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Precision measurements of β-decay observables offer the possibility to search for deviations from 
the Standard Model. A possible discovery of such deviations requires accompanying first-principles 
calculations. Here we compute the nuclear structure corrections for the β-decay of 6He which is of 
central interest in several experimental efforts. We employ the impulse approximation together with 
wave functions calculated using the ab initio no-core shell model with potentials based on chiral effective 
field theory. We use these state-of-the-art calculations to give a novel and comprehensive analysis of 
theoretical uncertainties. We find that nuclear corrections, which we compute within the sensitivity of 
future experiments, create significant deviation from the naive Gamow-Teller predictions, making their 
accurate assessment essential in searches for physics beyond the Standard Model.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The Standard Model (SM) is very successful in explaining the 
vast majority of observed phenomena in particle physics. Never-
theless, several important questions remain unanswered and the 
search for evidence of Beyond the Standard Model (BSM) physics 
is one of the heralds of contemporary particle physics [1]. In par-
ticular, recent years have brought advances in the sensitivity of β-
decay studies, and several high precision experimental efforts [2,3]
have been deployed, as a “precision frontier” to search for BSM 
physics—alternative to the high-energy frontier represented by the 
Large Hadron Collider (LHC) [4]. β-decay observables are sensi-
tive to interference of currents of SM particles and hypothetical 
BSM physics. Such couplings are proportional to 

(
v/�

)2
, with 

v ≈ 174 GeV, the SM vacuum expectation value, and � the new 
physics energy scale. This entails that a difference between SM 
theoretical predictions and experiment that can be inferred as a 
result of a ∼ 10−4 coupling between SM and BSM physics would 
suggest new physics at a scale that is out of the reach of current 
particle accelerators.

However, discovering such minute deviations from the SM pre-
dictions demands also high-precision theoretical calculations. In 
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the case of β-decays this challenge entails nuclear structure cal-
culations with quantified uncertainties. The field of ab initio nu-
clear structure calculations has significantly evolved in the last 
two decades. Concomitantly, model-independent nuclear interac-
tions based on chiral effective field theory (χEFT) [5,6] have been 
developed. A showcase example of this progress, relevant for stud-
ies of weak interactions with nuclei, is the recent accurate calcula-
tions of β-decay rates for nuclei with masses up to A = 100 [7].

In this Letter we present a theoretical analysis of β-decay ob-
servables of the pure Gamow–Teller (GT) transition 6He

(
0+

gs

) →
6Li

(
1+

gs

)
, with an endpoint energy of Q = 3.50521(5) MeV1 [8].

Our motivation to study 6He is twofold: First, 6He is a light 
nucleus for which ab initio many-body calculations are numeri-
cally tractable, and thus can test feasibility to reach the precision 
needed by experiments to constrain BSM signatures. Second, 6He 
is being studied in several ongoing, or soon to be initiated, ex-
perimental campaigns at Laboratoire de Physique Corpusculaire de 
CAEN (France) [3], National Superconducting Cyclotron Laboratory 
(USA) [9], the University of Washington CENPA (USA) by the He6-
CRES Collaboration [10], and at SARAF accelerator (Israel) [11]. The 

1 The n digits within the parenthesis specify the theoretical precision as ± these 
digits added to the last n digits of the value presented.
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SARAF experiment is focusing on the angular correlation between 
the emitted β-particles, while the other aforementioned experi-
ments will measure the β-electron energy spectrum. As the ex-
periments aim for a per-mil level of accuracy, precise calculations 
based on the SM are needed.

