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ABSTRACT
This paper considers the problem of supply-demand imbalances in Mobility-on-Demand (MoD)
services, such as Uber or DiDi Rider. Such imbalances are due to uneven stochastic travel demand
and can be prevented by proactively rebalance empty vehicles to areas where the demand is high.
To this end we propose a method that include estimated stochastic travel demand patterns into
stochastic model predictive control for rebalancing of empty vehicles in a autonomous MoD ride-
hailing service, where the objective is to minimize the imbalance and the rebalance distance driven.
More precisely, we first estimate passenger travel demand using Gaussian Process Regression (GPR),
which provides demand uncertainty bounds for time pattern prediction.We then formulate a stochastic
model predictive control for the autonomous ride-hailing service and integrate demand predictions
with uncertainty bounds into a receding horizon MoD optimization. In order to guarantee constraint
satisfaction in the above optimization under estimated stochastic demand prediction, we employ
a probabilistic constraining method with user defined confidence interval. Receding horizon MoD
optimization with probabilistic constraints thereby calls for Chance Constrained Model Predictive
Control (CCMPC). The benefits of the proposed method are twofold. First, travel demand uncertainty
prediction from data can naturally be embedded into the MoD optimization framework. We show that
for a given minimal fleet size the imbalance in each station can be kept below a certain threshold with a
user defined probability. Second, CCMPC can further be relaxed into aMixed-Integer-Linear-Program
(MILP) and we show that the MILP can be solved as a corresponding Linear-Program which always
admits a integral solution. Finally, we demonstrate through high-fidelity transportation simulations,
that by tuning the confidence bound on the chance constraint close to optimal oracle performance can
be achieved. The corresponding median customer wait time is reduced by 4% compared to using only
the mean prediction of the GPR.

1. Introduction
The fast growing urbanization in the world puts ma-

jor challenges on urban transportation (Raposo & et al.
2019). In Europe the urbanization is expected to grow from
74% in 2018 to 84% in 2050 (United Nations Publications
2019). Traditionally, urban transportation is improved by
infrastructure investments in road expansions and public
transportation. However, with recent development of new
technologies within automation, connectivity, electrification
and shared services, there is a potential for new transport
solutions to satisfy the increasing demand. Transportation
modes that have gained huge interest and market share
are mobility-on-demand (MoD) services, e.g. mobility-as-a-
service providers and car-rental pools (Zardini et al. 2021).
These types of services are more flexible than public trans-
portation and can in fact complement it (Salazar et al. 2018).
Moreover, the combination of MoD and autonomous ve-
hicles (AVs), Autonomous Mobility-on-Demand (AMoD),
has been at the center of research for over a decade (Zardini
et al. 2021). AMoD is predicted to become one of the major
means of transportation in cities (Litman 2015). However,
a major concern with MoD and AMoD services is that they
have a tendency to become imbalanced, i.e., have amismatch
between vehicles and requests in different parts of the service
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area. The imbalance is due to unevenly distributed stochastic
spatial and temporal travel patterns, which give rise to a poor
quality of service (George 2012). To handle this issue the
service providers maymatch requests with vehicles centrally
and proactively send vehicles to areas with predicted high
imbalances. A vital part of the AMoD system is to pre-
dict the stochastic travel pattern in order to match demand
(Zardini et al. 2021). Predictions come with uncertainty
in travel patterns and can have a large influence on the
AMoD performance. In this paper we propose a method for
efficient AMoD fleet control with probabilistic guarantees
on the imbalance. The method is applied and tested for an
autonomous ride-hailing service but can be applied to any
MoD or AMoD system.

There are different methodologies for modeling and pre-
dicting travel demand patterns. Previous work can be divided
in two categories: parametric and non-parametric travel de-
mand prediction (in view of the structure of the demand
probability distribution function). In case of parametric so-
lutions, the underlying form of the demand is assumed to
be known (Rasmussen & Williams 2005). These models
span from simple linear regression to fitting of distribu-
tions to data (Rasmussen & Williams 2005). Poisson dis-
tributions are commonly used as parametric models (Zar-
dini et al. 2021, Braverman et al. 2016) as well as Gaus-
sian distributions (Mao et al. 2020). However, assuming
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such distributions are oversimplifications of demand pat-
terns since the travel demand often follows an unknown
spatio-temporal probability distribution. The complexity of
the spatio-temporal travel demand patterns have lead to
an increased focus on non-parametric approaches. These
models do not make strong assumptions on the form of
the travel demand (probability distribution), which make
themmore flexible to learn arbitrary patterns. Different non-
parametric approaches have been used for demand predic-
tion, such as Long Short-Term Memory neural (LSTM)
networks (Iglesias et al. 2018, Tsao et al. 2018). A drawback
of neural network methods is that they require large data sets
to be reliable. Their strong dependence on hyperparameters
and initial conditions may hinder efficient fitting (Pereira
et al. 2022). Studies on using LSTM for predicting mobility
movements have been shown to be efficient with up to 80%
accuracy in predicting mobility patterns (Zhao et al. 2016).
On the other hand, the uncertainty in the prediction should
also be predicted and accounted for in the optimization,
calling for explicit uncertainty parameterization. One way of
modeling the uncertainty is to assume that the travel demand
belongs to an uncertainty set. The uncertainty set can be
constructed from data using hypothesis testing (Miao et al.
2017). To make the uncertainty set representative enough,
large data sets are required and the correlation between dif-
ferent time intervals is neglected. Hence, one plausible solu-
tion to explicit uncertainty estimation for forecasting spatio-
temporal datawith uncertainties for both small and large data
sets is Gaussian Process Regression (GPR) (Rasmussen &
Williams 2005). For small datasets GPR is often superior to
other prediction methods and it provides a confidence on the
prediction, which is beneficial for robustness, (Rasmussen &
Williams 2005). However, to the best of our knowledge the
efficiency of GPR is yet to be reported in combination with
optimization of AMoD systems.

