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Approximating the Three-Nucleon Continuum
- Solving the Faddeev equations for statistical inference of chiral forces -
Sean B. S. Miller
Department of Physics
Chalmers University of Technology

Abstract
Three-nucleon forces (3NFs) are necessary to accurately describe the properties
of atomic nuclei. These forces arise naturally together with two-nucleon forces
(2NFs) when constructing nuclear interactions using chiral effective field the-
ories (χEFTs) of quantum chromodynamics. Unlike phenomenological nuclear
interaction models, χEFT promises a handle on the theoretical uncertainty in
our description of the nuclear interaction. Recently, methods from Bayesian
statistics have emerged to quantify this theoretical truncation error in phys-
ical predictions based on chiral interactions. Alongside quantifying the trun-
cation error, the low-energy constants (LECs) of the chiral interactions must
be inferred using selected experimental data. In this regard, the abundant sets
of experimentally measured nucleon-nucleon (NN) and nucleon-deuteron (Nd)
scattering cross sections serve as natural starting points to condition such infer-
ences on. Unfortunately, the high computational cost incurred when solving the
Faddeev equations for Nd scattering has thus far hampered Bayesian parameter
estimation of LECs from such data. In this thesis, I present the results from a
two-part systematic investigation of the wave-packet continuum discretisation
(WPCD) method for reliably approximating two- and three-nucleon (NNN)
scattering states with an aim towards a quantitative Bayesian analysis in the
NNN continuum. In the first part, I explore the possibilities of using graph-
ics processing units to utilise the inherent parallelism of the WPCD method,
focusing on solving the Lippmann-Schwinger equation. In the second part, I
use the WPCD method to solve the Faddeev equations for Nd scattering and
analyse the reliability of the approximations of the WPCD method. This allows
me to quantify the posterior predictive distributions for a range of low-energy
neutron-deuteron cross sections conditioned on NN scattering data and NN
interactions up to fourth order in χEFT.
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Chapter 1

Introduction

A term used in physical science is “ab initio”, with literal meaning “from the
beginning”. It is often used when referring to the practice of explaining a phys-
ical phenomenon from first, or fundamental, principles, which is a common
motivation in the natural sciences. In nuclear physics, atomic nuclei and nuc-
lear matter are mainly governed by the strong nuclear force, of which quantum
chromodynamics (QCD) is our most fundamental theory. It states that quarks
interact by the exchange of gluons that carry charges of colour, hence the name
“chromo”, similarly to how photons carry the electromagnetic force. This theory
became part of the Standard Model of particle physics: a crowning achievement
of international scientific collaboration throughout the latter half of the 20th
century, which ultimately depended on large high-energy accelerator facilities
for experimental verification [1].

At high energies, QCD is a perturbative theory. Asymptotic freedom reduces
the strength of the strong coupling constant appearing at each coupling vertex
between quarks and gluons [2]. This means that the infinitely many quark-
gluon and gluon-gluon couplings, provided by the QCD Lagrangian, can be
truncated. This makes it possible to make theoretical predictions of high-energy
observables, which was needed to establish QCD. However, at the low energies
in naturally occurring nuclei, the strong coupling constant is on the order of
unity, such that all combinations of strong couplings contribute equally when
making predictions. This makes perturbative calculations impossible. A way
around this builds on the pioneering work on effective field theories (EFTs) by,
among others, S. Weinberg, who articulated the concept in 1979 [3].

An EFT can be used to provide models at a given energy, or momentum,
scale of a physical system where multiple scales are present [4]. The presumption
for such a theory to be effective is that the fine details of interactions at one scale
should not affect the interactions at another. For example, the orbits of planets
matter little more to the movements of galaxies beyond the mass of individual

1



Introduction

solar systems, but these systems only exists if the planets stay in orbit, i.e.,
through the fine details. Weinberg’s suggestion was to write the most general
Lagrangian possible that is consistent with the symmetries of an underlying
field theory, using all relevant degrees of freedom at the scale of interest.

One key advantage of an EFT is that its derived models allow for calculable,
order-by-order improvable predictions. The region of validity of an EFT is
encapsulated in the “soft” scale, Q, of the physics we wish to describe and a
“hard”, or “breakdown”, scale, Λb, where we expect the EFT to start failing.
With Q and Λb defined, one can assign a hierarchy to the EFT interaction
diagrams in terms of their contribution to the force acting between the degrees
of freedom. Terms with a higher exponent of Q

Λb
are then naively assumed to

contribute less, thus providing a perturbative theory. This hierarchy is known
as power counting.

In constructing an EFT of QCD, one ends up with a Lagrangian abiding by
the symmetries of QCD, with pions and nucleons as the relevant degrees of free-
dom. The resulting EFT for pion-nucleon interactions is known today as chiral
perturbation theory [5], while extensions to include interactions between nucle-
ons is known as chiral effective field theory (χEFT) [6–11]. The prefix “chiral”
comes from the chiral symmetry of massless quarks, which is spontaneously
broken to give Nambu-Goldstone boson fields corresponding to pions. Through
chiral symmetry breaking, pions replace gluons as the strong-force mediators in
χEFT. For reviews on χEFTs, as well as pionless χEFTs, which I will neglect
in the remaining text, I refer the reader to, for example, Refs. [12–14].

In this work, I use Weinberg power counting to do calculations, where inter-
action diagrams get assigned to chiral orders, ν ≥ 0, as illustrated in Fig. 1.1.
Note there exists other power-counting schemes such as modified Weinberg
power counting, see, e.g., the discussion of Ref. [15], but I will not discuss these
here. By truncating the series at a given order ν, we get a finite set of interac-
tion diagrams that we can evaluate. By including higher orders, starting from
leading order (LO) and going to next-to-leading order (NLO), next-to-next-to-
leading order (N2LO), and next-to-next-to-next-to-leading order (N3LO), etc,
we should hopefully converge onto the nuclear physics that would be predicted
by low-energy QCD.

Remarkably, unlike phenomenological nuclear potentials where interactions
are constructed “by hand”, χEFT inherently provides many-nucleon interac-
tions as dictated to exist by QCD [14], in addition to two-nucleon forces (2NFs).
It is reasonable to expect three-nucleon (NNN) interactions, arising already at
the third order, to significantly contribute to the nuclear force and our predic-
tions of nuclear systems. In fact, it is well known that they are often essential
to accurately reproduce nuclear data, showing significant effects all the way in
going from light nuclei to infinite nuclear matter [16, 17]. The importance of in-
cluding the three-nucleon forces (3NFs) entails a need for statistical inference of
chiral potentials using data from systems of more than two nucleons. Building
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LO
ν=0

NLO
ν=2

N2LO
ν=3

Figure 1.1: The LO, NLO, and N2LO diagrams for the nucleon-nucleon (NN)
and NNN interactions [14]. The solid lines represent nucleons, while the dashed
lines are pions. The circle, diamond, and square vertices denote the number of
pion mass- and/or momentum-factors, 0, 1, and 2, respectively. All diagrams
with ν = 1 violate time- and parity-reversal invariance.

on this, it is the main purpose of this work to quantify theoretical uncertainty
in predictions of NNN scattering observables, i.e., the NNN continuum.

One source of theoretical uncertainty arises from interaction vertices such
as those appearing in Fig. 1.1. Each interaction vertex symbolises a coupling
constant where the underlying, high-energy physics in a nucleon-nucleon, pion-
nucleon, etc, vertex are subsumed into a low-energy constant (LEC). The LEC
values are a priori undetermined and can be inferred from nuclear data. In
principle, one can extract them from QCD using, for example, lattice QCD
[18]. While there is currently much progress in the lattice QCD community, the
method remains computationally inhibiting for determining LECs [19], leaving
statistical inference conditioned on nuclear data as the commonly-used method
of choice. For this, I use methods from Bayesian statistics, as will be covered
in Chap. 4.

Given that χEFT is a low-energy theory, one expects that LECs should
be inferred from low-energy observables such as nuclear structure observables,
for example binding energies. Computational ab initio methods for solving the
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many-body Schrödinger equation as well as calculating heavy nuclear reactions
have seen astonishing development [20–23]. However, such observables also rely
on many-nucleon forces which appear at higher chiral orders. Furthermore, the
external momentum used for the chiral soft scale is ambiguous when making
bound-state predictions, as touched upon in, e.g., Ref. [24]. For a χEFT model
with 2NFs and 3NFs, as motivated above, NN and nucleon-deuteron (Nd) scat-
tering data are handy. These are physically simple systems with few nucleons
and a clear external momentum. They also provide a continuum of scattering
energies for which there is ample experimental data, readily available in, e.g.,
the EXFOR database [25]. The continuous energy-dependency of scattering
observables allows, for example, a controlled investigation of the χEFT region
of validity, and, of course, ample data to infer LECs.

In Chap. 2 I will present the formalism of NN and NNN scattering. Ob-
servable calculations for NN and Nd scattering require solutions to either the
Lippmann-Schwinger (LS) equation or the Faddeev equations [26], respectively.
The former equation, together with the NN Schrödinger equation, can be solved
cheaply to such an extent that extensive Bayesian inference of 2NFs have been
performed [27–32]. The Faddeev equations, however, are much more demanding
to solve computationally.

There exist several computational methods for solving the Faddeev equa-
tions. One can either use momentum-space representations [33] or coordinate-
space representations. Groups working with the latter use, e.g., the Kohn vari-
ational principle with the Faddeev equations [34], or use the hyperspherical
harmonics method [35]. With these methods, much insight has been gained
into chiral forces from data in the NNN continuum [36–42]. Nonetheless, these
methods are often plagued by computationally demanding mathematical traits
such as energy-dependent moving singularities or requiring special treatment of
the asymptotic wave function [43]. Ultimately, a full Bayesian analysis of 2NFs
and 3NFs involving the NNN continuum has been inhibited due to the com-
putational complexity of solving the Faddeev equations. Alongside this work,
there has been much development in the use of model reduction methods such as
emulators like eigenvector continuation [44–47], low-rank matrix-decomposition
[48, 49], and other specialised methods [50]. However, while promising for fu-
ture work, most of these methods are not yet applicable for Nd scattering.
Instead, bound-state methods offer appealing advantages [43], one method of
which comes from wave-packet continuum discretisation (WPCD) [51].

The WPCD method is a bound-state method for approximating scattering
states. Using approximate scattering states allows one to greatly simplify the
computational cost of solving the Faddeev equations [52]. The wave-packet basis
representation averages operators and removes energy-dependent singularities.
This feature makes the method inherently suited for parallel computations,
promoting efficient use of parallel computational resources [53]. Of course, the
method has some drawbacks, worst of which is the need for a greater state
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space to accurately model the physics of the NNN continuum, compared to
other methods.

In Chap. 3 I will cover the formalism, computational aspects, and conver-
gence of the WPCD method in detail, for both the LS and Faddeev equations,
summarising the studies of Papers I and II. In Paper I, I implemented the
WPCD method to do parallel calculations on a graphics processing unit (GPU)
to investigate speedup of NN scattering calculations. In Paper II, I implemen-
ted the WPCD method for solving the Faddeev equations and investigated its
accuracy in calculating elastic Nd scattering observables. A result of the study
was the development of an open-source code for solving the Faddeev equations,
named Tic-tac, which will also be covered in Chap. 3.

In Chap. 4 I present the study of Paper III, which was motivated by long-
standing, unresolved discrepancies between experimental data and theoretical
predictions in the NNN continuum, such as the “Ay puzzle” [54, 55]. While
there are studies that suggest 3NFs are necessary to resolve these discrepan-
cies [56, 57], there exist, to date, no fully Bayesian analyses to document this
necessity. One such Bayesian approach is to investigate the posterior predict-
ive distributions (PPDs) with 2NF-only models with LECs conditioned on, for
example, NN scattering data. A PPD is a prediction of new observables condi-
tioned on past data; in this case, neutron-deuteron (nd) scattering predictions
from χEFT 2NF models conditioned on NN scattering data. This would root
out 2NF LEC-variability as the cause of discrepancy, barring wrongful infer-
ence of the LECs. Investigation of these PPDs, up to and including N3LO with
neglected 3NFs, was the topic of study in Paper III.

While the reach of this work does not extend all the way to an inclusion of
3NFs in statistical studies of chiral forces in, or with, the NNN continuum, the
work serves as an important first step in a new direction towards this goal. By
the inclusion of 3NFs in our description of nuclear forces, we hopefully take a
significant next step towards an age of highly predictive nuclear theory, which
can help transform nuclear systems into precision tools in the exploration of
new physics and technologies.
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Chapter 2

Few-nucleon scattering

In scattering experiments there are usually two freely-moving bodies in the ini-
tial state prior to scattering. Post-scattering, there are four possible “channels”
to consider [58, 59]:

1. Elastic scattering - only kinetic energy is transferred between the two col-
liding bodies. There occur no state excitations or exchanges of constituent
particles.

2. Inelastic scattering - kinetic energy is transferred between the two colliding
bodies to give state excitations in one or both bodies.

3. Break-up - The bodies can break apart in the scattering process, giving
more than two outbound bodies to measure.

4. Rearrangement or transfer - Constituent particles are exchanged between
the two bodies.

In this work I have studied elastic NN and Nd scattering. I will return briefly
to the topic of deuteron break-up in Nd scattering in Chap. 3 to show that
in the WPCD formalism we can extract both elastic and break-up observables
from the same calculation.

In elastic scattering there are in general five different types of polarisation
measurements we can do. These are shown in Tab. 2.1, in addition to the usual
measurements of total (integrated) and differential cross sections. See Ref. [60]
for a broader, general discussion on spin and polarisation experiments for 2 → 2
scattering. Any spin-operator Ô that polarises reactants as in the table can be
projected onto a spin basis via [62]

⟨Ô⟩ = Tr{Mρ̂iM
†Ô}

Tr{Mρ̂iM†}
, (2.1)
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Few-nucleon scattering

Table 2.1: Types of spin-polarisation observables [60] written in the Madison
convention [61]; the arrow signifies a reactant with known polarisation. Here I
use standard nuclear reaction notation, i.e., A(b, c)D, which symbolises A+b →
c+D.

Polarisation Observable type
A(b, c⃗)D Polarisation
A(⃗b, c)D Analysing power
A(⃗b, c⃗)D Polarisation transfer
A⃗(⃗b, c)D Spin correlation (initial channel)
A(b, c⃗)D⃗ Spin correlation (final channel)

where ρ̂ are spin-density operators represented via the Pauli spin matrices, and
M is the spin-scattering matrix containing all the transition amplitudes between
different spin polarisations of the initial and final states. Note that M will de-
pend on the scattering energy and angle, here written Ec.m. and θc.m. in the
centre-of-mass (c.m.) system, respectively. Any solutions to the LS equation
or Faddeev equations, which I here refer to collectively as scattering equations,
would be contained in M . In the following I will discuss NN elastic scatter-
ing and the LS equation, and from there continue to Nd scattering and the
Faddeev equations. I will illustrate the underlying theoretical methodology and
emphasise some of the computational challenges involved in solving them. First,
however, I define the partial-wave bases for NN and NNN states.

2.1 Kinematics and the partial-wave bases

There are three quantities typically used in the description of elastic scattering
data; the laboratory kinetic energy ELab, the c.m. energy Ec.m., and the c.m.
relative momentum, written here as p (q) for the two-body (three-body) system,
where I will denoted the reduced mass as µ0 (µ1). The Jacobi momenta, used
to uniquely describe N -body dynamics in c.m. systems, are here expressed as
follows.