The β-decay spectrum of a pure GT transition takes the simple 
form: dω ∝ 1 + aβν �β · ν̂ + bF

me
E [12]. Here, �β = �k

E , while me , E and 
�k are the mass, energy and momentum of the emitted β-electron, 
respectively, and �ν = νν̂ is the momentum of the emitted anti-
neutrino. aβν is the angular correlation coefficient between the 
emitted electron and anti-neutrino, and bF is the so-called Fierz 
interference term. The V − A structure of the weak interaction 
within the SM entails that aβν = − 1

3 and bF = 0 for pure GT tran-
sitions [2], neglecting other effects. These values can be modified 
in the presence of BSM physics, but also by nuclear-structure cor-
rections. Thus, disregarding nuclear structure effects might lead to 
wrong interpretation of the experiments. Notice that bF is linear in 
BSM couplings such that constraining bF < 10−3 in a GT transition 
yields a sensitivity to BSM currents characterized by tensor cou-
pling εT < 1.5 ·10−4, or new physics at a scale � > 14 TeV [3,4,13]. 
On the other hand, aβν is proportional to ε2

T [14,12], thus de-
manding higher precision to reach the same BSM constraints. The 
extraction of both these parameters from 6He β-decay demands 
two experimental settings as bF is obtained from spectral mea-
surements in which the angular correlation term vanishes. This is 
in contrast to the case of first-forbidden unique transitions, where 
a simultaneous extraction of aβν and bF is possible from the β-
energy spectrum [15].

Currently, the state-of-the-art measurement of 6He angular cor-
relations is a recoil ion energy measurement from 1963 [16], re-
sulting in aβν value consistent with − 1

3 up to the experimental 
error of 0.9%. Corrections to this result were offered over the years 
by adding radiative corrections [17], and updating the 6He shake-
off probability [18] and Q-value [19,20]. The present work is, to 
our knowledge, the first consistent calculation of nuclear-structure 
related corrections to these observables, taking into account the 
full nuclear dynamics, shown as important already in Ref. [21], 
and using χEFT to quantify systematic uncertainties in the nuclear 
modeling. Nuclear-structure effects are particularly important since 
they entail a finite b1+β−

F value which in turn has been shown to 
distort the extraction of aβν [22]. In the following, we use ab initio
calculations of nuclear wave functions and the weak transition ma-
trix elements to predict experimentally relevant observables. We 
focus on corrections related to nuclear structure, and use a recent 
β-decay formalism [23], to augment the point prediction with a 
theoretical uncertainty estimate.

The full expression for 6He β−-decay differential distribution 
within the SM—including the leading shape and recoil corrections, 
i.e., next to leading order (NLO) in GT—takes the following form:

dω1+β−

dE d�k
4π

d�ν
4π

= 4

π2 (E0 − E)2 kE F −(
Z f , E

)
Ccorr

∣∣∣〈‖L̂ A
1 ‖〉

∣∣∣2

×3
(

1 + δ
1+β−
1

)[
1 + a1+β−

βν
�β · ν̂ + b1+β−

F
me

E

]
,

(1)

where E0 is the maximal electron energy, k = |�k|, 〈‖L̂ A
1 ‖〉 is the 

reduced matrix element between the initial- and final-state wave 
functions of the rank-1 spherical tensor longitudinal operator of 
the axial current (proportional to the GT operator). In general, we 
use the superscript A(V ) to denote axial-(polar-)vector contribu-
tion to the weak nuclear current. Furthermore, F −(

Z f , E
)

is the 
Fermi function (calculated here according to [24]), which takes into 
account the deformation of the β-particle wave function due to 
the long-range electromagnetic interaction with the nucleus, and 
Ccorr represents other corrections which do not originate purely in 
2

the weak matrix element, such as radiative corrections, finite-mass 
and electrostatic finite-size effects, and atomic effects. These cor-
rections are assumed to be well known [25] and are not taken into 
account in the following calculations as they do not affect the ob-
servables.

Taking recoil and shape corrections into account, the β − ν cor-
relation becomes

a1+β−
βν = −1

3

(
1 + δ̃

1+β−
a

)
. (2)

Similarly, an me/E spectral behavior appears, similar to the BSM-
induced Fierz interference term, via a nuclear-structure dependent 
factor

b1+β−
F = δ

1+β−
b . (3)

These relative corrections originate from rank-1 multipole op-
erators, Ĉ A

1 (axial charge) and M̂ V
1 (vector magnetic or weak mag-

netism), and can be written as

δ
1+β−
1 ≡ 2

3
Re

[
−E0

〈‖Ĉ A
1 /q‖〉

〈‖L̂ A
1 ‖〉 + √

2 (E0 − 2E)
〈‖M̂ V

1 /q‖〉
〈‖L̂ A

1 ‖〉

]

