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Abstract—The rising concept of reconfigurable intelligent sur-
face (RIS) has promising potential for Beyond 5G localization
applications. We herein investigate different phase profile designs
at a reflective RIS, which enable non-line-of-sight positioning
in nearfield from downlink single antenna transmissions. We
first derive the closed-form expressions of the corresponding
Fisher information matrix (FIM) and position error bound (PEB).
Accordingly, we then propose a new localization-optimal phase
profile design, assuming prior knowledge of the user equipment
location. Numerical simulations in a canonical scenario show
that our proposal outperforms conventional RIS random and
directional beam codebook designs in terms of PEB. We also
illustrate the four beams allocated at the RIS (i.e., one directional
beam, along with its derivatives with respect to space dimensions)
and show how their relative weights according to the optimal
solution can be practically implemented through time sharing
(i.e., considering feasible beams sequentially).

Index Terms—Nearfield localization, non-line-of-sight, RIS
phase optimization.

I. INTRODUCTION

Among the potential 6G technologies, reconfigurable intel-
ligent surfaces (RISs) stand out for their ability to purposely
shape wireless environments [1]. A typical RIS generally
comprises a large number of controllable elements, which can
be adjusted (typically, in terms of their phases) by means of
lightweight electronics so as to behave as electromagnetic mir-
rors or lenses. RISs also have appealing applications to spatial
awareness and sensing [2], for instance to overcome line-of-
sight (LoS) blockages through newly induced multipath com-
ponents, hence making localization feasible when conventional
systems would fail. Beyond, they can be also beneficial to
control and locally/timely improve localization accuracy when
the LoS path is present. Such flexibility and synergies between
data communication and on-demand localization services are
expected to be among the main drivers in future 6G systems,
thus making RIS a key enabling technology. Beyond quite ex-
tensive works on wireless localization exploiting the spherical
wavefront of incoming signals at large receiving RISs (e.g.,
[3]–[6]), other recent research studies have also considered
the use of passive reflective RISs in the context of parametric
multipath-aided positioning, in both LoS (e.g., [7]–[11]) and
non-line-of-sight (NLoS) (e.g., [12], [13]) conditions.

An important challenge with RIS lies in the optimization
of their profiles (i.e., their reflection coefficients and/or their
phases), before or after performing channel estimation. For

Fig. 1: Typical NLoS positioning scenario with one single reflective RIS in
nearfield over single-input-single-output downlink transmissions.

data communication purposes, the latter problem can be solved
based on the estimated cascaded channel responses or using a
priori location information [14]. The former problem can be
solved with a variety of approaches, including that maximizing
recovery performance, based on the Discrete Fourier Trans-
form (DFT) and Hadamard matrices, or harnessing external
location information too [15]. As for RISs-based localization
more specifically, in [7], joint RIS selection and directional
reflection beam design has been considered while assuming
prior knowledge of the user equipment (UE) location, which
intuitively corresponds to concentrating the reflected power to-
wards the UE and accordingly, increase signal-to-interference-
and-noise-ratio (SINR) at the UE. Alternatively, the authors in
[11], [12] have used simpler random RIS phase profiles for
asynchronous positioning in a downlink single-input-single-
output (SISO) multi-carrier (MC) transmission context. This
scheme does not require any prior information (neither about
the channel, nor about the UE location), but is not optimal
under a priori UE location information. Finally, in [8], RIS
phases and beamformers are jointly optimized with respect to
both the position error bound (PEB) and the orientation error
bound (OEB) in a generic multiple inputs multiple outputs
(MIMO) MC context, based on a signal-to-noise ratio (SNR)
criterion.