Each nucleon i has a momentum ki and mass mi. The Jacobi momentum
in a two-body system (12) is then

p12 ≡ m2k1 −m1k2

m1m2
, (2.2)

where Fig. 2.1 illustrates the directions of the vectors. With a third nucleon 3
relative the (12) two-body system, referred to now as the pair system, the c.m.

8



Kinematics and the partial-wave bases

Figure 2.1: The nucleon-nucleon system. Each nucleon has momentum ki,
relative to an arbitrary reference frame.

Figure 2.2: Illustration of the neutron-deuteron system. Each nucleon has mo-
mentum ki, relative to an arbitrary reference frame.

momentum of the third nucleon, often referred to as the spectator nucleon, is

q12 ≡ (m1 +m2)k3 −m3p12

m1 +m2 +m3
, (2.3)

as illustrated in Fig. 2.2. While the two-body system only has two options
for ordering the Jacobi momentum, (12) and (21), the three-body system has
3! = 6 possible orderings. The relations between momentum expressions using
different orderings are presented in Tab. 2.2. Naturally, the ordering of Jacobi
momenta should not impact the outcome of our calculations. The relations
between the free relative momentum, ELab, and Ec.m. are shown in Tab. 2.3.

9



Few-nucleon scattering

Table 2.2: Jacobi momentum equalities for the two- and three-body systems
with equal masses and momenta k1, k2, and k3 [17]. In each case one can
simply permute the pair-system indices, e.g. (ij) ↔ (ji), to get equivalent
expressions. Note the appearance of the total momentum P ≡

∑3
i=1 ki.

pij qij ki

ki
1
2 (ki − kj) 2

3
(
kk − 1

2 (ki + kj)
)

ki

(ij) pij qij pij − 1
2 qij + 1

3 P

(jk) − 1
2 pjk + 3

4 qjk −pjk − 1
2 qjk qjk + 1

3 P

(ki) − 1
2 pki − 3

4 qki pki − 1
2 qki −pki − 1

2 qki + 1
3 P

Table 2.3: Conversion formulae between laboratory energy, ELab, c.m. relative
momentum p ≡ ∥p∥, and c.m. energy Ec.m. for two-body elastic scattering. For
generality, mt and mb are the target- and beam-particle masses, respectively,
and µ ≡ mtmb

mt+mb
is the c.m. system’s reduced mass. The relations between ELab

and Ec.m. are easily derived through p and hence omitted. These equations
apply equally for NN and Nd scattering.

p Ec.m. ELab

p p
√

2µEc.m.

√
m2

t ELab(ELab+2mb)
(mt+mb)2+2ELabmt

Ec.m.
p2

2µ Ec.m. [Omitted]

ELab

1
mt

[√
(p2 +m2

t ) (p2 +m2
b)

+p2 −mbmt

] [Omitted] ELab

2.1.1 Partial-wave bases
A single nucleon state is defined by momentum k, spin s, orbital angular mo-
mentum l, total angular momentum j ≡ l + s, and isospin t. I will assume the
neutron and proton to be identical particles with nucleon mass1 mN ≡ 2mpmn

mp+mn
,

with proton and neutron masses mp and mn, respectively, in different isospin
states. I let the beam-axis ẑ be the quantisation axis, and use standard notation
such as j ≡ ∥j∥ and mj ≡ j ∥ ẑ. Isospin, however, is written with tz ≡ t ∥ ẑ.
Lastly, as above, I use k ≡ ∥k∥. I denote the partial-wave state for the single
nucleon as

|k; η⟩ ≡ |k; s, l, t, tz⟩ , (2.4)
where η ≡ {(ls)j, t, tz}, and where the parenthesis-notation (ls)j signifies the
order of coupling. Note that s = t = 1

2 for nucleons. All dependence on mj is
1Note that mN ≡ mp+mn

2 is also common to use. The difference between the definitions
is at the 7th significant digit and causes no visible change in calculated observables.
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Kinematics and the partial-wave bases

resolved outside of the scattering equations due to rotational invariance and is
thus usually omitted from the state expression.

With two nucleons we can define a coupled basis by coupling first the spin
and orbital angular momenta as S ≡ s1 +s2 and L ≡ l1 + l2, where for example
s1 is the spin of nucleon 1, followed by the coupling to total angular momentum
J ≡ L + S. The isospin is also coupled as T = t1 + t2. The NN partial-wave
states are defined as

|p;n⟩ ≡ |k; η⟩1 ⊗ |k; η⟩2 = |p; (LS)J, T, Tz⟩12 , (2.5)

where n denotes the set of pair-system quantum numbers and p ≡ ∥p12∥. Note
one can instead coupled j of each nucleon to get J . This, and the convention
above, are referred to as jj- and LS-schemes, respectively.

Given a system of three nucleons, we can first couple two of them into a
pair system as above. Then we can couple the pair state to the last nucleon;
the spectator nucleon. Again, there are two ways to do this. Either we couple
(Ll)L and (Ss)S to (LS)J , or use (Jj)J . I will define NNN partial-wave
states using (Jj)-coupling,

|p, q;α⟩ ≡ |k; η⟩1 ⊗ |k; η⟩2 ⊗ |k; η⟩3

= |p;n⟩ij ⊗ |q; γ⟩ij

= |p, q; (LS)J, (ls)j, (Jj)J , (Tt)T , Tz⟩ij ,

(2.6)

where the subscript (ij) denotes the pair system and (i, j, k) ∈ [1, 2, 3] are
unequal each other, and where γ ≡ {(ls)j, t, tz} is relative the c.m. of the
pair. Since s = t = 1

2 and tz = Tz − Tz, I will abbreviate γ = {l, j}. Due to
conservation of total angular momentum and parity we usually denote NNN
channels by J Π, where Π ≡ (−1)L+l is theNNN parity. For the remaining text,
unless otherwise stated, I will use n to denote the set of pair-system quantum
numbers, γ for the spectator nucleon relative to the pair, and Γ ≡ {J T Tz}
for total NNN state, such that α = {n, γ,Γ}. This shorthand notation will
be convenient later when discussing NN operators in NNN state space in
Chap. 3. Another commonly used shorthand notation I will use hereafter is the
“odd-man-out” notation, where a subscript i symbolises (jk). I will omit the
z-components tz, Tz and Tz and assume them implicitly set when discussing
operator representations.

2.1.2 Antisymmetrisation and the permutation operator
An arbitrary, N -fermion system requires antisymmetric wave functions as dic-
tated by the Pauli exclusion principle. We can fully antisymmetrise states using
the N -body antisymmetrisation operator [63],

Â123...N = 1
N !

∑
P̂ ∈SN

(−1)iP̂ , (2.7)

11
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where P̂ are permutation operators of particles indices, i is the number of
permutations by P̂ , and SN is the symmetric group. The group has N ! elements,
i.e. N ! distinct orderings of N particles. In the case of NN states, |ab⟩, where
a and b refers to the individual nucleons, this becomes

Â12 = 1
2!

(
1− P̂12

)
, (2.8)

where the permutation operator swaps particles 1 and 2 such that

P̂12|ab⟩ = |ba⟩ . (2.9)

Letting Â12 act on the partial-wave basis states |p;n⟩ returns the same state
but with a well-known prefactor [59],

Â12|p;n⟩ = 1
2

[
1 − (−1)L+S+T

]
|p;n⟩ , (2.10)

i.e. the state cannot be antisymmetric unless (−1)L+S+T = −1, often called
the “generalised” Pauli exclusion principle. The fact that all antisymmetry of
the two-nucleon states can be contained in a simple prefactor, which we can
easily extract from any operator expectation values, makes it straightforward
to define fully antisymmetric NN states.

In the NNN case we have 3! unique orderings, and the antisymmetrisation
operator is written,

Â123 = 1
3!

(
1− P̂12 − P̂23 − P̂13 + P̂123 + P̂132

)
= 1

3!

(
1− P̂ij

) (
1+ P̂123 + P̂132

)
,

(2.11)

where, for example,

P̂132|abc⟩ ≡ P̂13P̂32|abc⟩ = P̂13|acb⟩ = |bca⟩ . (2.12)

One can see that Eq. (2.11) contains Âij , such that

Â123 = 1
3

(
1+ P̂123 + P̂132

)
Âij ∀ (ij) . (2.13)

This means that the three-body antisymmetrisation operator can be expressed
in terms of the antisymmetrisation operator of any of the three possible pair-
systems (ij). Thus, given a state |p, q;α⟩ij = |p;n⟩ij ⊗ |q; γ⟩ij , we can first
antisymmetrise the pair-system state to give partially-antisymmetric partial-
wave NNN states. Assuming |p;n⟩ij to be already antisymmetric, we have

Â123|p, q;α⟩ij = 1
3

(
1+ P̂123 + P̂132

)
Âij |p, q;α⟩ij

= 1
3

(
1+ P̂123 + P̂132

)
|p, q;α⟩ij .

(2.14)
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Two-nucleon scattering

Furthermore, for partially-antisymmetric states, the two operators P̂123 and
P̂132 have the same effect [59],

23⟨p′, q′;α′|P̂132|p, q;α⟩23 = (−1)L′+S′+T ′
(−1)L+S+T

23⟨p′, q′;α′|P̂123|p, q;α⟩23

= 23⟨p′, q′;α′|P̂123|p, q;α⟩23 ,

(2.15)

where P̂123 = P̂23P̂123P̂23 was used. This follows similarly for the channel (12)
and (13). Therefore, we have

ij⟨p′, q′;α′|Â123|p, q;α⟩ij = ij⟨p′, q′;α′|13

(
1+ 2P̂123

)
|p, q;α⟩ij , (2.16)

meaning only one of the three-body permutation operators is of interest to ac-
quire physically allowed three-body states, given partially antisymmetric NNN
states. As derived explicitly in Paper II, the projection of the permutation op-
erator in the (12) system can be written as

12⟨p′q′;α′|P̂123|pq;α⟩12 =
∫ 1

−1
dx Gαα′(p′, q′, x)δ(p̄− p)

p̄p

δ(q̄ − q)
q̄q

, (2.17)

where Gαα′(p′, q′, x) is the geometric function, containing complicated recoup-
ling terms, and where p̄ and q̄ are defined from p′, q′, and x.

2.2 Two-nucleon scattering
In this section I will summarise the theory of two-nucleon scattering by present-
ing all steps required to evaluate Eq. (2.1), as well as the standard computa-
tional method used to solve the relevant equations. Then I will provide some
benchmark calculations to document the convergence of the method, as well as
highlight its computational bottleneck. This will serve as a benchmark for the
WPCD-discussion in Chap. 3.

2.2.1 The spin-scattering matrix
As stated with Eq. (2.1), elastic spin observables can be calculated using the
spin-scattering M -matrix. With two nucleons, the channel-spin we can measure
is the total spin S ≡ s1 + s2. The partial-wave expansion of the M -matrix is
written here as [59]

MS′mS′ ,SmS
(θ, p) =

√
π

ip
δS′S

∑
J,L,L′

iL
′−L

√
2L+ 1 CJmS

SmS ,L0 C
JmS

SmS′ ,L′(mS−mS′ )

×
(
SSJ

L′L − δL′L

)
Y

(mS−mS′ )
L′ (θ, 0)

,

(2.18)
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where Cj3m3
j1m1,j2m2

are the Clebsch-Gordan coefficients, Y ml

l are the spherical har-
monics, and I assume antisymmetric NN states, which fulfil −1 = (−1)L+S+T .
The “S-matrix” element, SSJ

L′L, is the scattering probability amplitude between
different channels in the initial and final scattering states. The S-matrix is given
by a direct term plus an interactive term given by the “T -matrix” element [59],

SSJ
L′L(p′, p;E) = δL′L − 2µ0pπiT

SJ
L′L(p′, p;E) . (2.19)

The T -matrix is the solution to the LS equation. Obtaining T -matrix solutions
is the most computationally demanding part in calculating NN observables.
Therefore, understanding and solving the LS equation will be the focus in rest
of this section.

2.2.2 The Lippmann-Schwinger equation
There are several ways to derive the LS equation that are introduced very ped-
agogically in, for example, Ref. [64]. Here, I will summarise one such approach
based on operator identities, several of which will be relevant for the introduc-
tion of the WPCD method in Chap. 3.

The T -matrix elements are transition amplitudes between the asymptotic
states of the scattering wave function at times t = ±∞, which are plane-
wave states. The time-evolution of the scattering wave function is provided
by the time-dependent Schrödinger equation. To work with the boundary of
the wave function, i.e., the asymptotic states, we require the integral form of
the Schrödinger equation. It can be shown that the Green’s operator, Ĝ(E), for
on-shell energy E, equals the integral of a plane-wave scattering with potential
v̂ for t = ±∞ [64]. The Green’s operator, for some complex value z, is defined

Ĝ(z) ≡ (z − ĥ)−1 , (2.20)

where ĥ ≡ ĥ0+v̂ is the full Hamiltonian and ĥ0 is the free Hamiltonian. Knowing
the Green’s operator for all z entails knowing the eigenspectrum of ĥ. This is
because Ĝ(z) is non-analytic (singular) only when z equals eigenvalues E of ĥ.
However, knowing the eigenspectrum is not normally feasible in the continuum
since we normally cannot solve the Schrödinger equation analytically for nuclear
potentials. Instead, unlike ĥ, the eigenspectrum of ĥ0 is known to be plane-wave
states. To replace ĥ0 by ĥ, we introduce the following operator identity, also
named the LS equation for Ĝ(z),

Ĝ(z) = Ĝ0(z) + Ĝ0(z)v̂Ĝ(z) , (2.21)

where Ĝ0(z) ≡ (z− ĥ0)−1 is the free Green’s operator. This identity also works
for Ĝ(z) ↔ Ĝ0(z). Another important quantity to introduce is the T -operator
t̂(z), defined as

t̂(z) ≡ v̂ + v̂Ĝ(z)v̂ . (2.22)
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From these relations one finds

t̂(z)Ĝ0(z) = v̂Ĝ(z) , (2.23)

which is a useful relation for switching between the use Ĝ(z) and Ĝ0(z). Note
that the equations above will reappear in Chap. 3. Equation (2.22) is the oper-
ator form of the LS equation, meaning t̂(E) provides the T -matrix of Eq.(2.19).
Note that another commonly used name for the Green’s function is resolvent,
which I will use hereafter.

Projecting Eq. (2.22) on the NN basis with states |p;n⟩ gives

Tn′n(p′, p;E) = vn′n(p′, p) +
∑
n′′

∫ ∞

0
dk k2vn′n′′(p′, k)g0(k;E)Tn′′n(k, p;E) ,

(2.24)
where Tn′n(p′, p;E) = TSJ

L′L(p′, p;E) is the same quantity used in Eq. (2.19), for
n′ = {(L′S)J, T, Tz} and n = {(LS)J, T, Tz}. The LS equation is an inhomo-
geneous Fredholm type-II integral equation which can solved with a Liouville-
Neumann series, see e.g. Ref. [59]. However, this solution can also be achieved
using matrix inversion [65].