− 4

7
E RαZ f − 233

630

(
αZ f

)2
,

δ̃
1+β−
a ≡ 4

3
Re

[
2E0

〈‖Ĉ A
1 /q‖〉

〈‖L̂ A
1 ‖〉 + √

2 (E0 − 2E)
〈‖M̂ V

1 /q‖〉
〈‖L̂ A

1 ‖〉

]

+ 4

7
E RαZ f − 2

5
E0 RαZ f ,

δ
1+β−
b ≡ 2

3
meRe

[
〈‖Ĉ A

1 /q‖〉
〈‖L̂ A

1 ‖〉 + √
2
〈‖M̂ V

1 /q‖〉
〈‖L̂ A

1 ‖〉

]
,

(4)

where �q = �k + �ν is the momentum transfer, R is the radius of the 
nucleus, α ≈ 1

137 is the fine structure constant, and Z f = 3 is the 
charge of the final nucleus. In the nomenclature of [23], Ĉ A

1 and 
M̂ V

1 are dominated by two small dimensionless parameters εNRεqr
and εrecoil . In the current kinematics, the non-relativistic small pa-
rameter εNR ∼ PFermi/mN ≈ 0.2 (PFermi is Fermi momentum and 
mN is the nucleon mass), εqr ∼ qR ≈ 0.05 and εrecoil ∼ q/mN ≈
0.004 while subleading (NNLO in GT) corrections to Eq. (4) would 
be of the order of 1

15 ε2
qr ∼ 10−4.2

Non-radiative electromagnetic corrections, arising from the dis-
tortion of the electron wave function, can be divided into three 
main contributions [23]. First, spectrum corrections, which are 
taken into account for the leading order by including the Fermi 
function F −(

Z f , E
)
, and for the sub-leading orders by the terms 

proportional to the order of εqrεc ∼ 10−3 (with εc ∼ αZ f ≈ 2 ·
10−2) and ε2

c ∼ 5 · 10−4 [26], incorporated in Eq. (4) [25,27]. 
Our numerical calculations in combination with the expressions in 
Refs. [25,27] yield that sub-sub-leading orders for the spectrum 
corrections of 6He are � 10−4, and this is factored into our error 
estimation. Second, correction terms to the multipole operators are 
proportional to εrecoilεqrεc ∼ 5 · 10−6 [26], and therefore smaller 
than other corrections and than the sensitivity of current exper-
iments, and thus are not included in the calculations. Third, the 
electrostatic gauge field results in a correction �Ec to the energy 
transfer E0, i.e., the difference between the Coulomb potentials 

2 This arises from the residual correction of the electric multipole operator Ê A
J

from its low energy approximation, i.e., the residual is the second term in the exact 
relation Ê A

J M J
=

√
J+1

J L̂ A
J M J

− i
√

2 J+1
J

∫
d3r j J+1 (qr) �Y M J

J J+11

(
r̂
) · �J A

(�r), where �J A is 
the hadron axial current, �Y M J

Jl1 is the vector spherical harmonic, and the spherical 
Bessel function j J (ρ) ≈ ρ J

(2 J+1)!! [23].
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of the decaying and final nucleus [28], and is discussed following 
Eq. (5).

The main nuclear structure dynamics are encapsulated both 
in the nuclear wave functions and in the structure of the mul-
tipole operators, which are expansions of the hadronic currents 
and charges within the nucleus. At the low energies characteriz-
ing nuclear β-decays, this dynamics, microscopically governed by 
quantum chromodynamics (QCD), can be effectively reduced into 
a field theory of nucleons, pions and short-range interactions by 
the use of χEFT. This results in a consistent expansion governed 
by a small parameter εEFT, which dictates the accuracy of the the-
ory. Below we estimate that εEFT � 0.15 for the present study. A 
detailed derivation of the power-counting of electro-weak oper-
ators in χEFT can be found in Ref. [29] and references therein. 
Weak probes generally interact with currents of ever growing clus-
ters of nucleons. However, within χEFT, interactions with currents 
of bigger clusters are suppressed. For weak magnetism, M̂ V

1 , the 
two-body current part is suppressed by εEFT compared to the 
leading-order single-nucleon current, while the L̂ A

1 and Ĉ A
1 two-

body current terms are associated with the next order, ε2
EFT.

