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Industry application of additive manufacturing demands strict in-process quality control procedures and
high product quality. Feedback loop control is a reasonable solution and a necessary tool. This paper
demonstrated our preliminary work on the laser powder-bed fusion feedback loop: predict local porosity
through in-process monitoring images and machine learning. 3D models were rebuilt from in-situ optical
tomography monitoring images and post-build X-ray CT images. They were registered to the original
CAD. Dataset for machine learning was assembled from those registered 3D models. The trained machine
learning model can precisely predict local porosity caused by lack of fusion and keyhole with multi-layer
monitoring images. It also indicates the optimal processing window. It is impossible to be sure about the
occurrence of defects in a layer based only on the abnormality of a single layer, and vice versa. Defects in
a layer can be caused by improper parameters or anomalies in current layer or subsequent layers; defects
in one layer can also be eliminated by proper parameters in the following layers. The work laid the basis
for the next step feedback loop control of pore defect.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
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1. Introduction

Additive manufacturing (AM) offers unparalleled design free-
dom enabling the development of functionality-orientated new
designs [1,2]. AM, and in particular metal AM, has significant
potential for the development of products with high added value
and with high level of customization, such as lightweight aero-
space components and patient-specific medical implants.

Among the various metal AM technologies, the laser powder
bed fusion (L-PBF) process is one of the most established technolo-
gies and is well suited to produce products with strict require-
ments on mechanical properties and intricate structures. During
the L-PBF process, a thin layer of powder is spread onto a flat build
plate and a focused laser beam is directed onto the process area to
fuse the metal powder. Once a layer of laser exposure finishes, the
build plate lowers itself by a certain height (layer thickness) and
the next layer of laser exposure commences. This process is iter-
ated many times to construct a 3D object layer by layer. The L-
PBF process is a highly non-equilibrium process [3,4]. Strict
requirements are posed on the process repeatability and reliability
on the L-PBF process when the products are intended for critical
applications such as aerospace components where high fatigue life
is in demand [5,6]. Currently the quality control and validation of
metal AM parts relies heavily on time-consuming and expensive
ex-situ tests. These may include relevant mechanical testing of a
statistically significant number of samples, destructive metallo-
graphic examination of part cross-sections, and non-destructive
testing such as X-ray computed tomography (XCT) for inspection
of parts’ interior defects. Meanwhile, in-situ monitoring systems
and accompanying analytics techniques are being developed to
provide alternative or complementary quality control routes. One
of the aims of in-situ monitoring is to identify critical events occur-
ring during the L-PBF process by detecting deviations in the mon-
itored signals that appears to exceed specific control limits. To
achieve this, empirical models need to be built to correlate the var-
ious monitored deviations with the resulting defects (type, size,
and spatial distribution) appearing in a produced part. The layer-
by-layer nature of the L-PBF process makes it possible to build a
feedback control loop where in reaction to certain deviations in
the signals monitored when producing a series of layers, the
machine is triggered to change the process conditions of future lay-
ers in order to mitigate the defects in a timely manner [7].

Different sensors, e.g., acoustic sensors[8,9], high resolution
optical camera [10–12], high speed camera[13], infrared thermog-
raphy [14–16], infrared (IR) camera [17], optical tomography [18–
21], synchrotron X-ray [22,23], etc., can be applied for the monitor-
ing of the L-PBF process. These sensors reveal diverse phenomena
of the powder bed and melt pool: e.g., powder bed surface topog-
raphy (before and after exposure), spattering, balling, pore forma-
tion, cracking, and deformation. However, acquiring sensor data is
only the first step to feedback loop. Depending on the complexity
of the problem and on the number of variables, various machine
learning (classification, regression, and clustering) models, e.g.,
convolutional neural network (CNN), support vector machine
(SVM), multi-layer perception (MLP) have been used to mine the
complex relationship between process parameters, monitoring
data and defect formation. Many review papers about PBF online
monitoring [24–27] and processing PBF data with machine learn-
ing [28–30] have been made available. However, most published
work has been limited to the detection of abnormality in a single
layer with the assumption that abnormality in a single layer has
strong correlation with the final defects. But correlating monitored
data with part defects is challenging due to the fact that a self-
healing phenomena may occur during the remelting of the 3–4
previously exposed layers [31].
2

