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Abstract
This thesis aims to present a practical approach to reducing the energy use of
industrial robot stations. The starting point of this work is different types of
robot stations and production systems found in the automotive industry, such
as welding stations and human-robot collaborative stations, and the aim is to
find and verify methods of reducing the energy use in such systems. Practical
challenges with this include limited information about the systems, such as
energy models of the robots; limited access to the stations, which complicates
experiment and data collection; limitations in the robot control system; and
a general reluctance by companies to make drastic changes to already tested
and approved production systems. Another practical constraint is to reduce
energy use without slowing down production. This is especially challenging
when a robot station contains stochastic variations, which is the case in many
practical applications.

Motivated by these challenges, this thesis presents an offline method of
reducing the energy use of a production line of welding stations in an automo-
tive factory. The robot stations contain stochastic uncertainties in the form
of variations in the robot execution times, and the energy use is reduced by
limiting the robot velocities. The method involves collecting data, modeling
the system, formulating and solving a nonlinear and stochastic optimization
problem, and applying the results to the real robot station. Tests on real sta-
tions show that, with only small modifications, the energy use can be reduced
significantly, up to 24 percent.

The thesis also contains an online method of controlling a collaborative
human-robot bin picking station in a robust and energy-optimal way. The
problem is partly a scheduling problem to determine in which orders the op-
erations should be executed, and a timing problem to determine the velocities
of the robots. A particular challenge is that some model parameters are un-
known and have to be estimated online. A multi-layered control algorithm is
presented that continuously updates the operation order and tunes the robot
velocities as new orders arrive in the system. Simultaneously, a reinforcement
learning algorithm is used to update estimates of the unknown parameters to
be used in the optimization algorithms.

Keywords: Energy optimization, robot station, industrial robot, stochastic
uncertainties.
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CHAPTER 1

Introduction

With increasing energy prices and the threat of global warming, many actors
in society strive to reduce their energy use. According to the International
Energy Agency [1] the possible energy savings for the industry is up to 30 %.
This thesis specifically looks at the energy reduction potential in the robotics
and automation systems, which in many industries, such as the automotive,
is significant. The thesis takes a practical approach and investigates chal-
lenges in achieving the desired energy reduction, and presents methods that
are both effective in terms of energy reduction and possible to apply in prac-
tice. It deals with challenges like unknown model parameters, limitations in
the robot control system, reluctance by companies to make drastic changes to
already tested and approved production systems, competing interests of other
performance criteria and stochastic uncertainties in the production systems.
This thesis aims to address some of these challenges, find methods to over-
come them, and verify the effectiveness of the methods on real examples of
robot stations. The content of this thesis is partly a continuation of the work
done in AREUS [2] and has been conducted in collaboration with companies,
such as AB Volvo, Volvo Cars, and ABB through the projects SmoothIt and
SPEAR. The proposed methods are verified on case studies provided by these
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Chapter 1 Introduction

companies, such as welding stations in an automotive production line, and a
flexible robot kitting station.

1.1 Background
Various approaches to the reduction of energy use of robotics and automation
systems exist, such as changing the hardware of robots and tools [3], [4],
optimizing the physical layout of robot stations [5], operation scheduling [6],
turning off inactive machines [7] and trajectory optimization [8]. An overview
of energy optimization methods for robots is given by Carabin et al. [9].
Looking specifically at the energy reduction of robot movements, which is the
main approach of this thesis, the required steps can roughly be divided into
three parts. They are: obtaining data and creating models of the robots and
stations, determining the energy optimal behaviour of the robots within given
constraints, and applying this optimal behaviour to the robots. Theoretical
and practical challenges with each of these steps and existing methods to
overcome them are discussed below.

The accuracy of an energy reduction method partly depends on the accuracy
of the robot energy models. Ideally, complete models of the mechanical and
electrical systems of the robots would be available, which is required in some
energy optimization methods [10]–[13]. Finding the parameters (masses, fric-
tion coefficients, capacitance etc.), required to create such models, are however
not always possible. As opposed to robots specifically designed for research
purposes, this information is in general not available for industrial robots. In
theory, different types of system identification methods [14], [15] can be used
to find these models. However, finding an accurate robot energy model can be
challenging, especially if the robot has many degrees of freedom, and if both
the mechanical and the electrical systems are unknown. Furthermore, for an
industrial robot used in production, it might not be possible to get access to
the robot to execute the necessary excitation trajectories. To overcome this
lack of complete energy models, methods have been proposed to minimize
some quantity correlated to energy use, such as mechanical power or acceler-
ation [2], [16]–[18]. Another simplified method is to limit the dimensionality
of the problem by using energy signatures to describe the energy use as a
function of the execution time [19], [20].

For industrial robots, a challenge to applying any energy-efficient control
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1.1 Background

strategy in practice is possible limitations in the control system. A common
and effective energy reduction approach is to directly change the trajectory of
the robot [8], [16], [18], [21]. However, that may not be possible to implement
in practice. In many robot control systems, a robot movement is typically
defined by a simple motion command that is used by the control system to
generate the trajectory. It is often possible to affect the trajectory generation
in a limited way by modifying some parameters, but not much insight is given
into how the trajectory is created. Methods have been proposed to emulate
the behaviour of a robot controller [22] and to use the built-in functionality,
such as velocity and acceleration settings, to reduce the energy use of the
robot [23]–[25].

An important constraint when reducing the energy use of robot stations
in practice is to not negatively affect the production flow of the factory, as
that, in the authors’ experience, often holds precedence over energy efficiency.
When a robot station is taken into production it is thoroughly tested to make
sure it works as intended. Any changes made after that point in time in-
troduce risks for negative consequences, like brake-downs due to collisions or
missed deadlines. Therefore, energy reduction methods aimed at robot sta-
tions already used in production should ideally limit the number of changes
required. To guarantee that the productivity is not negatively affected, co-
ordination of multiple robots and robot stations need to be considered [6],
[26]–[29]. Then, the problem can be formulated as a scheduling problem of
when in the execution of a robot station it is possible to achieve some energy
reduction without negatively affecting the production flow. This scheduling
problem becomes significantly harder if uncertainties are included in the prob-
lem. Different types of uncertainties exist in many practical applications, for
example in bin-picking, human-robot collaboration, welding, and vision-based
positioning. The inclusion of stochastic uncertainties makes it harder to guar-
antee that deadlines in the stations are met [30].

Given an energy model, a limited control system, and physical as well as
performance constraints that need to be respected, the challenge is to formu-
late the energy reduction problem into a mathematical optimization problem
[31] and to find a solver or solution algorithm to solve it [32], [33]. Depending
on the complexity of the problem this may require some simplifications by
reformulating the problem into a simpler class of optimization problems [34],
[35] or dividing it into multiple optimization problems. Ideally, this should
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Chapter 1 Introduction

involve some quantification of how close the simplified problem is to the true
one.

1.2 Research Approach
This section describes the approach used to conduct the research. The start-
ing point was real robot stations provided by companies through research
projects. The goal was to find methods to reduce the energy use of these in
the most accessible and effective way possible, while not negatively affecting
the production in other ways. The steps taken to achieve this can broadly be
divided into modeling, optimization, and verification.

The first step was to create models of the stations, robots, and energy use.
That was achieved by collecting as much data as possible from the real sta-
tions, either by collecting it directly from employees working with the real
stations or by using software to log data during the execution of the stations.
This data includes robot code, energy parameters, execution times of the
operations, and different types of constraints specific to the particular robot
stations. The constraints include physical constraints about robot movements,
practical constraints about limitations in the robot control systems, and per-
formance constraints where the deadline of the stations had to be met. During
these steps, it became clear that there were some stochastic uncertainties in
the stations that needed to be considered.

Extensive literature research was then made to investigate what energy re-
duction methods already exist, and that may be applicable given the available
data and constraints. Based on these inputs some control methods were formu-
lated. They include formulating the problems as mathematical optimization
problems. It was then investigated what solvers exist, that are possible to
obtain licences to, and that can solve the proposed optimization problems.
Several of them were tested and compared in terms of speed, accuracy, and
availability.

The final step was to verify that the proposed methods performed as ex-
pected, for which some experiments were conducted. This was done in two
ways, in simulation and reality. Based on the data collected from the stations,
models were built in simulation and the optimization methods were applied
to them. Data about energy use, execution times, etc. were collected and
analyzed. Where it was possible, the methods were also tested on the real
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stations. For this experiment, measurement equipment was connected to the
power supply of the robot station. The station was then executed several
times beforehand to warm up the robots since the energy use is influenced by
the temperature of the robot joints. The station was then executed several
times with and without optimization, to see how much the energy was re-
duced. This real data was then compared with the simulation model to verify
the results from the simulation.