Matrix-inversion method

The matrix-inversion (MI) method [65] is a highly accurate and precise method
to find T -matrix elements, and is quite straightforward to implement in code.
The starting point of the method is the quadrature approximation of the integral
in Eq. (2.24),

Tn′n(p, p;E) = vn′n(p, p) +
∑
n′′

NQ∑
i=1

wivn′n′′(p, ki)g0(ki;E)Tn′′n(ki, p) , (2.25)

where ki are the quadrature points and wi the associated weights. Introducing
matrix notation where, for example, the elements of the matrix Tn′n are defined
as [Tn′n]ij ≡ Tn′n(ki, kj ;E), we can shorten the LS equation into,∑

n′′

Fn′n′′Tn′′n = Vn′n , (2.26)

where the “wave matrix” is given by

[Fn′n]ij ≡ δijδn′n − [Vn′n]ij Dj , (2.27)

and where

Di ≡


wik2

i mN

k2
i

−p2 if i ≤ NQ ,

−
∑NQ

i=1
wip2mN

k2
i

−p2 + iπpmN

2 if i = NQ + 1 .
(2.28)
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Equation (2.26) is a straightforward matrix-inversion type problem where the
last column or row of Tn′n contains the on-shell element Tn′n(p, p;E). Note
that direct matrix inversion is commonly not recommended due to numerical
instability, and instead it is suggested to use algorithms such as Gaussian elim-
ination or Cramer’s rule for solving sets of linear equations [66].

In the context of computational solutions, it should be noteworthy that this
method can also be used when replacing the T -matrix with a real-valued matrix
defined by the principal-value kernel of the LS equation [59]. The form and
complexity of the matrix inversion problem remains the same with the real-
values matrix as for the T -matrix, but the lack of complex numbers reduces
the number of required operations by a factor of 8, due to the O

(
(NQ + 1)3)

complexity of matrix-inversion type techniques.

2.2.3 Convergence of NN scattering solutions

There are several variables to consider in terms of convergence of NN observ-
ables. Specifically, we can change NQ, the truncation J ≤ Jmax of the sum
in Eq. (2.18), and the number of on-shell energies for which we calculate the
T -matrix. Focusing on NQ and Jmax, the convergence with respect to these
parameters is shown Fig. 2.3 for neutron-proton (np) total cross section σtot.
The benchmark, with J ≤ 30 and NQ = 96, is considered a converged calcula-
tion. The calculations were done using the chiral N2LOopt potential [67]. The
absolute relative errors, calculated as

∣∣∣ σi−σi,benchmark
σi,benchmark

∣∣∣, show that for less than
single-precision errors, i.e. 10−7 or less, NQ = 48 and Jmax = 20 is sufficient.
With a complexity cost scaling as O

(
(NQ + 1)3)

to solve the LS equation for a
single T -matrix, this is a significant speedup compared to the benchmark calcu-
lation. This conclusion is much the same for the differential cross section, shown
Fig. 2.4 at four different ELab, although generally with 1-2 orders of magnitude
larger errors.

2.3 Three-nucleon scattering

Here, I start with a summary of the historical development of the Faddeev
equations, focusing on elastic scattering with two-nucleon forces, followed by a
mention on some computational challenges of solving the equations. I end the
section by summarising an investigation of the bound-state Faddeev equations
as a benchmark to apply NNN antisymmetrisation to the NNN partial-wave
basis.
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Figure 2.3: Convergence with Jmax (top panel) and NQ (bottom panel) for the
total np cross section relative a Jmax = 30, NQ = 96 benchmark. Calculations
were done using the N2LOopt interaction.

2.3.1 The spin-scattering matrix
Focusing on elastic scattering, since the deuteron’s quantum numbers remain
fixed in the scattering process it is only possible for the spectator nucleon to
affect the channel spin Σ. Therefore, a commonly used channel-spin definition
is [62]

Σ ≡ J + s , (2.29)
where the coupling order is (Js)Σ. With this, the spin-scattering matrix of
Eq. (2.1) is given in a partial-wave expansion as [62, 68]

MΣ′mΣ′ ,ΣmΣ(θ, q) =
√
π

iq

∑
J l′l

il
′−l

√
2l + 1 CJ mΣ

ΣmΣ,l0 C
J mΣ
Σ′mΣ′ ,l′(mΣ−mΣ′ )

×
(
SJ

l′Σ′,lΣ − δΣ′Σδl′l

)
Y

(mΣ−mΣ′ )
l′ (θ, 0)

, (2.30)

which, of course, is almost identical in form to Eq. (2.18). Here, the S-matrix
is defined with the Nd equivalent of the T -matrix, the U -matrix, as [69]

SJ
l′Σ′,lΣ = δl′lδΣ′Σ − 2πiqmN i

l′−lUJ
l′Σ′,lΣ . (2.31)

The remaining text is dedicated to determining the on-shell U -matrix elements
using the elastic Faddeev equations.
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Figure 2.4: Convergence with Jmax (top halves) and NQ (bottom halves) of the
differential np cross section relative a Jmax = 30, NQ = 96 benchmark, at four
different scattering energies (annotated in panels). The calculation and figure
legend is the same as in Fig. 2.3. The lines at Jmax = 10 and 20 have been
omitted.

2.3.2 The Faddeev equations

The history of the Faddeev equations and the need for its formulation is sum-
marised in, for example, Ref. [33]. In short, writing an LS equation for NNN
scattering is problematic as it will turn out not to have a compact or connected
kernel. As a counterexample, the kernels v̂Ĝ(z) as well as t̂Ĝ0(z) in Eq. (2.22)
are both compact and connected. It was shown by L. Faddeev in 1960 that this
entails that the NNN LS equation does not have unique solutions [26]. Instead,
Faddeev suggested a splitting of the NNN T -matrix into three components, Ti

for i = 1, 2, and 3. Each Ti would be a partial solution. The coupled integral
equations for the partial solutions are called the Faddeev equations for the T -
matrix [58]. There were still many formal problems to be solved, summarised in,
e.g., Ref. [58], but Faddeev had made a pivotal first step for a NNN scattering
equation. In 1971, W. Glöckle derived what is today called the fundamental set
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of LS equations, and that showed they provide unique solutions [70]. They can
be written [33],

|Ψ+
1 ⟩ = δi1|ϕ1⟩ + lim

ϵ→0
Ĝi(E ± iϵ)v̂1|Ψ(+)

1 ⟩ , (2.32)

where, using the odd-man-out notation where i is the channel where nucleon i is
the spectator, E is the on-shell energy, |Ψ(+)

1 ⟩ is the scattering state in channel
1, |ϕ1⟩ is the initial plane-wave state, and Ĝi(z) ≡ (z − ĥi)−1 with ĥi ≡ ĥ0 + v̂i

being the channel Hamiltonian. Furthermore, v̂i ≡ v̂j + v̂k, for i ̸= j and i ̸= k,
is the sum of interactions between the spectator and the pair, assuming only
NN interactions. His work presents a formalism that extends straightforwardly
to general N -body scattering.

Besides this, in 1967, E. O. Alt, P. Grassberger, and W. Sandhas derived
an equivalent set of equations for the scattering amplitudes, known as the Alt-
Grassberger-Sandhas (AGS) equations [71]. These equations are what I will
use to solve Nd scattering as they provide U -matrices for use in Eq. (2.31), i.e.,
transition amplitudes between asymptotic scattering states. Following Ref. [33],
the important steps of the derivation are as listed below.

The scattering amplitude Ai1 is defined as the probability of getting out an
asymptotic final plane-wave state |ϕi⟩, and is written

Ai1 = ⟨ϕi|v̂i|Ψ(+)
1 ⟩ , (2.33)

This amplitude can be expressed in terms of a transition operator, Ûi1, defined
as

Ûi1|ϕ1⟩ ≡ v̂i|Ψ(+)
1 ⟩ = (v̂j + v̂k) |Ψ(+)

1 ⟩ . (2.34)

Inserting Eqs. (2.32), this can be shown to give the AGS equations,

Ûi1|ϕ1⟩ = (1 − δi1)Ĝ−1
0 |ϕ1⟩ + Ĝiv̂

i|Ψ(+)
1 ⟩ +

∑
j ̸=i

t̂jĜ0Uj1|ϕ1⟩ , (2.35)

by using v̂1|ϕ1⟩ = Ĝ−1
0 |ϕ1⟩ and v̂iĜi ≡ tiĜ0, where ti is the two-body T -matrix

for pair-system i. However, the equations are not antisymmetric as written
here.

In the partially-antisymmetric NNN basis introduced in Sec. 2.1.1, |ϕi⟩ are
only antisymmetric in the pair-system i. Since |ϕi⟩ has an antisymmetric pair,
a superposition of the three channels will be totally antisymmetric. Thus, the
scattering state can be written

|Ψ(+)⟩ =
3∑

i=1
|Ψ(+)

i ⟩ and Ûi|ϕ1⟩ ≡
3∑

k=1
Ûik|ϕk⟩ , (2.36)
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where we define the transition operator Ûi for scattering into |ϕi⟩ from a fully
antisymmetric scattering state Inserting Eq. (2.35) gives,

Ûi|ϕ1⟩ =
∑
k ̸=i

Ĝ−1
0 |ϕk⟩ +

∑
k ̸=i

tjĜ0Ûj |ϕ1⟩ , (2.37)

Using Eqs.(2.34) and (2.36), we can find that the transition amplitude is uniquely
defined in terms of any one of the operators Ûi,

Û2|ϕ1⟩ = P̂123Û1|ϕ1⟩ and Û3|ϕ1⟩ = P̂132Û1|ϕ1⟩ , (2.38)

so Eq. (2.37) is written as (where I drop the odd-man-out notation),

⟨ϕ′|Û |ϕ⟩ = ⟨ϕ′|P̂ v̂|ϕ⟩ + ⟨ϕ′|P̂ v̂ĜÛ |ϕ⟩ , (2.39)

where I inserted Ĝ−1
0 = v̂ and t̂Ĝ0 = Ĝv̂, and defined P̂ ≡ 2P̂123. Thus, solving

this equation gives us elastic transition amplitudes. Note, however, that I have
not included three-body forces or discussed breakup channels here, but the
theory of both is well documented in for example Ref. [33].

Despite the compact form, this equation bears some computational chal-
lenges:

• For converged scattering observables, typically one can expect to have
to use Np ≃ 30 and Nq ≃ 40 momentum quadrature points for the p
and q momenta, respectively, and up to Nα ≃ 60 partial-wave states is
required per Γ = {J ,P} channel for J ≤ 17

2 with J ≤ 3 [33]. This
entails matrix dimensions N × N of 72000 × 72000, requiring around 38
gibibytes (GiBs)2 of computer memory using double floating-point pre-
cision per matrix. This mostly renders MI-type methods too costly to
solve Eq. (2.39). Instead, one can use a Liouville-Neumann series, see
for example Ref. [59]. In WPCD, the number of required p and q wave
packets is even greater, as I will show with the convergence of observables
in Chap. 3 in a wave-packet basis.

• The singularities arising in the resolvent Ĝ0 in the second term of Eq. (2.39),
acquired by using t̂Ĝ0 = v̂Ĝ, are referred to as “moving” singularities [58].
They arise from the momentum restrictions imposed by permutation oper-
ator, seen in Eq. (2.17). See e.g. Ref. [72] for a modern, computationally-
oriented treatment of the singularities. In the WPCD method, these singu-
larities are solved analytically, which is one of the strengths of the method,
as I will discuss in Chap. 3.

2The standardised denotation “gigabyte”, or GB, is 10003 bytes, while a GiB is 10243

bytes. The latter is more suitable for computers as they operate with binary numbers.
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• The momentum restrictions imposed by the permutation operator can
also impose momentum restrictions on the t̂ operator, again by using
t̂Ĝ0 = v̂Ĝ. This displaces the usual quadrature-mesh on which the T -
matrix is usually acquired from solving the LS equation. An effective
treatment for this displacement is through the use of a spline-basis [73].
In the WPCD method, the permutation operator is calculated in closed
form and imposes no momentum restrictions on neighbouring operators.

There problems arising from these challenges have all been worked out in cur-
rently used methods, but we will see that in the WPCD method some of them
are solved inherently. Of the operators appearing in Eq. (2.39), the permutation
operator is especially difficult to implement without error due to the complex-
ity of the geometric function, shown explicitly in Eq. (A13) of Paper II. This is
where the bound-state Faddeev equations serves as a useful benchmark due to
its simplicity relative to the AGS equations.

2.3.3 Benchmarking the permutation matrix
The three-body bound state is simpler to define uniquely due the lack of asymp-
totic boundary conditions. Additionally, the lack of on-shell energy-dependent
singularities in the Faddeev equations makes it easier to implement computa-
tionally. It can be shown that in the case of three-body bound-state systems
with energy E < 0 and only two-body interactions, the total antisymmetric
wave function |Ψ⟩ is given by [74]

|ψi⟩ = Ĝ0t̂i(E)P̂ |ψi⟩ , (2.40)

through |Ψ⟩ =
∑3

i=1 |ψi⟩, where |ψi⟩ are referred to as the Faddeev amplitudes.
In a partial-wave projection, this becomes

⟨pq;α|ψ⟩ij = 2
E − p2

2µ0
− q2

2µ1

∑
α′α′′

∫ ∞

0
dp′ p′2 tnn′

(
p, p′;E − q2

2µ1

)

×
∫ +1

−1
dx Gα′α′′(p′, q′, x)⟨p̄q̄;α′′|ψ⟩ij ,

(2.41)

where I have explicitly inserted the permutation operator from Eq. (2.17). To
solve this equation, we realise that Eq. (2.40) can be written

|ψi⟩ = K̂(E)|ψi⟩ , (2.42)

where K̂(E) follows obviously. Solving this equation is done usually by guessing
at values for E and checking if the ensuing state |ψi⟩ is self-consistent. Due to
the uniqueness Faddeev amplitudes, this approach is guaranteed to provide the
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correct energy E. Mathematically, this approach can be written as an eigenvalue
problem,

K̂(z)|ψi(z)⟩ = λ(z)|ψi(z)⟩ , (2.43)

where we find which z ∈ R− satisfies λ(z) = 1. It is noteworthy that λ(z) will
be largest when z = E is the “physical” value [75]. This is quite useful when
one resorts to Lanczos algorithms to numerically determine eigenvalues of K̂
since these algorithms usually iteratively converge first on the largest and smal-
lest eigenvalues [76]. However, for benchmarking, we can afford to numerically
diagonalise K̂ using direct matrix diagonalisation routines on modern desktop
computers. This is because 3H, which was of focus for benchmarking due to
lack of Coulomb forces, exists in the state J Π (T ) = 1

2
+ ( 1

2
)

where only about
Nα ∼ 25 is required for converged results for E.

A pivotal part of this work consisted of benchmarking a computational im-
plementation of Eq. (2.41). This test would ensure a consistent use of geo-
metrical couplings in all operator expressions required for an Nd scattering
code. As input for this implementation I used a pre-developed code [17, 77] for
calculating the permutation matrix in a NNN basis, and the Idaho-N3LO po-
tential [78]: a fourth-order χEFT NN -only interaction fitted to NN scattering
data. The resulting benchmarking is summarised in Tab. 2.4, where we see per-
fect agreement between an external, bound-state code [77] and my own. I also
show additional benchmark calculations. With consistent use of geometrical
coupling confirmed, meaning the operators of Eq. (2.43) are well-understood in
the NNN partial-wave basis defined earlier, a large source of error is removed
when attempting an Nd scattering code, which will be discussed in the next
chapter.
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Table 2.4: Bound-state energies for 3H predicted for the Idaho-N3LO poten-
tial [78], using Np = 32 and several combinations of J and Nq, by solving
Eq. (2.43). For each combination, I also show the highest eigenvalue, λ, of the
kernel K̂(z) in Eq. (2.43) for several proposed energies z. When λ = 1 we
retrieve Eb = z. Here, I extract Eb using cubic polynomial interpolation condi-
tioned on my calculated λ to determine where λ = 1. Benchmark calculations
were provided in Ref. [77]. Reference [78] predicts Eb = 7.855 MeV with J ≤ 4
(giving 34 channels).