In this paper, in contrast to the previous contributions and
leveraging the simpler SISO downlink positioning scheme
of [11], [12], we design suitable phase profiles at a re-
flective RIS through PEB optimization in an NLoS context
(See Fig. 1),while putting more emphasis on practical im-
plementation constraints (typically, forcing the RIS complex
element response to lie on the unit-circle). Beyond making



Fig. 2: Problem geometry for a UE in p and the RIS phase center in pRIS,
as the origin of both spherical and Cartesian coordinates systems.

localization feasible (with significantly degraded accuracy in
comparison with LoS conditions though) [12], the goal is to
further optimize NLoS positioning performance, while relying
on direct localization using the RIS-reflected path (i.e., as
estimated at the UE over downlink transmissions). Our main
contributions are: (i) we derive closed-form expressions of
both the FIM and the PEB, while assuming a generic nearfield-
compliant formulation for the RIS response, (ii) we show how
the PEB optimization problem can be solved efficiently and
how localization-optimized RIS phase profiles are obtained,
considering practical time sharing among different profiles;
(iii) we compare the performance of the resulting localization-
optimal phase profiles, along with its constrained (and thus
sub-optimal) variants, with that of conventional random and
directional designs, and (iv) we discuss the shapes taken by
the RIS beam and its successive derivatives with respect to
the 3D dimensions (in spherical coordinates) in light of our
specific estimation problem.

Notations: Vectors and matrices are denoted, respectively,
with a lower-case and upper-case bold letter (e.g., x,X),
while subscripts are used to denote their indices. Transpose,
conjugate and hermitian conjugate are respectively denoted by
(.)⊺, (.)∗ and (.)H. Furthermore, the operator tr(X) denotes
the trace of matrix X and diag(x) denotes a diagonal matrix
with diagonal elements defined by vector x. Finally, ∥ ⋅ ∥
is the l2-norm operator and (.)☆ denotes the solution of an
optimization problem.

II. SYSTEM MODEL

We consider a 3D localization setup consisting of a single-
antenna base station (BS), a single-antenna UE and a planar
reflective RIS composed of M elements. The corresponding
3D locations are expressed in the same global reference
coordinates system as follows: pBS ∈ R3×1 is a vector con-
taining the known BS coordinates, pRIS ∈ R3×1 is a vector
containing the known coordinates of the RIS center, pm ∈ R3×1

is a vector containing the known coordinates of the m-th
element in the RIS, and p ∈ R3×1 is a vector containing UE’s
unknown coordinates, expressed as [x, y, z]⊺ in the Cartesian
coordinates system or [ρ, θ, ϕ]⊺ in the spherical coordinates
system, where ρ is the range from the system’s origin, θ is the

azimuth angle measured from the positive x-axis and likewise,
ϕ is the elevation angle from the positive z-axis. Without loss
of generality, in the sequel, we choose the RIS phase center
as the origin of the coordinates system. The geometry of the
problem is illustrated in Fig. 2. We consider a millimeter wave
(mmWave) downlink communication scenario in presence of
LoS blockage, where the BS broadcasts a narrowband pilot
signal xt ∈ C with a bandwidth W over T transmissions
and transmit power Ptx. In NLoS, the complex signal yt ∈ C
received by the UE at time t after RIS reflection is

yt = βa⊺(p)Ωta(pBS)xt + nt, (1)

where a(.) ∈ CM×1 is a steering vector representing the RIS
response, in its most generic formulation (i.e., encompassing
the nearfield (NF) regime like in [12]), whose m-th entry with
respect to the m-th RIS element pm and the RIS phase center
pRIS is

[a(p)]m = exp(−ȷ
2π

λ
(∥p − pm∥ − ∥p − pRIS∥)) . (2)

Moreover, the transmit symbol energy is defined as Es =
E{∣xt∣2} = Ptx/W with total transmit energy Etot = EsMT ,
nt ∼ CN (0,N0) is the independent and identically distributed
(i.i.d.) observation noise of power spectral density N0, β is
the time-invariant complex channel gain for the reflected path
and Ωt = diag(ωt) where ωt ∈ CM×1 is the t-th phase profile
vector applied across the M RIS elements. This received signal
can hence be vectorized over T transmissions into y ∈ CT×1

as follows1

y =
√
EsβF

⊺a(p) +n, (3)

where F = [f1, . . . ,fT ] ∈ CM×T with ft = Ωta(pBS) ∈
CM×1, and Ωt taking its values in the set of valid2 RIS phase
profiles:

∣[ft]m∣ = 1,∀t,m. (4)

III. LOCALIZATION-OPTIMAL RIS PROFILE DESIGN

In this section, we show how RIS profiles can be optimized
to minimize the PEB in a specific position. In Remark 1, we
address how the resulting chicken-and-egg problem can be
resolved (as the goal of designing the RIS profiles is to localize
the user, while the design itself requires knowledge of the
user’s position).