There has been extensive research on different model-
ing and control algorithms for MoD and AMoD systems.
Earlier works focused on reactive control methods, from the
Hungarian method (Kuhn 1955) to control methods based
on queueing-based models (Ruch et al. 2020, Pavone et al.
2012). More recently, the use of future demand together
with model predictive control (MPC) have been proven to be
highly effective (Zhang et al. 2016, Iglesias et al. 2018, Miao
et al. 2017, Tsao et al. 2018, Lacombe et al. 2021). Zhang et
al proposed to use MPC to solve the dispatching and rebal-
ancing problem, (Zhang et al. 2016). However, they did not
consider any demand forecasting method and, in addition,
the computational complexity increased with the number
of vehicles. These issues were addressed in Iglesias et al.
(2018), although the uncertainty in the demand prediction
was neglected. In Tsao et al. (2018), a nominal prediction
method is used via sample average approximation. A robust,
minmax uncertainty handling is presented in (Miao et al.
2017). (Guo et al. 2021) proposed a robust optimization
model that combines matching of demand and vehicles with

rebalancing but demand prediction was not considered. An-
other robust optimization model considered for vehicle re-
balancing is distributionally robust optimization model with
enhanced linear decision rule (He et al. 2019). As indicated
above, there is no unique way of introducing travel demand
into AMoD algorithms. Methods that take the uncertainty
of the demand into account have been proven to be efficient
but complex. Therefore there is a need for more transparent,
scalable, computationally efficient, and accurate methods.

A promising approach is to incorporate GPR and MPC
and couple them stochastically via the uncertainty bound
provided by GPR. One appealing solution is to solve the
stochastic and uncertain MPC problem under probabilis-
tic constraints, i.e. chance constraint (Charnes & Cooper
1959). This methodology has proven successful for control
of autonomous racing and autonomous underwater vehi-
cles ((Hewing et al. 2020)). Furthermore, chance constraint
optimization (CCO) (Charnes & Cooper 1959) have been
used in many resource allocation problems (Ono&Williams
2008, Grosso et al. 2014, Varga et al. 2020, 2018), which
are similar to the control of AMoD systems. The benefit of
CCO is that, via probabilistic constraining, we can adjust the
solution implicitly. This is beneficial since the two objectives
of controlling a AMoD fleet, service and cost, are contra-
dicting. Generally, the better the service, the higher the cost
and vice versa. The relaxation of the CCO is typically very
complex unless the probability distribution is assumed to be
known. The combination of GPR and chance constrained
MPC has the potential to provide a powerful methodological
environment.

The main contribution of this paper is to combine
data driven demand prediction with model based predictive
AMoD resulting in a chance constraint optimization. This
is done by first, formulating a Chance Constrained MPC
(CCMPC), which is a probabilistic approach to solving
stochastic optimization problems. Second, we propose a
GPR for predicting travel demand time-series. The predic-
tion given by the GPR contains both a mean prediction and
an uncertainty bound. Hence, GPR naturally fits into the
CCMPC framework. By means of separability and by know-
ing the form of the estimated PDF, probabilistic constraints
can be reformulated into a deterministic optimization. To
the best of our knowledge no other study has focused on
the combination of GPR and CCMPC in the AMoD setting.
Previous studies in this area have either focused on only the
demand prediction part or on AMoD control methods, which
assume simplified demand modeling or demand modeling
that require large data sets. Third, the proposed optimization
is benchmarked in the high fidelity transport simulator
AMoDeus (Ruch et al. 2018). This is important in order to
get an accurate measure of different metrics, such as pick-
up time and vehicle mileages. Many studies consider less
accurate in-house transport simulators based on simplified
road and traffic models (Iglesias et al. 2018, Tsao et al. 2018,
Miao et al. 2017).

The outline of this article is the following. First, we
present the model of the AMoD systems in Section 2. In
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Section 3 we first formulate the MPC and then the Chance
Constrained MPC, which is later relaxed to a mixed inte-
ger linear program (MILP) using GPR and the separable
model. The transport simulation methodology and results
are presented and discussed in Section 4. Finally, Section 5
concludes the paper with a short discussion and future work.

2. AMoD Modeling
In this section, we first describe the stochastic discrete-

time linear model of the AMoD system. This description is
similar to the model presented in (Iglesias et al. 2018) and
(Tsao et al. 2018). We assume that the travel demand follows
some unknown spatio-temporal probability distribution. The
travel demand is predicted using GPR, which is used to relax
a chance constraint model of the problem. For a detailed
description of all notions introduced throughout the paper
we refer to glossary in the appendix.
2.1. Model

Themodel of the AMoD system describes the movement
of vehicles and customers. It preserves vehicle and customer
conservation andmodels the mismatch between vehicles and
customers in different areas of the city.