Jmax Nq Eb (MeV) Eb (MeV) [77] z λ λ [77]

1

10 -7.4282 -7.429

-7.0 1.02713
-7.5 0.99566
-8.0 0.96695
-8.5 0.94062
-9.0 0.91633

20 -7.6605 -7.661

-7.0 1.04215
-7.5 1.00976
-8.0 0.98027
-8.5 0.95323
-9.0 0.92829

30 -7.6705 -7.671

-7.0 1.04289 1.0429
-7.5 1.01039 1.0104
-8.0 0.98082 0.9808
-8.5 0.95371 0.9537
-9.0 0.92871 0.9287

2

10 -7.5910 -7.592

-7.0 1.03678
-7.5 1.00540
-8.0 0.97679
-8.5 0.95055
-9.0 0.92636

20 -7.8240 -7.825

-7.0 1.05164
-7.5 1.01935
-8.0 0.98995
-8.5 0.96301
-9.0 0.93816

30 -7.8338 -7.834

-7.0 1.05237 1.0524
-7.5 1.01997 1.0200
-8.0 0.99050 0.9905
-8.5 0.96348 0.9635
-9.0 0.93858 0.9386
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Chapter 3

Wave-packet continuum
discretisation

Wave-packet continuum discretisation [52, 79–85] is a quadrature-type method
for calculating observables in the scattering continuum, bearing similarities to
bound-state methods. The method builds in part on the concepts of pseudostates
and eigendifferentials, which combined are named pseudostate eigendifferentials.
I leave these concepts to App. A. Wave packets can be used to construct an
approximate basis for the eigenstates of the full Hamiltonian. Knowing the
eigenspectrum allows us to analytically evaluate the full resolvent, which can
significantly simplify the scattering equations shown in Chap. 2.

The method is summarised in Ref. [51], parts of which I will cover in the first
two sections of this chapter. I will go through the formalism of wave packets by
first defining a wave packet followed by deriving approximate scattering states.
After this introduction, I show how the LS and Faddeev equations look in a
wave-packet basis, how they can be efficiently solved on a computer, and their
convergence patterns. These last points present the outcomes of Papers I and
II for NN and NNN scattering, respectively.

3.1 The wave-packet basis
A wave packet is defined a normalised integral of continuum states over some
finite interval referred to here as a “bin”. Depending on the type of continuum
state, we can have different wave packets. I define a free wave packet (FWP)
|xi⟩ as an integral of plane-wave states |p⟩ over the bin Di ≡ [ki, ki+1], i.e.

|xi⟩ ≡ 1√
Ni

∫
Di

dp p f(p)|p⟩ , (3.1)
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Table 3.1: Wave-packet variables and eigenvalues for both momentum and free
Hamiltonian operators in the two-body system, for both momentum and energy
wave packets, illustrating that these two kinds of wave packets do not have equal
eigenvalues. Note that Ei = k2

i

2µ .

Quantity Energy wave packets Momentum wave packets
f(p)

√
p
µ 1

Width ∆Ei ≡ k2
i+1
2µ − k2

i

2µ ∆ki ≡ ki+1 − ki

Ni ∆Ei ∆ki

ei Ei + 1
2 ∆Ei = k2

i+1
2µ + k2

i

2µ

k2
i+1+ki+1ki+k2

i

6µ

pi
2
3

k2
i+1−k3

i

k2
i+1−k2

i
ki + 1

2 ∆ki

where Ni is the normalisation constant, ki are momenta, and f(p) is a weighting
function. Furthermore, I denote the kinetic energy and momentum eigenvalues
as ĥ0|xi⟩ = ei|xi⟩ and p̂|xi⟩ = pi|xi⟩,

The weighting function determines whether we use the momentum operator
p̂ as the defining operator for our basis or the free Hamiltonian ĥ0. We can
switch the type of FWP, named “momentum” and “energy” FWPs, by letting
f(p) = 1 or f(p) =

√
p
µ , respectively. We must distinguish the two because

whereas plane-wave states are eigenstates of both p̂ and ĥ0, an FWP is not.
This can be seen in Tab. 3.1 where widths, weights, and eigenvalues of the two
types of FWP are shown. Since the widths ∆Ei and ∆ki are not the same
between the two types, the eigenvalues are not the same, meaning they are not
equal FWPs.

Using the identity operator in the FWP basis, 1 ≡
∑∞

i=1 |xi⟩⟨xi|, one can
show that the usual plane-wave expectation value of an arbitrary operator Ô is
given approximately in an FWP basis as

⟨q′|Ô|q⟩ ≈ f(q)f(q′)√
NiNj

1
q′q

⟨xi|Ô|xj⟩1Di
(q′)1Dj

(q) , (3.2)

where 1Di(q′) is the indicator function. Of course, we can now replace Ô by
for example t̂ or Û for scattering. While it may seem intuitive that a wave-
packet basis provides an approximate treatment of the continuum, it can be
shown formally that the quality of the approximation depends purely on the
bin width in the sense that narrowing the bins provide better approximations
systematically. I summarise a proof from Ref. [51] in App. A. Note that in
calculated observables there is negligible difference between momentum and
energy FWPs, but it can be easier to calculate analytical expressions in one
than the other.
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3.2 Approximate scattering states
The real strength of the WPCD method lies in approximating scattering states,
meaning we can approximate positive-energy eigenstates of the full Hamilto-
nian ĥ. We approximate by finding the wave-packet eigendecomposition of the
Hamiltonian by diagonalisation in a FWP basis,

[H]ij ≡ ⟨xi|ĥ|xj⟩ =
[
CDCT

]
ij

(3.3)

where1 [D]ij ≡ δijϵi is diagonal with eigenvalues ϵi of ĥ and [C]ij ≡ ⟨xi|zj⟩ are
the transformation coefficients of the associated eigenvectors |zi⟩ into the FWP
basis. The eigenvectors are approximate scattering states and are referred to
here as scattering wave packets (scattering wave packet (SWP)s). Note that for
a realistic NN Hamiltonian there is only one case of ϵi < 0, in the deuteron
channel, and that otherwise we have ϵi > 0.

From the positive-energy eigenspectrum above I define a SWP similarly to
FWPs in Eq. (3.1),

|zi⟩ ≡ 1√
Ni

∫
Di

dp p f(p)|ψ(p)⟩ , (3.4)

where |ψ(p)⟩ are unknown, continuum eigenstates of the full Hamiltonian. If
our operators acting on |zi⟩ depend solely on the full Hamiltonian, we only
need to know the bin boundaries Di and weighting function f(p), while |ψ(p)⟩
is irrelevant. I will reserve Di for FWPs outside of this section. Since SWPs
are Hamiltonian eigenstates, they are automatically energy wave packets with
f(p) =

√
p
µ . The boundaries will need to be extracted from the eigenvalues

ϵi, and must be done such that the eigenenergies are obtained according to
Tab. 3.1, i.e. ϵi = Ei + 1

2 ∆Ei, where Ei is are the bin boundaries such that
Di = [Ei, Ei+1]. For this, I use an approximate algorithm [86],

E1 ≡ 0 , Ei ≡ 1
2 (ϵi−1 + ϵi) , ENWP+1 ≡ ϵNWP + 1

2 (ENWP − ENWP−1) . (3.5)

where NWP is the size of the FWP and SWP bases, and where NWP < ∞
introduces finiteness as needed for computations. Here I assume ϵi−1 < ϵi. In
the case of bound states, where a vector |zi⟩ of C corresponds to an eigenenergy
ϵi < 0, the treatment above still works by incrementing the lowermost index in
Eq. (3.5) by the number of bound states.

In the case of coupled NN channels such as 3S1-3D1, the Hamiltonian di-
agonalisation in will return eigenstates ϵκi where κ indexes the coupled state,
i.e. either 3S1 or 3D1. To define boundaries for 3S1 and 3D1 separately using

1This matrix must not be confused with the vector D of Eq. (2.27).
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Eq. (3.5), it is necessary to distinguish ϵκi from ϵκ
′

i for κ ̸= κ′. As was discussed
more extensively in Paper I, the eigenstates can be disentangled using [84],

ϵκ−1
i ≤ ϵκi . (3.6)

Thus, for a coupled-channel Hamiltonian diagonalisation, we can sort the ei-
genvalues in ascending order, and use that odd-indexed eigenvalues belongs to
one channel while even-indexed values belong to the other. Of course, the
corresponding eigenstates must be sorted accordingly. To reflect this sort-
ing, I introduce explicit channel-indexing Cn′n, as defined in Sec. 2.2.2, where
[Cn′n]ij ≡ ⟨xn′

i |zn
j ⟩ and |xn′

i ⟩ is the FWP basis used for |n′⟩. However, I dis-
tribute all FWPs equally and will mostly drop the state-indexing to write |xi⟩.

3.3 The Lippmann-Schwinger equation in
WPCD

Much of the formalism covered here was presented in Paper I, and is a brief
presentation of the WPCD review of the LS equation in Ref. [51]. Having
constructed an FWP basis {|xi⟩}NWP

i=0 and a SWP basis {|zn
i ⟩}NWP

i=0 for all NN -
channels (n′n) with transition matrices Cn′n, we can project Eq. (2.22) to an
FWP basis as follows

⟨xi|t̂n′n(E)|xj⟩ = ⟨xi|v̂n′n|xj⟩ +
∑
n′′

NWP∑
k=1

⟨xi|v̂n′n′′ |zn′′

k ⟩⟨zn′′

k |Ĝ(E)|zn′′

k ⟩

×⟨zn′′

k |v̂n′′n|xj⟩ .

(3.7)

The remarkable property of the WPCD method is that we can now analytically
derive the full resolvent in the SWP basis, and that all singularities of the
operator are averaged out. The resolvent, and the remaining terms of this
equation, were derived in Paper I. I can now introduce matrices with matrix
elements defined as

[Vn′n]ij ≡ ⟨xi|v̂n′n|xj⟩ ,

[Gn′n(E)]ij ≡ δijδn′n⟨zn′

i |Ĝ(E)|zn
j ⟩ ,[

Ṽn′n

]
ij

≡
∑
n′′

Vn′n′′Cn′′n ,

(3.8)

such that the LS equation can be written in matrix form,

Tn′n(E) = Vn′n +
∑
n′′

Ṽn′n′′Gn′′n′′(E)ṼT
n′′n . (3.9)
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This equation is trivial to solve using standard matrix multiplication routines
such as those contained in BLAS [87]. However, the WPCD method has a
unique property can be used to significant computational advantage here: its
inherent parallelism.

3.3.1 Solving the LS equation in parallel
To utilise the parallelism of the WPCD method it is easiest to focus on only
the on-shell T -matrix elements of Eq. (3.9),

[Tn′n(Ek)]ii = [Vn′n]ii +
∑
n′′

NWP∑
j=1

[
Ṽn′n′′

]
ij

[Gn′′n′′(Ek)]jj

[
ṼT

n′′n

]
ji
, (3.10)

where Ek ∈ Di is one energy in a set of energies {Ek}nE

k=1 for which we wish to
calculate the T -matrix. This equation is essentially the element-wise product
of two arrays, followed by a vector-vector inner-product, surmounting to a total
computational complexity that scales linearly with NWP and nE . With nE

processors at hand, like in a GPU, one can calculate all scattering energies
simultaneously.

In Fig. 3.1 I show the theoretical complexity models derived in Paper I
for the MI method2 and both the sequential and parallel implementations of
the WPCD method. These models contain all steps involved in the three ap-
proaches, including, e.g., the Hamiltonian diagonalisation cost. It is apparent
that whereas the MI complexity has a heavier cost with nE , the parallel WPCD
method is at least two orders of magnitude less expensive to execute for p = 1024
processing threads. To access such a large number of threads, one can use a
GPU [53]. These processing units have many more threads than the usual cent-
ral processing unit (CPU). I will discuss the use of a GPU in the next section.

An important consideration of the WPCD method concerns where E lands
within the FWP boundaries. In my studies I have found that the WPCD
method provides worse approximations of observables ⟨Ô(E)⟩ when E ∈ Di

falls far from the bin mid-points ei (see Tab. 3.1). This likely occurs due to
the averaging of operators in the continuum when we project on a wave-packet
basis. In Ref. [51], it is argued that a smoothly varying E is not well-motived in
the WPCD method, and one should instead average the T -matrix with respect
to E within the bin Di. In Paper I, we used such energy averaging. With a
discrete energy resolution in the output of T -matrix elements, I simply employ
linear interpolation from bin-midpoints to calculate scattering observables at
any energy E.

2See Sec. 2.2.2 for a discussion on the MI method.
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Figure 3.1: Estimated complexities of WPCD (MI) method for solving the LS
equation as a function of the basis size NWP (NQ) for nE scattering energies.
Here, p is the number of processing threads used in the parallel calculation. Note
that in the WPCD method we calculate nE = NWP energies. The complexity
models used are shown in Paper I.

3.3.2 Some considerations in utilising a GPU
Much of Paper I was dedicated to documenting the efficiency a GPU can offer
in solving the WPCD LS equation, using a detailed comparison with the MI
method. The study provided much insight into the handling of a GPU and how
hardware layout, if not considered, can severely impact performance. In this
section I will summarise these findings.

A GPU is in essence a computer processing unit with several times more
FP32 units than a CPU3. An FP32 unit is a single part of a chip that can, in a
single clock cycle, multiply two 32-bit floating-point numbers and add another
on the form a × b + c. It may be interesting to mention that, e.g., typical
BLAS matrix-matrix multiplication routines also work with this format, i.e.
A × B + C, which is written to fully utilise the efficiency of the FP32 units. A
GPU is designed with a focus on throughput rather than computing rate, i.e.,
high clock frequency, which is a design principle that works well with parallel

3It is common to speak of computing “cores” rather than FP32 units. However, this is
an ill-advised terminology to use for GPU-CPU comparison as their cores differ in many key
aspects from a computing-power point of view.
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Figure 3.2: Total runtimes of the parallel WPCD-LS implementation versus
wave-packet basis size, for three different GPUs ([91–93]) with decomposition
of runtime for the V100 GPU. The omitted overhead for the V100 total runtime
accounts for, e.g., potential matrix construction and calculation of observables.

.

algorithms. See for example Ref. [88] for a pragmatic study into the capabilities
of a modern GPU, and Ref. [89] for an introduction to GPU programming
and architecture. In my implementation I used the CUDA interface [90] for
programming Nvidia GPUs.

Figure 3.2 shows the time spent by three different GPUs on solving Eq. (3.10)
for J ≤ 30, using a CUDA-based implementation for utilising Nvidia GPUs. It
is clear that the majority of the time is spent diagonalising the NN Hamiltonian
matrix (Eq. (3.3)). This is because the diagonalisation has a complexity cost
scaling as O(N3

WP), while solving the LS equation and other overheads of the
algorithm are far cheaper.

Focusing on the Hamiltonian diagonalisation in Fig. 3.2, there is a different
trend in time usage below NWP = 50. The two data points, shown at NWP = 16
and NWP = 32 in the figure, are different due the size of on-chip memory in
the GPU. A GPU, like a CPU, has memory caches available on the chip. These
caches are usually 64 kiB big and are typically ∼ 100 faster for the computing
units in the chip to access. With 64-bit precision, the Hamiltonian matrix
requires 322 × 64 b = 8 kiB to be stored and thus fit on the chip for NWP = 32.
Due to coupled channels, however, we also get 642-size matrices. At NWP = 48
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we get uncoupled channels that fit on-chip and coupled channels that do not,
which explains the non-linear transition between NWP = 16 and NWP = 48.
The on-chip memory-size dependency brings to light that one must take care to
efficiently utilise the loaded memory on-chip before disregarding it. This applies
to CPUs as well, but it is more important to consider in GPU efficiency due
to the massive read-write accesses to the GPU global memory from parallel-
running threads, and the lower clock rate increasing random-access time to the
global memory.