1.3 Research Questions
Given the existing literature presented above, together with practical chal-
lenges from the industry, several research questions have been formulated:

RQ1: What is the most accessible and effective offline method of reducing the
energy use of industrial robot stations?

RQ2: How can the problem of incomplete or inaccurate system models be
handled?

RQ3: Are there any additional benefits of reducing the energy use of industrial
robot stations other than the energy reduction itself?

RQ4: What is the most robust and energy-efficient way of controlling a flexible
robot station online?

1.4 Main Contributions
Through the efforts of answering the research questions, several scientific con-
tributions have been made; they are summarized below.

• The first contribution from Papers A, B, and C is to present examples of
automotive robot stations that can be used to compare energy reduction
methods and to model them mathematically. This includes the overall
structure of a robot station, robot energy models, models of the uncer-
tainties in a robot station, constraints between robots and operations,
and performance constraints.

• The second contribution is to present an offline method of reducing the
energy use of these stations without increasing the cycle time of the

7



Chapter 1 Introduction

production. This involves creating models of the stations, finding sim-
plified energy models, formulating the mathematical optimization prob-
lems, finding suitable solvers, and modifying the optimization problems
in such a way that they can be solved by algorithms or solvers. This is
done for a deterministic station in Paper A, stochastic stations in Paper
B, and a whole production line in Paper C.

• The third contribution is to apply these methods to real examples of
robot stations, both to verify the functionality of the methods but also
to investigate the potential for energy reduction in the industry today,
as well as other potential benefits of the energy reduction method. This
is done on a real robot station in Paper A, on three simulation models of
real robot stations in Paper B, and on a simulation model of a production
line in Paper C.

• In connection with the real experiment in paper A, the fourth contri-
bution is to compare the energy use of the simulation models with the
real energy use. This is done to verify that the energy models in the
simulation are accurate enough for energy reduction purposes.

• The fifth contribution in paper D is to use a simple model of a robot sta-
tion to investigate the benefits of using online energy reduction methods
as opposed to offline energy reduction methods.

• The sixth contribution in paper E is to model a real example of a flex-
ible kitting robot station and to present an online control architecture
capable of controlling it in a robust and energy optimal way, including
learning of unknown model parameters.

1.5 Thesis Outline
The rest of the thesis is organized as follows. Chapter 2 contains the basic
definitions and models of an industrial robot, robot station, and production
line that will be used in the rest of this thesis. Chapter 3 presents meth-
ods for reducing the energy use of a deterministic robot station, a stochastic
robot station and a production line. In Chapter 4 the methods developed in
Chapter 3 are tested on either simulated or real examples of robot stations
or a production line and the results of these experiments are presented. In

8
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Chapter 5 an example of a flexible kitting station is presented, a method to
control it in an energy-efficient way is developed, and an experiment to verify
the method is shown. In Chapter 6 the included papers are summarized and
in Chapter 7 conclusions and future work are presented.
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CHAPTER 2

Robot Station Model

This chapter presents the necessary background and models of industrial
robots, robot stations, and production lines required for the rest of this thesis.
It is a summary of the material presented in Paper A, B, and C, together with
some additional background.

2.1 Robot Model
This section describes the basic energy model of a typical industrial robot (as
seen in Fig. 2.1) [26], [36], [37]. A standard model for the mechanical part of
a robot with n joints is

τ = A(q)q̈ + J(q, q̇) +Q(q) (2.1)

where τ is a vector of joint torques, A is the inertia matrix, J is a vector of
Coriolis and centrifugal torques, and Q is a vector of gravity torques. A, J ,
and Q are functions of the geometric and inertial parameters of the robot.
q, q̇, and q̈ are vectors containing the joint angles, angular velocities, and
angular accelerations respectively of each of the n joints.
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Chapter 2 Robot Station Model

Figure 2.1: A welding station from Volvo Cars.

The mechanical part of the robot is powered by an electrical system. In
short, the electrical system is supplied with energy by a three-phase AC sys-
tem, which is transformed to DC by a rectifier. Connected to the DC-side
are n number of Permanent Magnet Synchronous Motors (PSMSs), to power
the robot joints; a capacitor, that can supply energy to the DC-bus or store
energy recuperated by the motors through deceleration; and a "bleeder", that
can dissipate excess energy. Apart from the useful energy to move the robot
joints (2.1), the supplied energy also has to account for losses in the rectifier,
electrical motors and losses due to friction in the joints. The electrical system
also powers the robot control system and brakes for the joints. The brakes
are normally closed, but during movement and for some time afterwards, they
are kept open by a constant supply of power. Additionally, the robot tool
may also use a significant amount of energy, e.g. the welding tool of a welding
robot. In this context, it can also be mentioned that the lighting and venti-
lation of the factory are big users of energy [38]. However, in this thesis, the
focus is on the energy use related to robot movements.

2.2 Robot Control System
The robot control system is what controls the behaviour of the robot. The user
typically programs the behaviour of the robot control systems by specifying
sequences of instructions. This is normally done in simulation software which
contains a model of the robot, such as RobotStudio from ABB, KUKA.sim
or Process Simulate. An example of a series of instructions written in the
RAPID programming language from ABB is, [39],
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AllocateZone Z1
MoveL p1, v2500, z100
MoveL p2, v2500, z100
SpotL p3, v100, spot1
AllocateZone Z2
MoveL p4, v2500, z100
SpotL p5, v100, spot2
ReleaseZone Z1
ReleaseZone Z2

AllocatZone and ReleaseZone are used to handle shared zones. A shared
zone is a physical space that only one robot has access to at a time, to prevent
collisions between robots. The first MoveL command means that the Tool
Center Point (TCP) moves linearly to location p1 with a speed defined by the
speeddata v2500 (maximum linear velocity of 2500 mm s−1). z100 describes
how close to p1 the robot can start deviating to better transition into the next
instruction. SpotL describes a linear motion ending in a weld. Based on these
instructions the robot control system generates a trajectory, which is the joint
angles q. So, attempts at reducing the energy use of industrial robots are
somewhat limited by the fact that q is generated by the robot control system.
There exist methods to run user-generated trajectories using for example the
Fast Robot Interface (FRI) from KUKA or Externally Guided Motion (EGM)
from ABB. However, in the author’s experience, these are not commonly used
in industry as they to some extents are less robust, making them unsuitable
to use in many types of critical manufacturing processes.

2.3 Station Model
In this section, a model of a robot station is presented. To complete the task
assigned to the station, the robots can execute a set of operations I. An
operation may for example be a robot movement, performing a weld on a car
body or picking a component from a box. For the example of robot code
above: the two moves to the first welding location can be considered as one
operation and performing the actual weld can be considered as another one.

Each operation i has a starting time Si, an execution time (duration) Di,
and a completion time Ci, which all in general can be stochastic. In this
model, the execution time can be divided into a deterministic part di, which
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determines the energy use, and an additive stochastic part Ei. The stochastic
part is assumed to be, or possible to approximate as, normally distributed.
The magnitude and type of stochastic variations differ depending on the type
of operation, with some operations being completely (within the margin of
error) deterministic. For example, a robot movement typically doesn’t have
much variation, while operations performed by human operators, welding, and
cleaning of welding tools do. In Fig. 2.2 the distribution of the execution time
of a welding robot is shown. The discrete jumps in the distribution are due
to different levels of cleaning of the welding tool (no, small, and big) and
the continuous distribution around each peak most likely is due to variations
in each of the around 20 welding operations performed by the robot. The
variation of a single welding operation may depend on several factors, one
being that "dirt" accumulates on the welding tool which increases the time to
perform a successful weld (which is why the tools need to be cleaned).

An operation can be modeled as an Extended Finite Automaton (EFA)
[40], [41], where the operation may have a number of preconditions. The pre-
conditions are logical constraints that need to be fulfilled for the operation
to execute. One of the simplest preconditions can be named precedence con-
straint and occurs when there is a fixed order in which some of the operations
need to be executed. The operation order is represented by A. Let WA

i be a
set of operations that need to precede operation i for operation order A. The
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Figure 2.2: The distribution of the execution time of a welding robot in an auto-
motive factory.
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precedence constraint for each ℓ ∈ WA
i can then be expressed as

Si ≥ Cℓ (2.2)

where the ≥-sign in the expression above and in the rest of this thesis repre-
sents greater than or equal "almost surely" [42], i.e. P(Si ≥ Cℓ) = 1, where
P is used to denote probability. A difference can be made between necessary
precedence constraints, e.g. a component must first be placed before it can
be welded into place, and precedence constraints determined by the control
strategy that are not necessary for the functionality of the station but that
enforces an advantageous behaviour of the station.