The bounded operation area is a two-dimensional map
denoted Θ ⊂ ℝ2. We assume that the map is discretized into
N regions, which will be referred to as stations, (see Fig. 1),
and that these partitions are given. The partitioned city is
modelled as a graph network, where the nodes represent
the stations and the links represent the distance between
the stations. The graph is assumed to be complete, i.e. it is
possible to travel in between all stations. The travel times
and distances between stations are given and do not get
influenced by traffic, i.e. we consider exogenous traffic. The
AMoD model operates in discrete time with sample time
Δt. At each time step, new customers will arrive at the
stations, waiting for vehicles for pick up. The origin O and
the destination D of the trip have to be within the operation
area, O, D ⊆ Θ. We denote the current time step as t0.
2.1.1. States and decision variables

There are several non-negative integer states and deci-
sion variables in the system. The first state of the system is
the number of customers that want to travel from station i to
station j at time t and is denoted by �ij(t). This is a stochasticvariable and each �ij(t) is assumed to have an unknown time-
varying probability distribution, ℙij(t). The initial state of
the customer demand, �ij(t0), is the number of outstanding
customer that wants to go from station i to station j. The
second state is the average travel time in between stations
and is denoted �ij(t). The third and final state is the initial
position of idle vehicles in each station and is denoted, �i(t).Vehicles that are traveling are assumed to be idle when they
reach their destination.

There are three decision variables in this model. The
main decision variable is the movement of the vehicles when
they are empty, this will be referred to as rebalancing. The
number of vehicles to rebalance from station i to station j

Figure 1: A visual representation of how the city of San
Francisco could be partitioned into different stations (Open-
StreetMap contributors 2017). Each colored area represents
one station.

at time t is denoted xrij(t). The second decision variable is
the number of vehicles that serve travel demand traveling
from station i to station j and is denoted xcij(t). The decisionvariable sij(t) describes the imbalance in station i for travel
demand with destination j. The imbalance is the difference
between customers and vehicles in each station.
2.1.2. Vehicle conservation

Vehicle conservation means that vehicles cannot disap-
pear nor appear in the model for a specific time period,
denoted  = [1, ..., T ] where T is the number of time
intervals. This is enforced through a vehicle conservation
constraint, which states that the difference between vehicles
entering and departing the station must be equal to the initial
number of vehicles in the station for that time interval,
∑

j∈N
xcij(t) + x

r
ij(t) − x

c
ji(t − �ji) − x

r
ji(t − �ji) = �i(t),

∀i ∈ N, t ∈  .
(1)

2.1.3. Imbalance
The imbalance is the difference between number of travel

request and vehicles in each station. Ideally the imbalance
is zero at all time, i.e. there is a perfect match between the
number of travel demand and vehicles,

�ij(t) − xcij(t) = 0, ∀i, j ∈ N, t ∈  . (2)
However, if there are more customers than vehicles, con-
straint Eq. (2) is violated. Therefore this constraint needs to
be relaxed to ensure feasibility, which is done by introducing
the slack variable sij(t),

sij(t) = �ij(t) − xcij(t) ∀i, j ∈ N, t ∈  . (3)
If sij(t) > 0, i.e. there are more request then available
vehicles, the remaining request should be served at a later
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time step. Hence, we carry on sij(t) to the next time step if
t > t0,

sij(t + 1) = sij(t) + �ij(t + 1) − xcij(t + 1)
∀i, j ∈ N, t ∈ [t0 + 1, T + t0],

(4a)
sij(t0) = �ij(t0) − xcij(t0) ∀i, j ∈ N, (4b)

The state xcij(t) cannot be larger then the number of travel
request since it represent only vehicles that drives customer,
i.e. the imbalance should be greater or equal to zero,

sij(t) ≥ 0, ∀i, j ∈ N, t ∈ [t0, T + t0]. (5)
The combination of constraint Eq. (5) and that sij(t) is a
integer decision variable, gives that

sij(t) ∈ ℕ, ∀i, j ∈ N, t ∈ [t0, T + t0].

3. Model predictive control of AMoD with
probabilistic guarantees
In this section, a model predictive controller (MPC) for

AMoD is proposed based on the model described in the
previous section. The MPC is first written as a stochastic
mixed integer linear program (sMILP). The optimization
problem is a MILP since several variables are restricted to
be integer values (Walukiewicz 2013). The sMILP is then
reformulated as a chance constraint optimization. Finally,
the Chance Constrained MPC is relaxed into a deterministic
MILP using assumptions on the probability distribution of
the stochastic variable.
3.1. Model Predictive control of AMoD

The above mentioned approach to AMoD is a discrete
time optimization problem that is solved for T time steps
into the future, also called time horizon. The solution of
the sMILP is a sequence of optimal decision variables for
the time horizon. Only the optimal decisions belonging to
the first time step in the horizon is used whilst the rest is
discarded. In the next time step the states in the sMILP is
updated and the sMILP is solved again, i.e. receding horizon
control. The following optimization problem is formulated

minimize
xrij ,sij

T+t0
∑

t=t0

N
∑

j,i=1
crij(t)x

r
ij(t) + c�(t)sij(t) (6a)

subject to
sij(t0) = �ij(t0) − xcij(t0) ∀i, j ∈ N, (6b)
sij(t + 1) = sij(t) + �ij(t + 1) − xcij(t + 1)

∀i, j ∈ N, t ∈ [t0, T + t0],

(6c)

N
∑

j=1
xcij(t) + x

r
ij(t) − x

c
ji(t − �ji) − x

r
ji(t − �ji) = �i(t)

∀i ∈ N, t ∈ [t0, T + t0],
(6d)

xrij , sij , x
c
ij(t) ∈ ℕ ∀i, j ∈ N, t ∈ [t0, T + t0].

(6e)

Optimization problem (6) is a stochastic optimal control
problem. The constraints in the MPC come from the model
described in the previous section, Section 2. The first two
constraints are the imbalance in the system for t = t0,Eq. (6b), and for t > t0, Eq. (6c). The third constraint is
the network flow conservation, Eq. (6d). It prohibits new ve-
hicles from appearing or disappearing from the system. The
last constrain enforces the decision variables to belong to the
natural numbers set, which are all non-negative integers.