3.3.3 Convergence of the WPCD method for NN scatter-
ing

There are two WPCD method parameters that affect convergence in the eval-
uation of the T -matrix, NWP and the number of quadrature points used to
integrate potential matrix elements within a bin, Nk. I typically find conver-
gence already at Nk ∼ 10. I will therefore focus on the convergence with NWP
in this section, and its balance with computational performance.

First, however, I mention the choice of distribution of the FWP boundaries
ki from Eq. (3.1). I have used a Chebyshev distribution {xi}n

i=1, generally
written as [51, 85]

xi = s tant

(
2i− 1
4NWP

π

)
, i = 1, . . . , n, (3.11)

where t is the sparseness degree and s is a scaling factor. This distribution
focuses the boundaries on a close region around s, as a function of t, while
providing grid points towards zero and infinity. Smaller t provide a denser
mesh around s, giving sparser layouts of boundaries in the asymptotic regions.
To avoid excessive tuning of t and s to any specific potential, I set t = 2 and
s = 100 MeV for all potentials used for NN scattering in this work. Here, as
in Paper I, I use momentum FWPs with pi = xi. As I will show, these choices
provide accurate results in the range NWP ∼ O(10) − O(102).

The convergence of the total np cross section with NWP is shown in Fig. 3.3,
in the same style as Fig. 2.3, using the N2LOopt potential [67]. Already at
NWP ∼ 32 is convergence reached to within one percent of the MI-method
benchmark for most energies. However, it is clear that the WPCD method has
a very slow convergence beyond this. With a sixteen-fold increase in basis size,
to NWP = 512 from NWP = 32, we only improve convergence by a factor of
roughly 10. Regardless of the slow convergence, as an approximative method the
WPCD method works well, with results that converge towards the plane-wave
results of the MI-method as NWP → ∞.
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Figure 3.3: Convergence with NWP for the total np cross section relative a MI-
method benchmark with Jmax = 30, NQ = 96. Calculations were done using
the N2LOopt potential.

Performance

As discussed in Chap. 1, I focus on the WPCD method as a means of ameli-
orating statistical inference. It is apparent from the discussion above that the
WPCD method implemented on a GPU is efficient in NN scattering. Effi-
ciency besides, however, I will in this section focus on the speed of the parallel
WPCD method implemented on a GPU versus an efficient implementation on
the CPU of the MI method [94]. Note that the convergence of the MI method
was documented in Sec. 2.2.3.

Due to the slow convergence of the WPCD method, it is reasonable to expect
its advantage to be when high accuracy is not needed. The necessary accuracy
is determined by uncertainty; theoretical model uncertainty and experimental
data uncertainty. If the method inaccuracy is comparably low, we are free to
reduce method accuracy to increase computational speed. Thus, Paper I was
focused on how the WPCD and MI methods compare in speed at a given level
of accuracy. We used the root-mean square error (RMSE) of the total np cross
section, with a benchmark calculated using the MI method with NQ = 96 and
J ≤ 30, as a measure of the accuracy level.

Figure 3.4 shows an adaptation of Fig. 8 in Paper I focusing on the full energy
region ELab ∈ (0, 350] MeV. Just as interpolation can be used between FWP
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Figure 3.4: Performance of the WPCD GPU-implementation versus an efficient
implementation [94] of the MI method, shown by comparing the time spent
solving the LS equation against the RMSE of the total np cross section for
ELab ∈ (0, 350) MeV. Top panel: The markers contain the value of NWP (NQ)
used for WPCD (MI), with nE set equal the basis size. Bottom panel: Same as
top panel but with nE fixed at different values for the MI method (see legend).
Calculations were done with the N2LOopt potential.

midpoints, interpolation can be used for calculated MI solutions at nE points.
The figure shows results with nE set4 both equal NQ, as well as set freely, with

4The energies were distributed on the FWP midpoints gotten from a NWP = nE Cheby-
shev distribution. This placed the predictions of the two methods at equal scattering energies,
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phase-shift linear interpolation used to extract all energies in ELab ∈ (0, 350]
MeV. When setting NQ = nE , the WPCD GPU-implementation outperforms
the MI method except for at very low RMSEs of the total cross section. Setting
nE freely, however, we see that the MI method is faster only for RMSE ≲ 2-4
mb, which makes WPCD advantageous for RMSE ≳ 4 mb. This was interesting
since a recent analysis of χEFT truncation errors in NN scattering predictions
lay at about 5 mb at 95% degree-of-belief (DoB) [28]. The exact region of
advantage for WPCD depends on the studied potential, but the conclusion
remains the same: WPCD is a faster method than MI if some inaccuracy is
acceptable.

3.4 The Faddeev equations in WPCD
The Faddeev equations project onto a wave-packet basis using the same ap-
proach as in the LS equation, but it is necessary to first define NNN wave-
packet states |Xij⟩. Using the three-body formalism from Sec. 2.1, we define
the wave-packet equivalent of |p, q⟩ as

|Xij⟩ ≡ |xi⟩ ⊗ |x̄j⟩, (3.12)

where both |xi⟩ and |x̄j⟩ are defined as in Eq. (3.1). Here, |xi⟩ corresponds to
the pair-system momentum |p⟩, and |x̄j⟩ to |q⟩. Throughout this text I reserve
the bar-notation to distinguish the two. We can insert and get

|Xij⟩ = 1√
NiN̄j

∫
DiD̄j

dp p dq q f(p)f̄(q)|p⟩|q⟩ , (3.13)

where I note that the boundary distributions and weighting functions can be
different for the two momenta. Similarly to FWPs, we can define SWPs by
simply replacing the |xi⟩ wave packets with |zn

i ⟩, such that

|Zα
ij⟩ ≡ |zn

i ⟩ ⊗ |x̄j⟩, (3.14)

where α = {n, γ,Γ} as introduced in Sec. 2.1. The expression for the SWP has
identical form to Eq. (3.13).

We can derive analytical expressions for all operators in Eq.(2.39) using the
FWP and SWP bases, see App. B of Paper II, which written in matrix form
for compactness is

U(E) = CT PVC + CT PVCG(E)U(E) , (3.15)

providing a fair comparison.
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where the matrix elements are defined by

V : ⟨Xα′

i′j′ |v̂|Xα
ij⟩ ,

C : ⟨Xα′

i′j′ |Zα
ij⟩ ,

P : ⟨Xα′

i′j′ |P̂123|Xα
ij⟩ ,

G : ⟨Zα′

i′j′ |Ĝ(E)|Zα
ij⟩ ,

U : ⟨Zα′

i′j′ |Û(E)|Zα
ij⟩ .

(3.16)

The U -matrix is now expressed in the SWP basis, meaning it contains both the
elastic scattering channel as well as the break-up channels. Paper II shows the
analytical derivations of these matrix elements where possible. Note I make no
attempt to correlate the indices i, j, and α to matrix indices as it depends on the
computational implementation of the method. How one chooses to index the
matrices, however, has implications on computational cost since it affects the
order in which one reads from the computer memory. I will detail this further
in the next section where I cover my implementation.

3.4.1 Solving the Faddeev equations
Disseminating the computational problem of solving Eq. (3.15) can done by first
considering it in a more compact form,

U = A + AGU , (3.17)

where A ≡ CT PVC. As discussed in Sec. 2.3.2, the large matrix dimensions
from the NNN state space makes it unviable to use MI methods to solve this
equation. Typically for NNN observables, the WPCD method converges in the
order of Np = Nq = NWP ∼ O(102) and Nα ∼ 20-60, in the ELab < 50 MeV
region, where Np and Nq are the number of |xi⟩ and |x̄j⟩ states. This means
each matrix would have, at least, (NpNqNα)2 ∼ 4 × 1010 elements, which is the
equivalent of 298 GiBs of computer memory with double floating-point precision
per matrix. This memory impact is larger than what most modern computers
have. This means solving the equation on the form Ax = b using standard
LAPACK [95] routines is not a practical approach.

Another way forward, touched upon in Chap. 2, is a Neumann series with
Neumann terms Ni. We can realise this by expanding the equation, i.e.

U = A︸︷︷︸
N0

+ AGA︸ ︷︷ ︸
N1

+ AGAGA︸ ︷︷ ︸
N2

+ . . . =
m→∞∑

i=0
A [GA]i︸ ︷︷ ︸

Case 1

=
m→∞∑

i=0
[AG]i A︸ ︷︷ ︸

Case 2

.

(3.18)
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Figure 3.5: Illustration of structures of constituents in kernel A. Matrices V, C,
and CT are block-diagonal with identical structures, while P is typically highly
sparse (∼ 99.9%) with seemingly randomly distributed non-zero elements.

This equation is simple to solve in the sense that we are only left with straight-
forward matrix multiplication to solve for U. This is a significant advantage
since matrix multiplication can be done piecewise without requiring much com-
puter memory. Specifically, the matrix A can be constructed in segments with
which I can multiply Ni−1 and update to Ni.

Perhaps unexpectedly, the computational bottleneck of this updating routine
is not the matrix-matrix multiplication [AG]i A, or the cost of multiplying the
diagonal matrix G(E) which is completely negligible, but rather the repeated
kernel construction of A. An immediate thought is to prestore A to disk, but
the slow reading of the disk makes it an inefficient approach. Additionally, in
the larger channels with Nα = 60, we would need almost 2700 GiBs of disk space
for Np = Nq = 100 . Fortunately, there are several important aspects of C, V,
and P that can be utilised when constructing A, which I will outline below in
addition to the other technicalities of extracting on-shell U -matrix elements.

Constructing A: Step 1 - handling memory

In Fig. 3.5 I illustrate the structure of non-zero matrix elements in the matrices
that enter the generation of A. The three matrices V, C, and CT all have the
same block-diagonal structure that occurs since they represent two-body oper-
ators in a three-body basis5. Note that the matrices are only block-diagonal if
the |α⟩-basis is set up to have NN -coupled channels neighbouring one another,
otherwise the off-diagonal blocks will be further from the diagonal. Where
off-diagonal blocks appear has no effect on the computational efficiency of the
implementation as it is fast to lookup non-zero blocks since Nα = O(10). How-
ever, for simplicity I will refer to these as block-diagonal in the remaining text.

Many of the blocks in the block-diagonal matrices are repetitions of the
same (n′n)-channel occurring in different (α′α)-channels. To avoid storing the

5This is seen from the delta functions in Eqs. (B5), (B6), and (B10) of App. B in Paper
II.
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same blocks repeatedly, I store the unique NN couplings and construct a map
of where the blocks appear in the NNN representations V and C. Since only
CT and Ṽ ≡ VC appear in the Faddeev equations, these are the only objects
necessary to store, i.e.

A ≡ CT PVC = CT PṼ . (3.19)

Note that Ṽ is the three-body equivalent to the one used in Eq. (3.9).
The permutation matrix P is very sparse, typically about 99.9% sparse in

a wave-packet basis, and with no apparent structure for its non-zero elements.
The sparseness is almost entirely due to momentum violation. Its somewhat
random structure entails I cannot find any simple segregation of elements into
some smaller state space like with the block-diagonal matrices. Therefore, I use
a standard sparse matrix storage format. Sparse-matrix storage formats are
based on only storing non-zero matrix elements as well as their row and column
indices. There are several sparse matrix storage formats available. The simplest
of the formats is the coordinate format (COO) where each non-zero element v is
stored together with its row-index r and column-index c, i.e. we make an entry
(r, c, v) and store it. This format reduces the memory footprint of matrices
with fewer non-zero elements than a third of the total size of the matrix. This
memory impact can be reduced a bit further by using a compressed sparse
row (CSR), for row-major storage, or compressed sparse column (CSC) format
for column major storage, both of which require sorted indices in the leading
matrix dimension. Tic-tac calculates and stores P in a row-major COO format
for simpler manipulation, and converts it to the CSC format when solving the
Faddeev equations. For further details on sparse matrix storage and handling I
refer the reader to, e.g., Chap. 11 of Ref. [76].

Constructing A: Step 2 - efficient multiplication

Here I summarise the algorithm used to efficiently construct A in column-wise
segments to use in case 2 of Eq. (3.18). It is important to note that the compu-
tational bottleneck of constructing A is not the actual floating-point operations
required for matrix-matrix multiplication, but the memory accesses involved.
As with the GPU, the CPU uses ∼ 100 clock-cycles to retrieve something from
the computer memory, but only a single clock cycle for multiplication. Thus, it
is pivotal to minimise the lookup of elements to multiply, and to congregate the
memory transfers to utilise the full width of the memory bus. This algorithm,
currently used in Tic-tac, is invented with these principles in mind.

The outer matrices CT and Ṽ in Eq. (3.19) are stored as non-zero blocks,
and can be retrieved using the (α′α)- to (n′n)-channel mapping discussed above.
As mentioned, the permutation matrix P is used in a CSC format, as column-
major storage is favourable for case 2. If using the approach I outline here,
it is advisable in case 1 of Eq. (3.18) to use the CSR format instead. It is
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straightforward, although memory intensive, to transform between the CSC
and CSR formats.

The A-construction algorithm constructs a single column c of A at a time.
I therefore first perform the matrix product PṼ,

[PṼ]ic =
N∑

j=1
PijṼjc , (3.20)

where N ≡ NαNqNp. In the current implementation, an index i is given by the
α-, q-, and p-indices as

i ≡ iαNpNq + iqNp + ip , (3.21)

where notation follows naturally. This indexing was an informed choice since the
block-diagonal matrices are completely dense in ip for a given block, meaning
entire rows or columns of the matrix can be transferred from memory simultan-
eously. For a case-1 approach, one will likely profit by interchanging iq and ip.
The product above is then written

N∑
j=1

PijṼjc =
Nα∑

jα=1

Nq∑
jq=1

Np∑
jp=1

Piαiqip, jαjqjpṼjαjqjp, cαcqcp . (3.22)

The two-body operator restricts the index jq = cq, and there only exist non-
zero entries of Ṽ when jα and cα provide a coupling (n′n) that is allowed.
Thus Ṽ strongly restricts the range of required multiplications in this sum.
The column-major CSC format of P is advantageous here since it immediately
provides all non-zero elements in column j. See Fig. 3.6 for an illustration of
the PṼ generation. Note that the column-product of PṼ is stored in a regular
dense format.

The second matrix product, CT PṼ, is less complicated to perform as there
are no sparse matrices involved when PṼ is stored densely. I can loop through
the blocks of CT and multiply with the corresponding range in PṼ to give a
column-segment of A, using standard BLAS. This is illustrated in Fig. 3.7.

Resummation of the Neumann-series

The Neumann series in Eq. (3.18) is not guaranteed to be convergent for nuclear
potentials. Divergences can occur if any of the Weinberg eigenvalues of the
integral-kernel of a Fredholm type-II equation surpass the unit circle [96]. The
size of the largest eigenvalue then provides a measure of how rapidly one can
expect perturbative convergence, if it occurs. This was shown in detail for chiral
NN potentials in [97], where NN bound states cause divergences in the series
expansion of the LS equation. The appearance of bound states in the iterated
channels of the Faddeev equations causes divergences as well.
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Figure 3.6: Illustration of the PṼ matrix-vector multiplication for column index
c, shown in blue. The matrix Ṽ is block diagonal and places strong restrictions
on the number of elements of P required for multiplication, shown in red. This
makes a column-major sparse storage format of P, such as the CSC format,
more efficient for computer memory accesses.