We calculate the needed multipole operators within the so-
called impulse approximation, i.e., single-nucleon currents weakly 
interacting with the β particles, while neglecting two- and higher-
body currents. In this approximation, the three nuclear operators 
L̂ A , Ĉ A and M̂ V appearing in Eqs. (1) and (4) can be expressed in 
terms of four basic multipole operators �̂′′ , �̂′ , �̂, and �̂′ [30] (see 
Appendix A for definitions) as

Ĉ A
J M J

q
=

A∑
j=1

i

mN

[
g A�̂′

J M J
(q�r j)

−1

2

g̃ P

2mN
(E0 + �Ec) �̂′′

J M J
(q�r j)

]
τ+

j ,

L̂ A
J M J

=
A∑

j=1

i

(
g A + g̃ P

(2mN)2
q2

)
�̂′′

J M J
(q�r j) τ

+
j ,

M̂ V
J M J

q
=

A∑
j=1

−i

mN

[
gV �̂ J M J (q�r j) − 1

2
μ�̂′

J M J
(q�r j)

]
τ+

j .

(5)

Here, J (M J ) is the multipole rank (projection), mN is the nu-
cleon mass, �r j (τ+

j ) is the jth nucleon position vector (isospin-
raising operator). Note that the sum runs over the A nucleons 
(not to be confused with the A labeling axial quantities). In (5), 
μ ≈ 4.706 is the nucleon isovector magnetic moment; gV = 1, 
g A = −1.2756 (13) [31] and g̃ P = − (2mN )2

m2
π −q2 g A [32] are the hadronic 

vector, axial-vector and pseudo-scalar charges, which correspond 
to the nucleon form factors at q = 0. In general, the nucleon 
form factors include momentum-transfer corrections proportional 
to q2

μ [2]. These, however, are ∼ 1
6 ε2

qr , and thus smaller than the 
needed precision.

As aforementioned, the correction �Ec to the energy trans-
fer E0 is the difference between the Coulomb energies of the fi-
nal and initial states of the nucleus, �Ec ≡ 〈6Li 1+

gs|V c|6Li 1+
gs〉 −

〈6He 0+
gs|V c|6He 0+

gs〉, where V c denotes the full Coulomb potential 
operator. Quantum Monte Carlo calculations in Ref. [33] present 
the Coulomb energy difference �Ec = 0.85 (3) MeV, which is the 
value that we use in our calculations. This result is consistent 
with the experimental value for the Coulomb displacement en-
ergy between a pair of isobaric analog levels, which is given by 
�Ec ≡ M Z> − M Z< + �nH = M

(
6Li 0+) − M

(
6He 0+

gs

) + �nH =
0.837(10) MeV [34], where M Z> (M Z<) is the atomic mass of 
the higher (lower) Z member of the analog pair, and �nH is the 
neutron–hydrogen mass difference.
3

Wave functions of 6He and 6Li and the many-body matrix el-
ements of the multipole operators in (4) are obtained within the 
ab initio no-core shell model (NCSM) [35–37] using χEFT interac-
tions as the only input. We utilized two chiral interactions in this 
work, namely NNLOopt [38] and NNLOsat [39]. The former was con-
structed from χEFT at the NNLO order with inclusion of only the 
NN terms. This interaction reproduces reasonably well the exper-
imental binding energies (∼ 5%) and radii for A = 3, 4 nuclei, as 
well as for the A = 6 systems that are relevant for this work [40]. 
The NNLOsat interaction is also constructed at the NNLO order of 
χEFT—but includes 3N forces, and is more accurate for heavier 
systems [41–44].

