
thesis for the degree of doctor of philosophy

On Optimization-Based Falsification of
Cyber-Physical Systems

Zahra Ramezani

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2022



On Optimization-Based Falsification of Cyber-Physical Systems

Zahra Ramezani
ISBN 978-91-7905-732-9

Copyright © 2022 Zahra Ramezani
All rights reserved.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5198
ISSN 0346-718X

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000
www.chalmers.se

Printed by Chalmers Reproservice
Gothenburg, Sweden, October 2022



To my family





Abstract
In what is commonly referred to as cyber-physical systems (CPSs), computa-
tional and physical resources are closely interconnected. An example is the
closed-loop behavior of perception, planning, and control algorithms, execut-
ing on a computer and interacting with a physical environment. Many CPSs
are safety-critical, and it is thus important to guarantee that they behave ac-
cording to given specifications that define the correct behavior. CPS models
typically include differential equations, state machines, and code written in
general-purpose programming languages. This heterogeneity makes it gener-
ally not feasible to use analytical methods to evaluate the system’s correctness.
Instead, model-based testing of a simulation of the system is more viable.

Optimization-based falsification is an approach to, using a simulation model,
automatically check for the existence of input signals that make the CPS vi-
olate given specifications. Quantitative semantics estimate how far the speci-
fication is from being violated for a given scenario. The decision variables in
the optimization problems are parameters that determine the type and shape
of generated input signals.

This thesis contributes to the increased efficiency of optimization-based fal-
sification in four ways. (i) A method for using multiple quantitative semantics
during optimization-based falsification. (ii) A direct search approach, called
line-search falsification that prioritizes extreme values, which are known to
often falsify specifications, and has a good balance between exploration and
exploitation of the parameter space. (iii) An adaptation of Bayesian optimiza-
tion that allows for injecting prior knowledge and uses a special acquisition
function for finding falsifying points rather than the global minima. (iv) An
investigation of different input signal parameterizations and their coverability
of the space and time and frequency domains.

The proposed methods have been implemented and evaluated on standard
falsification benchmark problems. Based on these empirical studies, we show
the efficiency of the proposed methods. Taken together, the proposed methods
are important contributions to the falsification of CPSs and in enabling a more
efficient falsification process.

Keywords: Cyber-Physical Systems, Model-Based Testing, Optimization-
Based Falsification, Quantitative Semantics, Bayesian Optimization, Input
Generators

i



ii



List of Publications
This thesis is based on the following publications:

[A] Zahra Ramezani, Nicholas Smallbone, Martin Fabian, Knut Åkesson,
“Evaluating Two Semantics for Falsification using an Autonomous Driving Ex-
ample”. in 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN), IEEE, vol. 1, pp. 386–391, 2019.

[B] Zahra Ramezani, Johan Lidén Eddeland, Koen Claessen, Martin Fabian,
Knut Åkesson, “Multiple Objective Functions for Falsification of Cyber-Physi-
cal Systems”. IFAC-PapersOnLine, vol. 53, no. 4, pp. 417–422, 2020.

[C] Zahra Ramezani, Koen Claessen, Nicholas Smallbone, Martin Fabian,
Knut Åkesson, “Testing Cyber-Physical Systems Using a Line-Search Falsifi-
cation Method”. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 8, pp. 2393–2406, 2022.

[D] Zahra Ramezani, Kenan Šehić, Luigi Nardi, Knut Åkesson, “Falsifica-
tion of Cyber-Physical Systems using Bayesian Optimization”. Submitted for
possible journal publication.

[E] Zahra Ramezani, Alexandre Donzé, Martin Fabian, Knut Åkesson, “On
Input Generators for Cyber-Physical Systems Falsification”. Submitted for
possible journal publication.

Other publications by the author, not included in this thesis, are:

[F] Zahra Ramezani, Alexandre Donzé, Martin Fabian, Knut Åkesson,
“Temporal Logic Falsification of Cyber-Physical Systems using Input Pulse
Generators”. EPiC Series in Computing, vol. 80, pp. 195–202, 2021.

[G] Zahra Ramezani, Jonas Krook, Zhennan Fei, Martin Fabian, Knut
Åkesson, “Comparative Case Studies of Reactive Synthesis and Supervisory
Control”. in 2019 18th European Control Conference (ECC), IEEE, pp. 1752–
1759, 2019.

iii



[H] Johan Lidén Eddeland, Koen Claessen, Nicholas Smallbone, Zahra Ram-
ezani, Sajed Miremadi, Knut Åkesson, “Enhancing Temporal Logic Falsifica-
tion with Specification Transformation and Valued Booleans”. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 12, pp. 5247–5260, 2020.

[I] Koen Claessen, Nicholas Smallbone, Johan Lidén Eddeland, Zahra Ram-
ezani, Knut Åkesson, “Using Valued Booleans to Find Simpler Counterex-
amples in Random Testing of Cyber-Physical Systems”. IFAC-PapersOnLine,
vol. 51, no. 7, pp. 408–415, 2018.

[J] Koen Claessen, Nicholas Smallbone, Johan Lidén Eddeland, Zahra Ram-
ezani, Knut Åkesson, Sajed Miremadi, “Applying valued booleans in testing
of cyber-physical systems”. in 2018 IEEE Workshop on Monitoring and Test-
ing of Cyber-Physical Systems (MT-CPS), IEEE pp. 8–9, 2018.

iv



Acknowledgments

Any story or adventure has a start as well as an end. It is now my turn to
reach the end of my PhD journey. I should say that everything in life has a
meaning when you look back in time and review everything. In spite of being
alone on the way, any individual has much support from colleagues, family,
and friends. I list a few of them to thank for their presence in each part of
my PhD journey in Sweden.

First and foremost, I would like to express my sincere gratitude to my
supervisor Knut Åkesson, for his unique support, patience, and friendship
since the beginning of my PhD studies. Without his trust and meticulous
approach, it was impossible to proceed and make progress throughout this
important and exciting journey. He has continuously been motivating me to
be curious and to try new ideas, which concludes in-depth knowledge regarding
many scientific concepts. Indeed having such a great opportunity to work with
a person like Knut cannot be forgotten.

Secondly, my sincere gratitude goes to my co-supervisor, Martin Fabian. His
presence provided me with an incredible opportunity to discuss and analyze
different scientific aspects. I always received wise, challenging, and construc-
tive comments from your side, which forced me to be creative and made me
think and prepare much better and more mature drafts. I have to add that
Martin is not only a good supervisor but also a very supportive boss.

Thousands of thanks and appreciation to Alexandre Donzé for his assis-
tance, support, and guidance during this work. I learned a lot, in particular
constructive ideas, a deep understanding of the field, and being creative. I
would like to dedicate a special thanks to Koen Claessen for the nice collabo-
ration and discussions. I also greatly appreciate the collaboration that I had
with Nicholas Smallbone. I also would like to thank my colleagues in the SyTec
project: John Hughes and Mary Sheeran. I would like to express a specific
thanks to Johan Lidén Eddeland for very nice discussions and collaborations
with the papers and generally in the field.

I would like to thank Luigi Nardi, whom I had a chance to work with, and his
group in the last year of my PhD. Especially working with Kenan Šehić was a
good opportunity to learn new scientific concepts. Thanks for being available
and supportive when I had any technical or even trivial questions. In addition,
I would like to thank Zhennan Fei and Jonas Krook for the collaboration that
resulted in a paper in a different field from mine.

v



I would like to express my sincere thanks to all seniors in the Automa-
tion group, Bengt Lennartson, Petter Falkman, Emmanuel Dean, Kristofer
Bengtsson, and especially Sahar Mohajerani, for her advice. Thanks to all my
colleagues, friends, and administrators in the Automation groups and also in
the Electrical Engineering Department. One of the best parts of my journey
was being in a nice office with kind office mates, Sabino, Constantin, and
Mattias. Thanks for all the happiness and good feelings that we had together
at the office, in particular the discussions and the warm atmosphere.

I would like to acknowledge my very kind and supportive friends who live
here in Göteborg, which makes it my second hometown, and those who are
far away from me, but I still feel their presence in my life. A special thanks
to my friends who have been with me in happiness and sadness, in particular
Roodabeh, Tahereh, Yasaman, Maryam R, and Ali F. Finally, my sincere
gratitude goes to Masoumeh and Shirin for their non-stop and unique support.

Now it is time to turn to dedicate my words to two precious persons in my
life who gave me the love of life and tranquility, my parents. I truly have to
confess that without their emotional support, I could not have finished this
journey. Words can not express my feelings, sensations, and emotions toward
the persons who dedicated their life to me. I just want to simply say I love
you, Mom and Papa!

My appreciation goes beyond the words to thank my dearest sisters, Parisa
and Sepideh. Your emotional supports were countless and provided me with
happiness and strength. Since childhood, we have had much togetherness in
happiness and sadness, playing, studying, and many other occasions. There
are always some secrets among close friends that no one knows, these are
only some portions of love that my sweetheart sisters gave me. We had true
sisterhood that made us inseparable. Last but not least, thanks to Hesam,
my brother-in-law, for his support and being a real brother.

This work was supported by the Swedish Research Council (VR) project
SyTeC VR 2016-06204 and by the Swedish Agency for Innovation Systems
(VINNOVA) under project TESTRON 2015-04893.

The results for all benchmark problems in this thesis can be performed
at High Performance Computing Center North (HPC2N), Umeå University,
a Swedish national center for Scientific and Parallel Computing; and also
resources at Chalmers Centre for Computational Science and Engineering
(C3SE) provided by the Swedish National Infrastructure for Computing (SNIC).

vi



Acronyms

AD: Autonomous Driving

BO: Bayesian Optimization

CPS: Cyber-Physical System

NM: Nelder-Mead

SNOBFIT: Stable Noisy Optimization by Branch and Fit

STL: Signal Temporal Logic

SUT: System Under Test

VBool: Valued Boolean

vii





Contents

Abstract i

List of Papers iii

Acknowledgements v

Acronyms vii

I Overview 1

1 Introduction 3
1.1 Cyber-Physical Systems . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . 4

Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Deductive Verification . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Conformance Testing . . . . . . . . . . . . . . . . . . . . . . . . 7
Coverage-guided Testing . . . . . . . . . . . . . . . . . . . . . . 7
Falsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Testing versus Formal Verification . . . . . . . . . . . . . . . . 9

1.4 Tools for Testing of CPSs . . . . . . . . . . . . . . . . . . . . . 10

ix



1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.8 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Falsification of Cyber-Physical Systems 19
2.1 Optimization-based Falsification . . . . . . . . . . . . . . . . . 20

Input Generators . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Quantitative Semantics . . . . . . . . . . . . . . . . . . . . . . 21
Function Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 21
Parameter Optimization . . . . . . . . . . . . . . . . . . . . . . 22

3 Quantitative Semantics 23
3.1 Specification Formalisms . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Quantitative Semantics Expressed in Valued Booleans . . . . . 24

Max Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Additive Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Evaluating Different Quantitative Semantics Using an Example 28

4 Searching for Test Inputs 35
4.1 Optimization-Free Methods . . . . . . . . . . . . . . . . . . . . 35

Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Random Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Hybrid-Corner-Random . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Optimization-Based Methods . . . . . . . . . . . . . . . . . . . 37
The Direct-Search Methods . . . . . . . . . . . . . . . . . . . . 38
Model-Based Optimization Methods . . . . . . . . . . . . . . . 40
Comparing Different Test Generation Methods . . . . . . . . . 50

5 Parameterization of Input Signals 53
5.1 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Signal Generators . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Testing Coverage Measures . . . . . . . . . . . . . . . . . . . . 57

x



6 Benchmark Problems 59
6.1 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . 59

Automatic Transmission . . . . . . . . . . . . . . . . . . . . . . 60
Chasing Cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Wind Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Neural Network Controller . . . . . . . . . . . . . . . . . . . . . 61
Fuel Control of an Automotive Power Train . . . . . . . . . . . 61
Aircraft Ground Collision Avoidance System . . . . . . . . . . . 62
Steam Condenser with Recurrent Neural Network Controller . 62
Automatic Transmission (AT’) . . . . . . . . . . . . . . . . . . 62
Third Order Modulator . . . . . . . . . . . . . . . . . . . . . . 63
Static Switched . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Large-Scale Testing . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Benchmark Setup and Evaluation . . . . . . . . . . . . . . . . . 64

7 Summary of Papers 67
7.1 Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Paper B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 Paper C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4 Paper D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5 Paper E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Answer to Research Questions and Conclusions 71
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References 77

II Papers 91

A Evaluating Two Semantics for Falsification using an Autonomous
Driving Example A1
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . A4
2 Falsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5

2.1 Signal Temporal Logic . . . . . . . . . . . . . . . . . . . A6
2.2 Valued Booleans and MAX semantics . . . . . . . . . . A6
2.3 Mean Alternative Robustness Value (MARV ) semantics A7

xi



3 Use-Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A8
3.1 Specification of Safe Longitudinal Distance . . . . . . . A9

4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . A10
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A15
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A16

B Multiple Objective Functions for Falsification of Cyber-Physical
Systems B1
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . B3

1.1 Quantitative Semantics and Objective Functions . . . . B6
1.2 Quantitative Semantics . . . . . . . . . . . . . . . . . . B7

2 Falsification Using Multiple Objective Functions . . . . . . . . B7
3 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . B11

3.1 Automatic Transmission (AT) Benchmark . . . . . . . . B11
3.2 Third Order Modulator . . . . . . . . . . . . . . . . . . B11
3.3 Static Switched (SS) System . . . . . . . . . . . . . . . B11

4 Experimental Setup and Results . . . . . . . . . . . . . . . . . B12
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . B14

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B15
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B16

C Testing Cyber-Physical Systems Using a Line-Search Falsification
Method C1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C3
2 Signal Temporal Logic for Falsification . . . . . . . . . . . . . . C8

2.1 Signal Temporal Logic . . . . . . . . . . . . . . . . . . . C8
2.2 Quantitative Semantics . . . . . . . . . . . . . . . . . . C9
2.3 Falsification . . . . . . . . . . . . . . . . . . . . . . . . . C10

3 Hybrid Corner-Random Method (HCR) . . . . . . . . . . . . . C13
3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . C14

4 Line-Search Falsification (LSF) . . . . . . . . . . . . . . . . . . C14
4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . C15

5 Experimental Setup and Results . . . . . . . . . . . . . . . . . C23
5.1 Optimization-free vs. Optimization-based falsification . C25
5.2 Line-Search Falsification using the four options . . . . . C29
5.3 Line-Search Falsification vs. Nelder-Mead and SNOBFITC29
5.4 Evaluation and Discussion . . . . . . . . . . . . . . . . . C31

xii



6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C33
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C34

D Falsification of Cyber-Physical Systems using Bayesian Optimization D1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D3
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . D6
3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D8

3.1 Falsification of Cyber-Physical Systems . . . . . . . . . D8
3.2 Signal Temporal Logic . . . . . . . . . . . . . . . . . . . D9
3.3 Quantitative Semantics . . . . . . . . . . . . . . . . . . D10
3.4 Bayesian Optimization . . . . . . . . . . . . . . . . . . . D11

4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D13
4.1 Turbo . . . . . . . . . . . . . . . . . . . . . . . . . . . . D13
4.2 Incorporating prior belief . . . . . . . . . . . . . . . . . D16

5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . D16
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . D17
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . D20
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . D24

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D26
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D27
1 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . D27
2 Other Experiments on ARCH Benchmark . . . . . . . . . . . . D30
3 Unfalsifiable benchmark examples . . . . . . . . . . . . . . . . . D30
4 An Aggregated Comparison . . . . . . . . . . . . . . . . . . . . D30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D33

E On Input Generators for Cyber-Physical Systems Falsification E1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E3
2 Falsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E5
3 Input Generators . . . . . . . . . . . . . . . . . . . . . . . . . . E7

3.1 Input Generator Parameterization . . . . . . . . . . . . E8
4 Coverage Measure . . . . . . . . . . . . . . . . . . . . . . . . . E11

4.1 Space Coverage . . . . . . . . . . . . . . . . . . . . . . . E12
4.2 Space and Time Coverage . . . . . . . . . . . . . . . . . E13
4.3 Frequency Domain Coverage . . . . . . . . . . . . . . . E15
4.4 Experimental Evaluation With Input Generators . . . . E15
4.5 Remarks and Discussion . . . . . . . . . . . . . . . . . . E17

xiii



5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . E17
5.1 Evaluated Optimization Methods . . . . . . . . . . . . . E18
5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . E19
5.3 Results Analysis . . . . . . . . . . . . . . . . . . . . . . E19

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E26

xiv



Part I

Overview

1





CHAPTER 1

Introduction

1.1 Cyber-Physical Systems

Computational and physical resources are closely interconnected in many real-
world systems. These systems are commonly referred to as cyber-physical
systems (CPSs). CPSs contain both cyber and physical elements together
with sensors and actuators. CPSs collect and evaluate data and communicate
with other systems in their environment [1]. Applications of CPSs are found
in a wide range of domains [2], factory automation, medical systems, power
grids, aerospace, autonomous driving, communications, robotics, etc.

A tool-chain for modeling, simulation, and optimization of CPSs typically
needs multiple tools to describe different aspects of the CPSs. Modelica [3]
and Matlab/Simscape [4] are equation-based languages tailormade to model
the physical parts of a CPS, while Matlab/Simulink [5] is often used to im-
plement control algorithms. General purpose programming languages, e.g.
C [6] or Rust [7], are used to implement device drivers and communication
protocols, and TensorFlow [8] and PyTorch [9] are libraries used to model
machine learning components, for example, related to perception. This also
illustrates the challenges of using formal methods to evaluate the correctness

3



Chapter 1 Introduction

of CPSs. Mathematically, the continuous dynamics, for example, the physical
plant, can typically be described using continuous differential equations, and
the software parts by using discrete state machines. Due to this combination
of continuous and discrete dynamics, CPSs are referred to as hybrid systems.