The operations require some resources to execute, which are contained in
the setR. Examples of resources are robots, human operators, tools, or shared
zones. Each operation requires at least one resource to execute but it may be
more, and each resource can only be used by one operation at a time. For
any resource r ∈ R the resource constraint states that for any two operations
i and ℓ requiring resource r to execute it must hold that

Si ≥ Cℓ or Sℓ ≥ Ci (2.3)

A robot station with precedence and resource constraints can be expressed
as a disjunctive graph [43], where the operations are the nodes, precedence
constraints are directed edges, and resource constraints between two opera-
tions of the same resource are represented by undirected edges. Before the
execution of the station, the operation order of all operations using the same
resource must be determined. This means replacing each resource constraint
formulated above with precedence constraints. In other words, to decide the
direction of the undirected edges. This results in a Directed Acyclic Graph
(DAG).

The makespan of a station is in general a stochastic variable denoted by
Tmake and is defined as

Tmake = max
i∈I

(Ci)−min
i∈I

(Si)

It is a measure of how long it takes for the station to execute the operations.
Assuming that the first operation starts at time t = 0, Tmake simplifies to
Tmake = maxi∈I(Ci). As discussed in Chapter 1, an important conflicting
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interest to energy reduction is productivity. Productivity is loosely defined here
as the number of produced products or completed tasks per unit of time. To
ensure that the productivity is not reduced, the makespan can be constrained
by a chance constraint [35] to meet a deadline td as,

P(Tmake < td) ≥ γ (2.4)

where γ is close to, or precisely, 1.
Based on the real stations used as case studies for this thesis, the robots

in a station are often programmed with the maximum velocity, which uses a
lot of energy. This is reasonable if the production only consists of one robot
because then the productivity is directly related to the velocity of the robot.
However, for a robot station with multiple robots, the precedence constraints
between them mean that it is not always necessary for all robots to move with
the maximum velocity. Therefore, the concept of slack can be introduced
[30], [43]. Essentially, the slack is a measurement of how much idle time for
the robots there is in the schedule. Slack can be used to quantify how much
operations can be delayed without extending the total execution time of the
station or production line.

Based on the real robot stations there often is a significant amount of slack,
which allows the velocity to be reduced and thereby also the energy, without
reducing the productivity of the station. An illustrative example of a robot
station containing precedence constraints, resource constraints, and slack is
shown in Fig. 2.3.

2.4 Production Line
In many production systems, the robot stations are ordered in production
lines. How exactly the production line is configured can vary, what is presented
below is based on observations from the automotive factory presented later
in Chapter 4. The production line consists of a sequence of robot stations
with buffers before and after (see Fig. 2.4). The production line works in
cycles and is programmed so that all stations start with the next cycle at the
same time. taim is the desired cycle time of the production line and the next
cycle will not start before that. The value of taim is determined to keep the
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Figure 2.3: An illustrative example schedule of a robot station, containing a set
of operations and resources. The operations are shown as numbered
boxes and the solid arrows between them are necessary precedence
constraints. The station contains four resources: three robots and one
shared zone. The robots are listed to the left. The operations on the
same row as a robot require that robot to execute. Operation 5 and 7
also require the shared zone to execute. Only two operation orders are
possible: the one where Operation 5 precedes Operation 7 (which is
shown) or the other way around. The additional precedence constraint
determined by the control strategy and related to the shared zone is
shown with a dashed arrow.

required productivity of the production line. The actual cycle time T cycle is
a stochastic variable and can be expressed as

T cycle = max
(

max
z∈Z

Tmake
z , taim, T outer

)
(2.5)

where Z is the set of stations in the production line and Tmake
z is the makespan

of station z. T outer represents delays caused by disturbances in other parts of
the production.

The makespans of two stations can be seen in Fig. 2.5 together with the
desired and actual cycle times. A large part of the values of the actual cycle

Buffer Station
1

Station
2

Station
m Buffer

Figure 2.4: An automotive production line
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times are close to the desired one, but there is a considerable amount that is
much larger. These values are most often due to outer disturbances. The two
stations shown in Fig. 2.5 are one of the ones with the lowest makespan and
one of the ones with the highest makespan. It can be noted that there is a
large amount of slack for Station 9.

2.5 Summary
In this chapter, the most relevant theoretical background for the topic of
energy reduction of industrial robot stations has been presented. This includes
models of a robot, station, and production line, as well as a short analysis of
the energy reduction problem.
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Figure 2.5: The distributions of the makespans of two stations together with the
actual and desired deadline for a production line in an automotive
factory.
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CHAPTER 3

Offline Energy Reduction Method

This chapter presents an offline method for reducing the energy use of robot
stations and production lines. Offline in this context means that changes to
the stations can only be made before the execution. The method is based on
the particular case studies presented later in Chapter 4 but can be used for
other types of robot stations as well. This chapter is a summary of Papers A,
B, and C, as well as some additional content to put the work into perspective.

3.1 Method Overview
This section briefly describes the necessary steps to achieve the desired energy
reduction of the robot, station, or production line. The first step is to collect
the necessary data, such as robot models, robot code, and data about the
execution times. The execution times are collected during multiple cycles
and are used to model the stochastic variations in the station. The robot
code is analyzed to identify the operations and resources, which then can
be translated into precedence and resource constraints. The robot station is
then built in RobotStudio, which contains energy models of the robots, and
simplified energy models of the robot movement operations are found. With
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Chapter 3 Offline Energy Reduction Method

the identified operations, constraints, and energy functions, an optimization
problem is formulated and solved. Based on the optimized solution the robot
code is modified and implemented back in the station. More details about the
energy models and optimization are given below.

3.2 Energy Model

As already discussed, there are some practical limitations to finding the me-
chanical and electrical parameters required to create the full energy model
described in Section 2.1. This in combination with limitations in the robot
control system, which limits the freedom of designing the robot trajectory,
leads to the decision of describing the energy use of the robots using energy
signatures, which has shown to be effective [19], [20], [25], [26]. An energy
signature gi of a movement operation i is a function of the execution time di.
This allows the energy use of a robot to be described for every operation sep-
arately, without the need for a complete energy model of the robot and does
not require changing the path of the robot movement. The energy functions
are parameterized as

gi = ψi1 exp(ψi2di) + ψi3 exp(ψi4di) (3.1)

where ψi1, ψi2, ψi3, and ψi4 are parameters of gi. In this thesis the energy func-
tions are found by modifying motion parameters: linear velocity, angular ve-
locity, acceleration, and jerk (time derivative of acceleration) of the robot
movements; details can be found in Paper A. The velocities are modified by
changing the speedata setting, and the acceleration and jerk are modified by
adding the command AccSet before a robot instruction. In Paper A a com-
parison is made between the different motion parameters. The overall result is
that linear velocity and angular velocity are most effective in terms of energy
reduction. However, between individual operations, there is a large variation
in terms of which motion parameter is the best. Examples of energy functions
for robot movements can be seen in Fig. 3.1 and it can be noted that they are
convex. di is used to denote the shortest possible execution time of operation
i. As already mentioned, robots are often programmed with di = di.
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Figure 3.1: Examples of the energy data and fitted functions of four operations.

3.3 Single Station Optimization
The energy optimization problem for a single robot station with precedence
constraints, resource constraints, and the energy signatures (3.1) can, for il-
lustrative purposes, be described as the following stochastic programming
problem [35], [44]–[46]:

Optimization Problem 1

min
∑
i∈I

gi(di)

subject to:
Ci = Si + Ei + di i ∈ I (3.2)
Si ≥ max

ℓ∈WA
i

(Cℓ) i ∈ I (3.3)

Tmake = max
ℓ∈LA

(Cℓ) (3.4)

P(Tmake < td) ≥ γ (3.5)
di ≤ di i ∈ I

where LA is the set of operations that for operation orderA have no operations
succeeding them on any of the resources. The decision variables at this point
are Si, A, and di.

21



Chapter 3 Offline Energy Reduction Method

Optimization Problem 1 is both a scheduling problem of determining the
operation order and a timing problem of determining di. It can be classified as
a chance-constrained programming problem [35], and a stochastic and project
scheduling problem [42], [47]. The combination of the scheduling part and the
stochastic variables makes Optimization Problem 1 hard to solve to optimality
in a reasonable time, except for trivial examples [35]. Examples of commonly
used stochastic optimization methods to solve such problems are simulated
annealing, genetic programming, particle swarm, and ant colony optimiza-
tion. [48]–[51]. Many solution methods to chance constraint programming
problems involve reformulating [35] the problem into a deterministic math-
ematical optimization problem [31]. Typically, in a way that the solution
to the reformulated problem is feasible for the original problem as well. Al-
though, this does not guarantee optimally. Commercial solvers for stochastic
programming problems are for example SAMPL ("Stochastic AMPL").