A. FIM and PEB

We first define the vector of position and channel pa-
rameters in the 3D spherical coordinates system, as ζsph =
[ρ, θ, ϕ, βr, βi]⊺ ∈ R5×1, and compute the FIM accordingly
[16, Chapter 3.7]

Jsph(ζsph) =
2Es

N0
Re
⎧⎪⎪⎨⎪⎪⎩
( ∂µ

∂ζsph
)
H

∂µ

∂ζsph

⎫⎪⎪⎬⎪⎪⎭
∈ R5×5, (5)

1Without loss of generality, we assume a constant pilot xt =
√
Es is

transmitted.
2So-called valid profiles correspond to practically feasible complex values

according to real RIS hardware limitations (e.g., unit-modulus values with
quantized phases).



where µ = βF ⊺a(p) denotes the noiseless part of the ob-
servation. To obtain the closed-form expressions of the FIM
terms, we differentiate µ with respect to the corresponding
parameters

[∂µ
∂ρ

,
∂µ

∂θ
,
∂µ

∂ϕ
] = βF ⊺ [ȧρ(p), ȧθ(p), ȧϕ(p)] (6)

[ ∂µ
∂βr

,
∂µ

∂βi
] = F ⊺a(p)[1, ȷ], (7)

where ȧx(p) = ∂a(p)/∂x ∈ CM×1. Then, introducing ζcar =
[p⊺, βr, βi]⊺ ∈ R5×1 as the set of position and channel pa-
rameters in Cartesian coordinates system, we use the Jacobian
C = ∂ζsph/∂ζcar to transform the previous FIM into

Jcar(ζcar) = C⊺Jsph(ζsph)C. (8)

Finally, we characterize the positioning performance by means
of the PEB, which is a lower bound on the accuracy of
any unbiased location estimator, and is computed as [17,
Chapter 2.4.2]

PEB(F ;ζcar) =
√

tr ([J−1car (ζcar)](1∶3,1∶3)) (9)

≤
√
E{∥p − p̂∥2}, (10)

where we have made the dependence of the precoding matrix
F explicit.

B. PEB Minimization

Assuming prior knowledge of UE’s position, we formulate
the PEB optimization problem under a total power constraint,
as follows

min
F

PEB(F ;ζcar) (11a)

s.t. tr(FF H) =MT. (11b)

We then suggest relaxing the above program: first, by using
the change of variable X = FF H and then, by removing the
constraint rank(X) = T [18, Chapter 7.5.2] [19], yielding

min
X,u

1⊺u (12a)

s.t. [Jcar ek
e⊺k uk

] ⪰ 0, k = 1,2,3, (12b)

tr(X) =MT, (12c)
X ⪰ 0, (12d)

where u = [u1, u2, u3]⊺ is an auxiliary variable and ek is the
k-th column of the identity matrix. This optimization problem
is a convex semidefinite program (SDP) since the FIM is a
linear function of X , as we can see from (5) to (8), and
the constraints are either linear matrix inequalitys (LMIs) or
linear equalities. According to [20, Appendix C], the optimal
precoder covariance matrix X☆ is of the form

X☆ = UΛUH (13)

where Λ ∈ C4×4 is a positive semidefinite (PSD) matrix,
denoting by its diagonal entries the beam weights applied to
(or equivalently, the relative powers allocated to) the columns
of U while