This paper demonstrates research work performed on the pre-
diction of defects (porosity) occurring in additive manufacturing
using in-situ optical tomography (OT) monitoring images and
machine learning. It was performed in a preparation for the next
challenging-step that is L-PBF online parameters feedback loop
control. Fig. 1 shows the workflow of this work. Through-process
data, i.e., CAD, processing parameters, online monitoring data (OT
images) and post-processing characterization data (X-ray CT),
was registered first. A Machine learning (ML) model was then con-
structed to gain insights on the defect formation. The well-trained
machine learning model can precisely predict the porosity in each
layer using multiple layers OT data. The model demonstrated opti-
mal processing windows (zero or near zero porosity), that defects
in a layer may be caused by abnormal processing in the layer or/
and several layers above it and that defects in one layer can be
healed by processing in the following layers.
2. Methods

2.1. LPBF experiment

The L-PBF experiment was conducted on an EOS M290 machine
equipped with a 400 W Yb fiber continuous laser beam with a
wavelength of 1060 – 1100 nm. The nominal beam diameter is
100 lm. The build capacity of an EOS M290 machine is
250 mm � 250 mm � 250 mm. A gas atomized IN718 powder sup-
plied by Höganäs Germany GmbH was used as the feedstock mate-
rial. The powder has a particle size between 15 lm and 45 lm. A
specific sample design (see Fig. 2) was used to investigate the influ-
ence of processing parameters on the formation of defects and to
facilitate post process X-ray CT scanning. The specimens are cylin-
drically shaped with a diameter of 3.5 mm and a height of 15 mm.
Within each cylinder there are four disc-shaped sub-regions with a
diameter of 3 mm and varied thicknesses (0.2, 0.4, 0.8, 1.2 mm).
The sub-regions in specimens S2, S3, S4 and S5 were assigned with
different processing parameters (Laser power P, laser scan speed V
and hatch distance Hd) specifically selected to provoke the forma-
tion of varying defects (see Table 1) while the sub-regions in spec-
imen S1 were assigned the default proprietary parameters (P0, V0

and Hd0) provided by the machine manufacturer (EOS) as a refer-
ence. The layer thicknesses (Th) for all samples were kept at
40 lm. The volumetric energy density (VED = P/V∙Hd∙Th, J/mm3)
are listed in Table 1.
2.2. EOSTATE exposure OT monitoring images and 3D reconstruction

The EOS M290 machine used in our study equipped four types
of on-line process monitoring systems: EOSTATE system records
various system specific parameters e.g., flow, laser power, temper-
ature, etc.; EOSTATE PowderBed records image of powder bed after
re-coating and after exposure; EOSTATE MeltPool sampled melt
emission at 400–900 nm; EOSTATE Exposure OT integrated melt
emission at 900 nm. The principles of OT technique are simple
[18–20]: an optical sCMOS (scientific complementary metal-
oxide semiconductor) camera with high lateral resolution is
exploited to captures thermal radiation signal of the top layer dur-
ing the laser PBF melting and solidification process. A near infrared
band-pass filter (narrow band with center 900 nm and half width
25 nm) is used to separates thermal radiation from the other emis-
sions e.g., plasma emissions and back reflected laser light
(1060 nm). Instead of high-speed image capture or any kind of fast
following of the laser trace, here a simple long-time exposure is
used. After the melting and solidification of a layer is completed
one long-time exposure image is stored as grey images. A thermal
stabilized camera system provides a quantitative evaluation of the



Fig. 1. The workflow of this work.

Fig. 2. Samples design: cylinders containing disc-shaped sub-regions with different processing parameters.

Table 1
Processing parameters.