The integration of the cyber and physical and the combination of discrete
and continuous dynamics makes CPSs complex and challenging to analyze.
Additionally, they are often safety-critical and must correctly fulfill expected
behavior. Two common methods used to assess their correctness are formal
verification and testing.

To test or verify a system under test (SUT), the expected behavior of the
system must be described. The term specification is used to describe this be-
havior. The specification can be expressed in natural language or using math-
ematical notation. In an automatic evaluation of the specification, variants of
temporal logic are typically used since temporal logic allows specifications to
be expressed in an unambiguous way.

This thesis considers the problem of testing CPSs, but we start with a brief
introduction to formal verification before introducing testing.

1.2 Formal Verification
Formal verification is the process of ensuring the functional correctness of a
design by applying mathematical techniques. Essentially, verification aims
to find whether a given CPS model does fulfill a formal specification or not.
Model checking [10] and deductive verification [11] are two commonly used
formal verification techniques.

Model Checking
Model checking [10], [12] refers to the process of determining whether a finite-
state model meets a given specification. Typical properties are freedom from
deadlocks if invariants hold, or if request-response properties are satisfied.

Model checking requires minimal human intervention and produces a coun-
terexample if the property is not satisfied. For finite-state systems with tem-
poral logic specifications, model checking is a decidable problem. Thus, the
correctness of the system with respect to the given specifications can be de-
termined, assuming that the model is correct.

4



1.2 Formal Verification

However, model checking has some disadvantages. One is the state explo-
sion problem, where the number of states in a system of sub-systems increases
exponentially with the number of sub-systems. An approach to mitigate the
state-space explosion problem is to replace a sub-system with an alternative
abstract representation having a smaller number of states. Model checking
such an abstraction [13] is potentially less computationally expensive com-
pared to model checking the original model. A potential challenge with using
abstractions is that an abstracted model might remove behavior relevant for
the verification.

Performing model checking of software is challenging because it is often
less structured than hardware and concurrent software is often asynchronous.
Hence, the state-space explosion is particularly problematic when software is
an essential part of the system. Though model checking can be suitable for
specific sub-systems where it is both possible and worth the time, in general,
it is not a viable option for large-scale CPSs.

Deductive Verification

Deductive verification [14], [15], also called theorem proving, proves the cor-
rectness of a system by using axioms and proof rules. In deductive verifi-
cation, mathematical models of the given system are formulated using ap-
propriate logic, and the formal proof uses mathematical reasoning within a
theorem prover. One of the theorem proving tools used for hybrid systems is
KeYmaera X [16]. KeYmaera X combines deductive reasoning and computer
algebraic prover technology, where differential dynamic logic is used for the
model implementation and specifications.

One of the advantages of deductive verification is that it is applicable to
both finite-state and infinite-state reactive systems. On the other hand, de-
ductive verification requires logical reasoning skills and must be performed by
experts with extensive experience; it is also time-consuming. When deductive
verification fails to show if a property holds, the methods generally provide
little feedback to explain why. In such a case, it is up to the user to decide
whether the problem lies with the property, the system, or the proof itself.

5



Chapter 1 Introduction

Requirements

Control Design 

Model

Specification

Model

System

Platform 
Hardware

Code

Figure 1.1: The V-model in model-based development design [17].

1.3 Testing
Testing is an essential part of engineering that is widely used in industry to
evaluate the quality of embedded systems.

Traditionally embedded systems were developed by manually generating
the code and then doing verification and validation using extensive tests, of-
ten on the physical system. This approach in developing embedded systems
has a number of disadvantages. First, testing is often done at the late stages
of development, where it is often time-consuming and expensive to handle
identified problems. Second, embedded systems often interact with a physical
environment that affects closed-loop behavior. Models of physical environ-
ments are often used also for other purposes, for example, for performance
optimization and control design. For this reason, the V-model in the model-
based development (MBD) process for CPSs was developed, see Figure 1.1.
This method uses automatic code generation from high-level languages, mod-
eling of formal specifications, and supports simulation-based evaluation at
early development stages. The requirements, and models, on the design part,
define the behaviors that should be exhibited by the corresponding systems
during verification. A control design, including implementation details, is cre-

6



1.3 Testing

ated based on the requirements. This results in a specification model. Code is
generated automatically based on the specification model and is then compiled
and finally executed on the hardware platform.

The main goal in this thesis is to support the development phases in the
left branch of the V-model where the system is evaluated during simulation.
This is also where it is relatively easy and cheap to discover and fix potential
problems in the design. In the right branch, the physical system is used, of
course, verification and validation need to be done at this level as well, but
involving physical hardware makes it more expensive to scale up testing.

Conformance Testing
Conformance testing of CPSs, [18], [19] checks whether the observable be-
havior of a SUT corresponds to a prescribed input-output behavior. CPSs
typically contain continuous signals, and during conformance testing, discrete
sampling of the continuous signals is necessary. Due to discrete sampling, de-
viations both in time and value of the signals have to be allowed. In [20], the
notion of (τ, ϵ)-closeness is introduced. In [19], the interaction between the
continuous dynamics, sampling rates, and error margins are discussed with
respect to building sound conformance testing algorithms. The main focus in
conformance testing is on establishing whether an implementation fulfills the
prescribed input-output behavior, while in this thesis, we actively search for
input signals that might violate given properties.

Coverage-guided Testing
For software, the modified condition/decision coverage (MC/DC) [21] is a
structural code coverage criteria. MC/DC is recommended to use for the
highest Automotive Safety Integrity Level (ASIL D) classification in the stan-
dard ISO 26262 [22]. In [23], it is shown that MC/DC fulfillment is sensitive
to the code structure. Thus, fulfilling the MC/DC criteria does not necessarily
mean that the test suite is sufficient.

For CPSs, coverage-guided test criteria [24], [25] can be used to evaluate the
quality of a test suite. Different coverage criteria can be used to evaluate how
much of a system’s behavior has been explored with a test suite. In [24], the
star discrepancy is used to measure how well equidistributed a set of tested
points is in the state space. Furthermore, several other coverage metrics are

7



Chapter 1 Introduction

proposed in [26], which also include information about the discrete states of
the SUT. In [27], structural coverage-based criteria using hybrid automata
for CPSs are proposed. An approach that generates hybrid automata from a
Modelica model is presented.

Coverage-guide test criteria can help when to keep generating more test
cases. In general, they do not help in determining when to stop generat-
ing test cases since fulfilling a coverage test criteria does not imply that no
counterexample exists.

Falsification
Falsification based on monitoring the behavior of a system [28] is a practi-
cal testing method that can be used both in the early stages of development
when only simulations are available but also at later stages when all or parts
of the system execute on physical hardware. Simulation-based falsification is
typically done in the early phases of development [17]. A major advantage
of simulation-based approaches is that they can handle all types of systems
that can be simulated and that they scale in the sense that a large computer
cluster can be used to simulate different instances of the system in parallel.
Simulations are used for the design and debugging of embedded control sys-
tem designs, validating the functional behavior, obtaining initial calibration
parameter values, obtaining estimates of system performance, and serving as
the basis for the functional and software specifications. Simulation can be
applied to large industrial systems at any scale. For many applications, sim-
ulation is the only viable option since analytical models are not available for
the full system, and even if they were, it would be practically infeasible to
use deductive verification due to the extensive expertise and effort needed to
apply those methods.

Simulation-based falsification of temporal logic specifications is a testing
method that attempts to find counterexamples of given specifications. It is
a black-box method that relies only on input and output traces of the SUT.
Falsification can be used when a model of the system can be simulated, and
formal specifications exist. The model of the system approximates the behav-
ior of the SUT. Falsification can be done using optimization-free, e.g. random
search or optimization-based methods. Both these methods are considered
in this thesis. The optimization-based falsification process uses quantitative
semantics associated with the specifications. A quantitative semantics [29],

8



1.3 Testing

[30] is used to define an objective function that is evaluated for given inputs
and results in a measure of the distance to the specification being falsified.
The problem of finding new test cases in the optimization-based approach uses
the objective function values from previous simulations and modifies the test
cases such that the new test case is expected to be more likely to falsify the
specification.

For optimization-based falsification, to optimize over the parameters, the
input signal needs to be parameterized. For example, a sinusoidal signal can
be defined by two parameters, amplitude, and frequency. Piecewise constant
signals take different values at different times, which can be parametrized using
the values and the times at which the signals change. The input parameters
are typically chosen within defined ranges to reduce the search space. The
objective function, based on a temporal logic formula, is later evaluated based
on a simulation of the system with the chosen parameters. In this thesis, we
refer to a vector of input parameters as a point in the parameter space.

Monitoring of properties or specifications [30] can be done offline or online.
Offline monitoring means that the entire signal is available before evaluating
if a specification is violated. Online monitoring means that the evaluation
is done while the SUT is running. Online monitoring is typically used when
implemented in a real system, but offline methods can be used when the SUT is
simulated. In this work, we use offline monitoring since the SUT is simulated;
thus, we allow the simulation to complete before we evaluate a specification.

Formal verification aims to prove that a CPS model is free of failures. The
purpose of test generation is, on the other hand, to provide evidence of failures
if they exist. These two methods are compared in the following section.

Testing versus Formal Verification
For many reasons, a formal verification approach is not practically feasible
for industrial systems. Many industrial systems are not available as a formal
model suitable for formal verification [17]. Formal verification of large sys-
tems might be intractable even if formal models exist due to the verification
algorithms’ time and space complexity [10], [12]. It is, in general, an undecid-
able problem [31] to verify systems exhibiting both discrete and continuous
dynamics. Formal verification is feasible and practical for systems with re-
stricted behavior and/or size that either have a finite state space or a special
structure that makes the verification problem decidable. Moreover, for many

9



Chapter 1 Introduction

industrial applications, it is only possible to simulate the SUT. Thus, formal
verification is not a viable option. Hence, this thesis considers testing of CPSs
using the falsification approach.

There are limitations to the simulation of large-scale CPSs. Simulations are
expensive to run, and the simulation time is also a limiting factor. Thus, it
is important to enhance the capability of falsification by reducing the number
of needed simulations. This thesis tackles the problem of how to enhance the
falsification process for CPSs.

1.4 Tools for Testing of CPSs
CPSs typically exhibit a complex mix of continuous and discrete behavior. In
practical testing, it is often assumed that a black-box model of the SUT is
available. Thus, there is no internal information about the model available,
only the input-output behavior of the SUT can be observed.

Below we introduce the academic tools, FalStar, Falsify, S-TaLiRo, ARIs-
TEO, FalCAuN, Breach, ForeSee, VerifAI, and HyConf, available for
testing of CPSs.

FalStar [32] is a falsification tool that explores the idea of constructing
the inputs incrementally in time where a probabilistic search is implemented
using increasingly fine-grained spatial and temporal discretizations of the in-
put space. Different probabilistic algorithms are implemented, like a two-
layered framework combining Monte-Carlo tree search [33], a probabilistic
algorithm [32], and adaptive Las-Vegas tree search [34]. This tool uses Signal
Temporal Logic (STL) [30] to model the specifications.

Falsify [35] is an experimental tool that implements two reinforcement
learning algorithms, Asynchronous Advantage Actor-Critic and Double Deep-
Q Network, to learn the system’s behavior by observing the outputs during the
simulation. The attempt is to reduce the number of simulation runs necessary
to falsify the SUT. STL is used in this tool to model the specifications.

S-TaLiRo [36], [37] is a tool that can perform falsification of Metric Tempo-
ral Logic (MTL) [29]. S-TaLiRo also supports parameter mining [38] and run-
time monitoring [39]. S-TaLiRo uses stochastic optimization algorithms and
has recently also included methods based on Bayesian Optimization methods
like the Stochastic Optimization with Adaptive Restarts (SOAR) [40]; min-
SOAR [41], an extension of SOAR that can be used for multiple conjunctive

10



1.4 Tools for Testing of CPSs

requirements.
ARIsTEO [42] is developed on top of S-TaLiRo. This tool is designed

for computer-intensive CPS models, a large category of CPS models that may
take several hours to simulate. A surrogate model that is faster to run than the
original model is generated from sampled inputs and outputs of the SUT. The
surrogate model is then subjected to black-box testing. The original model is
checked when a failure test is identified for the surrogate model. Surrogate
models are refined based on test results if the identified failure shows to be
spurious. Otherwise, the test indicates a valid failure.

FalCAuN [43], is a tool that uses automated testing based on active learn-
ing and model checking [44] for testing MATLAB/Simulink models. FalCAuN
discretizes the Simulink model’s inputs and outputs, both in time and in
value, and approximates the black-box model with a learned Mealy machine.
Reusing the learned Mealy machine, this tool can falsify Simulink models
against multiple STL specifications. A counterexample is found by FalCAuN
by learning the Mealy machine and conducting model checking.

Breach [45] is a MATLAB/Simulink toolbox for formal monitoring of STL
specifications that include different search methods for falsification together
with optimization-based falsification methods. Breach also supports the min-
ing of requirements [46]. In [47], a method to automatically translate specifica-
tions from Simulink charts to STL is presented. Since engineers are typically
more proficient in using high-level domain specific languages like Simulink
than in writing specifications in STL directly, this automatic translation is
important in allowing Breach to be applied to industrial problems.

ForeSee [48] is implemented on top of Breach to solve the scale problem
that can occur when the signals in the given specification have different scales.
Then, when the objective function value is calculated, the contribution of a
signal can be masked by others. In this tool, a combination of quantitative ro-
bustness and classical Boolean satisfaction is suggested, called QB-robustness.

VerifAI [49] is a software toolkit that supports the design and analysis of
systems that include artificial intelligence (AI) and machine learning (ML)
components. VerifAI is based on simulation-based falsification guided by
formal models and specifications. Scenic [50] is used as a probabilistic pro-
gramming language for modeling environments which is important, for exam-
ple, when working with systems where perception is a vital part.

HyConf [51] is a MATLAB-based tool for conformance testing. This tool

11



Chapter 1 Introduction

covers the test-case generation, test-case execution, and conformance analy-
sis. In order to calculate sound conformance analysis margins [19], this tool
interacts with the reachability analysis tool CoRA (COntinuous Reachability
Analyzer) [52].

Breach has been used for the implementation of the proposed methods
in this thesis. Breach has a modular architecture that allows implementing
different quantitative semantics and optimization and is well documented, and
is actively being developed. Breach has also been shown capable of handling
the falsification of large-scale industrial problems. In particular, the use of
the automatic translation to STL from specifications in Simulink has made
it possible to apply Breach to industrial problems. S-TaLiRo has similar
characteristics as Breach, and we believe the methods in this thesis can also
be implemented on top of S-TaLiRo.

1.5 Research Questions
The goal of this thesis can be summarized in the four research questions below.

RQ1. What are the strengths and weaknesses of the different quantitative
semantics for the falsification of cyber-physical systems?

In optimization-based falsification, it is necessary to estimate a distance
to falsifying a specification, this estimation is computed using a quantitative
semantics. The efficiency of the falsification is affected by which quantitative
semantics that is used. Thus, it is important to understand the strengths and
weaknesses of different quantitative semantics.

RQ2. How does the combination of using different quantitative semantics af-
fect the efficiency of falsification of cyber-physical systems?

The main purpose of calculating an objective function value using a quanti-
tative semantics during falsification is to guide the falsification process towards
a point in which the specification is not satisfied. This is done by choosing
the next set of parameters for the input signals to the system, such that those
input signals are closer to falsifying the specification, if possible. The purpose
of this research question is to understand how the combination of different

12



1.5 Research Questions

quantitative semantics can be used to improve the falsification process.

RQ3. How do different test-case generation methods affect the efficiency of
the falsification process?

Falsification of temporal logic properties is a testing method that may or
may not formulate the problem of generating test cases as an optimization
problem. Falsification can be performed using either optimization-free or
optimization-based methods. In optimization-free methods, a quantitative
semantics is not needed. Optimization-based falsification generates new input
parameters that aim to find a lower objective function value as estimated by
the quantitative semantics. The used optimization method affects the effi-
ciency of the falsification process. This research question aims to evaluate
the performance of both different optimization-free and optimization-based
methods and to understand how they work and can be best used during the
falsification process.

RQ4. How do different input parameterizations affect the falsification pro-
cess?

Falsification of temporal logic properties is a black-box approach where only
the input-output behavior of the SUT is available. Defining suitable input pa-
rameters is challenging. First, expert knowledge of the SUT is needed to define
input signals that are relevant for the particular application. A drawback with
being liberal in what kind of input signals are allowed is that signals that vi-
olate the specifications may be found during the falsification process but not
considered to be possible or relevant by the engineers. It is often an arbitrary
process to choose the number of control points or the interpolation scheme
to generate an input signal. The way control points are set, and the number
of control points can affect the success or failure of the falsification process.
Moreover, having few parameters is important for optimization-based meth-
ods because optimization algorithms typically struggle with a high number of
dimensions. Still, the input generators are needed to be rich enough so that
they can describe the input signals that are necessary to falsify the specifi-
cations. This research question aims to evaluate the effect of different input
generators on the falsification process.

13



Chapter 1 Introduction

1.6 Methodology
The main purpose of the falsification methods for CPSs is to find bugs and
faults in the system with little manual work for the engineers. The purpose
of the research presented in this thesis is to improve the understanding of the
falsification problem and enhance the capabilities of the falsification process.
The research in this field is typically based on the experimental evaluation
done on benchmark problems. This thesis focuses on practical evaluations,
particularly evident in the formulation of research questions 3 and 4. The
research area of testing of CPSs is also heavily application dependent. Hence,
it has been an important goal to conduct research that can be applied to large-
scale and complex systems rather than only academic examples. However,
simple systems are easy to analyze and can give valuable insight into how
and why different methods perform better than others. In our case, a simple
example resulted in the formulation of the first research question, and after
answering this research question, research question 2 was formulated.