Figure 3.7: Illustration of the CT PṼ matrix-vector multiplication for column
index c, shown in blue. For each block in CT one multiplies with the corres-
ponding range, shown in red, in the column of PṼ.
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To cope with divergent series, one can use a Padé approximant (PA), see
for example Ref. [98]. The series of some meromorphic function f(z) is ap-
proximated as a fraction two N - and M -order polynomials, PN (z) and QM (z),
respectively, as

f(z) = a0 + a1z + a2z
2 + . . . = PN (z)

QM (z) , (3.23)

where ai play the role of the Neumann terms. This method can approximate
singularities in f(z), unlike a simple polynomial expansion as given on the left-
hand side. The polynomial coefficients of PN (z) and QM (z) can be evaluated
as determinants constructed from the coefficients ai, see for example App. C
of Paper II. We can use PAs in Eq. (3.18) by letting z = 1 and f(z) be the on-
shell U -matrix element of interest, U(idjα′

d
,idjαd), and ai be the corresponding

on-shell element of Ni, i.e. [Ni]idjα′
d

,idjαd
. Here, j is the bin containing the

energy E = Ek for some finite set {Ek}nE

k=1 we wish to calculate, and id, α′
d

and αd index the on-shell deuteron channels. Note there are only 2-3 deuteron
channels given J Π.

The parallelism of the WPCD method as I have implemented it can be made
apparent here by noting that the on-shell solutions of the U-matrix depend
solely on the on-shell elements of Ni. The parallelism comes with {Ek}nE

k=1; we
can construct a layered Ni matrix with nE submatrices Ni,k that contain all
rows containing on-shell elements for Ek. This entails that we can reuse the
expensive construction of A by multiplying it with a different resolvent per set
of rows, i.e.

[Ni,k]idjα′
d

,idjαd
= [Ni−1,kG(Ek)A]idjα′

d
,idjαd

. (3.24)

Note that j depends on Ek. As stated, it is usually best to use bin mid-points
for Ek, in which case j = k in this submatrix-segmentation of Ni. Unlike
WPCD in NN scattering, I have not implemented energy-averaging in Tic-tac,
following [51].

I have covered all the steps involved in solving the Faddeev equations effi-
ciently in this section. Tic-tac follows a simple set of steps shown in Fig.3.8,
which have all been presented above. Tic-tac contains much additional func-
tionality involving reading and writing from/to disk, setup of potential matrices,
internal validation checks, and other user-controllable services. However, none
of these functions are particularly time-consuming compared to iterating the
Faddeev equations. Note that Tic-tac solves each NNN -channel J Π separ-
ately, allowing for parallel execution of different NNN channels.

Note that Tic-tac provides U -matrix elements in a SWP basis. These can
be converted to a plane-wave basis using Eq. (D5) in Paper II. For calculating
observables, I refer the reader to the discussion of Chap. 2 and Paper II for
extracting M -matrices, as well as Refs. [33, 60, 62] for projecting M using
Eq. (2.1).
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Figure 3.8: Basic flowchart of Tic-tac program execution.

3.4.2 Convergence of the WPCD method for elastic Nd
scattering

The WPCD method for solving the Faddeev equations has several method para-
meters that systematically affect the convergence of scattering observables. A
summary of the parameters is shown in Tab. 3.2, making up a total of 11 para-
meters that require inspection and tuning. Here I will summarise the conver-
gence of Nd scattering observables with respect to the parameters, in the order
of appearance in the table, except for the wave-packet basis size which is left
for last. The Chebyshev distribution parameters were already discussed above
and need not be touched upon further here. This applies to the convergence of
V with respect to Nk as well. However, I note that the Faddeev calculations
presented here are based on momentum FWPs in a Chebyshev distribution with
t = 1 and s = 200 MeV.

The permutation matrix is projected to the wave-packet basis with cyl-
indrical quadrature variables as seen in Eq. (B13) of Paper II. I reserve Nx

and Nϕ to denote the number of quadrature points used for each variable, de-
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Table 3.2: Summary of WPCD method parameters for solving the Faddeev
equations. See text for symbol definitions.

Method step Number of parameters Parameters Comments
FWP basis 4 Np, Nq, (t, s) Choose FWP type
V 1 Nk Negligible cost
P123 2 Nx, Nϕ One-time cost
C 0 None Predetermined
G(E) 1 E Analytically known
U(E) 3 m, N , M m = N +M

noted x and ϕ in the Paper, respectively. Figure 3.9 presents the convergence of
randomly-drawn elements of the P123-matrix with respect to Nx and Nϕ. The
convergence is trivial with Nϕ, as Nϕ ∼ 20 appears already convergent. With
Nx the convergence trend is more oscillatory but note that most of the larger
matrix elements converge already at about Nx ∼ 30. The size of the FWP basis
has little impact on the convergence. In my calculations I have typically used
Nx = Nϕ = 48 and have seen no noticeable effect in scattering observables in
going up to Nx = 96.

Following the definition of the FWP basis and construction of V, there are
no parameters that enter the construction of C, or G(E) beyond the energy
E. The energy, as discussed, could either be integrated out to provide energy-
averaged U -matrix elements or set on bin mid-points. As stated, I used the
latter in my calculations and set E on the FWP bin midpoints.

The Neumann-series truncation parameter m from Eq. (3.18) must be set
so that m = N + M . Having seen no computational advantage to asymmetric
selections of N and M , I use “symmetric” PAs with N = M = m

2 . Figure
3.10 shows convergence of the PAs with respect to N and M for two U -matrix
elements. The figure shows the typical trend of the PA; it converges usually at
some value of N = M in the range [5, 12], thus requiring m ∈ [10, 24] Neumann
terms. Note the lower-right panel. Here we see that the PA can start to di-
verge due to numerical instability in the polynomial fraction of Eq. (3.23). The
instability occurs since the polynomials have very large values due to diverging
Neumann terms.

Since the computational cost of setting up Neumann terms dominates the
computational time, Tic-tac uses four tests for convergence and the code stops
setting up Neumann terms should any one of the conditions be satisfied:

1. If i = m in Eq. (3.18), i.e., the iterations reach an upper limit. I have set
this upper limit to m = 29.

2. If no better PA is found within 4 increments of N and M .
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Figure 3.9: Convergence of 200 randomly-drawn P123-matrix elements in a
FWP basis as a function of the number of quadrature points Nx and Nϕ for x
and ϕ, respectively, for NWP = 50 (blue, top) and NWP = 100 (orange, bottom).
The dashed lines show the average of plotted lines.

3. If the difference between two subsequent PAs is less than the 4th significant
digit of the prior PA.

4. If the difference between two subsequent PAs is less than single floating-
point precision.

Lastly, there is the number of wave packets to use, which was covered ex-
tensively in Paper II. In the Paper, we worked with a partial-wave truncation
defined by J ≤ 3 and J ≤ 17

2 . These values provide well-converged results [33]
in the ELab ≤ 50-100 MeV region, depending on the observable. Note I have
seen no advantage to use asymmetric selections of Np and Nq and will simply
let NWP ≡ Np = Nq.

In Paper II it was found that in the aforementioned energy region we can typ-
ically use NWP = 50-100 to land at around 99% of convergence. To benchmark
Tic-tac, and to expand on the benchmarking of Paper II, I show in Fig. 3.11 a
reproduction of observables using benchmarking data published by the Bochum-
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Figure 3.10: Convergence of PAs with number of Neumann-series terms m =
2M = 2N for U -matrix elements Ul′j′,lj for two NNN partial-wave states as
labelled, using the N2LOopt potential. The energies are randomly drawn FWP
midpoint energies. The solid (dashed) lines are real (imaginary) components.
The relative difference is taken with respect to the converged U -matrix element
returned by Tic-tac, which can be seen to lie at N = M = 6 or 7 in the two
cases.

Krakow collaboration [33] at ELab = 13 MeV, made with the Nijmegen-I poten-
tial [99] and using charge independence breaking (CIB) for the 1S0-interaction.
Except for the low-angle discrepancy of the Ay observable, the Tic-tac code
manages to reproduce the benchmark well. For further convergence document-
ation, and comparison with experimental data, see Paper II.
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Figure 3.11: Convergence with NWP of the WPCD-generated differential cross
section and common spin-observables for elastic nd scattering at ELab = 13 MeV
with the Nijmegen-I potential. The benchmark (dashed, black) is generated
from Tab. 13 of Ref. [33]. The calculations were done with J ≤ 7

2 and using
CIB for 1S0-interactions.
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Chapter 4

Posterior predictive distributions
for neutron-deuteron scattering
cross sections

In this chapter, I will discuss the study of Paper III. In the paper, we used
PPDs to quantify the LEC variability in nd scattering predictions at scattering
energies up to 67 MeV, using chiral 2NFs up to N3LO. As mentioned, the
motivation for our study was to root out the LEC variability of 2NFs as the
cause of long-standing theoretical discrepancy to experimental data in theNNN
continuum. This kind of study had not yet been performed in a fully Bayesian
framework.

The LECs were conditioned on NN scattering data in Refs. [31, 32] using
Bayesian methods. To calculate nd scattering amplitudes we used the aforemen-
tioned code in Chap. 3, Tic-tac, to solve the AGS equations using WPCD. To
enable the study, we had to balance computational cost with accuracy, resulting
in the use of extrapolation of entire PPDs.

Section 4.1 starts with a discussion on theoretical predictions and how one
can account for theoretical uncertainty using Bayesian statistics. In Sec. 4.2,
I will summarise the statistical model used in Paper III for quantifying the
predictive uncertainty, and describe how we balanced predictive accuracy and
computational speed to gain statistical insight. Lastly, in Sec. 4.3, I present the
results of our analysis.

4.1 Theoretical predictions and uncertainty
A prediction, yprediction, of an observable, y, is aimed at reproducing observa-
tional data, ydata, as well as possible. In general terms, a theoretical prediction
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can be related to the data via two unknown error-terms, δyprediction and δydata,

ydata = yprediction + δyprediction + δydata . (4.1)

Here I set δydata equal to published experimental error estimates. The prediction
error, δyprediction, is important to quantify to know the prediction accuracy1.
Assuming independent sources of error, the prediction error can be broken down
into separate terms,

δyprediction = δymodel + δymethod + δyother , (4.2)

where δymodel is the error of the model itself, for example mistakenly using
a linear model for analysing oscillating data, and δymethod is the error of the
method used for observable calculations, for example using too small basis sizes
in solving the Schrödinger equation. The last term, δyother, is included to
encompass other sources of uncertainty, such as numerical error, which I safely
neglect here.

If the model error term is neglected, one presumes a theoretical model that
is error-free. Then, the inference process will try to condition the model to
reproduce the data exactly, within experimental and method errors. The con-
sequence is an overfitted model that is likely to fail when predicting new ob-
servables not included in the inference process. This problem is summarised
in, e.g., Ref. [100]. An advantage of χEFT is that it provides a handle on its
power-series truncation error through the systematic convergence trend of a
power series. We are now left with a challenge; we have a priori unknown LECs
whose determination requires inference from data, entailing LEC-uncertainty
on top of the uncertainty from the χEFT truncation error. These uncertainties
must be quantified to predict new observables with confidence. This is where
we can use methods from Bayesian statistics.

Bayesian statistics is built on Bayes’ theorem, which for LECs being condi-
tioned on a dataset D can be written [101]

pr(α⃗|D, I)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
pr(D|α⃗, I) ·

prior︷ ︸︸ ︷
pr(α⃗|I)

pr(D|I)︸ ︷︷ ︸
evidence

. (4.3)

Here, the posterior probability density function (PDF), pr(α⃗|D, I), is a distri-
bution representing the DoB in values of the LECs, α⃗, given data, D. The
prior information, I, symbolises what we know or suspect prior to inference

1We usually do not get different results for repeated theoretical predictions, except for
stochastic methods such as Monte Carlo simulations, making “theoretical precision” an am-
biguous term. Since I do not develop stochastic methods in this work, I will only talk of
prediction accuracy.
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from D. For example, I can reflect that α⃗ should have natural values, as well
as which functions to use for the likelihood and prior distributions, and the
functions’ hyperparameters, such as the variance of a normal distribution. The
evidence serves as a normalisation constant here and is irrelevant for parameter
estimation such as the inference of LECs.

With a LEC posterior in place, one can construct a PDF for observable
predictions through marginalisation, where the LEC-dependency is integrated
out,

pr(y|D, I) =
∫

pr(y|α⃗,D, I)pr(α⃗|D, I) dα⃗ . (4.4)

This PDF quantifies the uncertainty in the prediction of y for a given χEFT
model conditioned on D. Then, for example, we have pr(y|D, I) = yprediction +
δymodel + δymethod. When y is a new observable not contained in D, this mar-
ginalisation provides a PPD. At this point it seems natural that, as opposed to
a single-point prediction, a distribution arises due to the uncertainties inherent
in our predictions as well as in the experimental data.

Note that one can also marginalise with respect to theoretical models, such
that one arrives at an observable PPD which contains several theoretical pre-
dictions. This is useful in investigating new physics where the theoretical
foundations are uncertain, see for example Refs. [102, 103], but such model-
marginalisation was not used in Paper III.

4.2 Statistical model for evaluating PPDs
It is perhaps unsurprising that evaluating a multi-dimensional LEC PDF usu-
ally requires thousands of model predictions [31, 32]. A PPD typically requires
fewer evaluations, roughly on the order of one hundred for a one-dimensional
distribution. The number of required distribution samples scales with the di-
mensionality of the distribution. The cost and speed of computational theor-
etical predictions of the set of observables y contained in D determine whether
statistical inference is achievable. To evaluate the integral in Eq. (4.4), there
are at least three practical problems we must control as best as possible:

1. Sufficiently many uncorrelated distribution samples. The distributions,
pr(y|D, I) and pr(α⃗|D, I), are not known analytically. Instead, one must
numerically sample them using algorithms such as Markov chain Monte
Carlo. One sample is a single point in a distribution, i.e., a single ob-
servable prediction, y, or a set of LEC values, α⃗. It is important to have
sufficiently many uncorrelated samples resolution to accurately represent
the distributions. Correlation of samples can be determined by quantify-
ing the correlation length in sequences of samples, like a Markov chain.
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2. Sufficient computational accuracy and speed. While sampling the PPD,
we must also stay within a limited computational budget. To ensure
sufficiently low cost, a balance between the method accuracy and speed
must be struck. This is where Paper II served as a guideline for the study
of Paper III.

3. Accurate uncertainty modelling. The prediction uncertainty must not spoil
our study of the LEC variability. This requires an accurate model for our
uncertainty to ensure that the model and method errors do not spoil the
content of a calculated PPD. I note that we did not model the method
uncertainty, as I will discuss further in the next section.

These problems are correlated, as we must strike the right balance between
number of PPD samplings, method basis size and accuracy, and uncertainty
budget. In this section I will summarise how we addressed these issues in the
context of Paper III, in the order of appearance in the list.

4.2.1 Sample correlations and PPD integral evaluation
In Refs. [31, 32], a Bayesian inference study was done using Hamiltonian Monte
Carlo (HMC) [104] to extract the PDFs for the LECs in chiral 2NFs up to
N3LO. The PDFs were conditioned on NN scattering cross sections and scat-
tering length data via Eq. (4.3). The advantage of HMC is that it can provide
sample correlation lengths at around O(1), i.e. two subsequent samples can
be uncorrelated. For our case, this is not strictly necessary as we only require
O(102) for the PPD sampling, as mentioned earlier. While our analysis was too
limited to determine the PPD correlation length, see for example the discussion
of Ref. [31], we saw no obvious correlation through Fig. 1 of Paper III.

