape and draws bounding boxes. The average brightness is
given by the mean of non-zero pixels in the canvas. The availability of labels Yi
helps assemble the actual distribution of samples in the dataset PS(Y ), allowing
direct comparison with expectations PT (Y ). Jointly visualizing label distribu-
tions for each shape (Figure 2) shows that, along all design concerns Y j , the
spread of PT (marked black) is much wider than the very narrow PS (marked
red). This shows that, while PT expects shapes of a broad range of sizes, posi-
tions and brightness to be represented, PS is clearly biased and massively over-
represents large and bright shapes located in the center on the canvas. As long
as the annotation vector Y is of manageable length, joint visualization becomes
an interpretable qualitative explanation of sample representation in the dataset.

0.0
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P(
Yj |Y

1
=

0) V2 0.60
Y2

V3 0.47
Y3

V4 0.59
Y4

V5 0.47
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0 800.0

0.3
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Yj |Y
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Fig. 2: Explaining sample representation
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Fig. 3: Illustration of V (PX , PY )

Quantifying sample representation By framing sample selection bias, and
thereby sample under-representation, as the mismatch between expected and
true label probability distributions, it becomes possible to quantify it using mea-
sures of statistical similarity. Choosing the right measure, however, requires a
proper understanding of the nature of each distribution. Having calculated it
using true labels of each sample, it is clear that PS(Y ) represents the actual
sample distribution in S. The distribution of expectations PT is of a slightly
different nature and, to better understand it, let us consider the expectation
PT (Y 6) = U{100, 255}, placed on the representation of average brightness of
shapes in the dataset. While the expectation on brightness being spread between
specified lower and upper limits is strict, imposing the spread to be uniform is
arbitrary. This is a deliberate measure of simplification to ease the considerable
burden in modeling expectations PT and let it capture the critical range of in-
terest in the target distribution. Put simply, expected sample representation is
primarily encoded by the support (1) of PT . By specifying strict support, but ar-
bitrary distribution of mass, sample representation can be quantified as the level
of overlap between the actual sample distribution PS and the expected sample
representation PT . To achieve this, we propose an overlap index V (PX , PY ) (2),
which is a measure of whether the supports of two distributions are similar. With
set difference ∆ and 1-d Lebesgue measure (length) of a set λ, V is essentially
the Steinhaus distance [11] with an added term I to make −1 < V < 0 indicate
containment of PY within PX . When not contained, for some positive likelihood
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in both distributions, as illustrated in Figure 3, V = 0 when they exactly over-
lap, V = 1 when they do not overlap, and 0 < V < 1 when the overlap is
partial. Indices V j(PT ) (3) quantitatively measure the level of overlap between
true and expected distributions for each label. Complementing the visual expla-
nation, overlap indices 0.4 < V j(PT ) < 1 seen in Figure 2, indicate that there is
only slight partial overlap between expectations and reality, confirming notable
sample selection bias and, therefore, significant sample under-representation.

RX = {x ∈ R : PX(x) > 0} (1)

V (PX , PY ) = I
λ(RX ∆ RY )

λ(RX ∪ RY )
, I =

{
−1 RY ⊂ RX
+1 otherwise

(2)

V j(P ) = V (PS(Y j |Y 1), P (Y j |Y 1)), j = 2...6 (3)

It is therefore clear that, given the expected representation and actual distri-
bution of labels in the dataset, it is possible to comprehensibly explain sample
under-representation both visually and quantitatively. However, the overlap in-
dex, which eschews mass and uses only support, is an incomplete measure of
sample selection bias, the pros and cons of which is discussed in Section 4.

3 Explaining sample representation using simulation

The dataset S contains information Xi in the image domain, while lacking in-
formation Yi in the annotations domain. Expectations, on the contrary, are ex-
pressed using annotations Ŷi ∼ PT (Y ), but lacks images. It is this gap in informa-
tion that prevents estimation of sample under-representation by direct compari-
son. There are two possible ways to bridge this gap, one of which is the labeling
scheme Yi = L(Xi) introduced earlier. Another way could be to generate images
X̂i = G(Ŷi), which is essentially parametric simulation. In this case of circles and
squares, it is possible to use a graphics package5 to draw shapes using size, posi-
tion, and brightness labels as parameters. We, in fact, choose this simple dataset
because both labeling and simulation of samples are easy, helping illustrate both
ways of bridging the gap and cross-checking the plausibility of estimating sample
representation. In many practical cases, however, the right method to bridge the
gap is difficult to judge since the relative expense is domain and problem spe-
cific. Addressing those numerous instances where unlabeled data is available and
labeling is expensive, we now show that it is possible to bridge the gap using sim-
ulation. This is done using a two-step process, described below, of (i) detecting
outlier annotations and (ii) estimating marginal sample representation.