The present calculations are performed using a Slater determi-
nant A-nucleon harmonic-oscillator (HO) basis in the M-scheme. 
The basis is characterized by the HO frequency � and contains up 
to Nmax HO excitations above the lowest Pauli-principle-allowed 
configuration. We apply the standard procedure of introducing 
one-body transition densities to compute matrix elements of one-
body operators between initial- and final-state NCSM wave func-
tions as

〈� f ‖
A∑

j=1

Ô J (�r j)‖�i〉 = −1√
2 J + 1

∑
|α|,|β|

〈|α|‖Ô J (�r)‖|β|〉

× 〈� f ‖(a†
|α|ã|β|) J ‖�i〉.

(6)

The operator matrix elements 〈|α|‖Ô J (�r)‖|β|〉, reduced in the an-
gular momentum, are evaluated between HO states which depend 
on the coordinate �r and are labeled by their nonmagnetic quan-
tum numbers |α| (|β|). In Eq. (6), ã|β|,m j = (−1) jβ−mβ a|β|,−m j , with 
a†
α and aβ the creation and annihilation operators for the single-

particle HO states |α〉 and |β〉, respectively, coupled to the angu-
lar momentum J . In the present case we have |�i〉 = |6He 0+

gs1〉, 
|� f 〉 = |6Li 1+

gs0〉, and J = 1.
However, the single-particle coordinates �r j and �r in Eq. (6) are 

measured with respect to the center of the HO potential. Thus, 
these matrix elements clearly contain contributions from spurious 
center-of-mass (CM) motion. Fortunately, the exact factorization of 
NCSM wave functions into a product of the physical intrinsic eigen-
state and a CM state in the 0h̄� excitation makes it possible to 
remove the effect of the CM completely. Therefore, we introduce 
a translationally-invariant one-body density depending on coordi-
nates and momenta measured from the CM of the nucleus, e.g., 
�ξ = −√

A/(A − 1)(�r − �RCM). This density is obtained as a direct 
generalization of the radial translationally-invariant density [45] by 
considering dependence on nucleon spins. Specifically, we replace 
the standard density (6) by

〈� f ‖
A∑

j=1

Ô J (�r j − �RCM)‖�i〉 = −1√
2 J + 1

×
∑

|a||b||α||β|
〈|a|‖Ô J (−

√
A − 1/A�ξ)‖|b|〉

× (M J )−1
|a||b|,|α||β|〈� f ‖(a†

|α|ã|β|) J ‖�i〉, (7)

with the M J matrix and further details given in Ref. [46]. The 
“one-body” HO states |a(b)〉 depend on the Jacobi coordinate �ξ as 
opposed to the single-particle HO states |α(β)〉 that depend on 
single-particle coordinates �r.

Results for the nuclear matrix elements of the one-body basic 
multipole operators �̂′′ , �̂′ , �̂, and �̂′ are shown in Fig. 1. These 
matrix elements are then used to construct the nuclear structure 
input, L̂ A, Ĉ A, M̂ V , as in Eq. (5). The convergence in terms of the 
1 1 1
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Fig. 1. Dependence of nuclear matrix elements on the NCSM model space parame-
ters and nuclear Hamiltonians. Light, medium, and heavy filled bands correspond 
to Nmax = 8, 10, 12 for the NNLOsat interaction including 3NF (blue bands), and 
Nmax = 10, 12, 14 for the NNLOopt interaction with only 2NF (green bands). The 
width of the bands show the variation with HO frequency h̄� = 16, 20, 24 MeV. 
The solid (dashed) line shows the result with the NNLOsat interaction at Nmax = 12, 
h̄� = 20 MeV computed with translationally-invariant (standard) one-body densi-
ties.