The number of samples had to be decided beforehand due a limiting, yet
large, computational budget of ∼ 500, 000 core-hours. Consequently, we had
to balance method accuracy and the number of samples required for obtaining
PPDs with sufficient quality. While PDFs are usually high-dimensional func-
tions, requiring a vast number of samples to be accurately portrayed, marginal
PPDs are one-dimensional distributions for a given observable and can typically
be accurately portrayed by O(102) samples. In Paper III, we used 100 samples
from the LEC PDFs at each chiral order.

4.2.2 Trading method accuracy for computational speed
In its current state, the code, Tic-tac, cannot calculate 100 samples per chiral
order for basis sizes NWP ≳ 100, as typically required for sufficient accuracy,
with the computational budget stated above2. This basis size was established

2As this is hardware-dependent, I note we used computing nodes with 2x Intel Xeon Gold
6130 CPUs, each with 16 cores.
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in Chap. 3 and Paper II to typically give converged solutions up to ELab ≈ 70
MeV, where we start to see a difference between NWP = 100 and 125. Depend-
ing on the observable, we can even calculate accurately up to ELab = 100 MeV,
where using J ≤ 3 will start being insufficient for convergence [33]. Therefore,
we performed calculations at all ELab ≤ 100 MeV. Calculating predictions in
such a wide range of energies was not a problem due to the cheap cost overhead
for acquiring multiple on-shell scattering amplitudes by solving the AGS equa-
tions with WPCD. To extract amplitudes at arbitrary energies we used linear
interpolation of calculated amplitudes at the NN Hamiltonian eigenvalues, as
follows from using the SWP basis; see Chap. 3.

As discussed, the WPCD method has a quartic computational scaling with
NWP, i.e., O(N4

WP). This meant we could significantly reduce computational
costs by going to NWP = 75 yet achieve reasonable solution accuracy. Thus,
we sampled the PPDs with NWP = 75. However, since this basis size does not
provide fully converged solutions, we resampled the PPDs at NWP = 30 and 50,
at a negligible additional cost. This allowed us to study the convergence trend of
the entire PPD. Furthermore, we calculated the first 10 samples at NWP = 100
to investigate the almost-converged distribution, as far as the budget allowed.
Upon inspection of the PPDs at different NWP we saw that the width and
shape remain largely the same. This can be seen in Fig. 3 of Paper III where
nd differential cross section at ELab = 12 MeV for N2LO. Thus, a single-point
calculation at some higher value for NWP would allow us to extrapolate entire
PPDs from NWP = 75.

To extrapolate PPDs, we calculated the maximum a posteriori (MAP)
points of the LEC PDFs for NWP = 30, 50, 75, 100 and 150, also shown in
Fig. 3 of Paper III. The MAP predictions show slow and steady convergence as
expected for the WPCD method. Thus, we extrapolate by shifting all PPDs
at NWP = 75 by the distance between the MAP predictions at NWP = 75
and NWP = 150. Note, however, that even NWP = 150 is not fully converged,
as shown with Paper II. Full convergence is not so important as we are mainly
interested to see if LEC variability can be the cause of the long-standing theoret-
ical and experimental discrepancies in the NNN continuum. An offset accuracy
of O(1) percent of the observable value, as one can expect at NWP = 150, is
negligible for discrepancies at O(10) percent, as seen in, for example, the Ay

puzzle. I will return to this observable later in the text.
As a sidenote, the surprisingly consistent PPD widths for different basis

sizes may indicate a possibility to speedup the Tic-tac code. The consistency,
albeit in a small part of the model parameter space, suggests that the slow
convergence of Nd scattering observables with NWP is not primarily due to
a coarse-grained representation of the nuclear potential. We investigate the
topic of coarse graining in greater depth in the discussion surrounding Fig. 4 of
Paper I. Also supporting this claim, we saw convergence of the NN total cross-
section to within a few percent for almost all ELab when using only NWP = 64
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in Chap. 3, see Fig. 3.3. Thus, it seems plausible that the permutation oper-
ator is suboptimally represented in a wave-packet basis due to its complicated
momentum-conservation structure [85]. To circumvent a suboptimal represent-
ation, one proposal is to calculate the inner-product P̂ v̂ in Eq. (2.39) using
the standard spline basis [17, 73]. Afterwards, P̂ v̂ can be projected onto an
SWP basis and the kernel A in Eq. (3.17) can be used as normal. With this
approach, one can possibly allow for a smaller basis size, NWP, in solving the
AGS equations.

4.2.3 Theoretical uncertainty modelling
Earlier, I mentioned that χEFT provides a direct handle on its theoretical
uncertainty through the systematic truncation error. To quantify this, we can
consider a general χEFT description of a prediction, yprediction = y

(ν)
theory, with

truncation at chiral order ν [105],

y
(ν)
theory = yref

ν∑
k=0

ckQ
k , (4.5)

where the reference value yref is the natural scale of the observable set by,
e.g., the experimental value or the LO prediction, while ck are dimensionless
expansion coefficients, expected to have natural values for all k. Here, Q is
dimensionless, whose value is an ongoing topic of discussion, see for example
Ref. [106], but we define it as

Q ≡ max
(
q

Λb
,
mπ

Λb

)
, (4.6)

and where we use Λb = 600 MeV for the χEFT breakdown scale following
Ref. [32], and q is the external momentum, which in this case is set to the nd
relative momentum. The reference, yref, was set as the LO MAP prediction in
the cases of the total and differential cross sections, while it was set to unity
for the spin-observables. The coefficients are extracted from predictions at
subsequent orders,

c(ν) = y(ν) − y(ν−1)

yrefQν
. (4.7)

The truncation uncertainty is contained in the omitted terms of the series,

δytheory = δy
(ν)
theory = yref

∞∑
k=ν+1

ckQ
k , (4.8)

where we must model the unknown coefficients ck for k > ν. Following Ref. [31],
we assume the coefficients to be uncorrelated and normally distributed with
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variance c̄2 and zero mean,

pr(ck|DT , I) = N (0, c̄2) . (4.9)

Here, DT = {ck,i} is the set of all known expansions coefficients, ckk,i,i, we
use to infer c̄, where k and i denote the chiral order and training observable,
respectively. As the distribution variance is unknown one should attach a prior
distribution for c̄2, incorporating our expectation for naturalness. However, we
opted for simply determining c̄2 from the root-mean square (RMS) of DT ,

c̄2 ≡ 1
ν ×NT

NT∑
i=1

ν∑
k=1

c2
k,i , (4.10)

where NT is however many training observables one uses. Furthermore, the
LEC dependence of ck,i should be marginalised out. However, since our PPDs
are quite narrow, using the PPD averages to infer c̄2 provided a suitably ac-
curate approximation. If our expectations are met, we should get c̄ ∼ 1 due
to naturalness. If all the coefficients are modelled as independent and nor-
mally distributed, Eq. (4.8) becomes a standard geometric series we can solve
analytically [29],

pr
(
δy

(ν)
theory|c̄2, I

)
= N (0, σ2

theory) where σ2
theory ≡ c̄2y2

ref
Q2(ν+1)

1 −Q2 . (4.11)

Note that all ν = 1 contributions violate time- and parity-reversal invariance in
χEFT, such that ν should be incremented by +1 in σ2

theory for the LO truncation
uncertainty.

Our study did not take into account 3NFs, meaning that the order-by-order
construction of ck,i will be wrongful at orders beyond NLO as we do not in-
clude all contributions, providing misleading uncertainty estimates. Missing
3NFs when doing χEFT uncertainty modelling was also addressed in Ref. [36].
To attempt accounting for neglected 3NFs, we can increase the scale of the
truncation error at a given order, i.e. divide σ2

theory by factors of Q for all
ν > 2.

Alternatively, as we did in Paper III, we focus on observables in energy ranges
where they are mostly independent on 3NFs. For example, the differential cross
section was known already in 1998 to be insensitive to 3NFs up to 60 MeV [56].
A recent, comprehensive analysis of chiral 3NF contact terms investigated 3NF
effects also for the spin-observables Ay(n), iT11, T20, T21, T22, and total cross
section [57], where mostly Ay(n) and iT11 were susceptible to 3NFs. Note that
this is not a new finding [55]. I will present PPDs for some of these observables
in the next section, with the rest shown in App. B.
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4.3 PPD analysis and interpretation
The study presented in Paper III focuses on nd scattering, showing the differen-
tial cross section and the neutron spin analysing power, denoted here in short-
hand as Ay, in three scattering energy regions: ELab = 10-12, 35-36, and 65-67
MeV. While these make up a small slice of the observable NNN continuum,
they reflect of our overall findings. Here, I will broaden on the presentation by
including additional observables and scattering energies, as well as summarise
our findings and discuss our conclusions. I will start with by focusing on the
total cross section with a comparison of the PPDs to the χEFT uncertainty,
using the model introduced in Eq. (4.11). Then I will expand on the analysis of
Paper III, focusing on differential cross sections and spin observables with the
χEFT uncertainty analysed separately.

As mentioned above, our predictions were made using J ≤ 3 and J ≤ 17
2 ,

which is overall accurate for ELab ≤ 70 MeV [33], with CIB in the 1S0-channel
and using the PPD-shift extrapolation introduced above. We calculated c̄ using
Eq. (4.10), with coefficients calculated using Eq. (4.7). In the latter equation,
we set y(ν) equal the mean of the PPDs, and inferred at θ = 30, 90 and 150
degrees for any given energy. We set yref = 1 for the spin observables and yref
set by the LO prediction for the differential cross section. Here, I will also show
the nd total cross section, for which I use the LO predictions for yref and infer
c̄ at ELab = 5, 35, and 70 MeV.

4.3.1 The total cross section
While the total cross section is usually too crude to investigate the finer de-
tails of the spin-structures of nuclear Hamiltonians, this observable provides a
clear overview with respect to the energy dependency of the scattering process.
Figure 4.1 shows the PPD for the total cross section for ELab ∈ [1, 80] MeV.
The PPDs at all orders show that the PPD widths are consistently comparable
to the the experimental uncertainties, and very narrow relative to the size of
the observable and the χEFT truncation uncertainty. Note that by following
Ref. [36] and modifying the truncation uncertainty to account for missing 3NFs,
the N2LO and N3LO truncation uncertainty bands become comparable to the
one for NLO. While the focus here is not on the accurate predictions of ex-
perimental data, the chiral order-by-order convergence in the figure nonetheless
warrants commentary.

On close inspection, it is satisfactory to note that we see convergence onto
experimental measurements with each new chiral order. However, while there
are clear inaccuracies at LO, also appear slight systematic inaccuracies at NLO
and N2LO across the entire shown energy range, with them ultimately starting
to fail at around ELab ≃ 50 MeV. It is first at N3LO we see a predictive ac-
curacy up to the region where we expect visible effects from 3NFs, at around
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Figure 4.1: PPDs for the nd total cross section up to N3LO for NN -only forces
inferred on NN scattering data [32]. See text for details on calculation. The nd
and proton-deuteron (pd) experimental data (markers) were retrieved using the
EXFOR database [25]. The bands show the χEFT truncation uncertainty at
95% DoB bands as normal distributions centred on the PPD mean with c̄ = 6.6,
calculated using Eq. (4.11). The bands are shown with colours corresponding
to the chiral order.

ELab = 67 MeV [56], suggesting N3LO to work well below this energy once
3NFs are included. This may also be the case for N2LO, see, e.g., Ref. [107] for
a discussion of 3NFs included at N2LO at ELab = 70 MeV.

4.3.2 Differential cross section and Ay-observable
In Paper III, we investigated the differential cross section and the neutron vector
analysing power, Ay, shown in Fig. 4.2. Estimates of the χEFT uncertainty
were discussed separately in the Paper, which I will return to later. To quantify
the width of PPDs, in Paper III we calculated 90% highest posterior density
intervals (HDPIs) by first averaging the PPD at all angles, and then by averaging
these PPD-averages with respect to the angle. These averaged intervals are
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shown in the figure and demonstrate that the widths of the PPDs clearly grow
narrower when going to higher orders. For example, the differential cross section
goes from a HDPI of 5.71% to 0.52% at ELab = 12 MeV. These HDPI values
do not change significantly up ELab = 67 MeV. Mostly, I find the PPDs provide
HDPIs that stay below 15% for all observables and energies, and display similar
narrowing with higher orders as in the figure.

For the differential cross section at LO, we see a noticeably wider distribution
compared to subleading orders. We suspect this larger width ensues directly
from the corresponding LEC PDF, which is significantly wider compared to
higher orders, see Ref. [32]. However, it is also apparent that the LO predictions
must lack relevant details to accurately describe the observables, showing little
resemblance to experimental data and higher-order predictions. The higher-
order predictions are somewhat in agreement with each other, except for the
Ay observable at low energies.

Being too many to include here, I show all PPDs for the spin-observables
studied in Ref. [57] at higher scattering energies in App. B, in Figs. B.1 to
B.4. The figures show that the PPDs stay consistently thin at all energies,
except for at the limit of negligible 3NFs effects (ELab ≃ 67 MeV) where some
PPDs begin to broaden slightly. While I do not quantify HDPIs or compare
with experimental data, the PPDs show that all predictions at subleading orders
largely agree up to ELab = 60 MeV. Disagreement between orders, clearly visible
at ELab = 80 MeV in Fig. B.4, reflects the discussion above surrounding the
total cross section.

Exception to the overall agreement of PPDs at different orders is the Ay

observable. Both in Fig. 4.2 and App. B, Ay and the tensor analysing power
iT11, known to behave similarly [33, 110], stand out by showing clear order-
by-order differences in the PPDs for all ELab ≤ 30. There is a long-standing
discrepancy between theory and experiment for the Ay observable in this energy
region, named the “Ay-puzzle” [54, 55]. While it is interesting to see the close
proximity of the experimental and N3LO peaks of the Ay observable, note that
the N3LO prediction has significantly lower accuracy at lower angles. Further-
more, as noted in our Paper, the 3H and 3He ground-state energies and radii are
further off-mark than for, e.g., N2LO. The Ay observable is also very dependent
on the description of the triplet P-wave interactions, see e.g. Ref. [33], which
for the N3LO PDFs have unnatural LEC values compared to the majority of
the remaining LECs. It is clear that the PPDs of this study do not resolve the
puzzle.

To discuss χEFT uncertainty for the differential cross section and spin-
observables, it was easier to compare the PPD and the χEFT uncertainty by
focusing on a specific energy and angle. Figure 4.3 expands on Fig. 5 of Paper
III. The figure shows the PPDs and the inferred χEFT uncertainty distributions,
using Eqs. (4.10)-(4.11), at ELab = 12 MeV and θc.m. = 120 degrees. Note that
the distributions shown are reflective of all observables shown in Fig. 4.2 up to
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Figure 4.2: PPDs for nd differential cross section (left column) and neutron
vector analysing power (right column), modified from Figs. 4 and 6 in Paper III.
The colours are the same as in Fig. 4.1. Diamond (cyan) and circles (colourless)
markers were retrieved using the EXFOR database (at ELab = 10, 12, 36, and
67 MeV) [25], and Ref. [108] (at ELab = 64.5 MeV) and Ref. [109] (at ELab = 35
MeV) The percentages are average HDPIs, see text for more information.