The objective is to offer a good service to the customers
and to ensure that this is done efficiently, Eq. (6a). Hence
we want to minimize the mismatch, sij(t), between cus-
tomers and vehicles. This mismatch can be minimized by
rebalancing vehicles in-between stations. The rebalancing
comes with a cost for the operator and this cost should also
be minimized. There is a trade-off between the imbalance
and the rebalancing cost. This trade-off can be tuned by
choosing appropriate values for the imbalance cost, c�(t),and the rebalancing cost, cij(t). The imbalance cost should
reflect the cost of making customers wait, which could be
varying over time. The rebalancing cost is a combination of
distance and travel time. To be able to find a good weighting
of the costs Pareto analysis is used.
3.2. Chance Constrained MPC

As mentioned in the previous section the demand pre-
diction, �ij(t), is assumed to follow a probability density
distribution, ℙij(t). Hence, we can reformulate the imbal-
ance constraint, Eq. (6c), to have a probability distribution
fulfilled with some confidence 1 − � where � ∈ [0, 1], see
Eq. (7c). One of the benefits of this formulation is that we
can decide the confidence based on what risk we want to
take. Therefore the following sMILP problem is proposed

minimize
xrij ,sij

T+t0
∑

t=t0

N
∑

j,i=1
crij(t)x

r
ij(t) + c�(t)sij(t) (7a)

subject to
Eqs. (6b), (6d)and (6e) (7b)
ℙij

(

sij(t + 1) = sij(t) + �ij(t + 1) − xcij(t + 1) ≤ k
)

≥ 1 − � ∀i, j ∈ N, t ∈ [t0, T + t0].
(7c)

In Eq. (7c) the constant k is an upper bound on the
imbalance sij(t + 1). The Chance Constraint Optimization
(CCO) problem can be difficult to solve (Van Ackooij et al.
2011). There are several methods to reformulate the chance
constraints into deterministic constraints. One method is to
consider that the probability distribution belongs to a set of
distributions, called ambiguity sets (Van Parys et al. 2016).
In this work we use the separable model for reformulation of
the chance constraints (Prékopa 2013).
3.3. Separable Model

In the imbalance constraint, (7), the uncertainty and the
decision variables enters in an affine way. This is a special

S.E.T. Jacobsen, B. Kulcsár, A. Lindman: Page 4 of 12



A Predictive Chance Constraint Rebalancing Approach to Mobility-on-Demand Services

case of the chance constraint and is referred to as a sepa-
rable chance constraint (Shapiro et al. 2009). A separable
chance constraint with known probability distribution can
be reformulated as a deterministic constraint. We can rewrite
the separable chance constraint to a deterministic constraint
by using the cumulative distribution function (CDF),

F�ij (t)(z) ∶= ℙij(�ij(t) ≤ z). (8)
With the use of the CDF, Eq. (8), the chance constraint,
Eq. (7c), can be written as,

F�ij (t+1)
(

k + xcij(t + 1) − sij(t)
)

≥ 1 − �.

Then by taking the inverse CDF we get the following con-
straint,

k + xcij(t + 1) − sij(t) ≥ F−1�ij (t+1) (1 − �) . (9)
F−1�ij (t+1)(1 − �) is also called the quantile function. Eq. (9)
is deterministic if the CDF if known. In this paper the
travel demand, �ij(t), is predicted using Gaussian process
regression (GPR). The GPR gives a mean prediction, �,
and a confidence bound on the prediction, �, where the
confidence is assumed to follow a Gaussian distribution. We
can therefore use the cumulative distribution function for a
Gaussian distribution, which is defined as

F (1 − �;�, �) = 1

�
√

2� ∫

1−�

−∞
e−

(z−�)2

2�2 dz. (10)

Given a mean, �, and a standard deviation, �, the cumu-
lative distribution function is explicit, hence equation (9) is
also explicit. The chance constraint formulation in (7) can
therefore be reformulated into the deterministic constraint
(9).
3.4. Gaussian Processes Regression (GPR) for

Time-Series Modelling
A Gaussian Process is non-parametric and probabilistic

model that may be used to give predictions. GPRs are
effective tools to predict time series with uncertainty bounds
(Roberts et al. 2013).

The GPR can be explained from the functions per-
spectives, called the function-space view (Rasmussen &
Williams 2005). Consider a black box system with input t
and output � = f (t), where f (t) is an unknown function.
Assume that we have historic input- and output-data from
this system, called the training data set  = {(ti, �i)|i =
1, ..., n}. There are infinitely many functions that can be
fitted on the dataset. In GPRs a probabilistic method is used
to find the best function fit. This is done by assigning a
multivariate probability distribution to the entire function-
space. By using a probability distribution of the function
space it is possible to include confidence of the prediction.

Based on prior knowledge and a training data set the
aim of GPR is to find the underlying multivariate distribu-
tion. Prior knowledge can be incorporated into the fitting

process; for example periodicity or smoothness properties
of f (t). In GPR the underlying multivariate distribution is
assumed to be a multivariate normal distribution. Hence the
estimated output follows a normal distribution, �1, ..., �n ∼
 (�(t)i,..,n,�), where �i,j = Cov(�i, �j) = k(ti, tj) is thecovariance function, also called kernel, and �(t) is the mean
function. Thus, the Gaussian process is completely defined
by its mean and covariance functions according to

f (t) ∼ (�(t), k(t, t′)). (11)
An important aspect of kernels is that they are only de-
pendent on the inputs. The covariance function can be any
function that generates a positive semi-definite covariance
matrix (Kocijan 2016). When selecting different kernels,
prior knowledge of the data is used. If we assume a smooth
function the radial basis function kernel (RBF) can be used

kRBF(t, t′) = exp
(

−
‖t − t′‖2

2l2

)

, (12)

where l is the lengthscale hyperparameter. If the data is
periodic a periodic kernel is proposed

kPeriodic(t, t′) = exp
(

− 2
sin2 (�p (t − t

′))

l2

)

, (13)

where p is the period and l the lengthscale hyperparameter.
The sum and multiplication of two kernels is also a kernel
(Rasmussen & Williams 2005).