Method
Different testing methods and tools for CPSs have been introduced. Simulatio-
n-based falsification is picked as the testing method in this thesis because, for
many large-scale systems, the only viable option for evaluation is simulation.

The reason to focus on quantitative semantics in Paper A and Paper B was
that when the journey of this thesis started, a new quantitative semantics was
introduced, and it was not clear how different quantitative semantics affected
the falsification performance. After further investigations, the effect of the
optimization methods and input generators became clear, which caused the
research work in Paper C, Paper D, and Paper E.

All evaluation results in the appended papers are done on problems that
have been implemented in MATLAB. An example of an adaptive cruise con-
troller for autonomous driving from a MATLAB example is considered in Pa-
per A, together with a specification that was developed as part of this work.
The benchmark problems in Paper B are a collection of various problems col-
lected from different publications and benchmarks [26], [53], [54]. However,
some specifications have been evaluated with varying time intervals in their
temporal formula and simulation times or different input ranges or model pa-
rameters in order to simplify or make the problems harder to falsify but also

14



1.7 Contributions

to create a larger set of falsification problems. However, after writing Pa-
per B, we have used the standard benchmark problems that were used in the
ARCH19 workshop [55]. In Paper C and Paper D, these benchmark problems
plus variants of those problems and additional problems from Paper B are
considered. Paper E considers all benchmark problems in Paper C and a few
additional specifications in the updated version of the ARCH21 workshop [56].

For the implementation of the examples in this thesis, Breach [45], which is
a MATLAB toolbox supporting falsification problems, has been used. Some
used optimization methods, the used Bayesian optimization methods in Pa-
per D and Paper E, were implemented in Python. Hence, in the Paper D and
Paper E, Python code interacts with MATLAB. In this implementation, the
optimization process is done in Python, and the simulation and evaluation of
the objective function are done in MATLAB.

Running the evaluated benchmark problems in the appended papers sequen-
tially takes a lot of time. Hence, all benchmark problems and the proposed
methods in Paper C, Paper D, and Paper E are executed on a computing
cluster which makes it possible to evaluate them in parallel.

The appended papers, particularly papers B, C, D, and E, consider the
evaluated algorithms’ randomness properties; hence, each problem and speci-
fication are executed in a number of runs. 20 runs are considered in papers B,
C, and D, while 5 runs are considered in Paper E. The last paper uses fewer
runs because of the need to run many experimental sets in limited time.

1.7 Contributions
In Figure 1.2, the overall optimization-based falsification process is shown to
illustrate how the contributions connect together.

Contribution 1. This work investigates different quantitative semantics to
increase our understanding of how they affect the falsification process. This
investigation leads to the proposal of using multiple quantitative semantics
during falsification. The Nelder-Mead [57] optimization method was extended
to support the use of several quantitative semantics.

Contribution 2. A direct-search based optimization method suitable for
falsification is proposed. The method, called line-search falsification, combines
randomly generated lines in the parameter space and local search and also
emphasizes exploring parameter values on the bounds of the allowed range.

15



Chapter 1 Introduction

 

Parameter initial

guess 
Generator Simulator

Output

Specification

Quantitative

semantics

Parameter 

optimizer

Objective function

value Function

evaluation
Stop

Not 

falsified

Input

Input signal

parameter 

Falsified

Contribution 1

Contributions 2 and 3

Contribution 4

Figure 1.2: The optimization-based falsification process to show the contributions of this
thesis.

Contribution 3. Getting the attraction of the falsification community for
an efficient class of model-based optimization methods, two different meth-
ods have been evaluated. The first is a method that can be used for high-
dimensional CPSs evaluated in this work. The second one allows injecting
prior knowledge about promising parameter values to emphasize. In partic-
ular, we use it to emphasize parameter values that are close to the upper or
lower bound of the allowed parameter range.

Contribution 4. An investigation of different input generator’s parame-
terization and evaluation for falsification of CPSs to address the shortcoming
of their effect on falsification. This leads to proposing a new parameterization
for input signals. Included is also an analysis of coverage measures in the space
and time domains and frequency domains of the proposed input generators.

1.8 Outline
This thesis consists of two parts. Part I is a general introduction and overview
of the field and gives the readers the understanding needed for the appended
papers. Part II contains the appended papers. Part I is organized as follows:
Chapter 2 presents the concept of falsification of temporal logic properties.
This chapter includes details about Breach [45], the testing tool used in this
thesis. Chapter 3 introduces the specification formalisms, the concept of Val-
ued Booleans (VBools), and the different semantics used in this thesis. In
Chapter 4, the test generation methods, including both optimization-free and
optimization-methods are presented. Chapter 5 describes how to generate

16



1.8 Outline

input generators for falsification. Chapter 6 introduces the benchmark prob-
lems evaluated in the attached papers. Chapter 7 contains a summary of the
appended papers. The thesis ends with conclusions in Chapter 8.

17





CHAPTER 2

Falsification of Cyber-Physical Systems

The falsification process is a strategy that searches for a counterexample where
a system does not fulfill its specification. Falsification can be done using
optimization-free or optimization-based methods. In the optimization-based
approach, falsification uses an objective function defined by a quantitative
semantics for the temporal logic formalisms. This objective function estimates
the distance to the specification being falsified, which is used to guide the
process towards falsification by choosing the next set of input points.

The falsification problem is formulated as:

• Given: a system model S, and a specification φ.

• Results for falsification: a counterexample that falsifies the specifica-
tion, φ, if found in the falsification process.

To find a counterexample, the falsification process is formulated as an op-
timization problem by parameterizing the input signal domain, x ∈ Pu, such
that its corresponding output S(x) falsifies the specification φ, if such input
exists, i.e., S(x) ⊭ φ. Otherwise, the falsification process is not successful,
which does not mean that faults do not exist.

19



Chapter 2 Falsification of Cyber-Physical Systems

 

Parameter initial

guess  
Generator Simulator

Output   
 

Specification  

Quantitative

semantics

Parameter 

optimizer

Objective function

value     Function

evaluation
Stop

Not 

falsified

Input   
 

Input signal

parameter  

Falsified

Figure 2.1: A flowchart, from [58], describing the optimization-based falsification proce-
dure in Breach.

2.1 Optimization-based Falsification

The falsification procedure for the optimization-based approach that is used
in this thesis is presented in Figure 2.1.

Input Generators

To generate the input trace xs
i [k] at a time k to the SUT, the Generator

needs to take input parameters x (points), where each element is allowed to
be within a defined range. The index k ranges from the start to the end of
the simulation on a discretized time model. The space of permissible input
signals is parametrized by m input parameters a = (a1, . . . , am) that take
values from the set Pu. The actual input xs

i [k] is created using a generator
function g such that xs

i [k] = g(v(a))[k], where v(a) ∈ Pu is a valuation of the
parameter vector a. Often multiple parameters are used to parameterize each
input signal, resulting in the dimension of xs

i being lower than the dimension
of x.

To interact with the system, different parameterized input generators can
be used. For instance, the parameters can represent control points, with
the input being generated by interpolation between these points. Also, it is
possible to have variable step inputs, and different numbers of control points
and interpolation methods, like pchip or linear interpolation. On the other
hand, parameters can represent, for example, amplitude and frequency to
define a sinusoidal signal. The effect of the input generators is considered in
Paper E and discussed in Chapter 5.

20



2.1 Optimization-based Falsification

Simulation
When the SUT is available and the input xs

i [k] is generated by a Generator,
the Simulator is used to generate the corresponding output simulation trace
xs

o. Specifications are evaluated by using both the input and output signals,
and the combination of xs

i and xs
o is denoted by trace xs.

Quantitative Semantics
To determine whether a specification φ is satisfied or not, the input xs

i and
output vectors xs

o are used with an objective function fφ(xs). The quantitative
semantics discussed in Chapter 3 define this objective function. A negative
objective function value means the specification is falsified, and a positive
value shows it is not falsified. If the specification is not falsified for the current
input signal, the semantics will also give a value of how convincingly the test
passed.

The current input and output traces set is a counterexample if the specifi-
cation is falsified. Therefore, the process of falsification is terminated. In the
sequel, we will examine the situation where the specification is not falsified
for the current input signals and the goal is to find input traces that result
in a lower objective function when evaluated using the quantitative semantics
and possibly falsify the given specification.

Function Evaluation
Given φ, the traces xs, and the choice of quantitative semantics, the evaluation
of xs will return ⟨v, z⟩, where v denotes if φ is falsified or not, and z is the
measure.

Define fφ(xs) such that

fφ(xs) =
{
z if v = ⊤
−z if v = ⊥

where ⊤ and ⊥ denote true and false, respectively. In this thesis, with slight
abuse of notation, f(x) will be considered as shorthand for fφ(xs), where xs

i

is defined by the Generator by using the parameters x, and xs
o is the output

of the Simulator with xs
i as the input trace.

The falsification procedure will stop when fφ(xs) is negative. Different

21



Chapter 2 Falsification of Cyber-Physical Systems

quantitative semantics are defined in the literature as Max [59], Additive [58],
Mean Alternative Robustness Value (MARV), Root Mean Square Alternative
Robustness Value [60], and averaged STL [61]. Max, Additive, and MARV
used in the papers appended to this thesis are introduced in Chapter 3. The
performance of the quantitative semantics depends on the system and the
specification. Papers A and B evaluate the effect of different quantitative
semantics.

Parameter Optimization
If the objective function value fφ(xs) ≥ 0, this means that the specification
is not falsified; then new parameter values are selected and the process is
repeated. This is done in the Parameter optimizer procedure in Figure 2.1.
The Parameter optimizer tries to generate new parameter values x within
given ranges to optimize the objective function fφ to find lower objective
function values.

Much research has been devoted to parameter optimization for falsification.
In [62], the gradients are used to guide the optimization. On the other hand,
the gradient-free optimization approaches for testing include Ant Colony Opti-
mization [63] and Local Stochastic Tabu search [64]. In [65], the optimization
methods, SNOBFIT [66], Nelder-Mead (NM) [57], Simulated Annealing [67],
and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [68]; were
evaluated on benchmark problems to evaluate the effect of optimization on fal-
sification problems. The evaluation shows that there is a significant difference
in the efficiency of the falsification process, with SNOBFIT being the overall
top-performing optimization algorithm. In HyConf [51], simulated anneal-
ing and genetic algorithm heuristics are used in a multi-objective strategy [69]
that maximizes the distance between the output of the system and its ideal
target, achieves structural coverage by using control elements of hybrid system
models, and generates additional tests covering different areas and shapes by
using a diversity metric. The effect of the optimization method is considered
in Paper C, where a new gradient-free optimization is suggested. NM and
SNOBFIT, both considered in this thesis, are presented in Chapter 4. More-
over, Bayesian optimization (BO) is presented in Chapter 4 and evaluated in
Paper D.

22



CHAPTER 3

Quantitative Semantics

In this chapter, the specification formalisms and quantitive semantics are dis-
cussed. A quantitative semantics provides a value that is used by the optimizer
to decide on the next parameter values to evaluate. In a general sense, all de-
fined quantitative semantics are equally good in the sense that a specification
is satisfied or not, by all valid quantitative semantics However, the efficiency
of the optimization-based falsification process depends on which quantitative
semantics is used. It is, in general, not analytically possible to decide which
semantics is the best because it depends on the SUT and the specification.

The concept of Valued Booleans (VBools) for supporting multiple quanti-
tative semantics is introduced. Some quantitative semantics are evaluated on
an autonomous driving-related example.

3.1 Specification Formalisms
To test CPSs, the expected behavior of the system, i.e., the desired properties
the system must satisfy, needs to be defined and expressed in a mathematically
precise way. The term specification describes the properties that must be
fulfilled by the SUT.

23



Chapter 3 Quantitative Semantics

Different mathematical formalisms might be used to model specifications.
Linear Temporal Logic (LTL) [70] is a modal logic proposed to specify the
properties of programs. LTL consists of a finite set of propositions, the logical
and temporal operators. Metric Temporal Logic (MTL) [29] is an extension
of LTL that expresses timing constraints on temporal operators. Metric In-
terval Temporal Logic (MITL) [71] is a fragment of MTL where the temporal
operator interval is not allowed to be a single time-point. Signal Temporal
Logic (STL) [30] extends MITL, used for expressing the temporal properties
of dense-time, real-valued signals. The specifications can also be defined us-
ing high-level languages. In [47], it is described how STL specifications can
be automatically generated from Simulink charts, supporting engineers in the
specification of formal specifications without being trained in temporal logic.

STL cannot sufficiently distinguish certain oscillatory properties; hence
STL* is suggested in [72] as an extension of STL. STL* is a logic formalism
that includes an additional freezing operator that can distinguish variously
oscillatory properties. A modified version of STL called averaged STL [61]
where two time-averaged temporal operators (□ and ♢) are introduced and
have a different robustness value, i.e., how far away the specification is from
the be falsified, than the standard quantitative semantics. Time-Frequency
Logic [73] is a specification formalism for real-valued signals that combines
temporal logic properties in the time domain with frequency-domain proper-
ties.

Max semantics refers to the standard STL quantitative semantics, defined
in [74]. Instead of only checking the boolean satisfaction of an STL formula,
the notion of a quantitative value, i.e., an objective function value, also known
as the robustness value, will be defined to measure how far away a specification
is from being falsified. Two Max and Additive, which are expressed using
VBools, will be introduced in the next section.

3.2 Quantitative Semantics Expressed in Valued
Booleans

A VBool [58] ⟨v, z⟩ is a combination of a Boolean value v together with a real
number z that is an estimate of how true or false the specification is. This
real value z will be used to measure how convincingly a test passed or how
severely it failed. In the VBool definition, the real value z is always defined

24



3.2 Quantitative Semantics Expressed in Valued Booleans

to be non-negative, possibly infinitely large, so the domain is V = B× R≥0.
VBools are an abstraction that can be used to provide different quantitative

semantics to a formula in STL. Two quantitative semantics, Max and Additive,
are expressed using VBools. Both semantics are defined below to show their
formulation in detail. For these two semantics, we define the operators and
∧, or ∨, always □[a,b], eventually ♢[a,b], and until U[a,b] [30].

Max Semantics

Using VBools, the Max-and operator is defined as:

(⊤, s)∧Max(⊤, z) =
(
⊤,min(s, z)

)
,

(⊤, s)∧Max(⊥, z) = (⊥, z), (3.1)
(⊥, s)∧Max(⊤, z) = (⊥, s),

(⊥, s)∧Max(⊥, z) =
(
⊥,max(s, z)

)
.

The first case expresses how to evaluate a conjunction where both VBools
are true. The rationale behind setting the value in this way to take the
minimum of the two real values is that the value represents a distance to how
true each part of the conjunction is closer to falsifying their conjunction.

The two middle cases express the conjunction of two VBools where one is
true, and one is false. The conjunction will be false, and the value of the
real number is given by the false VBool. In the fourth case, both VBools
are false. The conjunction will be false, and the value of the VBool is deter-
mined by the maximum of the respective real numbers. Similar to when both
VBools are true, here, the highest real value shows the shortest distance that
a specification is falsified.

The Max-or operator is defined in terms of Max-and as:

(vs, s)∨Max(vz, z) = ¬v(¬v(vs, s)∧Max ¬v(vz, z)).

where VBools negation is defined as ¬v(vs, s) = (¬vs, s).
The Max-always operator over the interval [a, b] is defined in terms of the

25



Chapter 3 Quantitative Semantics

Max-and operator as:

□Max,[a,b] φ =
b∧

Max
k=a

φ[k], (3.2)

where φ is a finite sequence of VBools defined for all the discrete-time instants
in [a, b].

The timed Max-eventually operator is defined in terms of Max-always as:

♢Max,[a,b]φ = ¬(□Max,[a,b](¬v φ)).

Finally, the Max until-operator as:

φ UMax,[a,b] ψ

=
b∨

Max
k=a

(
ψ[k] ∧Max

(
b−1∧

Max
k′=a

φ[k′]
))

.

Additive Semantics
The second semantics expressed in VBools is Additive. The operators of
Additive-and, Additive-or , Additive-always, Additive-eventually and Additive
until will be introduced in this section.

The Additive-and operator is defined as:

(⊤, s)∧Additive(⊤, z) =
(
⊤, 1

1
s + 1

z

)
,

(⊤, s)∧Additive(⊥, z) = (⊥, z), (3.3)
(⊥, s)∧Additive(⊤, z) = (⊥, s),

(⊥, s)∧Additive(⊥, z) =
(
⊥, (s+ z)

)
.

The first case expresses conjunction where both VBools are true. In this
case the real value of the VBools is determined as 1

1
s + 1

z

. This formula is
inspired by the formula for parallel resistance that gives a value that is less
than the maximum of s and z. The two middle cases express the conjunction
of two VBools where one is true, and one is false. This conjunction is false,
and the real number is given by the false VBool. The fourth case expresses a

26



3.2 Quantitative Semantics Expressed in Valued Booleans

situation where both VBools are false. This conjunction is false, and the real
number of the VBool is defined as s+ z. In this formula, we consider the sum
of s and z, not just whichever of them is the largest.

The Additive-or operator is defined as:

(vs, s)∨Additive(vz, z) = ¬v(¬v(vs, s)∧Additive ¬v(vz, z)).

The Additive-always operator over the interval [a, b] is defined in terms of
the Additive-and operator as:

□Additive,[a,b] φ =
b∧

Additive
k=a

φ[k] #′ δt, (3.4)

where φ is a finite sequence of VBools defined for all the discrete-time instants
in [a, b]; δt is the simulation step size that makes the quantitative value
independent of the simulation time, and #′ is:

(⊥, s) #′ δt = (⊥, s · δt)
(⊤, s) #′ δt = (⊤, s/δt).