Specimen name Power, W Laser Scanning speed, mm/s Hatch distance, mm VED, J/mm3

S1-S5 P0 V0 Hd0 67.5
Disc-1 (sub-regions in S1) P0 V0 Hd0 67.5
Disc-2 (sub-regions in S2) 220 1460 0.11 34.25
Disc-3 (sub-regions in S3) 220 1460 0.13 28.98
Disc-4 (sub-regions in S4) 285 460 0.11 108.7
Disc-5 (sub-regions in S5) 350 460 0.11 172.92

Fig. 3. OT images (in pseudo colors) for a sample in a build and the rebuilt 3D OT grid. Heat distribution of each layer can be seen in OT images. Red indicates high energy
input, and blue indicates low energy input.
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radiation intensities. An OT image represents heat distribution of
each layer. It has high sensitivity and high signal to noise ratio.
Another advantages of OT technologies include low cost (vs
infrared-red camera etc.), medium data volume (about 8 MB per
layer, vs high-speed camera), reasonable resolution (about
0.1 mm), good camera viewpoint (the OT camera is mounted above
powder bed). In our experiment (EOS M290 machine), each pixel
on an OT image corresponds a small build area of 0.125 mm � 0.
125 mm. The amount of energy input for that small build area of
Fig. 4. X-ray CT images segmentatio

Fig. 5. Schematics for assembling

4

0.125 mm � 0.125 mm can be indicated by the OT grey value of
the corresponding pixel. Large OT grey value indicates high energy
input, vice versa. OT images can be used to indicate process stabil-
ity (the variations of OT grey values in a layer / build) and to indi-
cate overheat areas (where the OT grey values above normal OT
grey values interval) and lack-of-heat areas (where the OT grey
values below normal OT grey values interval).

After the L-PBF process is finished, all individual OT images with
2000 � 2000 pixels covering a 250 mm � 250 mm build area can
n and rebuilding of 3D meshes.

dataset and machine learning.
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be collected. For computational efficiency, these OT images were
compressed from a 32-bit to an 8-bit format. Grey values areas cor-
responding to locations where the samples were placed were then
extracted and stacked together to reconstruct 3D structures: 3D OT
grid models. Python library Pyvista was used for visualizing 3D
model. Fig. 3 shows a group of the cropped OT images (for ease
of observation the grey values of the pixels are shown in pseudo
colors) and the cross-sections of the resulting reconstructed 3D
OT grids. The grids were then aligned with the original coordinates
of the CAD model (original CAD is selected as reference for all
rebuilt meshes and grids in this study), to facilitate the extraction,
via grey values, of the recorded melt pool radiation intensity at a
given (x, y, z) co-ordinates.
2.3. CT inspection and image processing

The five manufactured samples were characterized by X-ray CT
for defect distribution analyses. The custom-developed X-ray CT
system in METAS consisting of a 190 kV micro-focus X-ray tube
Fig. 6. The OT grey value d

Fig. 7. Statistics of a dataset using sampling cuboid

5

(XWT-190-TCNF, X-ray WorX) and a 4 k*4k digital X-ray detector
(XRD 1611 CP3, Perkin Elmer). The reconstruction and resampling
of X-ray CT images were performed via VG-studio Max software,
including beam hardening correction. The voxel size used in this
work was 0.003*0.003*0.04 mm (layer thickness direction).

The X-ray CT images were segmented using multi-Otsu algo-
rithm and 3D mesh models for cylinder contours and pores were
rebuilt with marching cubes algorithm using Python library Skim-
age. As shown in Fig. 4, for each sample the CT images were pro-
cessed to extract samples’ contours and internal pores and
ultimately to rebuild two 3D meshes, one reconstructing the sam-
ple outer surface and one reconstructing in 3D the internal pores.
2.4. Mesh registration and dataset assembling

The rebuilt 3D contour mesh was registered to the original CAD
model using coherent point drift (CPD) algorithm [32] (see the sup-
plementary material for more details). The 3D pores mesh was reg-
istribution in samples.

of 0.125 mm(X) � 0.125 mm(Y) � 0.56 mm(Z).
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istered to the original CAD model by applying the translation and
rotation transformation matrix of contour mesh to it.