When the kernels have been selected the hyperparam-
eters are trained on the dataset by maximizing the log-
marginal likelihood (Rasmussen &Williams 2005). The log
marginal likelihood is given by

log p(y|X, �) = −1
2
y⊤�−1y− 1

2
log |�|− n

2
log(2�), (14)

where � is the covariance matrix,

�n,n =
⎛

⎜

⎜

⎜

⎝

k1,1 k1,2 ⋯ k1,n
k2,1 k2,2 ⋯ k2,n
⋮ ⋮ ⋱ ⋮
kn,1 kn,2 ⋯ kn,n

⎞

⎟

⎟

⎟

⎠

. (15)

A gradient method is used to find the hyperparameters
that maximizes the log marginal likelihood, i.e. the partial
derivatives of Eq. (14) with respect to the hyperparameters
are computed:

)
)�i

log p(y|X, �) = −1
2
y⊤�−1 )�

)�i
�−1y− 1

2
tr(�−1 )�

)�i
)

(16)
The computational complexity of training the GPR is mainly
due to the need of finding the matrix inversion of � and re-
quires the computational complexity ((n3)) (Rasmussen &
Williams 2005). From the tuned kernels and mean function,
future prediction can be made using conditional probability
on the posterior distribution. Given a new input t∗, the
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predictive distribution of the corresponding output �∗ is a
Gaussian distribution with mean and variance
�̂(t∗) = k∗⊤�−1y, (17)
�̂2(t∗) = k(t∗, t∗) − k∗⊤�−1k∗, (18)

where � is the covariance matrix for the training data,
k∗ is the vector of covariances between t∗ and the n trainingpoints. In this work we will use a locally periodic kernel

0 2 4 6 8 10
t

−3

−2

−1

0

1

2

3

λ

Figure 2: Samples from prior distribution of the locally periodic
kernel.

which is the multiplication of the RBF and Periodic kernels.
Periodic kernels assumes perfect correlation between data
points that are N ∗ p distances apart, i.e. t − t′ = N ∗ p,
where N is an integer. This strict periodicity assumption is
not valid for most stochastic functions. While travel demand
data have some periodicities they are not strict, e.g., the
exact time and extend of people commuter patterns varies
from day to day. Locally periodic kernels allow the shape of
the periodic parts to vary over time and are therefore better
suitable for travel demand prediction. Arbitrary function
samples from the prior of the locally periodic kernel can be
seen in Fig. 2. It can be seen that there are local periodicity
in each sample but that the periodicity can change over time.
3.5. Chance Constraint MPC (CCMPC) with GPR

The chance constraint in optimization Eq. (7) can be re-
formulated to an deterministic constraint using the separable
model in Section 3.3. The mean and standard deviation in
equation Eq. (10) is estimated usingGPR, Eqs. (17) and (18).
Hence the chance constraint represent the confidence in the
prediction of the travel demand. The estimated mean and
standard deviation are denoted �̂ and �̂, Eqs. (17) and (18).
The final optimization problem can be written as,

minimize
xrij ,sij

T+t0
∑

t=t0

N
∑

j,i=1
crij(t)x

r
ij(t) + c�(t)sij(t) (19a)

subject to
Eqs. (6b), (6d)and (6e) (19b)

sij(t + 1) + k + xcij(t + 1) − sij(t)
≥ F−1�ij (t+1) (1 − �; �̂, �̂) ,

∀i, j ∈ N, t ∈ [t0, T + t0],

(19c)

(19d)
The chance constraint in Eq. (7c) is reformulated to

Eq. (19c) using the separable model Eq. (9). The optimiza-
tion problem, Eq. (19), is now an deterministic MILP. An
important property with Eq. (19) is that the MILP is totally
unimodular and hence the corresponding linear program
(LP) solution will always be integral. Therefore, the opti-
mization problem Eq. (19) can be solved efficiently as a LP
with the simplex method. The proof that Eq. (19) is totally
unimodular can be found in Appendix A.
3.6. Minimal fleet size

The chance constraint Eq. (7c) guarantees that the imbal-
ance in each station i is below a threshold k with probability
1 − �. However, this guarantee is only valid if we have
enough vehicles in the station to drive the predicted demand,
xcij(t). The decision variable xcij(t) is constrained by Eq. (6d).Hence, we need to rebalance vehicles between station and
ensure that the total fleet size is large enough. The minimal
fleet size can be found by solving the following optimization
problem,

minimize
xrij ,�i(0)

T+t0
∑

t=t0

N
∑

j,i=1
crij(t)x

r
ij(t) + c��i(0) (20a)

subject to
k + xcij(t + 1) ≥ F−1�ij (t+1) (1 − �; �̂, �̂)

∀i, j ∈ N, t ∈ [t0, T + t0],
(20b)

N
∑

j=1
xcij(0) + x

r
ij(0) − x

c
ji(−�ji) − x

r
ji(−�ji) = �i(0)

∀i ∈ N,
(20c)

N
∑

j=1
xcij(t) + x

r
ij(t) − x

c
ji(t − �ji) − x

r
ji(t − �ji) = 0

∀i ∈ N, t ∈ [1, T ],
(20d)