Step 1 - Detecting outlier annotations To a dataset that mainly contains
large, centered shapes, can simulated small off-centered shapes appear as out-
liers? In order to explore this simple notion, we pose the following outlier hypoth-
esis - a test annotation Ŷi, that is unlikely to be observed in S, maps to a simu-
lated test sample X̂i = G(Ŷi), that appears as an outlier to S. Bridging the gap

5 We use OpenCV – https://opencv.org/
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by simulating shape images that follow specified expectations PT , the problem
of detecting sample selection bias turns into one of detecting outlier images. The
hypothesis is realized by an outlier detector ES (Figure 4) that samples test an-
notations from PT and maps them into images using a simulator, creating a test
set T = {(X̂i, Ŷi)}, i = 1...M (examples in Figure 5). Following [17], the subse-
quent assessment of whether under-represented simulated images appear as out-
liers to S is done using the predictive certainty of a shape label classifier F (X) =
PS(Y 1|X; θ), trained on the dataset S. The complete detector of outlier annota-
tions ES is formally described below in (4), where Fk is the logit score for the kth

shape and T is the temperature parameter which, as shown later, eases the de-
tection process. With F using a softmax output layer, we use maximum softmax
score as the measure of certainty. Put simply, with sets of outlier and familiar
annotations (5), the outlier hypothesis asserts that a good detector ES assigns
low scores Si for outlier annotations Ŷ − and high scores for familiar ones Ŷ +.

Si = ES(Ŷi, F, T ) = max
k∈K

exp(Fk(G(Ŷi))/T )∑
k∈K

exp(Fk(G(Ŷi))/T )
, Ŷi ∼ PT (Y ),K = {0, 1} (4)

Ŷ − = {Ŷi : PS(Ŷi) = 0}, Ŷ + = {Ŷi : PS(Ŷi) > 0} (5)

Simulator (G) Classifier (F )Ŷi ∼ PT (Y ) max Si

T

X̂i

Fig. 4: Detecting outlier annotations

1,24,5,120,101,100 0,14,20,118,124,205 0,35,1,79,45,203 1,78,40,114,76,120

1,19,31,87,99,100 1,88,40,120,72,154 0,55,74,85,104,213 1,16,11,125,120,181

Fig. 5: Samples X̂i from the test set T

To test the outlier hypothesis, four variants of the classifier F , all of which
follow the VGG architecture [33], are used. Classifiers mainly differ in the num-
ber of layers, with VGG05 (5 layers) and VGG13 (13 layers) being the shallowest
and deepest respectively. Each F is trained6 for 5 epochs on S with 50k samples
using the Adam optimizer [18] to achieve validation accuracy (on a separate set
of 10k samples) greater than 97%. However, [14] shows that deep neural nets
tend to predict with high confidence, making raw maximum softmax scores poor
measures of predictive certainty, and a simple way to mitigate this is tempera-
ture scaling, i.e. setting T > 1, in (4). As seen in Figure 6a, scores Si are tightly
clustered at T = 1 with relatively low variance, which makes it difficult to iden-
tify differences in predictive certainty between familiar and outlier annotations.
There is, however, a range of temperatures at which scores are better spread
and can exaggerate these differences. While a temperature that maximizes the

6 Each classifier trains within 10 – 15 minutes on an NVidia GTX 1080 Ti GPU
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variance of the score distribution seems appropriate, as seen in Figure 6a, scaling
also reduces its mean. Therefore a safeguard may be necessary to prevent the
mean certainty score from reducing to a level that questions the confidence of
predictions. These twin requirements can be achieved by the search objective
(6), which ensures a good spread in scores Si, while keeping its mean close to
the chosen safeguard ST .