In this thesis, Optimization Problem 1 will be approximated as a determin-
istic mathematical optimization problem, modeled in the optimization tool
CasADi [52], and solved using IPOPT [53] together with the Branch and
Bound algorithm of BONMIN [32]. BONMIN solves the problem to optimal-
ity in the case that the problem is a convex Mixed-Integer Nonlinear Pro-
gramming (MINLP) problem [34], i.e. the LP-relaxation of the optimization
problem is a convex optimization problem. In the case that the problem is
nonconvex the solution from BONMIN is a heuristic. Other solvers exist [33]
such as SCIP, Couenne, and BARON. Exactly what type of solution method,
solver, and level of simplification of Optimization Problem 1 required depends
on the type of problem, size, available solving time, and the requirement on
the goodness of the solution. What is presented in this chapter are approaches
that proved to be suitable for the problems considered in this thesis.

Mean Approximation
A trivial simplification of Optimization Problem 1 is to use the expected values
of Si, Ei, and Ci and formulate it as a convex MINLP using the Big M Method
[54]. This includes both the scheduling and the timing part of Optimization
Problem 1 and can be solved efficiently to optimality using BONMIN. The
complete optimization formulation is presented in Paper A and using the so-
lution to that problem will be referred to as the mean approximation method.
This simplification is accurate assuming that the stochastic variance of Ei is
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negligible. If not, the following can be shown: let Tmake be the makespan
of an actual robot station and tmake be the corresponding approximate ver-
sion in the mean approximation method. It has been shown by Möhring [55]
that Tmake ≥ tmake and that the difference between them can grow arbitrar-
ily large with increasing numbers of operations or variance of the operations
execution times. This means that (3.5) likely will not hold if the variance of
Ei is significant.

Normal Approximation
In Paper B a less trivial approximation of Optimization Problem 1 is pre-
sented. It is based on approximating the distributions of the stochastic vari-
ables in Optimization Problem 1 as normal and is summarized below. The
approximation will first be done under the assumption that there is a fixed
operation order, focusing on the timing optimization.

Timing Optimization

With a fixed operation order the system can be described by a DAG [55].
It can be concluded that the optimal solution to Optimization Problem 1 is
where equality holds for (3.3). For any solution to Optimization Problem 1
where equality does not hold for one i, (3.3) can be written as Si = ∆i +
maxW(A)i

(Ci), where ∆i > 0. Then it is possible to find another feasible
solution that is equal to the first one in every sense except that ∆i = 0. This
new solution will have the same value of the cost function and the probability
of meeting the deadline will be at least as high.

In general the distributions of Si, Ei, Ci, and Tmake are not normal; even if
every execution time Ei is, the starting time Si is not (because of (3.3)). Nev-
ertheless, they will be approximated as such, because it reduces the complexity
of the problem [35], and at the same time is accurate enough to be usable in
practice. With that assumption, evaluation of the sum in (3.2), which in
general is too complicated to be practically feasible, because it involves the
solution of an integral, is simplified to the sum of the expected values and
variances of Si, Ei, and di [56]. Regarding the accuracy of the approximation:
for the robot stations considered in this paper, it is often the case that one
of the Cℓ in (3.3) is significantly larger than the others, which means that
Si ≈ Cℓ. So, the whole schedule reduces to a series of sums of Ei. This
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in combination with the central limit theorem [57] means the approximation
holds, as will be seen in Section 4.2.

The stochastic variables Cℓ involved in (3.3) for an i are not independent
of each other but will be approximated as such. Looking at Optimization
Problem 1, the chance constraint (3.5) is essentially the max function of a
sum of Ei. Depending on the precedence constraints in the station, an Ei
may be involved in more than one sum. To make Cℓ in (3.3) independent
of each other, every time an Ei would appear more than once, a duplicate
with the same distribution but that is independent of the first one is used
instead; an illustration of this is shown in Fig. 3.2. This approximation makes
the problem easier to solve and it can be shown that the solution to the
approximate problem will fulfill (3.5) in the original problem formulation as
well [55].

The final step is to find a function that approximates the max-functions
of Optimization Problem 1 under the assumption that the stochastic input
variables are independent and normally distributed. This is done by first
analytically solving the integral for the case with two input variables. The
resulting nonconvex function can then approximately be applied recursively
to the case with multiple input variables. These three steps result in Opti-
mization Problem 4 in Paper B. It is a nonlinear and nonconvex optimization
problem, but still is possible to solve using BONMIN for the problem sizes
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(a) Original system

1a

1b

2

3

4

(b) Independent system

Figure 3.2: An illustration of the independence assumption. The figures repre-
sent operations and precedence constraints. Both 1a and 1b have
the same distribution of their execution times as 1 but are other-
wise independent. The completion times of operation 4 are equal to
C4 = max(E1+E2, E1+E3)+E4 and Ĉ4 = max(E1a+E2, E1b+E3)+E4
for the two examples respectively. It can be shown that P(C4 < td) ≥
P(Ĉ4 < td).
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considered in this paper. Using this solution will be referred to as the normal
approximation method.

Operation Scheduling

To include the operation order into the optimization formulation just de-
scribed there are some options, which once again depend on the problem size,
available time, and required goodness of the solution. One option is to find
the operation order by solving a separate optimization problem, that does not
include the energy use or stochastic variations, and then use that solution
to solve the normal approximation problem. This could be done iteratively,
to hopefully converge to the true optimum. An example of this would be to
use the mean approximation method to find an operation order to use in the
normal approximation method. This will be referred to as the mean + normal
method.

Based on the fact that the goal of the optimization is to minimize both
the energy use and the probability of meeting the deadline, another ap-
proach is to find the operation order by minimizing the expected makespan
(mini∈I E[Ci])[42] since there is a correlation between a low makespan and a
high probability of meeting the deadline. This problem is more common in the
literature and can be solved more efficiently than the complete problem since it
can be formulated as a Mixed-Integer Linear Programming (MILP) problem.
Using the minimum makespan operation order in the normal approximation
method will be referred to as the makespan + normal method.

However, solving the operation scheduling and the timing optimization sep-
arately may result in the solution being suboptimal. In paper B an approach
to include the operation order into the normal approximation is presented. It
is a nonconvex MINLP that essentially includes all precedence constraints for
every possible operation order and then uses a set of discrete decision variables
that enables or disables them. It increases the complexity of the problem sig-
nificantly but can be solved for small problem instances. This will be referred
to as the complete method.

3.4 Production Line Optimization
Energy optimization for a whole production line of the type described in Sec-
tion 2.4 is done in detail in Paper C and presented in short here. Since the
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conflicting objectives are energy reduction and productivity, a first step is to
investigate if it is possible to improve the cycle time T cycle, which potentially
leaves more room for energy reduction.

Cycle Time Optimization
In the list below some different cycle time policies are described. This is under
the assumption that the buffers before and after the production line are ideal,
i.e. they have unlimited storage capacities and never run out of products. This
assumption is made to make the analysis possible without having to analyze
T outer in detail.

• Policy 0: This is the policy that is used in the investigated production
lines, that waits for taim before starting with the next cycle. T cycle

s =
max(maxz∈Z T

make
z , taim).

• Policy 1: In Policy 1 the wait for taim, which seems unnecessary, has
been removed. The cycle time would then be T cycle = maxz∈Z Tz.

• Policy 2: In Policy 2 every station operates independently. Each station
starts on the next cycle as soon as possible, i.e. when the next station in
line can accept the finished product and the previous station can forward
the next one. For this policy, the cycle time of the production line is
defined as the time between two finished consecutive products for the
last station.

Energy Optimization
To reduce the energy use of the production line, each station can be optimized
separately using any of the methods previously described in this chapter, but
with some modifications of γz (γ for station z). For a whole production line
to meet a deadline with probability γ, γz of the individual stations need to be
higher. The following relation defines a lower bound on γz for this requirement
to hold [45].

γ ≤ 1−
∑
z∈Z

(1− γz)
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The deadline td in (3.5) is typically chosen as td = taim. However, if the cycle
time policy manages to reduce the cycle time, then td can be chosen higher,
leaving more room for energy reduction while keeping a high productivity.