U ≜ [a∗(p) ȧ∗ρ(p) ȧ∗θ(p) ȧ∗ϕ(p)], (14)

which are RIS steering vector and the successive derivative
beams with respect to the spherical coordinates system com-
ponents as that involved in (5). Note that the space spanned by
the columns of U can also be spanned by 4 orthonormalized
vectors, by applying the Gramm-Schmidt algorithm to the
columns of U , so that UHU = MI4. For the remainder of
this paper, we will use these orthonormalized vectors, since
the error bounds are function of the latter [19]. This allows us
to write the constraint tr(X) =MT as tr(Λ) = T . Applying
the above transformation (i.e., from X ∈ CM×M to Λ ∈ C4×4),
the computational complexity is then significantly reduced,
and the new optimization problem can be simply stated as

min
Λ,u

1⊺u (15a)

s.t. [Jcar ek
e⊺k uk

] ⪰ 0, k = 1,2,3, (15b)

tr(Λ) = T, (15c)
Λ ⪰ 0. (15d)

Finally, the problem can be further relaxed by restricting Λ to
be diagonal, i.e., Λ = diag(λ), in which case the entries in λ
can be interpreted as power allocations or time units assigned
to each column of U . To solve the optimization problem (15),
we used CVX [21].

Remark 1 (Assumption of prior knowledge): In a real
system, perfect a priori knowledge of the UE location is not
available, but can be reasonably approximated by the latest
UE’s estimated location (typically, while tracking the UE in
the steady-state regime). In other words, we make use of
this prior information to optimize the operating conditions for
the next UE location estimate, given that the UE would be
quasi-static in the meantime. Note that the presumed location
uncertainty associated to this prior (if only made available
by an estimator, e.g., as an error covariance or an uncertainty
ellipse) can be taken into account in our optimization problem
(11a), by minimizing the worst-case PEB in a region around
the estimated UE location (i.e., in a set of points rather than
in a single point), like in [22]. Furthermore, given a BS–RIS
deployment, the optimization routine can be run offline and
tabulated as a function of possible UE locations, so that the
RIS profile can be reconfigured during the online phase at no
extra computational cost, based on this location estimate.

C. Practical RIS Phase Profiles and Time Sharing

When solving the optimization problem above, multiple
approaches can be taken to generate RIS phase profiles that
satisfy the constraint (4). We limit our discussion to the case
where Λ = diag(λ).
● Optimize, then constrain: from the optimal value X☆ =
UΛoptU

H of (15), we transform the orthonormal beams
in U into their unit-modulus versions (using gradient
projections as in [23, Algorithm 1])

● Constrain, then optimize: in this approach, we first project
the columns of U to satisfy the constraint (4) using the



parameter value parameter value
fc 28 GHz wavelength ≈ 1.07 cm
W 120 kHz UE loc. p [1,1...15,1] m
N0 −174 dBm/Hz BS loc. pBS [5,5,0] m

noise figure nf 8 dB RIS loc. pRIS [0,0,0] m
Ptx 20 dBm RIS size M = 32 × 32 elements
Etot (Ptx/W)MT transmissions T = 40

TABLE I: General simulation parameters.

same method from [23, Algorithm 1], and then solve (15)
with the corresponding set of non-orthonormal vectors.

In either case, once (15) is solved and the set of precoders that
satisfy (4) are determined, we aim to find time allocations
Ti, i ∈ {1,2,3,4} subject to ∑4

i=1Ti = T and Ti ∈ N, with
Ti ≈ λi ∈ R+. This problem can be solved by rounding λi

to the nearest integer. Moreover, a more general allocation
for arbitrary T can be found by solving (15) with tr(Λ) =
1, in which case, the values λi ∈ [0,1] refer to the relative
frequencies of the different RIS phase profiles. We can then set
Ti ≈ λiT , rounded to the nearest integer. With smaller T , the
temporal quantization errors will become more pronounced,
leading to PEB performance degradation. In particular, when
λi ≪ 1, the corresponding beam may never be selected, in
which case the PEB will be infinite (since all 4 columns of U
must be used). To address this, we force each column to be
used at least once as a RIS phase configuration.