T ∗ = argmin
T

LT − LV , LT =
(
µS − ST

)2

LV =

∑M
i=1

(
ES(Ŷi, F, T )− µS

)2

M
, µS =

∑M
i=1ES(Ŷi, F, T )

M

(6)

Upon temperature scaling with T ∗, the effectiveness of the detector ES in sepa-
rating outlier annotations Ŷ − from familiar ones Ŷ + can be measured using the
Area Under Receiver Operating Characteristic (AUROC). This is shown for each
F , averaged over 5 separate training runs, in Figure 6b. Based on an informal
grading scheme for classifiers using AUROC score suggested in [17]7, detectors
using VGG05 and VGG07 receive a ‘fair’ grade in identifying outlier annota-
tions, while the deeper networks get ‘good’ grades. The best outlier detectors,
with AUROC ≈ 0.85, are those with F as VGG09 and VGG13. These results
clearly endorse the viability of the outlier hypothesis that simulated images that
are under-represented in S, in terms of specified design concerns, appear as out-
liers to the right classifier trained on S. While PS , derived from labeling, is used
as a benchmark to test the outlier hypothesis, it is important to observe that
(i) classifiers that are good at outlier detection are, as seen in Figure 6b, those
that have the highest accuracy in predicting shape labels on the test set T , and
(ii) the temperature T ∗, at which the classifiers become good outlier detectors,
depends only upon the statistical properties of scores Si. Together, these ob-
servations mean that a good detector of under-represented annotations can be
assembled using only simulation, without any need for labeling.
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(a) Effect of temperature scaling on the dis-
tribution of uncertainty scores F=VGG13
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Fig. 6: Testing the novelty hypothesis

7 Quality of classification based on AUROC score - 0.9—1: Excellent, 0.8—0.9: Good,
0.7—0.8: Fair, 0.6—0.7: Poor, 0.5—0.6: Fail
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Step 2 - Estimating marginal sample representation As presented in Sec-
tion 2, we seek to comprehensibly explain sample representation in the dataset
S of geometric shapes on the basis of intuitive design concerns like size, posi-
tion, and brightness. However, the detector ES can only assess whether a single
combined 6-d test annotation is an outlier. To assess, for example, the diversity
of shape sizes in the dataset, independent of position, we turn to techniques
of input attribution. Given the detector ES , attribution techniques estimate
the contribution of each input label Ŷ ji to its outlier score Si. Among proposed
methods for input attribution [29], one promising framework is Shapley Additive
Explanations (SHAP)[25]. Using principles of cooperative game theory, SHAP
estimates marginal influence φji (7), which indicates how label Ŷ ji independently
influences the uncertainty score Si.

Si = ES(Ŷi, F, T ) = φ0 +
6∑

j=2

φji (7)

In satisfying an additive property, SHAP values are also semantically intuitive,
with negative, positive, and zero values of φji respectively indicating negative,

positive, and neutral influence of label Ŷ ji on the score Si. The outlier hypothesis
verified earlier implies that outlier (familiar) annotations tend to have a lower
(higher) certainty score Si. Therefore SHAP value φji > 0, which indicates that

the individual label value Ŷ ji tends to improve Si, becomes an indicator of that
label being represented in S. Through a campaign directed by the test set T ,
which systematically covers the specified range of scenarios PT , non-negative
SHAP values identify sample representation in the dataset S in terms of each
individual label. This can be seen in Figure 7a, where label values with a high in-
cidence of non-negative SHAP values (marked black) are likely to be represented
in S. This directly allows estimating the likelihood of test label Y j = l, Y j ∼ PT
being represented in the set S as the proportion of test labels Ŷ ji , in a sufficiently
small interval δ around l, whose SHAP values are non-negative.

P+
T (Y j = l |Y 1 = k) =

|{Ŷ ji : φji ≥ 0, Ŷ ji ∈ Y l}|
|{Ŷ ji : φji ≥ 0}|

, j = 2...6, Ŷi ∈ Ŷ

Y l = {l − δ, l + δ}, Ŷ = {Ŷi : Ŷ 1
i = k}, k ∈ K

(8)

Assessing the explanation By expressing expected diversity PT in terms
of specified design concerns, the two-step process, using a simulated test set,
identifies sample representation in each concern using non-negative influence on
predictive certainty. From the original broadly spread expectations PT (Figure
2), the process correctly eliminates a significant amount of outliers in each la-
bel dimension, producing P+

T (Figure 7b). P+
T shows label values likely to be

observed in the dataset S and has a roughly similar spread as the actual dis-
tribution PS . Also, using a test set with M=10k samples, the process estimates
sample representation in a much larger dataset with N=50k samples.
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Introduced originally in Section 2 to quantify bias between expected and
actual distributions of annotations, the overlap index V is also suitable for mea-
suring similarity between P+

T and PS . This helps quantify the effectiveness of es-
timating sample representation using simulation. The visual observation that P+

T

is a better estimate of true sample distribution, compared to the broad range of
expectations PT , is confirmed by better a mean overlap score V j(P+