The timed Additive-eventually operator is defined in terms of always as:

♢Additive,[a,b]φ = ¬(□Additive,[a,b](¬v φ)).

The Additive until-operator is defined as:

φ UAdditive,[a,b] ψ

=
b∨

Additive
k=a

(
(ψ[k]#′δt) ∧Additive

(
b−1∧

Additive
k′=a

(φ[k′]#′δt)
))

.

The implication is defined slightly differently from classical logic:

ϕ→Additive ψ = ¬(ϕ#k) ∨ ψ.

27



Chapter 3 Quantitative Semantics

Here k is an arbitrary constant, and # scales the robustness of its argument:

(⊥, s)#k = (⊥, s · k)
(⊤, s)#k = (⊤, s · k).

The left-hand side of the implication is scaled, so the parameter optimizer will
attempt to make the left-hand side true before falsifying the right-hand side.

The quantitative semantics MARV [60] used in Paper A is not expressed
using VBools. Only the timed always operator is defined for MARV. The
reader is referred to this paper for detail of how it is formulated.

The behavior of the quantitative semantics, Max and MARV , are discussed
in Paper A, but Paper A does not include a discussion about the Additive
semantics. In the next section, we include a comprehensive discussion of the
Additive semantics on the autonomous driving example to prepare the reader
for the multiple objective functions used in Paper B.

3.3 Evaluating Different Quantitative Semantics
Using an Example

We consider a simple system to gain insight to evaluate and better under-
stand the performance of different approaches. The adaptive cruise controller
(ACC) from Paper A will be used to illustrate the differences between differ-
ent quantitative semantics. In this example, there are two cars, the ego car is
an autonomous car, and the lead car is in front of it. The ACC is designed
with two modes; speed mode, where there is the desired speed, i.e., cruise
control speed, and safety mode, where a safe distance between the cars must
be maintained. The relative distance (drel) between two cars must always be
greater than the safe distance (dsafe) to avoid collision. This property can be
expressed by the following formula:

□[0,T ](drel > dsafe), (3.5)

where (dsafe) is from paper [75], see also Paper A. In this evaluation, no opti-
mization method is used, instead, the objective function values of the different
quantitative semantics are calculated using a discrete grid of possible input pa-
rameters. The aim of this evaluation is not to find the counterexamples but to

28



3.3 Evaluating Different Quantitative Semantics Using an Example

Figure 3.1: Objective function values for combinations of accelerations (alead0 , alead1 )
using Max semantics, presented in Paper A. Positive values (◦) mean that the
specification is satisfied, while negative values (∗) mean that it is falsified.

understand how objective values change for different quantitative semantics.
The example uses the acceleration of the lead car alead as input to the sim-

ulation. Before a simulation of the closed-loop system starts, the values of
the input parameter are selected by the falsification algorithm. This input is
generated using two control points, alead0 and alead1 . The simulation time
is T = 30 s and the simulation starts with alead0 chosen in the range [0; 3].
At time 7.5 s, the acceleration changes and takes a value alead1 in the range
[−3; 0]. The objective function value will be calculated for different combina-
tions of the parameters alead0 and alead1 . Each parameter is discretized into
20 equidistant points, resulting in 400 simulations.

The objective function values, using Max, MARV , and Additive, and gra-
dient estimates for each of the 400 simulations are shown in figures 3.1–3.6.
Some of these figures are not in Paper A but are included here to show more
detail between the different quantitative semantics.

As seen in Figure 3.1, in the upper right plateau (where 2.5 < alead0 < 3
and −1 < alead1 < 0, approximately), the objective function values are the
same with the Max semantics. This situation happens because when the lead
car continuously accelerates, the ego car also increases its speed. But the ego

29



Chapter 3 Quantitative Semantics

0 0.5 1 1.5 2 2.5 3
a

lead0

-3

-2.5

-2

-1.5

-1

-0.5

0

a
le

a
d

1

Gradient of Max

Figure 3.2: The gradient direction using Max. The triangular curve shows the edge of
negative objective function values, i.e., the falsification area.

Figure 3.3: Objective function values for combinations of the accelerations (alead0 , alead1 )
using MARV semantics, presented in Paper A. Positive values (◦) mean that
the specification is satisfied, while negative values (∗) mean that it is falsified.

30



3.3 Evaluating Different Quantitative Semantics Using an Example

0 0.5 1 1.5 2 2.5 3
a

lead0

-3

-2.5

-2

-1.5

-1

-0.5

0
a

le
a

d
1

Gradient of MARV

Figure 3.4: The gradient direction using MARV . The triangular curve shows the edge of
negative objective function values, i.e., the falsification area.

car has a driver-set velocity limit of 30m/s thus, the relative distance between
the vehicles increases during the simulation. The minimum objective function
value, therefore, occurs at the beginning of the simulation t = 0, where the
relative and safe distances are closest to each other. For this reason, as can be
seen in Figure 3.2, for points close to 2.5 < alead0 < 3 and −1 < alead1 < 0,
there is no useful gradient, or sense of direction, in order to get closer to a
falsification point. On the other hand, for other points the objective function
values change. Therefore, those points can be used to guide the optimization
algorithm towards a falsification point inside the triangular curve of Figure 3.2.
Thus the Max semantics considers simulations to be equally good/bad for
parameters that are close to 2.5 < alead0 < 3 and −1 < alead1 < 0, resulting
in no useful information for the optimization.

On the other hand, in Figure 3.3, we can see that the points close to
2.5 < alead0 < 3 and −1 < alead1 < 0 do have different values under MARV
semantics. We can also see in Figure 3.4, the gradient for the points close
to 2.5 < alead0 < 3 and −1 < alead1 < 0 is decreasing. But here, the sit-
uation is the opposite as for Max. For points close to 0 < alead0 < 1 and
−3 < alead1 < 0 the gradients do not point towards the falsifiable area.

The objective function values using Additive and its gradients are shown

31



Chapter 3 Quantitative Semantics

Figure 3.5: Objective function values for combinations of the accelerations (alead0 , alead1 )
using Additive semantics. Positive values (◦) mean that the specification is
satisfied, while negative values (∗) mean that it is falsified.

0 0.5 1 1.5 2 2.5 3
a

lead0

-3

-2.5

-2

-1.5

-1

-0.5

0

a
le

a
d

1

Gradient of Additive

Figure 3.6: Gradient directions using Additive. The triangular curve shows the edge of
negative objective function values, i.e., the falsification area.

32



3.3 Evaluating Different Quantitative Semantics Using an Example

Gradient of Max (0 < a
lead0

< 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a

lead0

-3

-2.5

-2

-1.5

-1

-0.5

0

a
le

a
d

1

Gradient of Additive (2.5 < a
lead0

<3, -1 < a
lead0

<0)

2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9
a

lead0

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

a
le

a
d

1

Figure 3.7: Gradient directions using Additive, detail of Figure 3.6. To the left, gradients
for 0 < alead0 < 1, and to the right, 2.5 < alead0 < 3.

in figures 3.5 and 3.6. It might seem as there are no gradients in the areas
(0 < alead0 < 1 and −3 < alead1 < 0) and (2.5 < alead0 < 3 and −1 <

alead1 < 0), but this is not the case. Because of the very small difference
between the objective function values in these areas, the arrows representing
the gradients do not appear in Figure 3.6. For better illustration, magnitude
gradients are shown in Figure 3.7. As can be seen here, for the points in the
range (0 < alead0 < 1 and −3 < alead1 < 0), there is a different direction. On
the other hand, there is a clear direction for the points in ranges 0 < alead0 < 1
and −3 < alead1 < 0.

According to the results and discussions, it can be concluded that when
only one quantitative semantics is used, no semantics always guides the op-
timization towards a point where the specification is falsified. Moreover, for
some areas, if a semantics results in a constant objective function value for
an area, it cannot guide the optimization algorithm in any direction. Thus,
using a combination of different quantitative semantics might provide valuable
information, and it might be possible to avoid using the semantics that does
not have a clear direction to be used by the optimizer.

A problem with the Max semantics for the ∧ operator is that it is only
sensitive to whichever of x or y has the lowest value. Additive is sensitive to
both values of x and y. For the always-operator of MARV , for a positive,
all signal values affect the value of MARV . In this aspect, it is similar to

33



Chapter 3 Quantitative Semantics

Additive. Thus, Additive and MARV might give useful information that might
be exploited by the optimization algorithm during the falsification process.
This example illustrates the effect of different quantitative semantics.

34



CHAPTER 4

Searching for Test Inputs

Falsification of CPSs can be done using either optimization-free or optimizati-
on-based methods to search for inputs that falsify specifications. For optimiza-
tion-based falsification, a quantitative semantics is important because it is
used to guide the optimization process in the right direction. However, optimi-
zation-free methods guide the search in other ways, for example, by using
a random or structured exploration of the parameter values. Below, both
optimization-free and optimization-based methods for falsification will be in-
troduced.

4.1 Optimization-Free Methods
An optimization-based approach is guided by an objective function that is to
be minimized or maximized, an optimization-free method is not guided by an
objective function; instead, the search is guided by other criteria. Possible
optimization-free methods include random search or a search procedure that
generates a deterministic sequence for evaluation. In this work, we consider
two optimization-free methods, corners and random search methods, and also
their combination, described below.

35



Chapter 4 Searching for Test Inputs

Corners
The input parameters are chosen within their defined ranges [l, u] where l and
u refer to lower and upper bounds as an n−dimensional vector, respectively.
Corner points refer to input parameters where the parameter values are at
either the lower or upper bound. As discussed in Paper C and [56], corner
points are effective as a falsification procedure.

For a system with n input parameters, there are 2n corner points. Figure 4.1
illustrates corners in two dimensions. In this case, there are four corner points:(

l1
l2

)
,
(
l1
u2

)
,
(
u1
l2

)
,
(
u1
u2

)
.

 

  
  

  
  

  
  

  
  

Figure 4.1: An example in two dimensions to show the corner points.

Random Search
Random testing (RT) is an optimization-free approach where inputs are gen-
erated using a random generator. Despite its simplicity and ease of imple-
mentation, RT has proven to be an efficient method for test generation [76],
[77] and is used extensively in practice. Random testing together with input
generators is used in the tool QuickCheck [78], which has been applied to the
testing of large software systems. QuickCheck was also extended to handle
CPSs in [58]. A potential shortcoming of random test case generation is that
counterexamples might be complicated; thus, a shrinking procedure was also
introduced in [58] to simplify a counterexample after it has been found.

In Paper C, a uniform random sampling method is used. In this method,
each sample test is generated from a uniform random distribution, which

36



4.2 Optimization-Based Methods

means that each value in the input ranges has an equal probability of being
sampled. It is shown that RT is a viable strategy for many problems in
Paper C. Random testing may be inefficient for more challenging problems
since no information is used to guide the falsification.

Hybrid-Corner-Random
Hybrid-Corners-Random (HCR), presented in Paper C, combines the corners
and random methods to take advantage of both. This method may be used
as a baseline method for the optimization-based approaches to beat. From
an evaluation of the benchmark problems, it turns out that this strategy,
although simple, performs well and is, for some problems, more efficient than
using an optimization-based approach.

4.2 Optimization-Based Methods
In optimization-based methods, an objective function is either maximized or
minimized by choosing values for the decision variables within an allowed set.
Gradient-based approaches, like gradient descent, can be used when an explicit
model of the objective function is available. But for many industrially relevant
falsification problems, only a black-box model of the system is available. In
this thesis, we assume that the SUT is available as a black-box model, which
thus allows only gradient-free optimization methods [79], [80].

Optimization-based falsification aims at reducing the number of tests by
using an optimization method to determine the next set of inputs from an
evaluation of the previous simulations. The optimization problem can be
defined as

min
x∈X

f(x), (4.1)

where f(x) is the objective value given by the used quantitative semantics
evaluated for a given specification and SUT. Note that evaluating f for given
parameters x requires a simulation of the system with the inputs generated
using the parameters x, followed by an evaluation of input and output signals
using quantitative semantics.

Let xmin be the global minimum of the objective function in the search

37



Chapter 4 Searching for Test Inputs

space domain X ⊆ Rn with the input parameters in the interval:

[l, u] := {x ∈ Rn | li ≤ xi ≤ ui, i = 1, . . . , n},

where l, u ∈ Rn. The [l, u] are bounded with a nonempty interior, and n is
the number of dimensions in the optimization problem.

The optimization aims to get a falsified point with a negative objective
function value, i.e., f(x) < 0, if possible. A challenge in falsification is that
before the falsification starts, we have no information about the value or sign
of f(xmin) and if f(xmin ≥ 0), it is not possible to falsify the system. All valid
input points are in a box with a lower and upper value. The SUT is simulated
at given input points, and the corresponding objective function values are
calculated using the used quantitative semantics.

There are, in general, two types of black-box optimization methods: direct
search and model-based. Direct-search methods do not require any informa-
tion about gradients. On the other hand, model-based optimization methods
build a surrogate model that can be used for guiding the search, for example,
by providing estimations of gradients. These two methods will be discussed
in the rest of this section.

When a new set of input signal values (a point) is generated for evaluation
in the falsification process, the SUT is simulated with this point. Then, the
objective function is calculated to determine whether or not the specification
is falsified. If the specification is falsified, the optimization terminates with the
falsified point. Otherwise, the process will continue to find a new point, likely
having a lower objective function value, i.e., being closer to being falsified. The
optimization process works until the specification is falsified or the maximum
number of simulations has been reached.

The Direct-Search Methods

A direct-search method, [81], refers to the sequential consideration of trial
solutions generated by a particular strategy. By comparing only objective
function values for a given set of input parameters (points), without using gra-
dient approximations, direct-search methods determine new candidate points
for future exploration.

Direct-search methods can be used if the objective function is not continu-
ous or differentiable, are relatively easy to implement, and can also be applied

38



4.2 Optimization-Based Methods

to nonlinear optimization problems. They require minimal effort to be used
and often have few hyperparameters that need to be set [82]. For falsifica-
tion problems, gradients are, in general, not available. Thus direct-search
methods have been applied. Nelder-Mead (NM), a direct-search optimization
method [57], has been the default optimizer in Breach. Also, Line-Search-
Falsification (LSF) presented in Paper C will briefly be introduced in this
section.

Nelder-Mead

The NM [57] method is a gradient-free numerical method to find the minimum
of an objective function in a multidimensional space. NM needs only func-
tion evaluations making it suitable for minimizing non-differentiable functions.
This method uses objective function values at n+ 1 vertices in n dimensions,
where n is the number of decision variables, to compute the next point.

NM is a simplex-based direct search method that begins with a set of n+ 1
points (vertices). Based on the objective values at these points, new points
for evaluation will be generated. In each iteration, one or more test points are
evaluated. The worst point, i.e., the point with the highest objective function
value, will be replaced with a new point.

In this method, first, the n+ 1 points are ordered from the lowest objective
value to the highest objective value, ordering, and labeled. Then, in the case
of reflection, expansion, or contraction exactly one new point is generated. In
the case of shrinking n new points are generated. Figure 4.2 shows how new
points are generated for the different cases by an illustration in two dimensions,
from [83].

NM is modified in Paper B to work with multiple semantics. It is also
evaluated as one of the optimization methods in Paper C.

Line-Search Falsification (LSF)

The Line-Search Falsification (LSF) method presented in Paper C is a direct-
search optimization method tailor-made for falsification problems. Corners
and random points are combined with a local search. An important property
of this method is that it includes a crawling procedure similar to NM for local
optimization but also has the ability to get out of local optima and continue
the optimization from a new but related point. LSF needs three initial input

39



Chapter 4 Searching for Test Inputs

Figure 4.2: A two-dimensional illustration of the Nelder-Mead method of generating new
points.

points to start the optimization process. The optimization is done over a
line that passes through one of these points and cuts off at the edges of the
upper/lower input ranges or a corner point. Paper C discusses the details of
LSF.

Model-Based Optimization Methods

Model-based optimization methods try to predict the performance of the ob-
jective function by building a surrogate model of it and then use this surrogate
model during the optimization process [80]. Overall, building a surrogate
model reduces the number of required function evaluations. For CPSs, an
evaluation typically requires a simulation of the SUT, which is often time-
consuming. Potentially, model-based methods can be used to select each sam-
ple before evaluation more carefully. In this work, SNOBFIT and Bayesian
Optimization (BO) are used, and both are briefly described below.

40



4.2 Optimization-Based Methods

Stable Noisy Optimization by Branch and Fit (SNOBFIT)

SNOBFIT [66] solves a global optimization problem assuming only a black-box
model and continuous decision variables. SNOBFIT is developed to support
scenarios where it is expensive to evaluate parameters. SNOBFIT is also de-
veloped to handle noisy evaluations, i.e., if evaluating the same point multiple
times it is possible to get slightly different evaluation results. SNOBFIT com-
bines global and local search and searches simultaneously in several promising
sub-regions. SNOBFIT operates by building local models of the function
around the evaluated points. SNOBFIT generates points suitable for evalu-
ation and puts them in one of five classes. The points chosen for evaluation
are picked from these classes, and the user can influence in which proportions
the algorithm picks points from these classes and may in this way influence if
global exploration or local exploitation should be emphasized.

Bayesian Optimization

Bayesian optimization (BO) [84] is a global optimization method that has
shown to be efficient for solving optimization problems where it is costly to
evaluate functions and gradients are not available. BO also allows the function
to optimize to be non-convex and multimodal (a function with more than one
optima), and have multiple local optimal. BO can also handle the optimization
of functions perturbed by noise.