Data points for machine learning can be readily extracted from
the registered OT grids and the corresponding registered pore
Fig. 8. The typical pore

6

meshes. Cuboids of equal length and width were used as the basic
sampling unit. To reduce the interpolation errors, the lengths and
widths of the sampling cuboids were set to be multiples of OT
image pixel size (0.125 mm), and the heights were set to be mul-
s in sample S1-S5.



Fig. 9. The statistical results of aspect ratio and equivalent diameter of pores in 5 samples.

Fig. 10. Visualiztion of pores in samples S1-S5. (a) 3D view (b) view parallel to XZ-plane.

S. Feng, Z. Chen, B. Bircher et al. Materials & Design 222 (2022) 111115
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tiples of the layer thickness (0.04 mm). Moving sampling cuboid in
the X-Y plane by multiples of 0.125 mm or in the Z direction by
multiples of 0.04 mm yields a new sampling cuboid. Given that
the pore formation at a certain build height (layer) is affected by
the processing conditions in adjacent layers above and below it,
the sampling cuboid heights of the OT grid were set to contains
multiple layers in the Z direction, all layers being numbered as
described in Fig. 5. The label (Y) of machine learning model was
the average porosity at layer 0 of the sampling cuboid, calculated
based on the registered pore mesh. And the features (X) of machine
learning model were the average and maximum OT grey values in
all layers of the sampling cuboid.
2.5. Machine learning model decision tree, random forest, and feature
importance

Machine learning models were used to correlate features and
labels in the dataset. Tree-based machine learning models are a
family of non-parametric supervised methods which are widely
used in materials science due to their good interpretability [33].
Random forest is an example of bagged tree ensembles. A decision
tree looks like an upside-down tree, with the first decision rule at
the top and following decision rules spreading out below. In a deci-
sion tree, every decision rule (e.g., ‘‘If A > B. . .”) that produces the
greatest decrease in impurity index occurs at a decision node, with
the rule creating branches leading to new nodes. A branch without
a decision rule at the end is called a leaf. Decision tree regression
model attempts to find a decision rule that produces the greatest
decrease in mean squared error (MSE) at a node. One benefit of
tree-based models is their interpretability. They can be used to
evaluate the relative importance of each feature based on the
impurity reduction determined by every single feature. Python
library Sklearn was used for machine learning. 9/10 dataset (ran-
domly selected from the whole dataset) was used for training,
and the remaining 1/10 dataset were kept unseen by model in
training to test the generalization performance (prediction accu-
racy on unseen dataset) of the trained model. The default hyper-
parameters (e.g., number of estimators = 100) for random forest
model of Sklearn library were used.
Fig. 11. Total pores area in each layer. The sha
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3. Results and discussions

3.1. Datasets briefing

Fig. 6 shows the OT grey value distribution in the 5 cylinders
with chambers S1-S5 (see the left inset) and the OT grey value dis-
tribution in the 5 infill discs (see the lower part of Fig. 6). The right
inset shows the good linear relation between VED and OT grey
value (data from the 5 infill discs). Large OT grey value indicates
high heat input (VED). An OT image represents heat distribution
of each layer. The OT grey values vary in a sample which indicates
the energy input for different areas were not so uniform as we
expected, though the process parameters (e.g., laser power, scan-
ning speed, hatch distance, etc.) were kept constant in printing.
The 5 discs were printed with different process parameters (see
Table 1). Thus, their mean OT grey value and distribution are
different.

Fig. 7 shows the OT grey value distribution in the machine
learning dataset using sampling unit of 0.125 mm(X) � 0.125 mm
(Y) � 0.56 mm(Z) cuboid. Minor differences exist in the statistical
results when using different size sampling cuboids. The grey value
of OT image ranges from 0 to 255, and the porosity varies from 0 to
0.15. The dataset size (the number of sampling cuboids) assembled
from the 5 cylinders samples and 5 discs is in the range of 105-106

(e.g., 240,540 samples when 1.125 mm � 1.125 mm � 0.56 mm
sampling cuboid was used).