Eq. (6e). (20e)
The optimization problem minimize the rebalancing, xrij ,and the initial number of vehicles in each station, �i(0). We
optimize for an full-day horizon and the imbalance in each
station is set to zero, sij(t).
3.7. Algorithm

The proposed algorithm for 1 time step is presented in
Algorithm 1. The control actions are updated every ΔtMPCminutes and the GPR is updated every ΔtGP minutes. For
dispatching of request and vehicles in each station we use
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Dispatching Gaussian Process CCMPC

Figure 3: Visual representation of the dispatching, travel demand prediction and MPC. The map is split into N stations and there
is an initial number of requests and vehicles. First, request are matched with vehicles in the same station. Then the travel demand
is predicted, here represented by the colored bars. Based on the travel demand prediction the AMoD optimization problem is
solved (Algorithm 1) and the vehicles are rebalanced accordingly.

the Hungarian algorithm (Kuhn 1955). It is important to
note that the Hungarian can only match request and vehicles
in the same station. The proposed Algorithm 1 make sure
that there are enough vehicles in each station to serve the
request. Before the dispatching and rebalancing is started
the city/rural area is discretized into N stations using k-
means clustering on historical request location. A visual
representation of the dispatching, prediction and rebalancing
can be seen in Fig. 3.

Algorithm 1: AMoD dispatching and rebalancing
Input Time t, System state �i(t), Historical demand
�histij , Currently waiting customer �waitij , probability
1 − �.
Output: Control action xr.
if t mod ΔtGP then

Train GPR
Obtain {�̂(t), �̂(t)}t∈[t0,T+t0]

else
Use previous GPR
Obtain {�̂(t), �̂(t)}t∈[t0,T+t0]

end
if t mod ΔtMPC then

xr ← solve Eq. (19)
end
return xr

4. Case Study
In this section, the proposed Chance Constrained MPC

algorithm outlined in Algorithm 1 is tested in realistic
AMoD scenarios using a high-fidelity transport simulator.
4.1. Simulation Environment

The high-fidelity transport simulator AMoDeus (Ruch
et al. 2018) was used for contrasting and benchmarking
of the AMoD algorithm (see Algorithm 1). AMoDeus is
an open-source agent-based transport simulator based on
Multi-Agent Transport Simulator (MATSim) (Horni et al.
2016). It was intentionally developed to simulate AMoD
systems and to test new algorithms for fleet control. With
AMoDeus and MATSim large scale transport simulations

for one full day can be performed. The transport network is
constructed using a queue based approach. Several realistic
mobility scenarios for different cities are implemented in
AMoDeus for benchmark testing. We chose to simulate the
San Francisco scenario for this work. The San Francisco
scenario is based on a taxi data set from 2008 (Piorkowski
et al. 2009). The data contains mobility traces from 500 taxi
vehicles in San Francisco and contains 464 045 customer
trips, which were collected between May 17, 2008 and June
10, 2008. In this study we have chosen to simulate Thursday
May 29th, which corresponds to a total of 11 453 requests.
The transport simulations were performed on a MacBook
Pro with a 2.3 GHz Quad-Core Intel core i7 processor and
16 GB of RAM. We used IBM CPLEX to solve the ILP
problems (Cplex 1987).
4.2. Travel Demand Prediction

The Gaussian Process regression is trained using the
python library GPyTorch (Gardner et al. 2018). GPyTorch
is an efficient implementation of GPRs that uses PyTorch
for GPU acceleration. This enable us to train the GPRs with
high speed, which enables real-time usages.

The training data is the flow of requests in between all
stations per time interval. Hence, a GPR is trained for each
specific flow. For this case we have discredited the city into
10 stations and hence we need to train 100 GPRs 1. The
training data consist of the previous 5 days from the day we
want to predict, in this case we use training data from 2008-
05-24 to 2008-05-28. The trained mean and 95% confidence
for the flow between station 0 and 3 can be seen in Fig. 4. The
mean prediction and the confidence describes the data well.
We can see in the peak on day 2008-05-29 that the mean
prediction is low but the confidence includes the peak test
data points. The explained variance score and mean squared
error (MSE) for all trained GPRs can be seen in Table 1. The
mean explained variance score is low andwith a relative high
standard deviation. This indicates that the selected kernel is
not good for predicting all flows, which is expected because
of randomness in travel patterns. However, since we account
for prediction uncertainty in Algorithm 1, we explicitly can

1Optimal partitioning or dynamic repartitioning is out of the scope of
this paper. However, we experimented with the granularity and found 10
districts adequate. Adequate in the sense of having enough data to train
traveler demand with GP.
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Table 1
Metric scores for GPRs.

Metric Mean Standard Deviation
Explained Variance Score 0.362 0.225
Mean Squared Error 2.054 5.151

2008-05-24

2008-05-25
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2008-05-27
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Figure 4: Gaussian Process regression of requests going from
one station to another. The blue data points indicates the
training data while the green data points corresponds to the
request we want to predict. The red line is the prediction of
incoming requests and the orange area is the corresponding
95% confidence bound.

handle it. Also, the mean of the MSE metric is quite low
which indicates that our average behavior is adequate.

The computational complexity of GPR is cubic in the
number of data points ((n3)) (Rasmussen & Williams
2005). This makes GPRs inadequate for large dataset. How-
ever, GPyTorch reduces the computational complexity to be
squared in the number of data points ((n2)). This alongside
the use of GPU hardware results in an acceptable computa-
tion burden for our case studies. For this work the average
computational training time per prediction for GPRwas 4.82
seconds, see Table 3. If the city is split into 10 stations it
means that one hundred different flows have to be predicted.
Hence the total computational time will be around 482
seconds.
4.3. Minimal fleet size for different confidence level

By solving the optimization problem Eq. (20) we get the
minimal required fleet size to keep the imbalance in each
station below some threshold, k, with probability 1 − �.