The main idea behind BO is to build a probabilistic model of the objec-
tive function. This model includes an estimate of the function, including
uncertainty. A BO algorithm contains two main components. The first is a
probabilistic surrogate model, which represents the mapping between the input
parametrization x ⊆ Rn and the objective function value y = f(x) ⊆ R. This
model consists of a prior distribution of the behavior of the unknown objec-
tive function based on observations. The second component is an acquisition
function built on top of the surrogate model, to determine where to evaluate
the function next. When a new point is searched, the surrogate model is up-
dated, and the process continues until the best point of the function is found.
The overall BO method is presented in Algorithm 1. At the start, M points
xi (for i = 1, . . . ,M) in the search space, X ⊆ Rn are generated randomly.
After calculating the objective function values yi = f(xi) for these points, an
initial sample set D0 = {(xi, yi)}M

i=1 is created. Using a predefined acquisition

41



Chapter 4 Searching for Test Inputs

function, the algorithm selects the next point x∗ for evaluation. Then, the
sample set D is updated, and the previous steps are repeated until the total
number of evaluations, N , is exhausted.

Algorithm 1 Bayesian Optimization
1: Input: Input space X ⊆ Rn, the initial design size M , the max number of evaluations,

N .
2: Initialize: {xi}M

i=1 ∼ U(x), {yi ←− f(xi)}M
i=1, {Sample random points from the uni-

form distribution and evaluate the objective function.}
3: D0 ←− {(xi, yi)}M

i=1 {Collect the initial design set.}
4: for j=1, 2, . . . , N do
5: x∗ ←− arg minx∈X α(x,Dj−1) {Train a probabilistic model as p(y|D) =

GP(y; µy|D, Ky|D) with Dj−1 and find the next sample x∗.}
6: y∗ ←− f(x∗) {Evaluate the objective function.}
7: Dj = Dj−1 ∪ {(x∗, y∗)} {Update the sample set.}
8: end for

A variety of approaches are proposed in the literature to model a function,
and its uncertainties, including random forests [85] and Gaussian processes
(GP) [86]. GP is a collection of random variables that are jointly normally
distributed. In this thesis, GP is used to model the function being optimized
and is described in more detail below.

A surrogate model of a function: Gaussian processes GP is the most
popular model for building a posterior surrogate model. Typically, GP consists
of a finite number of randomly distributed variables,

p(y) = GP(y;µ,K), (4.2)

where µ is the mean approximation of f(x) and K is the covariance or pos-
itive–definite kernel. Given M number of observations D0 ←− {(xi, yi)}M

i=1,
the distribution p is

p(y|D) = GP(y;µy|D,Ky|D). (4.3)

An example1 of how a surrogate model can be built is shown in Figure 4.3.
There are three initial samples, M = 3, red circles in the top left graph,
with their objective function values, f =

[
f1, f2, f3

]T. Now, we want to make
a prediction about the function value at a new point x∗. Different possible

1Inspired from https://www.cs.ubc.ca/~nando/540-2013/lectures/l6.pdf

42



4.2 Optimization-Based Methods

 

  

  

  

      

  

  

  

      

  

  

  

      

  

  

  

  

  

  

        

  

O
b

je
ct

iv
e 

fu
n

ct
io

n
  

  
 

O
b

je
ct

iv
e 

fu
n

ct
io

n
  

  
 

O
b

je
ct

iv
e 

fu
n

ct
io

n
  

  
 

O
b

je
ct

iv
e 

fu
n

ct
io

n
  

  
 

Input parameter  Input parameter  

Input parameter  Input parameter  

Figure 4.3: Gaussian process model with three initial samplings (points) x1, x2, x3 shown
by ◦. A new point is searched, shown by ⋆.

objective values can be predicted for x∗ as shown in the upper right graph by
the stars. The reasonable estimate would be between the objective values of
the two points, x2 and x3, where f∗ is less than f3 and larger than f2, as in
the bottom left graph.

To calculate the mean and variance at any point x∗, we have:

µ[x∗] = K [x∗, X]K [X,X]−1f, (4.4)

σ2[x∗] = K [x∗, x∗]−K [x∗, X]K [X,X]−1K [X,x∗], (4.5)

where

K[X,X] =

k11 k12 k13
k21 k22 k23
k31 k32 k33

, K[X,x∗] =

k1∗
k2∗
k3∗

 ,

43



Chapter 4 Searching for Test Inputs

K[x∗, X] =
[
k∗1 k∗2 k∗3

]
, K[x∗, x∗] = k∗∗,

where kij refers to the covariance of the two points xi and xj . Different
possible kernels will be discussed in the rest of this section.

Similar to what was discussed for a point x∗ in (4.4) and (4.5), we can
calculate the mean and variance for any point. In the bottom right graph of
Figure 4.3, a surrogate model that predicts the function from three observa-
tions is built. The model describes a probability distribution over functions
that pass through the three points. The mean function can be visualized as
a curve with a gray area around each point representing the uncertainty. By
sequentially adding points, the mean of the function changes, and the uncer-
tainty decreases as each additional point provides more information.

Kernels An important part of GP is the kernel, which determines the shape
of the prior and posterior. We can determine if two similar data points
have similar target values using kernels. Kernels are divided into two cat-
egories: stationary and non-stationary. In a stationary kernel, the distance
between data points is considered, not their absolute value. In contrast, a
non-stationary kernel is determined by the value of the specific data points.
Some commonly used kernels will be introduced below.

1. Squared Exponential Kernel: This is a stationary kernel

ksq[x, x′] = σ2 exp
(
− 1

2d
2),

where σ2 is a scaling factor that determines the variation of function
values from their mean, and d is the Euclidean distance between the
points, i.e., d2 = (x− x′)T (x− x′).

2. Periodic Kernel: The stationary periodic kernel is

kP eriodic[x, x′] = σ2 exp
(
− 2
(

sin
(πd
τ

))2
)
,

where τ is the period of the oscillation.

44



4.2 Optimization-Based Methods

3. Matérn kernel: The stationary Matérn kernels are

kMatérn1[x, x′] = σ2 exp
(
− d
)
,

kMatérn3[x, x′] = σ2 exp
(
−
√

3d
)(

1 +
√

3d
)
,

kMatérn5[x, x′] = σ2 exp
(
−
√

5d
)(

1 +
√

5d+ 5
3d

2
)
.

4. Linear Kernel: The linear kernel is a non-stationary kernel

kLinear[x, x′] = xTx′.

Gaussian processes with the squared exponential kernel as covariance func-
tion have mean square derivatives of all orders and are thus very smooth.
Matérn is a generalization of the squared exponential kernel that is a very
flexible class of stationary kernels. On the other hand, kernels such as the
squared exponential do not have the periodic property and could produce
inaccurate measures of similarity [87].

Acquisition Functions A BO method also requires an acquisition function to
decide on the next sample. The next point is selected based on the acquisition
function being minimized or maximized. It is often easier to optimize acquisi-
tion functions than the original objective function because the analytical form
makes them easy to evaluate. The performance of BO depends on the balance
between exploration and exploitation. The result of too much exploitation
is greedy optimization, which means that a surrogate model can easily be
trapped in a local minimum. Conversely, too much exploration would result
in an inefficient performance, where a surrogate model is kept improving with
every new iteration without any exploitation. Thus, selecting the best next
point for evaluation is a trade-off between exploration and exploitation.

Depending on the application, one acquisition function may be preferred
over another. This thesis focuses on four acquisition functions: Thompson
Sampling (TS) [88], Lower Bound Confidence (LCB) [89], Probability of Im-
provement (PI) [90], and Expected Improvement (EI) [91]. All presented
acquisition functions are shown in one example with five initial samplings in
Figure 4.4 2.

2These figures are inspired from https://www.borealisai.com/research-blogs/

45



Chapter 4 Searching for Test Inputs

Each prediction made by a surrogate model comes with the confidence in-
terval explained with a corresponding standard deviation. LCB refers to the
lower bound of the uncertainties of the surrogate model. On the other hand,
TS is a randomized acquisition that samples a function from the posterior
with the lowest value. Then, it optimizes over that function to generate the
next point. TS performs well in practice, is fast, and mostly focuses on ex-
ploitation. PI measures the probability that the best next point leads to an
improvement upon a target. However, PI does not consider how much the
improvement will be. Moreover, improving directly upon the current best so-
lution can lead to trapping the search in a local optimum. A solution would
be to weigh each improvement to avoid small improvements over larger ones.
In Expected Improvement (EI), the objective is to find the best next point
that maximizes the expected value of the improvement.

Except for EI, the acquisition functions are presented in detail in Paper D.
Here we give the formal definition of EI:

αEI(x∗) ∈ argmax
x∈X

(
τ − µ(x)

)
· Φ
(
τ − µ(x)
σ(x)

)
+ σ(x) · ϕ

(
τ − µ(x)
σ(x)

)
, (4.6)

where Φ is the standard normal cumulative distribution function and ϕ is the
standard normal probability density function. For both PI and EI, the target
value, τ , is the best-observed value with the lowest objective value. This
target value for PI can lead to an overly greedy optimization [92]. On the
other hand, in practice for EI, setting the target to the minimum best point
works reasonably well [93]. If the objective function is very noisy, using the
lowest mean value as the target is reasonable [94].

For high-dimensional applications, typically with n > 15, traditional BO
does not scale well [95], for several reasons: (i) Typically high-dimensional
applications require more evaluations to converge; using BO in this setting
eventually becomes impractical [96], [97]. (ii) A good input space coverage
is required to achieve a global optimum. The number of evaluations is in-
creased to cover the input space due to the exponential increase in search
space with increasing dimensions. (iii) When the search space grows faster
than the number of evaluations allowed to be done, an overemphasis on ex-
ploration results in poor exploitation. The emphasis is on the uncertainty of

tutorial-8-bayesian-optimization/.

46



4.2 Optimization-Based Methods

 

Input parameter x Input parameter x

      

O
b

je
ct

iv
e 

fu
n

ct
io

n
  

f 
(x

)

    

      

O
b

je
ct

iv
e 

fu
n

ct
io

n
  

f 
(x

)

          

O
b

je
ct

iv
e 

fu
n

ct
io

n
  

f 
(x

)

    

     

     

          

O
b

je
ct

iv
e 

fu
n

ct
io

n
  

f 
(x

)

LCB PI

EI TS

     

     

Input parameter x Input parameter x

Figure 4.4: Four different acquisition functions: LCB, PI, EI, and TS with five initial
samplings {x1, . . . , x5}. The grey region demonstrates the variance, i.e., the
uncertainty around the mean. The green parts show how each acquisition
function is generated. The blue curve represents the mean function. fbest

refers to the best (lowest) objective values found so far.

the surrogate model rather than high model prediction. (iv) Fitting a global
surrogate model in high dimensions poses a challenge. (v) For the posterior
to be computed, the inverse of the kernel matrix has to be computed, whose
size ultimately depends on the number of function evaluations made so far.
Thus, with an increase in dimensions, computational and storage costs for
posterior distributions also increase exponentially as the number of function
evaluations increases. To overcome the BO scalability problem, some works
have been done in the literature [98]–[100].

Typically, in high-dimensional problems the objective function is only af-

47



Chapter 4 Searching for Test Inputs

fected by a few dimensions [98]. This property was a motivation for some
works [96], [99], [101]. In [101], the subspace identification first estimates
the subspace on which the function is supposed to project inputs into low-
dimension, and then BO optimizes the function on the learned subspace.
The sliced inverse regression method [102] was suggested, which could au-
tomatically learn the intrinsic structure of the objective function during the
optimization. [101] uses the sliced inverse regression technique for dimension
reduction. Hash-enhanced Subspace BO [96] is another method that recovers
the vector in the original space from the low dimension vectors using a hash
function [103]. In [99], Random Embedding Bayesian Optimization (REMBO)
was suggested based on different dimensionality reduction techniques that gen-
erate a low-dimensional embedding of the original search space, which is prac-
tical for exploration and exploitation. In REMBO, the high-dimensional space
is embedded in a lower-dimensional manifold via a random linear embedding.
However, selecting the optimal size of a linear embedding is an open question
and the main limitation of REMBO and other similar high-dimensional BO
methods [96], [104].

Another way to scale BO to high-dimensional problems is to model a richer
class of functions instead of low dimensionality assumption, called additive
structure [105]. In the additive structure, the objective function is decom-
posed as a sum of independent low-dimension functions, each dependent on
a disjoint subset of dimensions. In [106], the additive model on the projected
data is considered to address the restriction of requiring decomposition to be
axis-aligned in [105]. In the models based on the additive structure method,
the problem of knowledge about the decomposition groups and learning them
is challenging. To deal with these problems, randomly sampling the decom-
position is suggested in [105], [106].

Another approach to scaling BO methods to high-dimensional problems
is to adopt a local strategy [100]. A local BO method, called TuRBO is
suggested in [100]. A subset of the regions, called trust regions (TR) [107], is
built around the current best solution to approximate an objective function.
This method is evaluated for falsification in Paper D. In [108], a trust region
framework was proposed to optimize with global convergence, escaping local
optima while preserving the asymptotic properties of BO.

A test engineer may also have a prior belief about the potential location
of an optimum [109], [110]. The standard BO approach fails to incorporate

48



4.2 Optimization-Based Methods

this valuable source of information. To address this issue [109], [110] proposed
methods to inject this prior to BO. In Paper D, πBO [110] is evaluated.

In the following, TuRBO and πBO will be introduced.

Trust Region Bayesian Optimization (TuRBO) BO methods rely on build-
ing a surrogate model that might not be accurate enough to fit a global model.
For example, if we want to build a surrogate model using all three initial points
in Figure 4.3, it is harder to predict a good value for the new point x∗. On
the other hand, it is easier to build a local model with only x2 and x3 in
a small region. The idea behind TuRBO is to build local surrogate models.
For this purpose, a surrogate model is built inside a TR [107]. A TR can be
a sphere, polytope, or hyperrectangle with the center located at the current
best optimal; this means the point with the lowest objective function found so
far during optimization. Large enough TR would be equivalent to standard
global BO methods. So, TR should be large enough to contain good solu-
tions while small enough to build an accurate local model. Hence, there are
limitations for the size of TR (Lmin, Lmax). In TuRBO, GP models within a
hyperrectangle TR are used. The TR is expanded when a new point with a
better objective function is found; otherwise, TuRBO shrinks.

At the beginning of the TuRBO process, a base side length is initialized
for TR, Linit. An acquisition function is used at each iteration, i, to select a
batch of q candidates x(i)

1 , . . . , x
(i)
q within TR. If within TR, the better points

were searched consecutively, the size of TR is doubled, i.e, min(Lmin, 2L). If
TuRBO fails to find better points, TR is halved in size, L/2. If the size of
TR is less than Lmin, or larger than Lmax, the current TR is discarded, and
a new TR with Linit is initialized.

πBO This is a simple method that allows the injection of prior knowledge
about promising areas into BO [110]. With πBO, it is possible to predict,
by using a prior distribution, where a point is located with a lower objec-
tive function value within the input space. πBO is a method that aims to
modify an acquisition function by multiplying it with a predefined probability
distribution, see Paper D for more details.

49



Chapter 4 Searching for Test Inputs

Comparing Different Test Generation Methods

Each optimization method has specific features, which are compared from
different perspectives. Their performance from experimental results evalu-
ated on benchmark problems in [56] and Paper B is discussed in the at-
tached papers and in Section 6. Comparing the optimization-free methods
with optimization-based methods, the former is simpler. On the other hand,
the optimization-free methods may or may not be efficient since no informa-
tion is provided to guide the test generation. As it is shown in Paper C, these
methods show a good performance for those problems that are falsifiable using
corner points, random points, or their combination. Although, some problems
need to use optimization-based methods to guide the falsification process to
falsify a specification.

Comparing the optimization-based methods, direct search methods do ob-
jective function evaluation using the real objective function directly to search
a new point. On the other hand, in model-based optimization methods, a
surrogate model is built first, and this model is then used to search for a new
point for the next iteration. Hence, model-based methods would be more ef-
ficient when the objective function is expensive to evaluate, or there is a low
simulation budget.

Randomness has proven useful for testing, as discussed in Section 4.1.
Hence, randomness properties have been considered in optimization-based
methods. For example, LSF is a method that combines random exploration
with local search where the lines in the n-dimensional parameter space are
generated in random directions. For BO methods, random points are gener-
ated to build a surrogate model.

Different methods need to start the optimization process with different ini-
tial sampling points. In SNOBFIT and BO methods, these initial sampling
points can be any number, depending on the system’s dimensions or a fixed
number. On the other hand, NM needs n+ 1 samples, while the LSF method
needs three initial samples. The initial sampling for NM, SNOBFIT, and BO
methods are generated randomly within the allowed parameter ranges. On
the other hand, LSF is designed such that both corner points or the points on
the board of ranges can be considered for the initial samplings.

When SNOBFIT does not get any hints from the objective function in which
direction to continue the search, it tends to explore new parameter values
towards the corner points. On the other hand, TuRBO explores the points

50



4.2 Optimization-Based Methods

more within the ranges, especially when the local optima is in a very narrow
area, i.e., small input space, it might perform well, as was shown in Paper D.
However, πBo can search both corners, edges of input ranges, and even within
input ranges. Comparing the BO methods, TuRBO builds a surrogate model
locally, while a standard BO does it globally.

As is shown in Paper C, Paper D, and Paper E, depending on the evaluated
system and specification, one approach performs better than the other. Since
we have worked with the black-box models, it is not possible to conclude which
optimization works better for which SUT and specification. However, as is
shown in Paper C and Paper D, the LSF method shows a better performance
in general for the evaluated benchmark problems. On the other hand, TuRBO
outperforms LSF in Paper D for some problems that were hard to falsify in
Paper C. The HCR method performs the best for some easy problems that be
falsified at corners or using random points.

51





CHAPTER 5

Parameterization of Input Signals

In optimization-based falsification, input signals are parameterized such that
parameters are decision variables in the optimization problem. The opti-
mization method attempts to find parameters such that the specifications are
violated. In this chapter, we discuss how to parameterize input signals such
that they are suitable for falsification.