3.5 Summary
Related to RQ1, this chapter has presented a method for reducing the energy
use of robot stations and production lines. The method involves: modeling
the robot stations in simulation; identifying operations and constraints; ob-
taining simplified energy models; and formulating and solving an optimization
problem. For a single robot station, it was noted that the true optimum to
the optimization problem cannot be easily found. Several simplifications were
presented, allowing the optimization problem to be solved. For the whole
production line, several cycle time policies were presented, that are aimed at
reducing the cycle time and thereby leaving more room for energy reduction.
Then it was shown how the energy use of a production line can be reduced.
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CHAPTER 4

Experiments and Results

This chapter contains descriptions and results of the experiments conducted
to verify that the proposed method described in Chapter 3 works as intended
and to investigate the potential for energy reduction in a typical automotive
factory today.

4.1 Real Deterministic Experiment
This section describes an experiment on the station shown in Fig. 2.1, which is
a welding station from Volvo Cars in Gothenburg; full details can be found in
Paper A. The station is part of a production line that produce car bodies, and
the cycle time is around one minute. In the station, there are four robots from
ABB of the type IRB6640, each one equipped with a spot-welding tool. In
every cycle, each robot performs a series of spot welds on the car body. There
are four shared zones, that prevent the robots from colliding. The station also
contains precedence constraints between every consecutive operation of one
robot. Meaning that the only operation order that is not fixed, that is left to
determine by the optimization, is in which order the robots access the shared
zones. The operations are either movement operations, which use energy, or

29



Chapter 4 Experiments and Results

welding operations, that have stochastic execution times and whose energy
use is not included. However, for simplicity, the stochastic variations will
not be included in the optimization. In total each robot executes around 20
operations per cycle (see Fig. 4.1).

Experimental Setup
First, the robot station is optimized with the mean approximation method
using the maximum makespan of the unoptimized station as the deadline.
The result of the optimization is then implemented in the robot code, which
means adjusting the velocity settings for each operation. An experiment is
then performed using the optimized robot code to compare it to the original
robot code. This is partly done to see how much energy reduction can be
made but also to verify the accuracy of the energy models used during the
optimization. Three different types of energy data are collected from the
station during the experiment (see [58] for reference). Simulated data: this is
the standard data obtained when simulating in RobotStudio. The energy use
is based on a "nominal robot operating under typical conditions". This type of
data is also what is used to find the energy functions. Torque-based data: by
having live connections to the robots, the power and energy use can be more
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Figure 4.1: A time schedule of the unoptimized welding station, showing the four
robots and the execution times of their respective operations. The
welding operations are light gray, movement operations are grey, and
the deadline is shown as a black dashed line. The colours indicate
resource constraints between sequences of operations from different
robots. Two sequences of operations with the same colour cannot be
executed at the same time.
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accurately predicted based on torque data from the real robots. The simulated
and torque-based data are "measured" on the DC-side before each motor (cf.
Section 2.1). Measured data: current and voltage measurement equipment
are connected to the three-phase AC system that supplies the robot cabinet
of one of the robots. The total power and energy use are found by measuring
the current and voltage at a rate of 10 000 Hz.

Results
The results are divided into two parts. The first part is a comparison between
the three data sets and the second part is a comparison of the energy use
between the original and optimized settings.

Verification of Energy Models

In Table 4.1 the peak power, energy use, and energy reduction of the three
data sets of one robot are shown. The peak power is of interest because it
determines how powerful electrical components must be used when setting up
a robot station. Using less powerful components means that money can be
saved. The energy use for the simulated and torque-based data is calculated
without including the negative parts of the power use. That is, recuperation
between the motors and the capacitor is not included. The peak power is
calculated as the maximum power of one cycle. The measured data only
includes the energy use to power the robot, not the idle energy use of the
brakes and control system.

Table 4.1: A comparison between the simulated, torque-based, and measured
power/energy use of Robot 4.

Simulated Torque-based Measured
(-idle use)

Peak power (kW) Original 13.0 13.6 14.3
Optimized 10.3 10.9 11.2

Energy use (kJ) Original 29.4 30.2 30.5
Optimized 24.6 23.8 25.0

Energy reduction (%) 16.3 21.0 18.0
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The result shows that when disregarding the idle energy use the simulated
and torque-based data slightly underestimate the measured data but is other-
wise fairly accurate. To conclude, although some differences can be seen be-
tween the simulated and torque-based data compared to the measured data,
the accuracy of the total energy use presented in Table 4.1 justifies the use
of the simulated energy use in the optimization (which already has been pre-
sented), and the use of the torque-based energy use during calculations of
energy savings (which will be presented in the next section).

Energy reduction

In this section, the result of the whole station is presented. The values pre-
sented are the average of the torque-based data from 44 cycles. A detailed
Table of the energy use, peak power, and jerk can be found in Paper A, but
in short, the results are as follows. The biggest energy reductions are for
Robots 3 and 4 with 33 % and 20 % in energy reduction respectively. This
is expected because they had more amounts of slack than the other robots
before the optimization. During the optimization, this slack has been used
to lower the velocities of their operations and in turn reduce their energy use
(see Fig. 4.2). As can be seen in Fig. 3.1, the energy functions have minima,
which means that at a certain point a larger amount of slack will not result in
more energy reduction. That is why Robot 3 has more energy reduction than
Robot 4 even though Robot 4 has a larger amount of slack. For the station
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Figure 4.2: A time schedule of the optimized welding station. The darkest gray
areas show the execution time extensions (compared to di) after the
optimization. Otherwise, the notations are the same as in Fig. 4.1.
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as a whole, the result shows a reduction of 12 % in energy use between the
original and optimized settings.

The energy reduction is the most important outcome of this experiment,
but the peak power and jerk are also of interest. Looking at Fig. 4.3 the
power peaks for Robots 3 and 4 are significantly lower after the optimization.
For the station as a whole, the peak power is reduced by 12 %.

Fig. 4.4 shows a comparison of velocity, acceleration, and jerk between the
original and optimized settings for one operation. It can clearly be seen how
the velocity is limited and thereby the acceleration and jerk are also reduced.
The jerk is calculated as the mean of the absolute jerk of the TCP. The jerk
is reduced by 75 % for Robot 3 and by 25 % for the whole station. Reducing
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Figure 4.3: The power use of the original and optimized settings for the four robots.

33



Chapter 4 Experiments and Results

0 1 2

0

0.2

0.4

0.6

Time (s)

(a) Velocity (m/s)

0 1 2

−5

0

5

Time (s)

Original
Optimized

(b) Acceleration (m/s2)

0 1 2

−400

−200

0

200

Time (s)

(c) Jerk (m/s3)

Figure 4.4: The velocity, acceleration, and jerk of one operation with the original
and optimized settings

the jerk increases the precision of the robot movements [59] [60], but it is
also believed that there is a correlation between jerk and the wear and tear
of the dress packs attached to the robots. The dress packs contain cables and
hoses required to operate the welding tool. Sometimes they break and must
be replaced. The stress that they experience depend on many factors [61], but
it is probable that there is a correlation with the aggressiveness of the robot
movements.

4.2 Simulated Stochastic Stations
This section is a summary of the experiments from paper B and describes
the experiments on three welding stations of a similar type as presented in
Section 4.1 but that is part of another production line. The main difference
is that these experiments are done only in simulation and that the stochastic
variations of the welding operations are included in the optimization. The
use of simulation rather than real tests is motivated by the accuracy of the
simulated energy use, as was verified in Section 4.1.

Experimental Setup
A schedule of one of the stations can be seen in Fig. 4.5, and it can be noted
that it contains a significantly smaller amount of slack than the station in
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Figure 4.5: A time schedule of a robot station of the same type as shown in Fig.
4.1. The execution times of the operations shown in the schedule are
the mean values for the welding operations and the lower bounds di

for the movement operations.

Section 4.1, as is the case for the other two stations. The same type of energy
functions are used for the movement operations but the welding operations are
modeled as having uniformly distributed execution times Ei ∼ U(1.25, 1.55),
instead of being constant. The experiment of each station is conducted by
first determining the deadline td,0 so that they are met 99.5 % of the time
for the original unoptimized stations. Each station is then optimized with
γ = 0.99 for a number of td ≥ td,0 using the optimization methods described
in Section 3.3. After that, the resulting operation order and velocity settings
are applied to the simulation models, and the stations are simulated again to
determine the probability of meeting the deadline.