Intuitively the minimal required fleet size should in-
crease with higher probability, 1 − �, which is also the case
see Fig. 5. The results in Fig. 5 is from solving Eq. (20) with
threshold k = 0. When 1 − � is increasing the bound on the
travel demand, �ij(t), increases and hence a larger fleet size
is required.
4.4. Confidence bound in CCMPC

In the CCMPC (Algorithm 1) there are four variables
that can be tuned according to the specific scenario; the
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Figure 5: The minimal fleet size, optimal solution from
Eq. (20), for different confidence 1 − �.

objective cost weights (crij(t), c�), the horizon length T , the
confidence bound 1 − � and the fleet size. We have chosen
to have a horizon of 3 hours and the cost weights are set
according to operating costs, where the rebalancing cost is
relative to the distance and the imbalance cost is relative to
customer wait time. With a fixed horizon and cost weights
we study how the confidence bound in the chance constraint
optimization problem (Eq. (7)) affects the performance for
fleet sizes of 300 and 350 vehicles. Two performancemetrics
are evaluated; the pick-up time, see Fig. 6, which indicates
the service level provided, and the distances driven, see
Fig. 7, which represents operating cost.

By studying the mean and median pickup times as a
function of confidence level for 300 vehicles it is evident
that there is an optimal confidence level at around 0.65
where both of these measures are minimized (see Fig. 6).
The maximum mean wait time is reached for a confidence
level of 0.8 and the second-highest for a confidence level of
0.3. When the confidence level is increased, the number of
predicted requests between the different station’s increases.
Hence, a higher confidence level require a larger fleet size,
which we concluded in Section 4.3. For a fleet size of 300
vehicles there is not enough control input for confidence
level of 0.8 and the rebalancing hence decreases, see Fig. 7.
When the vehicle fleet is increased to 350 vehicles there
is possibility for more rebalancing and the rebalancing in-
creases for confidence level 0.8. However, the performance
in terms of median and mean pick-up time is similar or
worse then for confidence level 0.65. The extra rebalancing
is not improving the service level since it rebalance more
then it have too. For low confidence levels the number of re-
quests are underestimated, hence the rebalancing decreases
for lower confidence levels (see Fig. 7). Even though the
rebalancing distance is the lowest for confidence level 0.3,
the total distance is lowest for confidence level 0.4 which
has more than the doubled rebalancing distance compared
to confidence level 0.3 (see Fig. 7). Beyond 0.4, the distance
grows due to stricter and stricter chance constraints forcing
vehicles to drive towards customers. A confidence level of
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Figure 6: Mean and median wait time for different confidence
bounds for fixed fleet size of 300 and 350 vehicles using
CCMPC Algorithm 1.

0.3 0.4 0.5 0.6 0.7 0.8
Confidence level, 1− ε

51000

52000

53000

54000

55000

56000

57000

58000

To
ta

lD
is

ta
nc

e
[k

m
]

Total, 350 cars
Total, 300 cars
Reb, 350 cars
Reb, 300 cars

2000

4000

6000

8000

10000
R

eb
al

an
ce

D
is

ta
nc

e
[k

m
]

Figure 7: Total and rebalancing distance for different confi-
dence bounds for fixed fleet size of 300 and 350 vehicles.

0.65 have the maximal rebalancing distance of 7206 km and
the total distance is only 844 km more than the minimum
total distance for fleet size of 300 vehicles. This indicates that
the rebalancing at confidence level 0.65 decreases the mean
and median wait time at a low cost. Hence, this confidence
level is considered to be optimal for this scenario. For this
confidence level the median wait time is reduced by 4%
compared to using only the mean prediction of the GPR.
4.5. Comparative evaluation of AMoDs

The performance of the CCMPC (Algorithm 1) is bench-
marked against three different control algorithms:

• MPC-Oracle - A non-causal controller where the fu-
ture travel demand, �ij(t), is known for all t in Eq. (6).I.e. the performance of this controller is an upper limit
for the performance of the proposed algorithm.

• MPC-FixedDemand - This is a causal controller, see
Eq. (6), with a fixed future travel demand, all future
travel demands are set equal to the last known travel
demand, i.e., �ij(t) = �ij(t0 − 1) ∀ t ∈ [t0, T + t0].

• Global Bipartite Matching Dispatcher (GBM) - This
controller solves the bipartite problem to match avail-
able vehicles with customer request using the Hungar-
ian algorithm (Kuhn 1955). The cost of matching a
request with a vehicle is the distance between them.
The controller does simply react to the current demand
and does not perform any rebalancing.

A comparison of the performance, pickup time and
distance driven, for different control algorithms as a function
of fleet size can be seen in Figs. 8 and 9. It is apparent that
the best performing algorithm in terms of wait time is the
MPC-Oracle, which is expected. However, for a fleet size
of 300 vehicles the best performing causal algorithm is the
CCMPC with only a few seconds more mean and median
pickup time (see Fig. 8). For a fleet size of 300 vehicles the
mean pickup time for CCMPC is 24% lower then the GBM
(see Table 2), which is the worst performing algorithm in
terms of pickup time. This is also expected since GBM is
a reactive algorithm. The MPC-fixed is performing well in
terms of pickup time and have a 19 seconds longer mean
pickup time compared to CCMPC (see Table 2). However,
the MPC-Fixed have a rebalancing distance that is 2764 km
more than CCMPC. Since the fixed demand prediction is not
accurate a lot of vehicles will unnecessarily be rebalanced.
When the fleet size is above 300 vehicles the performance
of MPC-Oracle, CCMPC and MPC-fixed in terms of pickup
time is similar because a large fleet size compensates for a
bad controller as the MPC-Fixed. A lot of vehicles can be
rebalanced without affecting the pickup-time since there is
an oversupply of vehicles in the system. Therefore, the mean
and median pickup-time is similar but the total distance
driven is still more for the MPC-Fixed. From an operator’s
perspective, it is desired to keep the fleet size as low as
possible because of cost savings. Therefore, a fleet size
of 300 vehicles seems to be optimal in terms of cost and
performance (see Figs. 8 and 9).
4.6. Computational Complexity