5.1 Input parameters
CPS falsification problems, in general, include continuous-time input signals;
hence, the search space is of infinite dimension. The optimization problem
is simplified if we consider input signals that are parameterized by a finite
number of parameters, which are also the decision variables in the optimization
problem. The actual input signals are generated using an input generator.

A variety of parameterized input generators can be used. For example,
the parameters can represent control points, and the actual input signals are
created by interpolating between the control points. Since system dynamics
are complex and often unknown, especially in large-scale industrial systems,
defining suitable input signals and parameters is a challenging problem that

53



Chapter 5 Parameterization of Input Signals

requires expert knowledge and good insight into the SUT.
The dimensionality of the optimization problem affects optimization-based

approaches. A large number of decision variables are problematic for the op-
timizer since the search space increases rapidly with the number of decision
variables. On the other hand, if few control points or parameters are chosen,
this decreases the problem’s dimensionality. Although constraining inputs so
that counterexamples may not be possible to construct with the current pa-
rameters, it might be possible for a more general input signal to be formulated.
Hence, it is crucial to find a balance between the input generation’s flexibility
and the optimization problem’s dimensionality.

The problem input signals for CPSs are considered in some work [32], [64],
[111]. In [64], new control points are incrementally added to constant signals
as needed. A CPS state space is explored using rapidly exploring random
tree techniques in [111]. More recent methods come from the reinforcement
learning domain and use tree-like structures [32] to partially evaluate inputs.
However, because they require adding numerous control points, such methods
might fail to converge on counterexamples located in high-frequency regions,
as they would need to target a relatively small region of the input signal
space. For a high-dimensional input space, when there are multiple inputs to
the system, by decoupling independent input signals in [112], the effectiveness
of the optimization method is increased. In [113], the authors present a timed
automaton input generator used to produce complex periodic behaviors.

The rest of this chapter will discuss different input parameterizations and
interpolating between them to construct an input signal.

5.2 Signal Generators
Some possible input parameterizations are discussed in this section. A signal
can be represented by parameters in the time and signal domains. In the time
domain, the signal is expressed as a function of time, limited by the simulation
time T . On the other hand, the signal domain refers to the amplitude that
the signal is allowed to be in, [l, u].

Constant Input

A constant input is a simple signal that only requires one control point that
defines the signal’s value, which remains constant throughout the simulation.

54



5.2 Signal Generators

This value can be any value inside or on the allowed range [l, u], for the entire
simulation time, 0 to T . Figure 5.1 shows an example of the constant input
signal.

Figure 5.1: A constant input signal with one control point.

Piecewise Input

A piecewise input signal has multiple sub-segments, where each can have a
different value and a different interval.

Two parameters need to be defined to create this input signal: the number
of control points and the interpolation between them. The time domain is
parameterized based on the number of control points. Figure 5.2 shows three
input signals where three control points in the signal domain are distributed
uniformly in the time domain; t1 = T

3 and t2 = 2T
3 . The three control points

can be interpolated in different ways, such as previous, linear, and pchip. The
previous interpolation corresponds to the previous sample value.The linear in-
terpolation involves linearly interpolating between the control points. Finally,
pchip is cubic polynomial interpolation between the control points, each with
specified derivatives. Many other interpolations are possible, although not
investigated in this work, for example cubic, makima, and spline.

In Figure 5.2, the input signals are distributed uniformly in the time do-
main, i.e., the same interval. It is also possible to vary the time domain to
have different time intervals as shown in Paper E, where there are three con-
trol points with non-uniform intervals (0, t1), (t1, t2) and (t2, T ). In these

55



Chapter 5 Parameterization of Input Signals

Figure 5.2: Three piecewise input signals with three control points distributed uniformly
in time with previous, linear, and pchip interpolation.

signals, five control points are needed to build a signal, two extra compared
to Figure 5.2. These extra control points define the length of the intervals in
the time domain.

If the values of each three sub-segments between (0, t1), (t1, t2) and (t2, T )
are all the same, a constant input signal is generated as in Figure 5.1, no
matter what values t1 and t2 have. On the other hand, if t1 = t2 = 0, a step
signal is generated that switches from the lower to the upper value.

Pulse Input

A pulse input is a periodic square wave pulse can be defined by five parameters
period, base, amplitude, delay, width, as shown in Figure 5.3. Different types
of signals can be obtained using the pulse, depending on the ranges for the
different parameters. For example, if period ≥ 2T and width ≥ 0.5, this
describes a constant signal. When period = 2T and delay having any value in
[0, T ], it describes a single step input.

While Figure 5.3 shows the suggested pulse generator in [114], a modified
version of the pulse that has low and high parameters instead of base and
amplitude, is presented in Paper E. When base and amplitude are used, as
in [114], it is hard to define suitable input ranges. When only amplitude is
considered as a parameter, it can be assumed to vary between a lower and
higher bound while the base is set to the lower bound. On the other hand,
if base also needs to be considered as an input parameter besides amplitude,
including values for both the amplitude and base increases the complexity.

56



5.3 Testing Coverage Measures

Figure 5.3: Pulse input signals [114].

Hence, Paper E suggests a modified version to deal with this issue.

Sinusoidal Input

Five parameters period, amplitude, base, delay and decay are used to define a
sinusoidal input signal, as shown in Figure 5.4. The amplitude refers to the
maximum distance from base. The period gives the time from one peak to the
next. The right graph shows an exponentially decaying sine wave. In Paper E,
the parameter frequency is used which is period = 2π

frequency . To avoid the
mentioned problem in the pulse generator when both base and amplitude are
used, the sinusoidal generator is parameterized in a similar model to the pulse
generator in Paper E.

Other types of input signals, not listed in this thesis, can also be used
for falsification. Paper E evaluates the effect of different input generators
on the falsification performance from experimental results and also coverage
measures.

5.3 Testing Coverage Measures
The falsification process can only prove the presence of faults, not absence.
Hence, if a counterexample is not identified during the falsification runs, this
does not mean that violations of the specifications do not exist. After extensive
testing with a falsification, it is useful for a designer to find out how much

57



Chapter 5 Parameterization of Input Signals

Figure 5.4: Sinusoidal input signal.

of the search space that has been covered. The works in [24], [111] focus on
state coverage measures, these are measures to determine what portion of a
system’s state space is covered by a test suite. In [115], the authors focused
on the coverage of input signal spaces. Paper E evaluates and suggests new
coverage test cases on both space and time, and frequency domains.

58



CHAPTER 6

Benchmark Problems

This chapter introduces the benchmark problems used for evaluation in the
attached papers. It also describes how the benchmarking was implemented
and evaluated.

6.1 Benchmark Problems
Simulation-based falsification is considered for all benchmark problems from
the ARCH19 workshop [55] and the benchmark problems of Paper B.

For the ARCH19 benchmark problems [55], two variants of input signals
are considered, we refer to them as Instance 1 and Instance 2, respectively.

• Instance 1: Arbitrary piecewise continuous input signals. The input
signals were allowed to be freely chosen but with a finite number of
discontinuities in the ARCH19 competition.

• Instance 2: Constrained input signals. The input signal format is fixed,
but discontinuities are allowed. An example input signal would be a
piecewise constant signal with k uniformly spaced control points, with
ranges for each input dimension.

59



Chapter 6 Benchmark Problems

For both variants of input signals, the same parameterization as used by
Breach and S-TaLiRo in [55] is used in the evaluations.

Each benchmark example is introduced below briefly, although their speci-
fications are introduced in Paper D. The evaluation in Paper E was done on
benchmark [56], which includes four extra specifications rather than in Pa-
per D. Hence, these four specifications will be introduced in this chapter as
well.

Automatic Transmission
Automatic transmission (AT) has two inputs: 0 ≤ throttle ≤ 100 and 0 ≤
brake ≤ 325 where both inputs can be active at the same time. The controller
in this model selects a gear from 1 to 4, depending on the inputs (throt-
tle, brake), rotations per minute (ω), car speed (v), and the current engine
load [116]. This problem includes ten specifications and has been evaluated
with two input instances:

• Instance 1: Both throttle and brake are piecewise constant input signals,
meaning previous interpolation. throttle has three signal domain control
points, which means a piecewise signal with three different values, plus
two control points for time intervals. brake has two signal domain control
points, two piecewise signals with different values, plus one control point
for the time interval.

• Instance 2: Constrained input signals with discontinuities, i.e., a piece-
wise constant input signal with 20 control points for each input signal.

Chasing Cars
Five cars are used in the chasing cars (CC) [117] model, where the first car is
controlled by inputs 0 ≤ throttle ≤ 1 and 0 ≤ brake ≤ 1, and the algorithm of
Hu et al controls the other four. The location of the five cars y1, y2, y3, y4,
y5 is the system output. Six specifications included in this problem with two
instances of inputs are:

• Instance 1: The input specifications allow any piecewise continuous dis-
tributed equally where four control points for each input are considered.

60



6.1 Benchmark Problems

• Instance 2: The input specifications constrain inputs to piecewise con-
stant signals with control points every 5 seconds, which means 20 control
points for each input.

Wind Turbine

A simplified wind turbine (WT) model [118] has only the wind speed v as
input. The outputs are blade pitch angle θ, generator torque Mg,d, rotor
speed Ω, and demanded blade pitch angle θd. The single input signal for this
problem is constrained 8.0 ≤ v ≤ 16.0, with four specifications in total. The
input signal of this problem is piecewise with spline interpolation. There are
126 control points for this problem.

Neural Network Controller

Based on the NARMA-L2 [119] controller, the neural network controller (NN)
works for a system that levitates a magnet above an electromagnet at a ref-
erence position. A reference value Ref for the position, where 1 ≤ Ref ≤ 3
(or 1.95 ≤ Ref ≤ 2.05), is the only input of this model. The current position
of the levitating magnet Pos is the output. There are three specifications for
this problem with two variants of inputs considered for this model are:

• Instance 1: The input specification requires discontinuities to be at least
3 time units long, i.e., 12 signal domains.

• Instance 2: An input signal with exactly 3 constant segments, i.e., 3
signal domains, is required.

Fuel Control of an Automotive Power Train

Fuel control of an automotive power train (AFC) is modeled on [120]. There is
one constrained input signal that fixes the throttle θ to be piecewise constant
with 10 uniform segments over a time horizon of 0 with two modes that each
varies in [0, 61.1] (or [61.2, 81.2]) and the engine speed ω to be a constant signal
with 900 ≤ ω ≤ 1100. Three specifications are included in this problem.

61



Chapter 6 Benchmark Problems

Aircraft Ground Collision Avoidance System
The aircraft ground collision avoidance system (F16 ) aircraft and its inner-
loop controller are modeled for Ground Collision avoidance. 16 continuous
variables with piecewise nonlinear differential equations are modeled [121].
The system is required to always avoid hitting the ground during its maneu-
vers, starting from all the initial conditions 0.2π ≤ roll ≤ 0.2833π, −0.5π ≤
pitch ≤ −0.54π, and 0.25π ≤ yaw ≤ 0.375π. This problem has only one
specification.

Steam Condenser with Recurrent Neural Network Controller
The steam condenser with a recurrent neural network controller (SC) is a dy-
namic model of a steam condenser based on energy balance and cooling mass
water balance, controlled with a Recurrent Neural network in feedback [122].
This problem includes only one specification. The input can vary in the
[3.99, 4.01] range, and there are two variants of input signals for only one
specification.

• Instance 1: The input signal is piecewise constant with 12 evenly spaced
segments.

• Instance 2: The input signal is piecewise constant with 20 evenly spaced
segments.

Automatic Transmission (AT’)
The automatic transmission (AT ′), presented in Section 6.1, and evaluated in
Paper C, Paper D, and Paper E, is different from the AT ARCH problem. It
means that it has different specifications and input ranges. The inputs to the
model are the 0 ≤ throttle ≤ 100 and 0 ≤ brake ≤ 500 of a vehicle. The model
outputs are the vehicle speed v, the engine speed ω, and the gear; see [53]
for details. There are 7 control points for throttle and 3 for brake distributed
uniformly with pchip interpolation.

Potentially, this problem has eight different specifications, but some of the
specifications have been evaluated with varying time intervals in the STL
formula and simulation times. Hence, the number of evaluated specifications
for this problem is fifteen.

62



6.1 Benchmark Problems

Third Order Modulator

The third order ∆−Σ modulator is a model of a technique for analog to digital
conversion [54]. It has one input U , three states x1, x2, x3, and three initial
conditions xinit

1 , xinit
2 , xinit

3 . Three different input ranges are assumed for only
one specification of this problem. These ranges are: −0.35 ≤ U ≤ 0.35,
−0.40 ≤ U ≤ 0.40, and −0.45 ≤ U ≤ 0.45.

Static Switched

The static switched (SS) system is a model without any dynamics that is
included as a simple case. The model is inspired from [26]. In this problem,
the gradient cannot point toward the falsification area, which means that the
optimization methods get the wrong gradient direction. This example has
two inputs that can vary in the range [−1, 1]. This problem has only one
specification and three different values are considered for parameter thresh =
0.7, 0.8, 0.9.

The four extra specifications used in Paper E, are from [56], and are listed
in Table. 6.1. These specifications are related to AT, AFC, CC, and NN.

Table 6.1: Specifications to falsify for four extra evaluated in Paper E. Note that the
specifications φAT

7 , φAT
8 , φAT

9 are defined in Paper D.

Specifications STL Formula

φAT
10 φAT

7 ∧ φAT
8 ∧ φAT

9

φAF C
3 □[11,50]|µ| < 0.007

61.2 ≤ θ ≤ 81.2

φCC
6

∧
i=1,...,4

□[0,50]

(
(yi+1 − yi) > 7.5

)
φNN

3 ♢[0,1](P os > 3.2) ∧ ♢[1, 1.5]
(
□[0, 0.5]

(
1.75 < P os < 2.25

))
∧□[2, 3]

(
1.825 < P os < 2.175

)
1.95 ≤ Ref ≤ 2.05

63



Chapter 6 Benchmark Problems

6.2 Large-Scale Testing
A key strength of using a model-based development method is that the models
can be used for various purposes, including simulation, control design, and
testing. The closed-loop behavior can be evaluated when both the control
logic, the physical parts, and the environment have models that support high-
fidelity simulation.

Testing benefits from running a large number of simulations. If only soft-
ware models are needed to run the simulations, testing can take advantage of
computing clusters to run the models in parallel, using thousands of comput-
ing nodes.

To support the evaluation of the different strategies used in this thesis, we
have set up a system such that all benchmark problems in this thesis can be ex-
ecuted on resources at High-Performance Computing Center North (HPC2N),
Umeå University, a Swedish national center for Scientific and Parallel Com-
puting (SNIC)1.

6.3 Benchmark Setup and Evaluation
This section briefly presents the setup of the presented methods in the at-
tached Paper B, Paper C, Paper D, and Paper E. The maximum number of
simulations of each falsification problem is set to 1000. Since the optimization
methods contain stochastic features, the falsification is run 20 times for each
optimization method and objective function. Two values for every evaluated
method are presented in each table of the mentioned papers. The first is the
relative success rate for falsification expressed in percent. For each parameter
value and specification, there will be 20 falsification runs, so the success rate
will be a multiple of 5%. The second value, inside parentheses, is the average
number of simulations (rounded) per successful falsification. In Paper E, 5
runs are considered for each evaluated example and specification. This was
due to a lot of experimental results being needed, while there is the limita-
tion of computing hours running problems on the cluster. The success rate in
Paper E is 20%.

The suggested methods in the attached papers are evaluated based on the
setups mentioned above. In Paper C, different optimization methods are eval-

1https://www.hpc2n.umu.se/

64



6.3 Benchmark Setup and Evaluation

uated on the problems. It should be mentioned here that in Paper C, because
of the journal’s page number limitation, the results of Max are removed, and
only Additive results are presented. A complete evaluation of both semantics
can be found in [123].

As was fully discussed in Chapter 5, it is often challenging to define suitable
input generator parameters since the dynamics of the systems are complex and
often unknown, especially for a large-scale SUT. To be able to write Paper E,
an experimental setup has been done in a Technical Report [124] to show which
pulse parameters are most important to falsify the benchmark problems. In
this report, for this purpose, the pulse generator suggested in Paper E is
applied to the benchmark problems evaluated in Paper C using the default
TuRBO with Thompson Sampling [88] as the acquisition function. In the
technical report all benchmark problems were first evaluated using only one
input parameter for optimization. Then, to show which combination of input
generators might work better, we evaluated if at least one input parameter
is successful in falsifying a specification; regardless of the success rate, their
combination will also be successful. After finding the best combination, we
did the experimental setup, and consequently, based on this assessment, the
best combination of different inputs is presented in Paper E. The reader is
referred to the technical report [124] to see the effect of dimensionality on the
optimization process for falsification.

65





CHAPTER 7

Summary of Papers

The main focus of this work is to improve the falsification performance by
reducing the number of simulations needed to falsify a problem. This chapter
provides a summary of the included papers.

7.1 Paper A
Zahra Ramezani, Nicholas Smallbone, Martin Fabian, Knut Åkesson
Evaluating Two Semantics for Falsification using an Autonomous Driv-
ing Example
in 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN), IEEE, vol. 1, pp. 386-391, 2019.
©2019 IEEE DOI: 10.1109/INDIN41052.2019.8972229.

The optimization-based falsification process is guided by a quantitative se-
mantics. Different quantitative semantics are introduced in the literature. It
is important to understand the strengths and weaknesses of the different se-
mantics. This paper evaluates two, the Max and MARV semantics, on an
adaptive cruise controller of an autonomous car. The evaluation shows that

67



Chapter 7 Summary of Papers

the Max semantics results in a constant objective value for some parts of the
parameter space. In contrast, MARV results in non-constant objective value,
i.e., it has a direction that can be exploited by an optimization algorithm.
This paper shows the importance of choosing a suitable semantics for the
problem at hand.