IV. SIMULATION RESULTS

A. Simulation Parameters

To assess the performance of the proposed design, several
simulations have been performed in a canonical scenario,
considering an indoor mmWave setting, using the parameters
in Table I.

Remark 2 (Practical estimators): While our analysis is
limited to performance bounds, it is expected that practical
algorithms can achieve these bounds, when operating in a
high SNR regime. Low-complexity NF localization methods
were for instance discussed in [6], [24]. We also note that
the proposed RIS phase profile designs involve only limited
signaling or control overhead, since only the current user
location needs to be provided to the RIS controller.

B. Performance Analysis

1) Visualization of Beams: In Fig. 3 (a)–(c), we first show
the four orthonormalized beams applied at the reflective RIS
(i.e., the directional beam and its derivatives), as a function
of the 3 spherical coordinates. To elaborate, the figure dis-
plays a so-called Gain, which corresponds to the expression
∣u⊺a(p̃)∣2, where u represents a column in U and p̃ is an arbi-
trary test location. The columns of U are generated according
to (14) with p = [1,2,1]⊺. For visualization purposes, we show
cuts of possible positions p̃ along the three polar coordinates,
fixing the other two coordinates to the corresponding values
of p = [1,2,1]⊺. As expected and similar to [22], it is
noticed that the beam derivatives get their null values at the
actual UE range/direction and that each beam null is visible in
the three dimensions. These nulls lead to significant variation
around the position to be estimated, thereby improving the
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ȧθ(p)
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Fig. 3: Orthonormalized beams applied at the reflective RIS as a function of
the three polar coordinates (incl. the directional beam and its derivatives).

positioning accuracy. In particular, the variation with respect
to x ∈ {θ, ϕ, ρ} is most pronounced for the beam ȧx(p).

2) Comparison of Design Strategies: In Fig. 4, as a function
of the RIS-UE distance, we then compare the PEB achievable
with the optimal design (i.e., under unconstrained Λ) with
that obtained with purely random RIS phase profiles [7] and
directional RIS beams [6]. In the latter approach, directional
RIS beams are generated uniformly distributed into a sphere
centered around the actual UE position, while assuming dif-
ferent levels of uncertainty (i.e., different values for the sphere
radius r). The total energy was fixed to make the comparison
fair among the different schemes. We first observe that the
optimal design systemically outperforms the two other designs,
whatever the distance. As for random phase profiles more
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Fig. 4: PEB comparison as a function of the RIS-UE distance, for optimized
RIS phase profiles (with optimal Λ), random RIS phase profiles and direc-
tional RIS beams (for different numbers of transmissions T and uncertainty
levels r).

specifically, beyond a certain number of transmissions (say,
around 80 in the shown example), no further spatial diversity
can be brought into the problem by the new profiles (i.e., most
of the space has already been covered by previous profiles)
so that performance asymptotically reaches a limit. With
directional beams, the effect of prior UE location uncertainty
is rather remarkable. Smaller uncertainty (i.e., r = 0.5 m)
indeed provides much better results at short distances (even
close to the optimal design) but conversely leads to poor
angular diversity and hence becomes counterproductive at long
distances, just as if a unique beam was always selected to point
in the same direction over all the transmissions.

3) Feasible RIS Profiles: Fig. 5 provides a benchmark of
the achievable PEB as a function of the distance with different
variants of the problem solver, as described in Section III-C,
assuming both full and diagonal Λ, considering both con-
strain, then optimize, and optimize, then constrain approaches.
Forcing Λ to be diagonal in the optimization has almost no
effect on the results in comparison with unconstrained Λ.
This is likely due to the fact that the initial beam vectors
in U are orthogonal and hence, Λ shall be structurally quasi-
diagonal accordingly. Constraining before optimization turns
out to be superior over constraining after optimization. Hence,
we will consider the former approach from now on. Fig. 6
shows the corresponding output of the optimizer in terms of
λi values, as a function of the RIS–UE distance. We notice
that there is a strong dependence on the derivative beam
with respect to the range. Moreover, as the UE moves away
from the RIS, we see less reliance on the angular derivative
beams whose weights become nearly negligible, but almost
a uniform dependence on directional. Finally. in Fig. 7, we
show the PEB achievable with our optimized design as a
function of the RIS-UE distance, for both optimal Λ and
its practical implementation through time sharing (depicted as
“Time division” here, see Section III-C) for distinct T values,
where the i-th beam is such that fi is forced to lie onto the unit
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No constraint, Λ full matrix
No constraint, Λ diagonal
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Constrain, then optimize, Λ diagonal