T ) (see Table
1), over all labels and shapes, compared to mean V j(PT ). While this holds true
for both classifier instances shown in the table, the detector using F=VGG13
at T = T ∗, which has the best AUROC score in detecting outliers, produces the
closest estimate with a mean overlap score of 0.27. VGG05, with poorer AUROC,
has a weaker average overlap score of 0.39. The close correlation between AUROC
and V further confirms the plausibility of estimating marginal sample representa-
tion using SHAP scores. This shows that, while facing an expensive labeling pro-
cess, with the right means of parametric simulation, one can conduct a campaign
from a low-dimensional space of specified design concerns to estimate sample rep-
resentation in a given dataset and comprehensibly explain sample selection bias.
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Fig. 7: Explaining sample representation using simulation (F=VGG13, T = T ∗, ST =
0.7)

4 Discussion

Under-representation and outlier detection A good outlier detector ES of
under-represented samples must blur the distinction between simulated and real
images while emphasizing the distinction between over and under-represented
images. Figure 6b shows both conditions are jointly achievable, with classifiers
that have a high test set accuracy, and therefore generalize well, also having
better AUROC scores in detecting representation. However, as seen in Figure 8,
using regularization measures like batch normalization layers after each convolu-
tional block, while improving test accuracy, reduces AUROC scores for all classi-
fier instances. This is probably because it tends to blur [23] both forms of distinc-
tion. The figure also shows that dropout increases the test accuracy without any
major effect on AUROC scores, giving no special domain separation advantage in
detecting under-representation. Among the classifier configurations investigated
here, vanilla VGG, with the strongest correlation between AUROC and test set
accuracy, is observed to best addresses both forms of domain distinction.
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T P Y 1 V j(P ) Mean
V j(P )

j=2 3 4 5 6

- PT
0 0.60 0.47 0.59 0.47 0.75

0.57
1 0.57 0.45 0.57 0.45 0.76

T ∗

ST = 0.7

P+
T

F =VGG13

0 0.49 0.14 0.17 0.35 0.55
0.27

1 -0.19 0.26 0.16 0.17 0.56

P+
T

F =VGG05

0 0.47 0.33 0.29 0.44 0.60
0.39

1 0.31 0.34 0.27 0.25 0.56

1

P+
T

F =VGG13

0 0.49 0.30 0.40 0.15 0.69
0.36

1 0.30 0.28 0.21 0.13 0.69

P+
T

F =VGG05

0 0.22 0.14 0.54 0.47 0.65
0.43

1 0.57 0.29 0.56 0.15 0.70

Table 1: Quantitative bias estimation
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Fig. 8: Effect of regularization on AUROC

The importance of effective simulation It is crucial to note that high test
accuracy reflects the combined effect of plausible simulation and good general-
ization. It is equally essential, therefore, that the simulator produces samples
that are plausibly real. Ensuring effective simulation, while supporting a variety
of parameters, is undoubtedly a challenge for realistic datasets with richer con-
tent. As noted earlier, while this is domain and problem dependent, for images
at least, rapid advancements in the quality and range of graphics tools ([5],[9]),
potentially makes effective simulation plausible. However, with notable progress
in techniques that automate parts of the labeling process [7], it is also important
to assess whether labeling is cheaper for the dataset in concern.

Improving estimation of representation Figure 7b shows that while the es-
timated sample representation P+

T comes close, it does not overlap perfectly with
the true label distribution PS . As quantified in Table 1, even the best detector
(F=VGG13 at T = T ∗) has a mean overlap index of 0.27 indicating relatively
close, but only partial, overlap on average. At the individual label level, index
values show varying accuracy in support-matching. The representation of pixel
brightness 0.5 < V 6(PT ) < 0.8 is consistently underestimated, while those of
bounding box coordinates are better estimated. It is however clear from Table
1 that temperature scaling (T = T ∗ vs 1) and deeper classifiers (F =VGG13 vs
VGG05) improve estimation, indicating that more sophisticated techniques of
predictive outlier detection, like methods in [32], can improve estimation.

Balancing detail in specifying expectations The level of detail specified
in the expectations PT plays a key role in deciding the cost and benefit of ex-
plaining sample representation. An overly detailed breakdown of design factors
involves significant engineering effort, degrades interpretability, and overlooks
the remarkable benefits of generalization offered by deep learning. But well-
balanced expectations can provide valuable insight into training data. Take an
application like self-driving vehicles, where engineers actively seek a certain level
of understanding of operational scenarios [15] to ensure safe operation. Such un-
derstanding can be exploited to systematically explain, analyze, and manage
the data used to train models deployed in the system, thereby improving overall
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confidence in its dependability. While balancing details in the specification may
not always be easy, one advantage of this method is that it is semi-supervised.
Annotations included in the analysis impacts only the simulated test set T and
has no effect on the actual dataset S.