MILP is an NP-hard problem, meaning that the time
required for optimizing does not scale well and cannot be
solved in polynomial time. However, since the MILP is
totally unimodular the solution of the relaxed LP is always
integral. Therefore, we can solve the optimization problem,
Eq. (19), as a LP. The mean computational running time
is 0.093 seconds, see Table 3. An important aspect of the
CCMPC (Algorithm 1) is that the computational complexity
is not dependent on the number of vehicles nor the number
of requests. The computational complexity is only dependent
on the number of stations, whichmakes the CCMPC suitable
for control of large scale vehicle fleets.
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Figure 8: Mean and median wait times as function of fleet size
for different control algorithms.
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Figure 9: Driving distance as function of fleet size for different
control algorithms. Solid lines corresponds to empty distance,
i.e. distance driven without customers, and dash-dotted lines
corresponds to rebalance distance.

Table 2
Pickup times, total-,rebalance- and pickup-distances for fixed
fleet size of 300 vehicles and each control algorithm.

Metric MPC Oracle CCO MPC GBM MPC Fixed
Mean pickup time [s] 205 211 276 230
Median pickup time [s] 171 173 236 191
Total distance [km] 52645 52842 51361 54858
Rebalance distance [km] 7307 7206 0 9970
Pickup distance [km] 7464 7757 13482 6983

5. Conclusion and Future Work
In this paper, we have proposed a predictive chance

constraint rebalancing approach for autonomous mobility-
on-demand (AMoD) services, which is applied to the use
case of ride-hailing. We first introduce a commonly used
model for this service where the service area is discretized
into smaller areas, called stations. The model consist of con-
straints for the imbalance and vehicle conservation. Based on
the model a model predictive controller (MPC) is formulated
with the multi-objective to minimize the rebalance distance

Table 3
Computational running time for single execution of Chance
Constrained MPC (CCMPC) for routing and Gaussian Process
Regression (GPR) for travel demand prediction.

Method Samples Mean [s] Median [s] STD [s] Max [s]
CCMPC 143 0.093 0.078 0.047 0.281
GPR 886 4.82 4.82 0.112 6.87

for vehicles and the imbalance in each station. The travel de-
mand is predicted using Gaussian Process regression (GPR).
GPR, in contrast to other proposed prediction methods, is
superior for small data sets and provides a confidence bound
on the prediction. We account for uncertainties in the travel
demand prediction by formulating a chance constraint MPC
(CCMPC). The CCMPC is relaxed using the GPR prediction
and the use of the separable model. The proposed algorithm
was benchmarked using the high fidelity transport simulator
AMoDeus and real taxi data from San Francisco (Ruch et al.
2018). Our results show the importance of incorporating
the confidence bound of the demand prediction. By tuning
the confidence bound the median wait time is reduced by
4% compared to using only the mean prediction of the
GPR. We showed that the CCMPC is performing close to
optimal performance and that and is significantly better than
a reactive controller. The performance and computational
efficiency of the proposed method implies that it would
be useful for real-time control. There are many important
directions to consider for future work including embedding
traffic and limited range into the model as well as more case
studies for different cities.
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Glossary
Notation Description
xrij(t) A decision variable for the number of vehi-

cles to rebalance from station i to station j
at time interval t.

Δt The discrete time interval length.
Θ ⊂ ℝ2 Operating area for vehicles.
�ij(t) The travel time, in discrete time intervals, to

drive from station i to station j at time t.
�ij(t) The number of customers that wants to

travel from station i to station j at time t.
�i(t) Initial number of idle vehicles in each sta-

tion. .
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Notation Description
c� The cost of leaving out one customer that

wants to go from station i to station j at time
t.

crij(t) The cost of rebalancing one vehicle from
station i to station j at time t.

sij(t) A decision variable for the imbalance, i.e.
describes how many customers to not pick-
up at time t that wants to go from station i
to station j.

xcij(t) he number of vehicles to drive customers
from station i to station j at time interval
t.

A. Total Unimodular
There are certain cases where the optimal solution of

the LP relaxation of an MILP is guaranteed to be integral.
Consider the following MILP,

minimize
x

c⊤x

subject to
Ax ≤ b
x ∈ ℕ.

If the A matrix is totally unimodular (TU) then the LP
relaxation will always have one integral solution (Hoffman
& Kruskal 2010). A matrix A is TU if the determinant of A
is ±1. We will now prove that Eq. (19) have this property.
Let x be the vector of all decision variables sij(t), xcij(t)and xcij(t). Since the decision variables in Eqs. (6b), (6d)
and (19c) enters as a subtraction or addition all entries i A
will either be 1, -1 or 0.
Proposition 1. Let A ∈ {−1, 0, 1}n×m. If every column of
A has at most one 1 and at most one -1, then A is totally
unimodular (Seymour 1980).

Since xcij(t) is the only decision variable that appears both inEq. (19c) and Eq. (6d), but with different sign, each column
of A will consist of at most one 1 and one -1 and hence the
A matrix is TU. Therefore the MILP Eq. (19) can be solved
as a linear program (LP).
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