3.2. Pores characteristics

Fig. 8 shows the typical pores in sample S1-S5. Pores are marked
with different colors for easy observation. The statistical results of
equivalent diameters, aspect ratios, and total pores area are also
shown in the figures. Fig. 9 shows the statistical results of aspect
ratio (the ratio of width to height of bounding rectangle of the
object) and equivalent diameter (the diameter of a circle with an
equal aggregate sectional area) of pores in 5 samples. Several pore
formation mechanisms in PBF have been proposed, such as blow-
hole pores (or residual gas holes), lack of fusion pores and the key-
hole pores [34]. Pore formation mechanisms can be estimated
according to the processing parameters as well as to the morpholo-
ded areas represent disc (infill) locations.
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gies and size of pores [35]. Very few tiny pores (blowhole pores)
were found in sample S1 which was built with the EOS proprietary
parameters (medium VED). A lot of big pores with irregular poly-
gon cross section (lack of fusion pores caused by low VED) were
found in sample S2 and S3. Many big pores with near circle cross
section (keyhole pores caused by high VED and instability in the
molten pools) were found in sample S4 and S5.

Fig. 10 shows the locations and distributions of pores in S1-S5.
The tiny pores (residual gas pores) appearing in sample S1 and its
infill Disc1 are randomly distributed, suggesting a relatively stable
process. The lack of fusion pores appearing in the infill regions of
S2 and S3, i.e., Disc2 and Disc3 are more irregular with varying
Fig. 12. Fusion of part CAD, OT, and CT (shown layer-by-layer) for S3 from
z = 8.12 mm to z = 8.24 mm. White line represents sample boundary, and red areas
in CT images represent pores.

9

shapes and damages reach a depth of 1–2 layers below the infill.
And the keyhole pores of near spherical shapes distributed in the
infills areas of S4 and S5 (i.e., Disc4 and Disc5) create further dam-
age below the infill, reaching a depth of around 0.4 to 0.5 mm (i.e.,
10–12 layers). This demonstrates that the pores formation in a
layer are significantly influenced by the parameters used in subse-
quent layers.

This is further highlighted when looking at the total pores sec-
tional area variations in each layer (Fig. 11), in particular for S4 and
S5 where large porous areas appear bellow infill regions. At the
same time, less pores were found in the top parts of the infill
regions than layers below (about 2 layers for Disc2 and Disc3
and about 5 layers for Disc4 and Disc5). It indicates pores in the
top layers were partially eliminated or healed through changing
processing parameters in following layers.

3.3. Correlating OT images with resulting porosity

To realize feedback loop defect control, it is essential to quanti-
tatively correlate in-process monitoring data (OT images) with
defects metrics (e.g., local porosity). Examples of Layer-wise OT
images together with their corresponding CT images are shown
in Figs. 12 and 13 (see supplementary material for more informa-
tion), in which white line represents sample boundary (inner circle
indicates disc area, outer circle indicates cylinder area), and red
areas in CT images represent pores. The grey values of OT image
are represented by pseudo-colors.

Fig. 12 shows OT and CT images of S3 from z = 8.12 mm to
z = 8.24 mm. The five consecutive layers from z = 8.04 mm to
8.20 mm were applied with abnormal exposure parameters (very
low VED). Layers of z = 8.24 mm and above were applied with nor-
mal exposure parameters (medium VED). Obvious lack-of-fusion
pores were found in layer of z = 8.04 mm to 8.12 mm. However,
fewer lack-of-fusion pores were found in layer of z = 8.16 mm,
and no pores were found in layer of z = 8.20 mm. It indicates most
Fig. 13. Fusion of part CAD, OT, and CT (shown layer-by-layer) for S5 at z = 7.64 mm
and z = 8.16 mm. White line represents sample boundary, and red areas in CT
images represent pores.
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lack-of-fusion pores in layers of z = 8.16 mm and z = 8.20 mmwere
healed by suitable exposure parameters in subsequent layers.