Fig. 2. Dependence of nuclear matrix elements on the NCSM model-space param-
eters and nuclear Hamiltonians. The light to dark bands correspond to Nmax =
8, 10, 12 for the NNLOsat (blue) interaction and Nmax = 10, 12, 14 for the NNLOopt

(green) interaction. The width of the bands show the variation with HO frequency 
h̄� = 16, 20, 24 MeV. The solid (dashed) line shows the result with the NNLOsat

interaction at Nmax = 12, h̄� = 20 MeV computed with translationally-invariant 
(standard) one-body densities.

basis frequency h̄� and the model space truncation Nmax is well 
controlled, but it is clear that results depend somewhat on the nu-
clear Hamiltonian. We also note that the translationally-invariant 
one-body density, Eq. (7), and the standard one-body density, 
Eq. (6), give the same many-body matrix elements at q = 0 for the 
�̂′ , �̂′′ , and �̂ operators while the many-body matrix elements of 
�̂′ differ. In particular, the spurious center-of-mass component of 
the wave functions contaminates the matrix elements when the 
gradient in the first term of �̂′ is applied on the wave function. 
With an increasing q, all the operators become contaminated by 
spurious center-of-mass contributions although the effect is quite 
small for �̂′ , �̂′′ , and �̂, i.e., it is not visible on the resolution scale 
of Fig. 1.

The 6He→6Li nuclear matrix elements that appear in Eq. (4) are 
shown in Fig. 2. We note that results are indeed sensitive to the 
4

Fig. 3. (a) Calculated energy dependence of the spectrum of 6He β-decay, in ar-
bitrary units. Dashed line is the pure GT spectrum, while the filled bands include 
nuclear-structure dependent corrections. (b) The residual nuclear structure correc-

tion δ1+β−
1 compared to the pure GT spectrum (Eq. (4)). (c) Energy dependence 

of the angular correlation aβν from Eq. (2). Dashed line corresponds to the SM 
value, aGT

βν = −1/3. (d) Relative size of the δ̃1+β−
a correction from (4). The width of 

the dark filled bands shows the variation with the employed nuclear Hamiltonian 
and NCSM model space parameters for HO frequency h̄� = 16, 20, 24 MeV, Nmax =
8, 10, 12 (10, 12, 14) using the NNLOsat (NNLOopt) interaction, using translationally-
invariant one-body densities. The width of the light filled band shows the total 
estimated theory error.

removal of spurious CM components as performed in this work. 
The technology for evaluating these q-dependent multipole matrix 
elements with NCSM wave functions was developed in Ref. [47]
based on the work in [48]. We study the convergence as a function 
of model space parameters and the dependence on the nuclear 
Hamiltonian as shown in Fig. 2. These nuclear-structure uncertain-
ties are propagated to the final BSM-related observables considered 
in this work, see the dark filled bands in Fig. 3, and shown to be 
small. Overall, the most sophisticated description is achieved by 
the Nmax=12 NNLOsat calculation with the correction of the CM 
effect and the HO frequency of 20 MeV. At that frequency, the 6He 
and 6Li g.s. energies are at their minimum.

As aforementioned, the lack of two-body currents in the mul-
tipole operators leads to an absence in the theory, dominated by 
a small parameter εEFT, where the M̂ V

1 two-body current part is 
characterized by εEFT, while L̂ A

1 and Ĉ A
1 two-body current terms 

are proportional to ε2
EFT. To verify this, and estimate these EFT un-

certainties better, we make use of other observables, where higher-
order EFT calculations were compared to experiment, namely the 
6Li magnetic moment and M1 transition, and the 6He half-life. 
According to Ref. [49] ([50]), the two-body current, which is an 
NLO correction for this operator, has a vanishing contribution to 
the 6Li magnetic moment, and a 20% (10%) contribution to the 
6Li(0+→1+) B(M1) transition. As B(M1) contains the squared ma-
trix element, this entails at most a 10% two-body-current con-
tribution for M̂ V

1 . Additionally, we compared our L̂ A
1 calculations 

with the empirical GT operator, |GT
(

6He
) |expt = 2.161(5), calcu-

lated from the 6He half-life [51], and found a deviation of 1.5%
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in L̂ A
1 , consistent with the fact that these corrections are of higher 

order in EFT counting than M̂ V
1 . This consistency allows us to con-

servatively estimate that εEFT � 0.15.
As shown in Fig. 3b(d), we find up to 1% (2%) corrections to the 