Extension to other domains This method of explanation can conceivably
be extended to a problem in another domain if (i) operational scenarios can be
reasonably broken down and (ii) model-based parametric simulators that can
generate data for this domain are available. For example, this method can use a
simulator of vulnerable road user trajectories [16] to examine a sparsely labeled
dataset of trajectories (e.g. [30]) and check whether it adequately represents
trajectories of risk groups like elder pedestrians, electric bikes, etc.

5 Related work

Sample selection bias Sample selection bias has been addressed in existing lit-
erature from the perspective of domain adaptation [19]. Previous methods to mit-
igate sample selection bias have mainly attempted to modify the training proce-
dures or the model itself to yield classifiers that work well on the test distribution.
Methods such as importance re-weighting [35], minimax optimization [24], kernel
density estimation [8] and model averaging [10] all fall in this category. While
these methods can yield classifiers that are able to generalize, the accuracy can
suffer when the two distributions differ greatly in the overlap of their support or
in the distribution of their mass. Our immediate goal, on the other hand, does not
seek to obtain a classifier that generalizes, but instead we seek to obtain a high
level understanding of the deficiencies of our training data and where the bias
stems from. This goal does not necessarily require a full specification of P (Y ), in-
stead we work with the weak proxy of PT (Y ) which attempts to match P (Y ) only
through the support. However, by eschewing mass-modeling, we gain a few ad-
vantages, one of which is the reduced effort in defining expectations. More impor-
tantly, since several existing methods for correcting sample selection bias work
only if the support of PT is included in that of PS and our method of explanation
tests precisely for this condition. Overlap indices V j(PT ) ≤ 0 guarantees that
the support of the biased distribution includes that of the expectations and cor-
rection measures like importance re-weighting are applicable. If 0 < V j(PT ) ≤ 1,
expanding the diversity of data collection is unavoidable. Thus seeking to un-
derstand and explain the data set can allow for an improved understanding of
the validity for methods that directly impacts the generalization performance.

Understanding sample representation Besides clustering approaches [6]
and feature projection methods such as t-SNE [26], previous research into pro-
viding a high level understanding of the training set has, for example, applied
tree-based methods to detect regions of low point density in the input space [13].
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High-dimensional explanations in the input space, however, adversely affects in-
terpretation, and ways to extend these methods to yield explanations using an
interpretable low-dimensional space of annotations are not immediately clear.

Bias estimation using simulation Closer to our purpose are the methods [28]
and [27] which detect inherent biases in a trained model using parametric simu-
lation and Bayesian optimization. While their goal is to find input samples where
the model is locally weak, our goal is to ensure that a given dataset meets global
expectations defined by a test set. This can verify that a system is dependable for
all considered scenarios, like [34], which is a standardized set of tests. However,
in reformulating bias detection as outlier detection, our method – unlike the
aforementioned methods – trades-off the ability to detect unknown unknowns
[21] in favor of a faster, global evaluation of bias. Combining our global and their
local approaches may, therefore, help ensure better overall dependability.

Shapley-based outlier detection Previous work using Shapley values for
outlier detection, such as [12] and [1], focus mainly on providing interpretable
explanations for why a data point is considered to be an outlier. It may also
be possible to extend their data-space explanations to the annotation-space, like
we do, using parametric simulation. However, pixel-wise reconstruction error has
well-known drawbacks in capturing structural aspects of data [22]. It is therefore
not immediately clear whether their use of auto-encoder reconstruction error is
as good at detecting structural under-representation as our technique of using
predictive certainty, which is calculated from the feature space of a classifier.

6 Conclusions

With data playing a crucial role in deciding the behavior of trained models, eval-
uating whether training and validation sets meets design expectations would be
a helpful step towards a better understanding of model properties. To aid this
evaluation, we demonstrate a method to specify expectations on and evaluate
sample representation in a dataset, in a human interpretable form, in terms of
annotations. Using parametric simulation to map test annotations into a test
set, the method exposes under-representation by measuring the uncertainty of a
classifier, trained on the original dataset, in recognizing test set samples. Tech-
niques of input attribution enable further conversion of predictive uncertainty
into a comprehensible low-dimensional estimate of sample representation in the
dataset. While refinements in estimation are possible, the core quantitative and
qualitative methods shown here are valuable aids in understanding a dataset
and, consequently, the properties of a model trained using this data.
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