Results
The results presented here are of the station shown in Fig. 4.5, the results of
the other two stations can be found in Paper B and overall the conclusions are
similar. The results of the experiment can be seen in Fig. 4.6 and an optimized
schedule can be seen in Fig. 4.7. The energy use of the unoptimized station,
when di = di, are 177 kJ. Comparing this with the optimized energy use
shown in Fig. 4.6a, there are some things to note. Firstly, the result shows
that significant energy reduction can be made, even with the lowest deadlines
and even though the station has a significantly smaller amount of slack than
the station in Section 4.1. The energy reduction with the lowest deadline
is roughly 9 %. The reason why the reduction is so big despite the limited
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Figure 4.6: The simulated energy use and probability to meet deadline for one of
the three stations before and after optimization.
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Figure 4.7: The optimized version of Fig. 4.5.

amount of slack is because of the steep gradients of the energy functions
around di (see Fig. 3.1). The energy use of the station is further reduced
by around 2-3 percent per additional second that the deadline is extended
(compared to the unoptimized energy use). However, this effect is declining
as the deadline is increasing.

Fig. 4.6b shows the simulated probability to meet the deadline. The result
shows that the probability to meet the deadline is very close to, and most of the
time above, the constraint of 0.99. This is a good result considering the heavy
approximations used when deriving the optimization methods and the fact
that the distributions of the execution times of the operations are not normal
(as modeled) but uniform. This is partly because there are enough operations
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and the uniform distribution is close enough to the normal distribution for
the central limit theorem to hold. Comparing the optimization methods: the
mean + normal method almost reduces the energy use as much as the complete
method, which is a positive result since the former is much less complex. The
makespan + normal method sometimes finds the same solution but not always.

4.3 Simulated Production Line
This section contains experiments on a production line with 10 stations, one
of which is the one in Section 4.1, including buffers before and after. The
experiments are done in simulation and full details can be found in paper C.
For this experiment, stochastic data about the execution times of the robot
stations were obtained. This includes data about the movement and welding
operations that were used in Sections 4.1 and 4.2 but also data about trans-
portation and setup times between the stations, and cleaning of the welding
tools (see Fig. 2.2).

Experimental Setup

It was not possible to obtain full station models of all 10 stations. Therefore,
the station models from Section 4.1 and Section 4.2, named Station models A
and B respectively, are used to represent all 10 stations. The energy functions,
operations, and constraints of Station models A and B are combined with the
real stochastic data about the execution times of the 10 stations to create the
20 simulation models used in this experiment. The simulation model of each
station is adjusted so that the amount of slack is similar to the real station,
to accurately represent the energy reduction potential in the real system. The
experiment can be divided into two parts with the same experimental setup,
one for each station model, and can be described as follows. The 10 stations
are first optimized as described in Section 3.4. The results are implemented in
the simulation models of the stations and the stations are then simulated to
find the makespans of the optimized stations. The new cycle times are then
calculated using Policies 0,1, and 2. For comparison, a default case is also
included, where no optimization is performed and policy 0 is used to calculate
the cycle time.
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Results
The main results are shown in Table 4.2 for station model A. The data shown
is the relative energy use, which is the optimized energy use compared to
the unoptimized energy use, and the cycle time mean and variance (minus
outliers). To put it into perspective, an unoptimized production line with 10
stations of Station model A operating continuously for 24 h would use around
271 kW h.

The results show that a significant energy reduction of 24 % can be made.
Using policy 0 this energy reduction comes at the cost of a higher cycle time
mean and variance compared to the default case. Policy 1 counteracts the
increase in cycle time mean and Policy 2 even reduces it. However, this leads
to an increase in cycle time variance. A high variance in the production
is sometimes undesirable as it makes it harder to detect deviations in the
production flow. Still, the increase in variance is small in comparison to the
variance caused by the outer disturbances (see Fig. 2.5). Overall, it can be
argued that the negative effect on the cycle time is small in comparison to the
large reduction in energy use.

The result for station model B is shown in paper C. Overall the same con-
clusions can be drawn except that the energy reduction is less (22 %) because
it has a smaller amount of slack, although the difference is small. The question
is how these results differ compared to if the actual station models (instead
of Station models A and B) had been used. That is not possible to say for
certain, but on average the amount of slack of the actual stations is somewhere
between Station model A and B, meaning that the energy reduction can be
expected to follow the same trend.

In Fig. 4.8, the energy use of the individual stations for one cycle are shown.
For station 8 no energy reduction is possible because it already violates the

Table 4.2: The result of the experiment for Station model A

Default Optimized
Policy 0 Policy 0 Policy 1 Policy 2

Relative energy use 1 0.757 0.757 0.757
Cycle time mean (s) 97.7 98.3 97.5 96.0
Cycle time var. (s2) 0.398 0.537 0.905 0.871
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Figure 4.8: The optimized energy for each station for the two station models.

deadline (see Fig. 2.5). Conversely, Station 9 shows a lot of energy reduction,
because of the large amount of slack.

4.4 Summary
In this chapter, the methods presented in Chapter 3 for reducing the energy
use of industrial robots station have been verified. They have been tested
both on real robot stations and in simulation models based on real data. The
results showed that the energy use of robot stations and production lines could
be reduced significantly with barely affecting the productivity. This verifies
that the proposed method to answer RQ1 works as intended. For RQ2, the
results showed that the energy models in the simulation software are accurate
enough to be usable for the purpose of energy reduction. Relating to RQ3, the
results also showed that reducing the energy use using the proposed methods
also results in significant reductions of peak power and jerk.
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CHAPTER 5

Online Energy Reduction Method

This chapter presents an online method for energy reduction and parameter
estimation of industrial robot stations. Online in this context means that
decisions about the station are made during the execution of the station. It is
a summary of the material presented in Papers D and E but presented from
the perspective of the latter, if not stated otherwise, as the former essentially
is a simplified version of the latter.

5.1 Problem Description
The station used as a case study for this work can be seen in Fig. 5.1. The
structure is similar to the type of station described in Chapter 2 but with
some key differences. In the station, there is a set of components located
in boxes, one per component type. There is a robot tasked with picking
these components. Each component type requires a specific tool to be picked,
although some component types require the same tool. The tools are in a tool
rack together with a camera. The robot can equip the camera and use it to
take a picture of a box, after which an algorithm is executed which identifies
the location and orientation of several components, making them possible to
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Figure 5.1: The kitting station used as a case study.

pick. When the robot has successfully picked a component, it can be placed
on one or more Automated Guided Vehicles (AGVs); each AGV corresponds
to an order. An order contains several components that need to be picked and
a corresponding deadline tod for when this needs to be accomplished.

The control actions in the stations are a set of operations that the robot
can execute to complete the orders, including decisions on the execution times
of these operations, which must be tuned to meet the deadlines of the or-
ders. The operations are: move between positions, try to pick a component,
equip/unequip a tool, or scan and identify components. The state s of the
system at time index k contains information about the time since the start of
the system, the equipped tool, the component currently gripped by the robot,
the operation being executed, and the position of the robot. For each opera-
tion to execute, there is a number of preconditions that need to be fulfilled,
which may be more complex than precedence or resource constraints. For
example, a component cannot be picked before it has been identified, and the
robot needs to be in the right position to equip, unequip, pick, and place.

The stochastic variations in the station are both continuous and discrete.
It is assumed that all operations have stochastic execution times that can be
approximated by normal distributions with mean µi and variance vi. How big
the variations are depend on the type of operation. The discrete stochastic
variations come from the fact the robot can fail when trying to pick a compo-
nent, in which case it has to try again. Another source of stochastic variations
is that the orders can arrive in the system at any time. The energy functions
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of the operations are of the same type as (3.1) but with the difference that the
parameters are not known, and no accurate simulation models of the robot
exist to determine them.

5.2 Optimization and Control
The goal is to find the operation order and robot velocities such that all orders
are completed in time with a high probability and that the energy use is
reduced. To achieve that, it is also necessary to find the unknown parameter
values of the energy functions. To that end, a control architecture is used
that consists of a Model Predictive Controller (MPC) and a Reinforcement
Learning (RL) algorithm. The MPC contains a scheduling algorithm to find
the optimal operation sequence and a robust optimizer to determine the timing
of the robot operations.

The scheduling happens when a new order arrives in the system or the robot
is unsuccessful in picking a component. The timing optimization happens
when an operation is completed. The learning happens in batches with even
intervals but uses data from each timing optimization.