β spectrum (angular correlation), consistent with the a priori es-
timates based on the small parameters of the problem. However, 
these corrections depend on the electron kinetic energy, thus ex-
tracting aβν requires an energy-weighted average, adhering to the 
particular experimental setup. Here, we exemplify the important 
effect of this procedure, by using an average of aβν weighted by 

the spectrum dω1+β−
dE . In this example, the total correction to aβν

due to nuclear structure is〈
δ̃

1+β−
a

〉
= −2.54 (68) · 10−3, (8)

i.e., a 7 per-mil correction to the SM aGT
βν = − 1

3 . This, however, is 
a naive value, as one should keep in mind the (often neglected) 
dependence of the measured aβν value on the bF-analogous term 
detailed below.

Such a term with a similar spectral behavior as the Fierz in-
terference can be extracted from the corrected spectrum, and our 
calculations indicate that it is non-zero

b1+β−
F = δ

1+β−
b = −1.52 (18) · 10−3. (9)

This result, with an uncertainty of ∼ 10−4, is vital for ongoing ex-
periments, aiming for a per-mil level of precision.

In order to extract the β −ν correlation coefficient aβν , one no-
tices that the spectral shape suggests that ameasured

βν = aβν

1+bF
〈 me

E

〉 [22], 
resulting in the following relation:

aβν = ameasured
βν − aGT

βν

(〈
δ̃

1+β−
a

〉
− b1+β−

F

〈me

E

〉)
= ameasured

βν − 0.70 (24) · 10−3,

(10)

where 
〈me

E

〉 = 0.28536 (10).
However, a realistic measurement cannot probe directly the 

correlation between the neutrino and the β particle. For example, 
in the 1963 experiment [16], the recoil ion energy spectrum was 
studied, resulting in a different effect. The effect for 6He is given 
by ameasured

βν = aβν +0.127 bF [22], so the measured value (including 
radiative corrections [17], influence of the updated shake-off prob-
ability [18] and Q-value [19,20]) ameasured

βν + δrad,so,Q = −0.3324(30)

should be modified to

aβν = ameasured
βν + δrad,so,Q −

(
aGT
βν

〈
δ̃

1+β−
a

〉
+ 0.127b1+β−

F

)
= −0.3331 (32) .

(11)

Thus, the extracted aβν depends on corrections that imitate 
the spectral dependence of the Fierz term (suppressed by a nu-
merical factor of about 0.1). Importantly, this indirectly induces 
a linear dependence of this observable upon BSM corrections, be-
yond the naive quadratic dependence of aβν . Consequently, ∼ 10−4

experimental precision on this observable would entail tighter BSM 
constraints [52].

Summarizing, we have used a χEFT framework combined with 
the ab initio NCSM to analyze the nuclear-structure related correc-
tions to 6He β-decay observables. In particular, we have studied 
the angular correlation coefficient and a nuclear structure term 
with an inverse energy spectral dependence, imitating a Fierz in-
terference term. Our analysis uses the existence of small param-
eters, originating mainly in the low-energy regime characterizing 
β-decays, to quantify the relevant theoretical uncertainties. We 
find that the induced me/E behavior, that can be wrongly inter-
preted as a result of Fierz interference between SM and BSM cur-
rents, is significantly different than the naive SM value of zero. Our 
5

theoretical prediction comes with less than 15% uncertainty. Fur-
thermore, 0.2 per-mil bounds were found for SM nuclear structure 
effects correcting the angular correlation coefficient. Albeit these 
are smaller than the current experimental uncertainty, future an-
gular correlations measurements of 6He decay, aimed at reducing 
the current error by one order of magnitude, should use these 
bounds to check for BSM signatures, due to the indirect depen-
dence of the angular correlations on the Fierz term. These results 
increase significantly the potential to correctly check the SM, as 
well as pin-pointing possible deviations from it.
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Appendix A. Nuclear multipole operators

The four basic operators from SM electroweak theory that ap-
pear in Eq. (5) in the main text are defined as [30]

�̂′′
J M J

(q�r j) =
[

1

q
�∇�r j

M J M J (q�r j)