Fig. 13 shows OT and CT images of S5 at z = 7.64 mm and
z = 8.16 mm. (see supplementary material for the complete list
of images from z = 7.52 mm to z = 8.28 mm). The layer
z = 7.64 mm was applied with optimized exposure parameters
and no pores (or only very few blowhole pores) is expected to be
found, but a lot of keyhole pores were found in the layer. In con-
trast, the layer of z = 8.16 mm was applied with abnormal param-
eters (very large VED), but no defects were found in the layer.

These experiment results highlight the challenges of predicting
defects using in-process monitoring data: lack-of-fusion pores can
be healed by following layers; the root cause of keyhole pores can
be 0.5 mm above the pores; OT grey values (an indicator of the
actual local energy input) vary in space and with time (when
mean = 90, std > 20 is common). Thus, relying only on the detection
of abnormality on a single layer is not sufficient to conclude accu-
rately on the occurrence of defects in the final part. Thus, it is
essential to combine information from many consecutive layers
to predict defects.

3.4. Machine learning

The features extracted from the OT images of multiple consec-
utive layers (more than ten layers) were used to predict porosity
at layer 0. Fig. 14 shows the testing accuracy dependence on sec-
tional area and height of sampling cuboid. The model testing accu-
racy increases with the height of sampling cuboid, for the defects
in a layer come from the interactions of multiple neighbour layers:
the remelting effect and the keyhole effect from exposure of subse-
quent layers. The model testing accuracy increases with the sec-
tional area of sampling cuboid can be attributed to some
uncertain factors in pores formation: e.g., the instability of keyhole,
Fig. 14. (a) Testing accuracy (Pearson correlation coefficient of predicted porosity and g
cuboid height (layer number) (c) testing accuracy vs sampling cuboid sectional area. Te
average OT grey values) was compared.
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the dynamical interaction of powder particle with laser. These fac-
tors follow statistical laws, thus increasing sampling area is good
for model accuracy. Our model cannot predict the exact location
of a pore. Instead, the average porosity of a small area (e.g.,
1 mm*1mm) can be predicted accurately (e.g., Pearson correlation
coefficient R > 0.95). The Fig. 14 (b-c) also show average OT grey
value (average heat input) of a layer is better feature than the max-
imum OT grey value (maximum heat input) in predicting local
porosity.

Random forest model has good interpretability which can tell us
which features (layers) are most important in porosity prediction.
Fig. 15 (b) shows features of 1st layer, 0th layer and 2nd layer are the
most important in predicting lack of fusion pores. Fig. 15 (c) shows
features of 10th layer are the most important in predicting keyhole
pores. In general, if we want to predict the porosity of 0th layer, we
need information from �1st layer (the layer below 0th layer) to
10th layer (layers above 0th layer).

Fig. 16(a) shows the predicted processing window (assume the
average OT grey value in each layer is a constant), no porosity will
form when average OT grey value in the range of 70 to 105 (corre-
sponding EOS proprietary parameters used for Disc-1 etc., refer to
Table 1 and Fig. 6). The processing window consistent with the OT
grey value distribution in S1 which printed with EOS’s proprietary
parameters (see the insert of Fig. 6). Pores of different types will
occur when average OT grey value outside the window.