ELab = 67 MeV. For LO-N2LO, the PPD widths are again very narrow relative
the χEFT truncation uncertainty. At N3LO, the distributions are roughly equal,
meaning LEC variability appears as relevant as omitted chiral orders. Note that
at N3LO, however, the PPD and χEFT uncertainty are narrower than typical
experimental uncertainty. Furthermore, I emphasise that the uncertainty model
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Figure 4.3: PPDs versus χEFT uncertainty estimates using PPD means for
nd scattering observables at ELab = 12 MeV and scattering angle θ = 120
degrees. The colour-coding is the same as Fig. 4.1. The solid lines are normal
distributions with variance set by the standard deviation (shown in figure) of
the chiral expansion coefficients, see Eq. (4.10). The dashed lines are the same
distributions with natural variance c̄2 = 1.

does not account for missing 3NFs.
In summary, the LEC variability of 2NFs does not resolve experimental

discrepancy for elastic nd scattering observables for ELab ≤ 67 MeV. Standard
Weinberg power counting suggests that the inclusion of 3NFs should contribute
more to χEFT observable predictions than 2NFs at orders above N3LO. This
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promotes the inclusion of 3NFs as the natural next step in attempting to resolve
theoretical discrepancy, such as the Ay puzzle. Once 3NFs are included, we can
continue this study to see whether or not including higher chiral orders beyond
N3LO is necessary to reproduce experimental data for ELab ≤ 67 MeV.
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Chapter 5

Summary and outlook

Understanding atomic nuclei and nuclear matter from fundamental principles
is challenging due to the nonperturbative nature of the strong-force interac-
tions occurring in low-energy QCD. Instead, ab initio predictions can be done
through strong-force models derived from χEFT, which inherently includes
many-nucleon forces with a priori undetermined LEC values. These LECs are
currently inferred from nuclear observables. Using NN and Nd scattering ob-
servables is important for studying 2NFs and 3NFs due to their physical simpli-
city, ample available data, and unambiguous external momentum for the χEFT
soft scale. In this work, I have studied and implemented the WPCD method as
a means to efficiently predict low-energy NN and Nd elastic scattering cross
sections. This effort was aimed towards promoting statistical inference of chiral
2NFs and 3NFs in the NNN continuum, which has insofar been hampered by
the computational cost of solving the Faddeev equations. The formalism of
NN and Nd scattering was summarised in Chap. 2, while the formalism and
performance of the method was summarised in Chap. 3 along with the studies
of Papers I and II. Specifically, in Chap. 3, the Nd-scattering code developed
as part of this study, Tic-tac, is summarised with commentary on the key com-
putational bottlenecks and current performance. In Chap. 4, I summarise our
findings of Paper III, where we quantified PPDs of nd-scattering cross sections
from chiral 2NFs constrained on NN scattering data.

The WPCD method for few-nucleon scattering and Tic-tac

The WPCD method is a bound-state type method that projects the continuum
onto a discrete lattice of “bins”, effectively integrating continuum-representations
of operators into an average value across each bin. This coarseness of the method
makes it more approximative than others, for example the MI method, such that
it typically requires larger basis sizes for accurate predictions. Advantageously,
however, it provides approximate scattering states, SWPs, that significantly
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simplify the computational challenges of solving both the NN LS and Nd Fad-
deev equations as shown in Chap. 3. In the same chapter I also summarise the
findings of Papers I and II.

Paper I presents a study into WPCD performance, i.e. accuracy versus time
usage, for NN scattering observable predictions. We found that whereas the
WPCD method has much lower computational complexity than the MI method,
given equal basis sizes, the latter has significantly higher accuracy. We compared
prediction accuracy versus time usage and found that for low-accuracy results,
e.g., when accepting around 2% RMSE of the total np cross section for NWP ≤
32, the WPCD method was roughly twice as fast as the MI method. These time
profile were made with a GPU-accelerated code utilising the inherent parallelism
of the WPCD method, and a highly efficient CPU-implementation of the MI
method [94]. For higher accuracies, the slow convergence of observable accuracy
with NWP make MI a more efficient method, in the current implementations.

In Paper II we presented a newly written code, named Tic-tac, for solving
the Nd AGS equations using WPCD. We also presented new nd scattering ob-
servable predictions using the N2LOopt NN potential. Much focus was oriented
on the convergence of nd scattering observable predictions with the basis size,
NWP. We found that using NWP ≥ 100 is usually sufficiently accurate com-
pared to experimental errors, although this is dependant on both the scattering
energy and the observable studied. Compared to NN scattering, this is a large
basis size. Based on Paper I, the NN Hamiltonian appears well-represented
already at about NWP = 32. Therefore, the required higher basis dimension
may be explained by the highly detailed permutation operator of the Faddeev
equations, which may require a high-resolution basis for accurate portrayal.

The Tic-tac code is currently incomplete and does not include 3NFs or
Coulomb interactions in observable predictions, and there are several unexplored
avenues for optimisation:

• Include break-up amplitudes. The U -matrix is calculated a SWP-basis
representation. This basis contains the elastic deuteron channel but also
the break-up scattering amplitudes. It is simple and straightforward to
extend the code to provide such amplitudes as well [85].

• Include 3NFs. Currently the code only uses 2NFs. An inclusion of 3NFs
would still rely on the FWP and SWP bases, allowing one to simply extend
on the current code without major structural changes. Furthermore, there
are rewrites of the AGS equations that efficiently include 3NFs [111] which
may possibly be combined with the WPCD method.

• Include Coulomb interactions. The code does not treat Coulomb inter-
actions, such that it currently cannot provide pd predictions accounting
for electromagnetic effects. In scattering, Coulomb effects are included
through Coulomb wave functions, see, e.g., the review of Ref. [112]. In
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WPCD, these wave functions can be integrated similarly to plane-wave
states to form Coulomb wave packets [51, 113]. I have omitted such forces
since electromagnetic effects are small in the NNN continuum and limited
to small scattering angles [33].

• Optimise memory usage. As described in Sec. 3.4.1, currently Tic-tac’s
runtime is dominated by accesses to the computer memory, in the repeated
reconstruction of the kernel A. The cost is largely owed to the sparse
structure of the permutation matrix making lookup routines of non-zero
matrix elements expensive. Further consideration of the memory layout of
P may be profitable. Furthermore, each momentum-violating overlap of
wave-packets in the permutation matrix reappears for all NNN partial-
wave channels, (α′, α). If there are Nα = 60 partial-wave states in the
statespace, there are 602 = 3600 reappearances of the same wave-packet
overlap. Currently, Tic-tac does not exploit this fact in any way to achieve
optimisation, and instead relies only on optimised non-zero element look-
ups in the global computer memory.

• Increase P̂123 resolution. Another avenue for code acceleration may lie
in investigating alternative bases to use when numerically calculating the
inner products of A. For example, as discussed in Chap. 4, one can use
a spline basis for the product P̂ v̂, followed by a projection onto the SWP
basis.

• Explore model reduction methods. Recent advances in model reduction
methods [114] focusing on scattering, such as singular value decomposi-
tion [49] and eigenvector continuation [47], show promise in reducing the
matrix dimensions involved in obtaining scattering solutions. Such reduc-
tion methods would undoubtedly reduce the large basis sizes required in
WPCD, and notably the derived form of the LS equation used in Ref. [49]
is identical to the Faddeev equations as used in Tic-tac.

PPDs of nd scattering observables

In Paper III we calculated PPDs for nd elastic scattering observables using
chiral LO-N3LO NN potentials with LECs inferred from NN scattering data
[31, 32]. The PPDs were constructed using NWP = 75 scattering predictions
and 100 samples of the LEC PDFs, using an extrapolation approach to achieve
higher accuracy. Overall, we found that most of the PPDs for nd observables
had between 5.7% and 0.5% average HDPI. As a simple rule of thumb, one can
say that we found that the PPDs are comparable to typical experimental errors,
and two to three orders of magnitude narrower than the χEFT uncertainty,
except for at N3LO where the χEFT uncertainty and PPDs are similarly wide.
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The narrow PPDs from LEC-variability of NN potentials, when inferred on
NN scattering data, do not resolve the long-standing theoretical discrepancies
to experiential data such as in the Ay puzzle. The analysis of Paper III is not
the first to suggest this [39], although, insofar as I am aware, the study is the
first fully Bayesian analysis to do so.

We go on to conclude that in order to resolve the theoretical discrepancies, it
is best to dedicate efforts into continuing the study by including 3NFs. This, of
course, is a cumbersome computational task that requires further development
of Nd scattering simulations. One option to achieve this is the realisation of
the aforementioned inclusion of 3NFs and suggested optimisations of Tic-tac.
Besides this, there are improvements to be made on the methodology of Paper
III as well:

• Improving χEFT uncertainty modelling. In future studies aimed at de-
termining coverage of experimental NNN scattering data by χEFT mod-
els, it is important to improve the truncation uncertainty model used here.
For example, in Paper III, we did not account for correlations between
truncation errors in separate, but close, kinematic regions. Correlated
errors were not considered in the LEC-inference study [32] we utilised
either, raising concern as to whether the LECs may have been overfitted
to NN scattering data. One option to model correlated errors is by the
use of Gaussian processes, see, e.g., Ref. [30]. In the Paper, we also used
a point-estimate prior for the χEFT uncertainty normal distribution, in
the form of a root-mean square fit of the variance. An improvement on
this would be to use, e.g., a conjugate prior such as a normal inverse-χ2

distribution.

• Simultaneous fit to NN and Nd scattering data. As mentioned, the infer-
ence study of Ref. [32] only used NN scattering data. An expansion on
the investigation of Paper III would be to constrain NN forces on both
NN and Nd scattering data, and see if the resulting PDFs of LECs, and
consequent PPDs, significantly change. Such a change could indicate, for
example, that the LECs were overfitted to NN scattering data.

• Modelling the WPCD method uncertainty. In Paper III, the WPCD uncer-
tainty was not quantified. However, without further optimisation, future
statistical studies may require significant reduction in the WPCD basis
size to gain computational speedup. As mentioned, for example, PDFs
usually require thousands of samples, which is currently challenging with
Tic-tac to constrain LECs on Nd data. As a result, it would be necessary
to formulate a WPCD uncertainty model to ensure method inaccuracy
does not spoil the statistical content with uncertainty, when reducing the
WPCD basis size.
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• Including higher scattering energies. The study of Paper III focused on a
region where 3NFs were believed negligible; ELab ≲ 67 MeV. If 3NFs are
included, this limitation is no longer necessary, but going beyond brings
new challenges. Firstly, the partial-wave statespace may increase as J ≤ 3
is, for some observables, not sufficient [33]. Secondly, the Chebyshev mesh
used here appears to work well for ELab ≤ 100 MeV, but for ELab ≥
100 MeV the mesh may be optimised by changing the scaling factor in
Eq. (3.11).

• Use emulators. Emulators are methods that accurately approximate the
outcome of some other method, at a significantly lower cost. One altern-
ative was mentioned above with model reduction methods. Especially
eigenvector continuation is well-suited for exploring parametric spaces of
models, such as the LECs [47]. Thus, it is clear that emulators can serve
to drastically speedup statistical studies, e.g., inference of LECs, in the
NNN continuum.

It has been over 60 years since L. Faddeev first suggested a means to solve
NNN scattering, and it has been over 30 years since we could first compute
accurate solutions to his equations. Today, we can rigorously quantify ab initio
predictions of NNN scattering observables. By the summary above, the near
future is likely to bring quantitative statistical inference of 2NFs and 3NFs using
the NNN continuum.
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Appendix A

Discretising the continuum using
pseudostate eigendifferentials

This discussion follows Ref. [51]. To discretise the continuum we can consider an
arbitrary scattering observable that is dependent on the full Hamiltonian, Ô(ĥ).
It can be expressed as an expansion in an arbitrary basis B ≡ {|ψb

i ⟩, |ψ(E′)⟩}nb
i=1

with energies eb
i < 0 and E′ > 0, respectively, as

⟨Ψ(E)|Ô(ĥ)|Ψ(E)⟩ =
nb∑

i=1
u(ϵbi )|⟨Ψ|ψb

i ⟩|2 +
∫ ∞

0
dE′u(E′)|⟨Ψ|ψ(E′)⟩|2 , (A.1)

where I define u(ϵbi ) = ⟨ψb
i |Ô|ψb

i ⟩ and u(E′) = ⟨ψ(E′)|Ô|ψ(E′)⟩. Computation-
ally we cannot work with infinite bases and have to truncate the continuous
component of B to a finite mesh of size n,

⟨Ψ|Ô(ĥ)|Ψ⟩ ≈
nb∑

i=1
u(ϵbi )|⟨Ψ|ψb

i ⟩|2 +
n∑

i=1
u(Ei)|⟨Ψ|ψ̃i⟩|2 , (A.2)

where I replace ψ(E′) → ψ̃i, which has energy Ei > 0. The positive-energy
states of the truncated basis can be called pseudostates: “pseudo-” since their
basis does not span the full continuum. To successfully approximate Eq. (A.1),
we introduce “equivalent quadrature” [115, 116] weights wi defined by

|⟨Ψ|ψ̃i⟩|2 = wi|⟨Ψ|ψ(Ei)⟩|2 . (A.3)

From this we can introduce the following approximate relation,

⟨ψ(Ei)|Ô(ĥ)|ψ(Ei)⟩ ≈ ⟨ψ̃i|Ô|ψ̃i⟩√
wi

, (A.4)
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Discretising the continuum using pseudostate eigendifferentials

from which, if we know the weights, we can approximate the expectation values
of Ô(ĥ) at the energies Ei. Provision of the weights is where we make use of
eigendifferentials.

An unnormalised eigendifferential is defined as the integral over some finite
interval D ≡ [E,E+∆E], or “bin”, of the continuum state |ψ(E′)⟩ with respect
to the energy E′,

|ψ(E,∆E)⟩ ≡
∫ E+∆E

E

dE′ |ψ(E′)⟩ . (A.5)

We can discretise the continuum with a basis {Di |Di ∩Dj = ∅∀i ̸= j}N
i=1, where

Di ≡ [Ei, Ei+∆Ei]. By letting N be finite we get a pseudostate eigendifferential
basis. From the definition we can extract an approximative relation for the
expectation value of Ô(ĥ),

⟨Ψ(E)|Ô(ĥ)|ψ(E′)⟩ ≈ ⟨Ψ(E)|Ô|ψ(Ei,∆Ei)⟩√
∆Ei

, (A.6)

from which it can be argued [80, 81, 117], upon comparison of Eqs. (A.4) and
(A.6), that we have the approximation

wi ≈ ∆Ei . (A.7)

The pseudostate eigendifferential basis thus provides quadrature weights auto-
matically through the bin widths ∆E. It is interesting to note that in the limit
NWP → ∞, when ∆Ei → 0 ∀ i, all the eigendifferential expressions will reduce
to the non-pseudostate expressions smoothly. We thus have a systematically
improvable method by increasing the number of pseudostate eigendifferentials.
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Appendix B

Posterior predictive distributions
for neutron-deuteron
spin-observables
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Posterior predictive distributions for neutron-deuteron spin-observables

Figure B.1: PPDs for nd scattering observables at ELab = 20 MeV in same style
as Fig. 4.2.
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Figure B.2: PPDs for nd scattering observables at ELab = 40 MeV in same style
as Fig. 4.2.
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Posterior predictive distributions for neutron-deuteron spin-observables

Figure B.3: PPDs for nd scattering observables at ELab = 60 MeV in same style
as Fig. 4.2.
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Figure B.4: PPDs for nd scattering observables at ELab = 80 MeV in same style
as Fig. 4.2.
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Posterior predictive distributions for neutron-deuteron spin-observables
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