7.2 Paper B
Zahra Ramezani, Johan Lidén Eddeland, Koen Claessen, Martin Fab-
ian, Knut Åkesson
Multiple Objective Functions for Falsification of Cyber-Physical Systems
IFAC-PapersOnLine, vol. 53, no. 4, pp. 417–422, 2020
©https://doi.org/10.1016/j.ifacol.2021.04.040.

The results of Paper A show that the efficiency of the falsification is affected
by the quantitative semantics used. This paper suggests the use of multiple
quantitative semantics during the falsification process. The combination of
Max and Additive semantics is evaluated on a set of benchmark problems.
The evaluation shows that using multiple quantitative semantics can reduce
the number of simulations necessary to falsify a specification compared to
when a single quantitative semantics is used. We show how the Nelder-Mead
algorithm can be extended to support the multiple objective functions defined
by the different quantitative semantics.

7.3 Paper C
Zahra Ramezani, Koen Claessen, Nicholas Smallbone, Martin Fabian,
Knut Åkesson
Testing Cyber-Physical Systems Using a Line-Search Falsification Me-
thod
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 8, pp. 2393–2406, 2022
©IEEE DOI: 10.1109/TCAD.2021.3110740.

Falsification of cyber-physical systems can be done using random search
methods or by exploring the parameter space in a more structured way, for

68



7.4 Paper D

example, by using optimization. In this work, we evaluate the performance
of a simple strategy based on combining random parameters together with
lower and upper values of in the allowed parameter range. The evaluation
using benchmark problems shows that a simple strategy works well. We pro-
pose using this approach as a baseline method when evaluating falsification
methods. The second part of this paper discusses a simple gradient-free op-
timization method, named line-search falsification, that does optimization in
falsification over a line. This method is compared to the Nelder-Mead and
SNOBFIT methods. The comparison shows that the line-search optimization
enhances the efficiency of the falsification while still having a simple imple-
mentation.

7.4 Paper D

Zahra Ramezani, Kenan Šehić, Luigi Nardi, Knut Åkesson
Falsification of Cyber-Physical Systems using Bayesian Optimization
Submitted for possible journal publication, 2022.

Falsification of specifications for cyber-physical systems (CPSs) can be done
using optimization methods. In this work, we explore Bayesian optimization
(BO), a sample-efficient method that learns a surrogate function that models
the relationship between the evaluation of the specification and the input
parameterization. We use two prominent BO methods, TuRBO and πBO, and
compare their performance with the state-of-the-art methods for falsification
on standard benchmark examples. TuRBO is less sensitive to the complexity
of the CPS as a local search approach and nullifies the bias for exploiting the
edges. The comparison shows that TuRBO falsifies some of the hard to falsify
benchmark problems. On the other hand, πBO allows the test engineers to
include their prior knowledge about falsification where there is a higher chance
of falsifying the system. To reduce the number of simulations in this paper,
searching more corners or close to them is injected in BO as prior knowledge
in πBO. Based on experiments, the BO methods have a clear advantage over
previously presented methods.

69



Chapter 7 Summary of Papers

7.5 Paper E
Zahra Ramezani, Alexandre Donzé, Martin Fabian, Knut Åkesson
On Input Generators for Cyber-Physical Systems Falsification
Submitted for possible journal publication, 2022.

Falsification is a black-box approach where only the input-output behavior
of the system under test is observed. The falsification process searches for
inputs that falsify the specification. This work focuses on the input genera-
tors, a mapping from parameters used as optimization variables to signals that
form the actual test cases for the system. Different input generators, pulse,
sinusoidal, and piecewise, are proposed and evaluated on benchmark prob-
lems for practical performance and testing coverage measures. Based on the
evaluation, pulse input generators perform well on all benchmark problems.
In particular, all benchmark problems are falsified in at least one of the five
falsification runs we did when used together with Bayesian optimization. The
sinusoidal generator in general, not as efficient as the pulse input generator
and piecewise with previous interpolation.

70



CHAPTER 8

Answer to Research Questions and Conclusions

This thesis investigates optimization-based falsification of cyber-physical sys-
tems. The falsification process is enhanced by (i) using multiple quantitative
semantics, (ii) new optimization methods based on a direct-search approach,
(iii) a model-based optimization method that actively learns a surrogate func-
tion, and (iv) by carefully parameterizing input signals that have few param-
eters but are still rich enough to be able to falsify specifications. We evaluate
the proposed methods using standard benchmark problems.

An example from an autonomous driving model is analyzed to understand
better the consequences of using different quantitative semantics. The evalu-
ation results show that the objective function values do not change in some
regions of the parameter space for Max semantics. By using the MARV se-
mantics, the objective function values for samples in the mentioned regions
change, giving a sense of direction to the optimization algorithm to exploit.
The results from Paper A leads to the idea of Paper B, where the use of mul-
tiple objective functions during the optimization procedure is evaluated. The
evaluation shows the potential of using multiple quantitative semantics, but
how to best integrate multiple semantics is future research.

The optimization method used affects the efficiency of the falsification pro-

71



Chapter 8 Answer to Research Questions and Conclusions

cess. Evaluation results on benchmark problems show that for some models
and specifications, a surprisingly efficient falsification method combines eval-
uating extreme parameter values (called corners) with randomly generated
parameter values. Hence, this idea can be used as a baseline method that
more involved falsification methods could be evaluated against. This baseline
method is suggested in Paper C, based on corners and random parameter val-
ues. The evaluation shows that optimization-based methods outperform the
baseline method for more challenging falsification problems, while the baseline
method is efficient for easier falsification problems.

A new direct-search-based and gradient-free optimization method developed
specifically for falsification problems is proposed in Paper C. The method is
designed such as to use prior information that corner points are efficient for
many falsification problems. Although the method in Paper C improves the
falsification performance compared to previously used methods, it does not
make an effort to learn the objective function. This motivated the investi-
gation of Bayesian optimization (BO) methods, which are model-based opti-
mization methods that learn a surrogate model of the objective function in
order to better select the next sample of the parameter values to evaluate.
BO has received relatively little attention in the falsification community. In
our work, we investigate BO methods and the choice of acquisition functions
on the performance of the falsification process. An acquisition function tailor-
made for falsification problems and using prior knowledge about promising
parameter values are developed in Paper D.

The performance of optimization-based methods typically suffers from hav-
ing a large number of parameters. We thus proposed input signal generators
with a simple but rich structure to keep the number of optimization param-
eters down. We show that these input signals are rich enough to allow falsi-
fication of specifications that both require specific values of signals but also
input signals with different frequencies.

With the above investigations, we attempt to answer the research questions
formulated in Chapter 1:

RQ1. What are the strengths and weaknesses of the different quantitative
semantics for the falsification of cyber-physical systems?

Paper A answers this question by evaluating a model of an adaptive cruise

72



controller used for autonomous driving. The performance was evaluated for
two semantics, Max, and MARV . In Paper A, it is shown that using Max se-
mantics results in constant objective values for regions of the parameter space.
Thus there is no valuable information for an optimization algorithm to guide
the direction to pick the next sample to evaluate. On the other hand, MARV
results in objective values that guide the optimization to parameter ranges
where the specification can be falsified. The autonomous driving example
illustrates some shortcomings with the standard quantitative semantics, i.e.,
Max, and shows a potential value of using alternative quantitative semantics.
Unfortunately, it is hard to make any definite conclusions about when to use
which quantitative semantics.

RQ2. How does the combination of using different quantitative semantics af-
fect the efficiency of falsification of cyber-physical systems?

Evaluation results from Paper A show that using a single objective func-
tion may cause the optimization to have no clear direction to follow during the
falsification process or even be directed in the wrong direction. Thus, a combi-
nation of using multiple quantitative semantics, resulting in different objective
function values, during the optimization is proposed in Paper B. Multiple ob-
jective functions are combined with an extended version of the Nelder-Mead
optimization method that uses multiple objective functions. This is done so
that the optimizer avoids using semantics that does not have a clear direction
to get closer to a falsification point. Using multiple quantitative semantics
guides the optimization better than single quantitative semantics. We show
that, for the evaluated benchmark problems, the use of multiple semantics
improves the efficiency of the falsification process.

RQ3. How do different test-case generation methods affect the efficiency of
the falsification process?

In this thesis, we consider optimization-based falsification. However, many
specifications can be falsified quickly by evaluating combinations of extreme
values, i.e., the min and max values in the allowed parameter ranges, or by ran-
dom parameter combinations. Using an optimization-based approach means
that it is necessary to have quantitative semantics defined. However, this

73



Chapter 8 Answer to Research Questions and Conclusions

thesis shows that the preferred quantitative semantics are not easily chosen.
Optimization-based methods also have an additional cost related to solving the
optimization problem. For falsification of cyber-physical systems, gradients
are not generally available since only simulations are possible for non-trivial
systems. Thus gradient-free optimization methods have to be used. To moti-
vate the complexity and cost of using an optimization-based falsification ap-
proach, an optimization-based approach should be significantly more efficient
than a non-optimization-based approach. No baseline method for comparison
is recognized within the optimization-based falsification research community.
Thus, we propose a non-optimization-based baseline method suitable for com-
parison. This baseline approach is a hybrid method that combines extreme
parameter values with a random strategy for selecting parameter values within
the allowed parameter ranges. The evaluation on standard benchmark prob-
lems shows that this approach performs well on many problems except the
hardest ones. This approach and the evaluations are presented in Paper C.

On the other hand, there are also problems where optimization-based meth-
ods perform significantly better. In Paper C, we suggest a new simple direct-
search-based optimization method. The optimization uses randomly gener-
ated lines in the parameter space, with a local search and an emphasis on
evaluating extreme parameter values. The evaluation of benchmark problems
shows that this method enhances the falsification process while still having a
simple implementation.

In Paper D, we have also investigated Bayesian optimization-based meth-
ods that learn a surrogate objective function and use that for selecting the
following sample for evaluation. We show that using prior knowledge with
a carefully designed acquisition function that favors falsification can signifi-
cantly improve the falsification process compared to other previously proposed
methods.

The results from Paper D indicate that a carefully chosen formulation based
on Bayesian optimization is the new start-of-art optimization method for
simulation-based falsification of CPSs.

RQ4. How do different input parameterizations affect the falsification pro-
cess?

How to parameterize input signals for optimization-based falsification has

74



8.1 Future Work

received little attention in the scientific community. However, this is a highly
relevant problem because optimization methods suffer from the curse of di-
mensionality and do not scale well as the number of optimization parameters
increases. Thus, we investigate different parametrizations of input signals in-
tending to have few parameters but still with high coverage of different values
and frequencies. A periodic input generator is proposed in [114], which can
falsify problems that previous optimization-based methods failed to falsify.
This method was a motivation to investigate different input generators in Pa-
per E. While pulse generators provide average performance in both the space
and time and frequency domain coverage, pulse generators together with a
Bayesian optimization algorithm were able to falsify all benchmark problems.
The sinusoidal generator was the best for covering space and frequency but
was less efficient than the other input generators for falsification.

Combined, the experiments conducted in this thesis have improved our
understanding of optimization-based falsification of cyber-physical systems.
The increased understanding has resulted in several proposed methods that
result in a significantly improved falsification process. We hope this will have
consequences not only on the scientific community but also on industrial ap-
plications where efficient falsification processes are in much need, given the
increasing complexity of cyber-physical systems.

8.1 Future Work
For future work, it would be interesting to continue the work on enhancing the
falsification of CPSs, particularly focusing on the optimization part. While we
only assume a black-box model in this work, in many cases, we have grey-box
models available since parts of the systems are often expressed using high-
level domain specific language or by models in machine learning frameworks.
An interesting problem is to analyze further how we can exploit these models
during the falsification process. One possibility would be to exploit the model
more by estimating gradients directly from the model. Also, for future work,
it would be interesting to apply the methods to autonomous systems that
include both perception, decision, and actuation sub-systems. Especially the
sensor aspects when using optical sensors, radar, or lidar sensors might pose
a challenge for falsification due to the very large input space.

75





References

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), IEEE, pp. 363–369, 2008.

[2] J. Shi, J. Wan, H. Yan, and H. Suo, “A survey of cyber-physical sys-
tems,” in 2011 international conference on wireless communications
and signal processing (WCSP), IEEE, pp. 1–6, 2011.

[3] P. Fritzson and V. Engelson, “Modelica—a unified object-oriented lan-
guage for system modeling and simulation,” in European Conference
on Object-Oriented Programming, Springer, 1998, pp. 67–90.

[4] MathWorks, Simscape—model and simulate multidomain physical sys-
tems, https : / / www . mathworks . com / products / simscape . html,
Online: accessed 1 September, 2022.

[5] ——, Simulink is for model-based design, https://www.mathworks.
com/products/simulink.html, Online: accessed 1 September, 2022.

[6] B. W. Kernighan and D. M. Ritchie, The C Programming Language,
2nd. Prentice Hall, 1988, isbn: 0131103709.

[7] N. D. Matsakis and F. S. Klock II, “The rust language,” in ACM
SIGAda Ada Letters, ACM, vol. 34, 2014, pp. 103–104.

[8] Martín Abadi, Ashish Agarwal, Paul Barham, et al., TensorFlow: Large-
scale machine learning on heterogeneous distributed systems, Software
available from tensorflow.org, 2015.

77



References

[9] A. Paszke, S. Gross, F. Massa, et al., “PyTorch: An imperative style,
high-performance deep learning library,” in Advances in Neural Infor-
mation Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–
8035.

[10] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[11] J.-C. Filliâtre, “Deductive software verification,” International Journal
on Software Tools for Technology Transfer, vol. 13, no. 5, pp. 397–403,
2011.

[12] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cam-
bridge, MA, USA: MIT Press, 2000.

[13] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and ab-
straction,” ACM transactions on Programming Languages and Systems
(TOPLAS), vol. 16, no. 5, pp. 1512–1542, 1994.

[14] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and
M. Ulbrich, “Deductive software verification—the KeY book,” Lecture
notes in computer science, vol. 10001, 2016.

[15] W. Bibel, Automated theorem proving. Springer Science & Business
Media, 2013.

[16] A. Platzer, Logical Foundations of Cyber-Physical Systems, 1st edition.
Springer, 2018, isbn: 3319635875.

[17] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
based approaches for verification of embedded control systems: An
overview of traditional and advanced modeling, testing, and verification
techniques,” IEEE Control Systems Magazine, vol. 36, no. 6, pp. 45–64,
2016.

[18] H. Abbas, B. Hoxha, G. Fainekos, J. V. Deshmukh, J. Kapinski, and
K. Ueda, “Conformance testing as falsification for cyber-physical sys-
tems,” CoRR, vol. abs/1401.5200, 2014.

[19] H. Araujo, G. Carvalho, M. Mohaqeqi, M. R. Mousavi, and A. Sampaio,
“Sound conformance testing for cyber-physical systems: Theory and
implementation,” Science of Computer Programming, vol. 162, pp. 35–
54, 2018.

78



References

[20] H. Abbas, “Test-based falsification and conformance testing for cyber-
physical systems,” Ph.D. dissertation, Arizona State University, Tempe,
USA, 2015.

[21] K. J. Hayhurst and D. S. Veerhusen, “A practical approach to modi-
fied condition/decision coverage,” in 20th DASC. 20th Digital Avionics
Systems Conference (Cat. No. 01CH37219), IEEE, vol. 1, 2001, 1B2–1.

[22] ISO, “ISO 26262:2018–Road vehicles–Functional safety,” International
Standard ISO/FDIS, 2018.

[23] G. Gay, A. Rajan, M. Staats, M. Whalen, and M. P. Heimdahl, “The
effect of program and model structure on the effectiveness of mc/dc
test adequacy coverage,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 25, no. 3, pp. 1–34, 2016.

[24] T. Dang and T. Nahhal, “Coverage-guided test generation for contin-
uous and hybrid systems,” Formal Methods in System Design, vol. 34,
no. 2, pp. 183–213, 2009.

[25] T. Nahhal and T. Dang, “Test coverage for continuous and hybrid
systems,” in International Conference on Computer Aided Verification,
Springer, 2007, pp. 449–462.

[26] A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan, and G.
Fainekos, “Requirements driven falsification with coverage metrics,”
in 2015 International Conference on Embedded Software (EMSOFT),
IEEE, 2015, pp. 31–40.

[27] J. Eddeland, J. G. Cepeda, R. Fransen, S. Miremadi, M. Fabian, and
K. Åkesson, “Automated mode coverage analysis for cyber-physical
systems using hybrid automata,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 9260–9265, 2017.

[28] E. Bartocci, J. Deshmukh, A. Donzé, et al., “Specification-based mon-
itoring of cyber-physical systems: A survey on theory, tools and ap-
plications,” in Lectures on Runtime Verification, ser. Lecture Notes in
Computer Science, vol. 10457, 2018, pp. 135–175.

[29] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

79



References

[30] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Springer, 2004, pp. 152–166.

[31] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s de-
cidable about hybrid automata?” In Proceedings of the Twenty-seventh
Annual ACM Symposium on Theory of Computing, ser. STOC ’95, Las
Vegas, Nevada, USA: ACM, 1995, pp. 373–382.

[32] G. Ernst, S. Sedwards, Z. Zhang, and I. Hasuo, “Fast falsification of
hybrid systems using probabilistically adaptive input,” in International
Conference on Quantitative Evaluation of Systems, Springer, pp. 165–
181, 2019.

[33] Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and I. Hasuo, “Two-layered
falsification of hybrid systems guided by monte carlo tree search,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2894–2905, 2018.

[34] G. Ernst, S. Sedwards, Z. Zhang, and I. Hasuo, “Falsification of hybrid
systems using adaptive probabilistic search,” ACM Transactions on
Modeling and Computer Simulation (TOMACS), vol. 31, no. 3, pp. 1–
22, 2021.