Timing Optimization
The starting point of the timing optimization is the current state sk and
the operation sequence Jk from the scheduling algorithm. The goal of the
optimization is to minimize the energy use by finding the optimal execution
times of the operations while satisfying the following chance constraint:

P

( ⋃
o∈Ok

Co > tod

)
≤ ϵ (5.1)

where Ok is the set of active orders at time index k and Co is the stochastic
completion time of the last operation of order o. ϵ = 1−γ and is the maximum
allowed probability of missing any of the deadlines. (5.1) is in general hard to
express in a closed form but is possible here because every operation duration
is assumed to be normally distributed. This assumption means that Co also
is normally distributed and its distribution can be determined by the means
and variances of the operations preceding it [55], [56].
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The timing optimization presented here is similar to Optimization Prob-
lem 1 with a fixed operation order. Given the operation sequence Jk, the
problem presented here can also be described by a DAG and can essentially
be solved in the same way as Optimization Problem 1 in Section 3.3. However,
because this application is time critical, an alternative and less complex ap-
proach is used. The optimization problem at time index k can be formulated
as

Optimization Problem 2

min
di,w

∑
i∈Jk

gi(di) +Kw (5.2)

subject to:

d̃o =
∑
i∈Jko

di o ∈ Ok (5.3)

µ̃o = µik|tk +
∑
i∈Jko

µi o ∈ Ok (5.4)

ṽo = vik|tk +
∑
i∈Jko

vi o ∈ Ok (5.5)

tk + µ̃o + ũo +
√

2ṽo log(1/ϵo)− tod ≤ w o ∈ Ok (5.6)∑
o∈Ok

ϵo ≤ ϵ (5.7)

di ≤ di i ∈ Jk (5.8)
0 ≤ w (5.9)

which is based on [45] by Nemirovski et al. and [35] by Ben-Tal et al.; more
details can be found in Paper D. w is a slack variable and K is chosen big
enough so that w > 0 only when the problem would be infeasible otherwise.
tk is the time since the start of the system and Jko ⊆ Jk is the operation
sequence up until order o is completed. µik|tk and vik|tk are the mean and
variance respectively of the currently executing operation conditioned on the
fact that the time is tk and the operation is not yet completed [62]. ϵo can
either be chosen beforehand or determined as part of the optimization prob-
lem. Optimization Problem 2 is a convex and conservative version of (5.1) in
the sense that a feasible solution to Optimization Problem 2 is feasible with
respect to (5.1) as well. To conclude the timing optimization, it finds optimal
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operation durations by solving Optimization Problem 2 for a given operation
sequence Jk from the operation scheduling described in the next section.

Operation Scheduling
The aim of the operation scheduling is to find the operation sequence Jk to
be executed by the robot that takes the system from the current state sk
to a state where all orders are completed. This scheduling problem is more
complex than the one in Chapter 3 because the number of required operations
is not known in advance and the problem contains constraints (related to
tool changing and scanning) that are difficult to model mathematically in a
standard optimization formulation. Therefore, a version of the graph search
algorithm A∗ named Anytime Repairing A∗ (ARA∗) [63] is used.

In short, the standard A∗ searches through the state space guided by ξh(s),
which is the expected cost to reach the goal state from any state s, and ξg(s),
which is the actual cost to go from the current state sk to state s. For the
application in this chapter, the cost is the probability of missing any of the
deadlines tod. Essentially, what is minimized in the scheduling is a modified
version of Optimization Problem 2 where the energy use is disregarded by
setting di = di, the cost function is ϵ, and the decision variable is Jk. The
algorithm is guaranteed to find the optimal operation sequence if ξh is admissi-
ble, i.e. smaller or equal to the actual cost. The drawback of A∗ is that it may
take too long for the algorithm to terminate and return a solution. For the
application in this chapter, if the optimization is started during the execution
of an operation, it should ideally be completed before the end of the operation,
to avoid delays. Therefore, it is desirable to relax the constraint of finding
the optimal solution and settle for a sub-optimal solution that is available in
time. The idea behind anytime A∗ is to solve A∗ multiple times, starting with
a very relaxed version where it behaves as a greedy best path first algorithm
and then reducing the relaxation gradually until ξh is admissible. With this
approach, there is always a solution available when needed, even though it
may not be the optimal one. To conclude the operation scheduling, using a
version of ARA∗ it finds an operation sequence Jk that fulfills (5.1) by using
a modified version of Optimization Problem 2 as the cost to minimize.

Solving the timing optimization and operation scheduling separately means
that the true optimum of the complete problem is not always found (cf. Sec-
tion 4.2). However, it was found that it is not practically feasible to solve the
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complete problem in an acceptable time. The proposed division of the opti-
mization problem prioritises meeting the deadlines, which is the most impor-
tant criterion, and the author believes that this division is a good compromise
between speed and accuracy.

Learning and Adaptation
The learning and adaptation algorithm is used to update the estimates of the
unknown parameters of the energy functions. The algorithm needs to be fast
enough to be usable online and the same be able to estimate the unknown pa-
rameters accurately enough. Essentially, the problem of controlling the kitting
station can be modeled as a Markov decision process [64]. A reinforcement
learning method based on [65] by Gros and Zanon is used, which has shown
to be effective for similar types of systems. It requires measurements of the
actual energy use and duration of the last operation and uses the values of
the cost function of Optimization Problem 2 as the value function. It then
calculates parameter updates using the gradient with respect to the unknown
parameters of the Lagrangian relaxation of Optimization Problem 2. More
details are found in Paper E.

5.3 Numerical Experiments
In this section, the proposed control architecture is applied to numerical ex-
amples of robot stations, to verify it.

Initial Example
The first example is from paper D and is a simple robot station of the same
type as in Section 4.1, with operations with stochastic execution times and
a fixed operation order. The purpose of the experiment is to investigate the
benefits of performing the optimization online as opposed to offline. The
experiment is conducted by simulating the station many times. During each
simulation, a version of Optimization Problem 2 is solved nopt times with an
interval of ∆t = td

nopt
. The result can be seen in Fig. 5.2 and shows that the

more often the optimization is done the more energy reduction can be made,
which intuitively can be explained as follows. The optimizations early in
each simulation have to leave margins in the schedule for uncertainties in the

46



5.3 Numerical Experiments

0.94 0.96 0.98 1
0.84

0.86

0.88

0.9

0.92

Probability to meet deadline

R
el

at
iv

e
en

er
gy

us
e

nopt = 1
nopt = 2
nopt = 4
nopt = 7

Figure 5.2: The relative energy use as a function of the simulated probability to
meet the deadline, for some values of nopt.

execution times. As the simulation progresses more and more uncertainties
are realized, meaning that fewer and fewer margins have to be left in the
schedule, which enables energy reduction. The result also shows that the
additional effect decreases as nopt increases. An additional plot presented
in Paper D shows that the additional benefit of performing the optimization
online increases as the variance of the execution times does. It also shows that
the variance of the makespan is decreased with an increasing number of nopt;
as already mentioned, a low variance in the makespan is something which is
desirable in many production systems.

Experimental Setup

This section describes the setup of the numerical example in Paper E. The
experimental setup is as follows. 500 orders are randomly generated, each
order consisting of 1-5 components. Which component types they are and
how many of each component type is random. During the execution of the
station, new orders are added to the station randomly, such that 1-3 orders
are always active. The optimization and learning are executed according to
Section 5.2 until all orders are done. This procedure, starting from the 500
orders is repeated 5 times
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Detailed Results

The results of the experiment can be seen in Fig. 5.3 and 5.4. Fig 5.3 shows
the energy use per operation over episodes of the experiment, where an episode
is defined between the completion of two orders. As baseline energy use, three
values are shown: the average of 100 episodes without any optimization, with
optimization using the initial energy parameter values, and with optimization
using the true parameter values. The actual result of the experiment with
optimization using the learned parameter values is shown as the minimum
and maximum values of all five repetitions and as the rolling mean of 50
episodes for each of the five repetitions.

The result shows that the learning and optimization work as expected: in
the beginning, the energy use cannot be reduced because the parameters are
wrong, but as the parameters are learned, it converges to the true optimum.
Fig. 5.4 shows a comparison between the true parameters and the learned
parameters for one of the operations. Note that the goal of the parameter
estimation is not to find the true values, but to find values that allow the
minimum energy use to be achieved. In Fig. 5.4, the true and learned optimum
is roughly the same. The fact that some of the estimated functions have
steeper gradients for values greater than the optimum does not matter, the
optimum will still be found. Similar conclusions can be made for the other
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Figure 5.3: The average energy use per operation and episode of the experiment.
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Figure 5.4: The energy function of the move operation with the start, estimated
and true parameters values.

operations. In paper E the distributions of the completion times of the orders
are shown. Only between 0.5-1.5 percent of the values miss the deadline,
which is acceptable.