Fig. 16(b) is the porosity prediction of the 0th layer assuming
abnormalities occurs in one layer or several layers. When the aver-
age OT grey value of the �1st layer (the layer below 0th layer) vary
from 30 to 255 and the OT values of other layers keep 80
unchanged, the porosity in the 0th layer keeps zero unchanged,
which means pore defects are caused by 0th layer and above, the
marginal influence from layers below it can be ignored. When
abnormalities (e.g., OT < 65) occur in the �1st and 0th layer, the lack
round truth) vs sampling cuboid area and height (b) testing accuracy vs sampling
sting accuracies using different feature engineering (maximum OT grey values and



Fig. 15. Feature importance (a) based on all samples S1-S5, (b) based on S2 and S3 (lack of fusion defects): layers 1, 0, and 2 are most important layers in lack of fusion defects,
(c) based on S4 and S5 (keyhole defects): layers 10, 8, and 9 are most important layers in keyhole defects.
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of fusion porosity of the 0th layer increases with the decrease of the
average OT grey value. If 1st layer is also abnormal (e.g., OT < 65)
besides �1st and 0th layer, the lack of fusion pores defect will
become worse without the repair effect from the 1st layer. Lack
of fusion pores are caused by insufficient overlap between passes
and insufficient remelting between layers. The size (height and
width) of a stable melt-pool increases with the laser power and
decrease with scanning speed. Overlap ratio (the percentage of
remelted material in the adjacent bead) increases with melt-pool
size and decreases with hatch distance. Thus, decreasing volumet-
ric energy density or OT grey value (VED = P/V∙Hd∙Th, and OT grey
value is a linear function of VED) leads to a higher probability of
lack of fusion. Properly increase VED OT grey value (not causing
11
keyhole) brings larger regions of overlap between passes and suf-
ficient fusion between adjacent two layers, thus able to heal lack
of fusion pores in previous layer. When the average OT grey value
of the 9th and 10th layer vary from 120 to 255 and the OT grey val-
ues of other layers keep 80 unchanged, the (keyhole) porosity in
the 0th layer increase with OT grey values. When the average OT
grey value of the 9th layer and 10th layer vary from 30 to 120
and the OT grey values of other layers keep 80 unchanged, the
porosity in the 0th layer keep zero. It indicates the 9th and 10th layer
do not have influence on the porosity of 0th layer when OT grey val-
ues smaller than 120.

All predictions of our machine learning model match our exper-
iments results very well and accord with our metallurgy experi-



Fig. 16. (a) predicting porosity vs OT grey values and processing window, (b) if one or two abnormal layers occur, the porosity prediction in 0th layer (show healing effects in
lack of fusion defects and keyhole generation in large VED).
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ence, which validate the prediction capabilities of our machine
learning models. Our model can precisely predict local porosity
with multiple layers OT data (unlike most published work which
only detect anomaly in one layer). It can indicate the optimal pro-
cessing window and predict defects formation and healing phe-
nomena caused by anomalies in the current layer or the
subsequent layers. The work laid the basis for the next step powder
bed fusion on-line feedback loop control.

4. Conclusions

In this work, original part CAD, in-situ real-time monitoring
data (layer-by-layer optical tomography images) and post-build
X-ray CT data are preprocessed and fused. Through visualization
and machine learning model, the correlations between the pro-
cessing parameters and the porosity of the laser powder bed fusion
manufactured In718 alloy were studied. The following conclusions
can be drawn:

(1) Applying large VED (volume energy density) to a layer
causes keyhole pores in the layers below it (damage depth
can be 0.4–0.5 mm); small VED only causes lack of fusion
pores in current layer; medium (suitable) VED does not
cause pores and can heals some lack of fusion pores in the
layers below it.

(2) In-process optical tomography images indicate the process
stability and deviations which may lead to defects. Process
deviations do not obligatory lead to defects or defects may
be healed by following layers. So, to predict pores formation
in a layer, OT images of current layer and many (e.g., 10–15
layers) subsequent layers are needed.

(3) Due to some uncertain factors in pores formation, our
machine learning model can only predict the statistical aver-
age porosity in a small area (about 1 mm2).

(4) Our machine learning model can precisely predict local
porosity with multiple layers OT data. It can indicate the
optimal processing window and predict defects formation
and healing phenomena caused by anomalies in the current
layer or the subsequent layers. The work laid the basis for
the next step powder bed fusion on-line feedback loop
control.
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