]
· �σ j,

�̂′
J M J

(q�r j) = M J M J (q�r j) �σ j · �∇�r j
+ 1

2
�̂′′

J M J
(q�r j),

�̂ J M J (q�r j) = �M J J M J (q�r j) · 1

q
�∇�r j

,

�̂′
J M J

(q�r j) = −i

[
1

q
�∇�r j

× �M J J M J (q�r j)

]
· �σ j,

(A.1)

with �σ j being the Pauli spin matrices associated with nucleon 
j. Furthermore, M J M J (q�r j) = j J (qr j)Y J M J (r̂ j) and �M J LM J (q�r j) =
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jL(qr j)�Y J LM J (r̂ j), where j J are the spherical Bessel functions, 
Y J M J (�Y M J

Jl1 ) are the spherical harmonics (vector spherical harmon-
ics), and J (M J ) is the multipole rank (projection).

When evaluating the one-body-like Jacobi-coordinate matrix el-
ements appearing in Eq. (7) in the main text we first carry out the 
gradients in the parenthesis of �̂′ , �̂′′ (see, e.g., Refs. [30,53]) and 
then replace �r by −

√
A−1

A
�ξ in all the operators, and, in addition, 

we replace the gradients (momenta) in �̂′ and �̂ by −
√

A−1
A

�∇�ξ .
We note that one-body matrix elements of the seven basic 

multipole operators for electroweak processes can be carried out 
analytically in the HO basis as demonstrated in Refs. [30,53]. In 
Ref. [53], a Mathematica script is provided for the calculation 
of the matrix elements. These results can be readily applied to 
calculate the matrix elements of the translationally-invariant ver-
sions of the operators we use here. In the analytic results, e.g., 
Eqs. (17)–(19) in Ref. [53], (i) the q is replaced by −

√
A−1

A q, (ii) 
the matrix elements (18) and (19) in Ref. [53] are multiplied by 
one more factor of −

√
A−1

A due to the gradient (momentum) act-
ing on the wave function, and, finally, (iii) yet another factor of 
−

√
A−1

A is applied to terms with 1/q, i.e., �̂′ , �̂′′ , and �̂ (A.1), to 
compensate for the extra scaling in step (i).

Appendix B. Comparison to literature

We would like to compare our results to the ones presented in 
the original 1975 Calaprice calculation [54], which is following the 
notation of Holstein and Treiman. According to that notation, there 
are three nuclear form factors needed to describe the beta-dacay 
transition to first order in recoil: the Gamow-Teller c, the weak 
magnetism b, and the induced tensor d. These can be connected, 
at leading order, to the matrix elements we calculated in Eq. (6)
(in the main text), through the following leading-order relations 
[28]:

c1 ∼= 2
√

3π g A 〈‖
A∑

j=1

τ+
j �̂′′

1‖〉 ,

b ∼= −2
√

6π A 〈‖
A∑

j=1

τ+
j

(
gV �̂1 − 1

2
gM�̂′

1

)
‖〉 ,

dI ∼= 2
√

3π Ag A 〈‖
A∑

j=1

τ+
j

(
�̂′

1 − 1

2
�̂′′

1

)
‖〉 .

(B.1)

We found that c1 ∼= 2.85 (14), in agreement with c ∼= 2.75 of 
Calaprice. Also the magnetic form factor b ∼= 66.7 (8.3) we ob-
tained is in agreement with b = 69.0 (1.0) experimental value that 
Calaprice presents. As we mentioned, the uncertainty of the mag-
netic multipole is large because it is dominated by εEFT. However, 
in 

〈
δ̃

1+β−
a

〉
the contribution of the magnetic multipole is averaged 

out. Last, unlike the Calaprice values, our calculations result in 
a negative value for dI

Ac1
. Using the leading-order relation from 

Eq. (B.1), we obtain dI

Ac1
∼= −0.45 (4). If we use the exact same op-

erator as Calaprice, then we get dI

Ac1
∼= −0.29. This value itself is 

somehow between the theoretical value 0.12, and the experimen-
tal value 2.0 (1.5) presented by Calaprice.
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