5.4 Summary
In this chapter, a case study of a flexible robot station has been shown. To
answer RQ4, a method of controlling this station has been presented. The
method contains operation scheduling, timing optimization, and parameter
estimation. Experiments showed that the method successfully reduced the
energy use, while the deadlines were met. Relating to RQ2, it was also shown
that the method was able to estimate the unknown parameters of the energy
models such that the optimal energy use could be found.
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CHAPTER 6

Summary of included papers

This chapter provides a summary of the included papers.

6.1 Paper A
Mattias Hovgard, Bengt Lennartson, and Kristofer Bengtsson
Applied Energy Optimization of Multi-Robot Systems Through Motion
Parameter Tuning
CIRP Journal of Manufacturing Science and Technology, 35, 422-430,
2021

In this paper a case study of a real robot station is investigated. The station
is modeled and an energy reduction method is presented. It involves formulat-
ing and solving an optimization problem and tuning of motion parameters in
the robot code. The motion parameters are compared to find the one that is
most effective in terms of energy reduction. The optimized motion parameters
are then implemented in the robot code in the real station and experiments
are done to verify how accurate the energy models are and how much energy
reduction can be made. The result shows that the energy models are accurate
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enough to be used for the purpose of energy reduction. It also shows that the
energy use can be reduced by 12 %, the peak power by 12 %, and the jerk by
25 %.

6.2 Paper B
Mattias Hovgard, Bengt Lennartson, and Kristofer Bengtsson
Energy Reduction of Stochastic Time-Constrained Robot Stations
Revised journal submission

This paper is a continuation of the previous one with the difference that
stochastic uncertainties are included and that three other robot stations are
used as case studies. Because of the inclusion of stochastic variables, the
optimization problem becomes harder to solve. An approach is presented to
approximate the optimization problem and make it solvable. Experiments on
the stations are done in simulations built using real data. The result shows
that the energy use of the stations can be reduced significantly by 9, 11 and
18 % respectively while meeting the deadlines with high probabilities.

6.3 Paper C
Mattias Hovgard, Bengt Lennartson, and Kristofer Bengtsson
Energy-Optimal Timing of Stochastic Robot Stations in Automotive
Production Lines
Accepted for the 27th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), Stuttgart,
September 2022

This paper investigates the problem of reducing the energy use of robot
stations with stochastic execution times in production lines in automotive
factories. It combines real stochastic cycle time data with robot and station
models from the previous two papers. Firstly, policies to reduce the cycle time
of the production line are presented, to leave more room for energy reduction.
Secondly, energy is reduced by using the method presented in Paper B. The
result shows that up to 24 % of the energy use can be reduced with only
marginally affecting the cycle time variance of the production line.
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6.4 Paper D
Mattias Hovgard, Bengt Lennartson, and Kristofer Bengtsson
Online Energy-Optimal Timing of Stochastic Robot Stations
Proceedings of the 26th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Västerås,
September 2021

This paper looks at online energy reduction of similar types of industrial
robot stations as in Papers, A, B, and C. In it, an MPC-type method is pre-
sented for tuning robot velocities such that the energy is reduced but that the
deadline is met. The result shows that it is beneficial to perform the optimiza-
tion online compared to offline but that the additional benefit is decreasing
with the frequency of optimization. The result also shows that the benefit of
performing the optimization online increases with the variance in operation
execution times.

6.5 Paper E
Mattias Hovgard, Constantin Cronrath, Kristofer Bengtsson, and
Bengt Lennartson
Adaptive Energy Optimization of Flexible Robot Stations
Journal submission

This paper proposes an adaptive control strategy that is applied to a flexible
robot kitting station. The station contains several stochastic uncertainties,
such as variations in execution times, probability of failure and random arrival
of orders. An additional challenge is that the parameters of the energy models
are unknown. The aim of the control strategy is to reduce energy use while
meeting deadlines. A control architecture is presented that consists of a type
of MPC and an RL algorithm. The MPC contains a scheduling algorithm to
find the optimal operation sequence and a robust optimizer to determine the
timing of the operations. The RL algorithm uses information from the MPC
to update estimates of the unknown model parameters. The proposed control
architecture is applied in simulation to the case study. The result shows
that the unknown model parameters are estimated accurately, the energy is
reduced, and the deadlines are met.
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CHAPTER 7

Concluding Remarks and Future Work

Below follows some concluding remarks about the material presented in this
thesis and ideas for future work.

7.1 Concluding remarks
The first part is about the offline method and the corresponding experiments
(Chapters 3 and 4). Related to RQ1, an offline method for reducing the energy
use of industrial robot stations in a production line was presented. It contains
collecting data, model building, finding energy functions, optimization, and
implementation in robot code. It was verified, using four examples of real
robot stations, that the method works as intended. It is simple enough to be
used in practice and achieves energy reduction of up to 24 % for a production
line, without lowering productivity. Related to RQ2, real experiments have
been conducted to investigate the accuracy of commercially available energy
models. It was shown that the difference is small enough to allow the energy
models to be used for energy reduction purposes. Related to RQ3, it was
shown through the same experiments that the energy reduction method also
resulted in reduced peak power by 12 % and jerk by 25 %.
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It was surprising for the author how much energy reduction potential there
was in the investigated production lines. The impression was that the only
optimization that had been done to the production lines was to reduce the
cycle time. A possible reason for this is the combination of a relatively low
energy cost in comparison to the cost of employing engineers to work on energy
efficiency and the cost of having a breakdown in the production line due to
some mistake caused by energy reduction efforts.

A potential weakness of the proposed method is one related to the tem-
perature of the robot joints. As shown previously [16] the energy use of an
industrial robot decreases with increasing temperatures in the robot joints.
Before the real experiment, the robot was executed at maximum speed to
reach the appropriate joint temperatures. It is possible that only executing
the robot at lower energy optimized velocities would not be enough to reach
the appropriate joint temperature and thereby lead to an increase in energy
use instead. This could also be a drawback when it comes to the wear and tear
of the robot. It was argued in Section 4.1 that a lower velocity is beneficial for
the wear and tear of the dress pack attached to the robot. However, for the
robot itself, too low joint temperatures (resulting from too low velocities) may
result in the joint lubrication having too high viscosity and thereby increase
the joint friction and wear [66].

The second part is about the online method presented in Chapter 5. Re-
lated to RQ4, a control architecture for controlling a flexible robot station
in a robust and energy-optimal way was presented. The method includes a
scheduling algorithm, an MPC-type of timing optimization, and a learning
algorithm for estimating unknown model parameters. An example was used
to show that the method can control the system, reducing energy use, and
meeting deadlines. Related to RQ2, a method was presented that uses re-
inforcement learning to estimate unknown model parameters. This step was
necessary as there, as opposed to the robots in the welding stations, were no
simulation models available. Results showed that the method could estimate
the parameters well enough so that the optimum of the problem could be
found.

The problem of controlling the flexible robot station in Chapter 5 is an
interesting research problem. It contains many different types of stochastic
variations: continuous execution time variations, discrete failing probabilities,
and arrivals of orders. To completely understand the problem and find the
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best control strategy more accurate data about the stochastic variations would
be needed, something that has not yet been possible to obtain.

7.2 Future work
Firstly, the stations that the methods presented in this thesis have been ap-
plied to have been relatively similar. It would be interesting to investigate the
energy reduction potential for other kinds of robot stations, such as stations
from other types of industries or collaborative robot stations where human
operators are more involved.

Secondly, a bottleneck in this research about energy reduction methods
was access to real stations. Both in terms of data to create the necessary
models, and the usefulness of the results of the research. With more access
to real robot stations, it would probably be possible to design more effective
methods and the results would be more useful for the industry.

Related to the same topic, the energy reduction approach of the welding
stations was somewhat limited by the fact that they were already used in
production. If the energy reduction effort had been done at an earlier stage,
before it was taken into production, there would be more freedom in applying
energy reduction methods. In that case, more advanced methods could be
used, such as modifying the paths of the robot movements, and it would
be possible to divide the tasks more freely between the robots; this would
probably increase the potential for energy reduction.

On a larger scale, the question is if the energy reduction of robots is the most
effective approach for the industry to reduce its energy use. For example, in
the automotive industry the lighting and ventilation [38] use a large amount
of energy; in particular the ventilation in a paint shop. It remains to be
investigated and is a question of the required work effort and risk compared
to the gain in reduced energy use.

Finally, the parameter estimation algorithm in Chapter 5 was only used to
identify the energy functions. It would make the energy reduction method
more usable in practice if the learning method was able to approximate the
full energy model of a robot or the stochastic variations in the execution times
of the operations.
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