[35] T. Akazaki, S. Liu, Y. Yamagata, Y. Duan, and J. Hao, “Falsification
of cyber-physical systems using deep reinforcement learning,” in In-
ternational Symposium on Formal Methods, Springer, 2018, pp. 456–
465.

[36] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A tool for temporal logic falsification for hybrid systems,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Springer, 2011, pp. 254–257.

[37] G. Fainekos, B. Hoxha, and S. Sankaranarayanan, “Robustness of spec-
ifications and its applications to falsification, parameter mining, and
runtime monitoring with s-taliro,” in Runtime Verification, B. Finkbeiner
and L. Mariani, Eds., Cham: Springer International Publishing, 2019,
pp. 27–47.

[38] B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric tempo-
ral logic properties in model-based design for cyber-physical systems,”
vol. 20, no. 1, 2018, issn: 1433-2779.

80



References

[39] A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for
temporal logic robustness,” in Runtime Verification, B. Bonakdarpour
and S. A. Smolka, Eds., Cham: Springer International Publishing, 2014,
pp. 231–246.

[40] L. Mathesen, G. Pedrielli, S. H. Ng, and Z. B. Zabinsky, “Stochastic
optimization with adaptive restart: A framework for integrated local
and global learning,” Journal of Global Optimization, vol. 79, no. 1,
pp. 87–110, 2021.

[41] L. Mathesen, G. Pedrielli, and G. Fainekos, “Efficient optimization-
based falsification of cyber-physical systems with multiple conjunctive
requirements,” in 2021 IEEE 17th International Conference on Au-
tomation Science and Engineering (CASE), IEEE, 2021, pp. 732–737.

[42] C. Menghi, S. Nejati, L. Briand, and Y. I. Parache, “Approximation-
refinement testing of compute-intensive cyber-physical models: An ap-
proach based on system identification,” in 2020 IEEE/ACM 42nd In-
ternational Conference on Software Engineering (ICSE), IEEE, 2020,
pp. 372–384.

[43] M. Waga, “Falsification of cyber-physical systems with robustness-
guided black-box checking,” in Proceedings of the 23rd International
Conference on Hybrid Systems: Computation and Control, 2020, pp. 1–
13.

[44] D. Peled, M. Y. Vardi, and M. Yannakakis, “Black box checking,”
in Formal Methods for Protocol Engineering and Distributed Systems,
Springer, 1999, pp. 225–240.

[45] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in International Conference on Computer Aided
Verification, Springer, 2010, pp. 167–170.

[46] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining re-
quirements from closed-loop control models,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 11, pp. 1704–1717, 2015.

81



References

[47] J. L. Eddeland, K. Claessen, N. Smallbone, Z. Ramezani, S. Miremadi,
and K. Åkesson, “Enhancing temporal logic falsification with speci-
fication transformation and valued booleans,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 12, pp. 5247–5260, 2020.

[48] Z. Zhang, D. Lyu, P. Arcaini, L. Ma, I. Hasuo, and J. Zhao, “Effec-
tive hybrid system falsification using Monte Carlo tree search guided
by QB-robustness,” in International Conference on Computer Aided
Verification, Springer, 2021, pp. 595–618.

[49] T. Dreossi, D. J. Fremont, S. Ghosh, et al., “VERIFAI: A toolkit for
the formal design and analysis of artificial intelligence-based systems,”
in International Conference on Computer Aided Verification, Springer,
2019, pp. 432–442.

[50] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincen-
telli, and S. A. Seshia, “Scenic: A language for scenario specification
and scene generation,” New York, NY, USA: Association for Comput-
ing Machinery, 2019, isbn: 9781450367127.

[51] A. Aerts, M. R. Mousavi, and M. Reniers, “A tool prototype for model-
based testing of cyber-physical systems,” in International Colloquium
on Theoretical Aspects of Computing, Springer, 2015, pp. 563–572.

[52] M. Althoff, “An introduction to CORA 2015,” in Proc. of the work-
shop on applied verification for continuous and hybrid systems, 2015,
pp. 120–151.

[53] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Power-
train control verification benchmark,” in Proceedings of the 17th inter-
national conference on Hybrid systems: computation and control, 2014,
pp. 253–262.

[54] T. Dang, A. Donzé, and O. Maler, “Verification of analog and mixed-
signal circuits using hybrid system techniques,” in International Con-
ference on Formal Methods in Computer-Aided Design, Springer, 2004,
pp. 21–36.

[55] G. Ernst, P. Arcaini, A. Donzé, et al., “ARCH-COMP 2019 category
report: Falsification,” in ARCH19. 6th International Workshop on Ap-
plied Verification of Continuous and Hybrid Systems, vol. 61, Easy-
Chair, 2019, pp. 129–140.

82



References

[56] G. Ernst, P. Arcaini, I. Bennani, et al., “ARCH-COMP 2021 category
report: Falsification with validation of results.,” in ARCH@ ADHS,
2021, pp. 133–152.

[57] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimiza-
tion,” The Computer Journal, vol. 7, no. 4, pp. 308–313, Jan. 1965,
issn: 0010-4620.

[58] K. Claessen, N. Smallbone, J. Eddeland, Z. Ramezani, and K. Åkesson,
“Using valued booleans to find simpler counterexamples in random
testing of cyber-physical systems,” IFAC-PapersOnLine, vol. 51, no. 7,
pp. 408–415, 2018.

[59] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Formal Modeling and Analysis of Timed Sys-
tems, K. Chatterjee and T. A. Henzinger, Eds., Berlin, Heidelberg:
Springer, 2010, pp. 92–106.

[60] J. Eddeland, S. Miremadi, M. Fabian, and K. Åkesson, “Objective
functions for falsification of signal temporal logic properties in cyber-
physical systems,” in 2017 13th IEEE Conference on Automation Sci-
ence and Engineering (CASE), 2017, pp. 1326–1331.

[61] T. Akazaki and I. Hasuo, “Time robustness in MTL and expressivity in
hybrid system falsification,” in International Conference on Computer
Aided Verification, Springer, 2015, pp. 356–374.

[62] H. Abbas, A. Winn, G. Fainekos, and A. A. Julius, “Functional gradi-
ent descent method for metric temporal logic specifications,” in 2014
American Control Conference, 2014, pp. 2312–2317.

[63] Y. S. R. Annapureddy and G. E. Fainekos, “Ant colonies for temporal
logic falsification of hybrid systems,” in IECON 2010 - 36th Annual
Conference on IEEE Industrial Electronics Society, 2010, pp. 91–96.

[64] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler, “Stochastic local
search for falsification of hybrid systems,” in International Symposium
on Automated Technology for Verification and Analysis, Springer, 2015,
pp. 500–517.

[65] J. L. Eddeland, S. Miremadi, and K. Åkesson, “Evaluating optimization
solvers and robust semantics for simulation-based falsification,” EPiC
Series in Computing, vol. 74, pp. 259–266, 2020.

83



References

[66] W. Huyer and A. Neumaier, “SNOBFIT–stable noisy optimization by
branch and fit,” ACM Transactions on Mathematical Software (TOMS),
vol. 35, no. 2, pp. 1–25, 2008.

[67] R. Smith and H. Romeijn, “Simulated annealing for constrained global
optimization,” Journal of Global Optimization, vol. 5, Sep. 1994.

[68] N. Hansen, “The CMA evolution strategy: A comparing review,” in
Towards a new evolutionary computation, Springer, pp. 75–102, 2006.

[69] H. Araujo, G. Carvalho, M. R. Mousavi, and A. Sampaio, “Multi-
objective search for effective testing of cyber-physical systems,” in In-
ternational Conference on Software Engineering and Formal Methods,
Springer, 2019, pp. 183–202.

[70] A. Pnueli, “The temporal logic of programs,” in 18th Annual Sympo-
sium on Foundations of Computer Science (SFCS 1977), 1977, pp. 46–
57.

[71] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing punc-
tuality,” Journal of the ACM (JACM), vol. 43, no. 1, pp. 116–146, 1996.

[72] L. Brim, P. Dluhoš, D. Šafránek, and T. Vejpustek, “STL*: Extending
signal temporal logic with signal-value freezing operator,” Information
and computation, vol. 236, pp. 52–67, 2014.

[73] A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S. Smolka,
“On temporal logic and signal processing,” in International Symposium
on Automated Technology for Verification and Analysis, Springer, 2012,
pp. 92–106.

[74] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in Pro-
ceedings of the 18th international conference on hybrid systems: Com-
putation and control, ACM, 2015, pp. 239–248.

[75] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” CoRR, vol. abs/1708.06374, 2017.

[76] J. W. Duran and S. C. Ntafos, “An evaluation of random testing,”
IEEE transactions on Software Engineering, no. 4, pp. 438–444, 1984.

[77] A. Arcuri, M. Z. Iqbal, and L. Briand, “Random testing: Theoretical
results and practical implications,” IEEE Transactions on Software
Engineering, vol. 38, no. 2, pp. 258–277, 2012.

84



References

[78] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for ran-
dom testing of haskell programs,” in Proceedings of the fifth ACM
SIGPLAN international conference on Functional programming, 2000,
pp. 268–279.

[79] S. Amaran, N. Sahinidis, B. Sharda, and S. Bury, “Simulation opti-
mization: A review of algorithms and applications,” Annals of Opera-
tions Research, vol. 240, May 2016.

[80] C. Audet and W. Hare, Derivative-free and blackbox optimization. Spri-
nger, 2017, vol. 2.

[81] R. Hooke and T. A. Jeeves, “‘Direct search’ solution of numerical
and statistical problems,” Journal of the ACM (JACM), vol. 8, no. 2,
pp. 212–229, 1961.

[82] R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct search methods:
Then and now,” Journal of computational and Applied Mathematics,
vol. 124, no. 1-2, pp. 191–207, 2000.

[83] H. P. Gavin, “The Nelder-Mead algorithm in two dimensions,” CEE
201L. Duke U, 2013.

[84] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of Bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[85] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–
32, 2001.

[86] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learn-
ing, ser. Adaptive Computation and Machine Learning. MIT Press,
2006, p. 248.

[87] H. Su and H. Zhang, “On stationary periodic kernels,” in Proceedings of
the International Conference on Image Processing, Computer Vision,
and Pattern Recognition (IPCV), 2019, pp. 43–46.

[88] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3/4, pp. 285–294, 1933.

85



References

[89] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
in Proceedings of the 27th International Conference on International
Conference on Machine Learning, ser. ICML’10, Madison, WI, USA:
Omnipress, 2010, pp. 1015–1022.

[90] H. J. Kushner, “A new method of locating the maximum point of an
arbitrary multipeak curve in the presence of noise,” Journal of Basic
Engineering, vol. 86, pp. 97–106, 1964.

[91] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of Bayes-
ian methods for seeking the extremum,” Towards global optimization,
vol. 2, no. 117-129, p. 2, 1978.

[92] B. Echard, N. Gayton, and M. Lemaire, “AK-MCS: An active learn-
ing reliability method combining kriging and Monte Carlo simulation,”
Structural Safety, vol. 33, no. 2, pp. 145–154, 2011.

[93] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian opti-
mization of machine learning algorithms,” Advances in neural infor-
mation processing systems, vol. 25, 2012.

[94] Z. Wang and N. de Freitas, “Theoretical analysis of Bayesian optimisa-
tion with unknown gaussian process hyper-parameters,” arXiv preprint
arXiv:1406.7758, 2014.

[95] M. Malu, G. Dasarathy, and A. Spanias, “Bayesian optimization in
high-dimensional spaces: A brief survey,” in 2021 12th International
Conference on Information, Intelligence, Systems & Applications (IIS-
A), IEEE, 2021, pp. 1–8.

[96] A. Nayebi, A. Munteanu, and M. Poloczek, “A framework for Bayes-
ian optimization in embedded subspaces,” in Proceedings of the 36th
International Conference on Machine Learning, 2019, pp. 4752–4761.

[97] P. I. Frazier, “A tutorial on Bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[98] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.,” Journal of machine learning research, vol. 13, no. 2, 2012.

[99] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. de Feitas, “Bayes-
ian optimization in a billion dimensions via random embeddings,” Jour-
nal of Artificial Intelligence Research, vol. 55, pp. 361–387, 2016.

86



References

[100] D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek,
“Scalable global optimization via local Bayesian optimization,” Ad-
vances in Neural Information Processing Systems, vol. 32, 2019.

[101] J. Djolonga, A. Krause, and V. Cevher, “High-dimensional gaussian
process bandits,” Advances in neural information processing systems,
vol. 26, 2013.

[102] M. Zhang, H. Li, and S. Su, “High dimensional Bayesian optimization
via supervised dimension reduction,” arXiv preprint arXiv:1907.08953,
2019.

[103] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in International Colloquium on Automata, Languages,
and Programming, Springer, 2002, pp. 693–703.

[104] B. Letham, R. Calandra, A. Rai, and E. Bakshy, “Re-examining linear
embeddings for high-dimensional Bayesian optimization,” in Advances
in Neural Information Processing Systems 33 (NeurIPS 2020), vol. 33,
2020, pp. 1546–1558.

[105] K. Kandasamy, J. Schneider, and B. Póczos, “High dimensional Bayes-
ian optimisation and bandits via additive models,” in International
conference on machine learning, PMLR, 2015, pp. 295–304.

[106] C.-L. Li, K. Kandasamy, B. Póczos, and J. Schneider, “High dimen-
sional Bayesian optimization via restricted projection pursuit models,”
in Artificial Intelligence and Statistics, PMLR, 2016, pp. 884–892.

[107] Y.-X. Yuan, “A review of trust region algorithms for optimization,” in
Proceedings of the 4th International Congress on Industrial & Applied
Mathematics (ICIAM 99), 2000, pp. 271–282.

[108] Y. Diouane, V. Picheny, R. L. Riche, and A. S. Di Perrotolo, “TREGO:
A trust-region framework for efficient global optimization,” arXiv prep-
rint arXiv:2101.06808, 2021.

[109] A. Souza, L. Nardi, L. B. Oliveira, K. Olukotun, M. Lindauer, and F.
Hutter, “Bayesian optimization with a prior for the optimum,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases, Springer, 2021, pp. 265–296.

87



References

[110] C. Hvarfner, D. Stoll, A. Souza, M. Lindauer, F. Hutter, and L. Nardi,
“πBO: Augmenting acquisition functions with user beliefs for Bayesian
optimization,” arXiv preprint arXiv:2204.11051, 2022.

[111] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V. Desh-
mukh, “Efficient guiding strategies for testing of temporal properties
of hybrid systems,” in NASA Formal Methods Symposium, Springer,
2015, pp. 127–142.

[112] A. Aerts, B. T. Minh, M. R. Mousavi, and M. A. Reniers, “Temporal
logic falsification of cyber-physical systems: An input-signal-space op-
timization approach,” in 2018 IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW), IEEE,
2018, pp. 214–223.

[113] B. Barbot, N. Basset, T. Dang, A. Donzé, J. Kapinski, and T. Yam-
aguchi, “Falsification of cyber-physical systems with constrained sig-
nal spaces,” in NASA Formal Methods Symposium, Springer, 2020,
pp. 420–439.

[114] Z. Ramezani, A. Donzé, M. Fabian, and K. Åkesson, “Temporal logic
falsification of cyber-physical systems using input pulse generators,”
EPiC Series in Computing, vol. 80, pp. 195–202, 2021.

[115] A. Adimoolam, T. Dang, A. Donzé, J. Kapinski, and X. Jin, “Classifi-
cation and coverage-based falsification for embedded control systems,”
in International Conference on Computer Aided Verification, Springer,
2017, pp. 483–503.

[116] B. Hoxha, H. Abbas, and G. Fainekos, “Benchmarks for temporal logic
requirements for automotive systems,” in ARCH@CPSWeek, 2014.

[117] J. Hu, J. Lygeros, and S. Sastry, “Towards a theory of stochastic hy-
brid systems,” in Hybrid Systems: Computation and Control, N. Lynch
and B. H. Krogh, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 160–173.

[118] S. Schuler, F. D. Adegas, and A. Anta, “Hybrid modelling of a wind
turbine,” in ARCH16. 3rd International Workshop on Applied Verifi-
cation for Continuous and Hybrid Systems, G. Frehse and M. Althoff,
Eds., ser. EPiC Series in Computing, vol. 43, EasyChair, 2017, pp. 18–
26.

88



References

[119] MathWorks, Design NARMA-L2 neural controller in Simulink, https:
//au.mathworks.com/help/deeplearning/ug/design-narma-l2-
neural-controller-in-simulink.html, Online: accessed 1 March
2021, 2020.

[120] A. Dokhanchi, S. Yaghoubi, B. Hoxha, et al., “ARCH-COMP18 cate-
gory report: Results on the falsification benchmarks,” in ARCH@ADHS,
2018.

[121] G. Frehse, A. Abate, D. Adzkiya, et al., “ARCH-COMP18 category re-
port: Hybrid systems with piecewise constant dynamics,” in ARCH18.
5th International Workshop on Applied Verification of Continuous and
Hybrid Systems, G. Frehse, Ed., ser. EPiC Series in Computing, vol. 54,
EasyChair, 2018, pp. 1–13.

[122] S. Yaghoubi and G. Fainekos, “Gray-box adversarial testing for control
systems with machine learning components,” in Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and
Control, 2019, pp. 179–184.

[123] Z. Ramezani, K. Claessen, N. Smallbone, M. Fabian, and K. Åkesson,
“Testing Cyber-Physical Systems Using a Line-Search Falsification Me-
thod,” 10.36227/techrxiv.14555826.v3, Jul. 2021.

[124] Z. Ramezani and K. Åkesson, “Technical report: The effect of input
parameters on falsification of cyber-physical systems,” arXiv preprint
arXiv:2209.07131, 2022.

89