Fig. 5: Achievable PEB as a function of the distance for different variants of
the problem solver.
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Fig. 6: Diagonal terms of Λopt accounting for the different beam weights, as
a function of the RIS-UE distance.

circle and used over Ti transmissions out of T . As expected,
lower values of T lead to worse performance, as the temporal
quantization effect is more pronounced. Inversely, as the value
of T increases the performance approaches, asymptotically,
that of the optimized Λ.

C. Complexity

Despite the possibility to generate and tabulate offline PEB-
optimal RIS profiles as a function of the UE location so as
to reduce the online computational cost (See Remark 1), we
now assess how the optimization problem scales with RIS
size M . Calculating both directional and derivative beams
has a complexity of O(M). Projecting the beams to the
unit-modulus space has also a complexity of O(M). More
precisely, this step has a complexity O(NM/ϵ), where N is
the number of 3D points chosen in [23, Algorithm 1], and ϵ is
the accuracy limit for the algorithm convergence. Calculating
the optimal Λ in our case is independent of M . So overall,
the complexity is of order O(M), which is the same as that
of directional codebooks. Beyond, for practical beamforming
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Fig. 7: Achievable PEB as a function of the RIS-UE distance with both optimal
diagonal Λ and its practical implementation through time sharing depending
on T (i.e., so-called “Time division”, allocating Ti over T transmissions for
the i-th feasible beam separately, with related fi forced onto the unit circle).

anyway, one does not need to calculate explicitly X but just
to repeat beams based on optimized terms in Λ.

V. CONCLUSIONS

In this paper, we have described a reflective RIS phase
profile design minimizing the PEB of NLoS localization over
downlink SISO narrowband transmissions, while considering
a generic near-field formalism for the RIS response. On this
occasion, we have shown that the theoretical optimal solution
would involve the combination of four weighted beams at
the RIS, whose practical performance in terms of achievable
PEB has been evaluated while considering more realistic unit-
modulus beams. Finally, for the sake of implementability,
we have also introduced a time sharing scheme, assuming
the application of each feasible beam sequentially, with very
limited performance degradation whenever the overall number
of transmissions is sufficiently large. Future work will con-
sider the evaluation of practical point estimators and tracking
algorithms that use the proposed RIS phase profiles, the
approximation of the required sequential beams under real
reflective RIS hardware characterization [25], as well as the
extension to multi-user and multi-RIS contexts.

ACKNOWLEDGMENT

This work has been supported, in part, by the EU H2020
RISE-6G project under grant 101017011 and by the MSCA-IF
grant 888913 (OTFS-RADCOM).

REFERENCES

[1] E. C. Strinati, G. C. Alexandropoulos, H. Wymeersch, B. Denis,
V. Sciancalepore, R. D’Errico, A. Clemente, D.-T. Phan-Huy, E. De Car-
valho, and P. Popovski, “Reconfigurable, Intelligent, and Sustainable
Wireless Environments for 6G Smart Connectivity,” IEEE Communica-
tions Magazine, vol. 59, no. 10, pp. 99–105, 2021.

[2] H. Wymeersch, J. He, B. Denis, A. Clemente, and M. Juntti, “Ra-
dio localization and mapping with reconfigurable intelligent surfaces:
Challenges, opportunities, and research directions,” IEEE Vehicular
Technology Magazine, vol. 15, no. 4, pp. 52–61, 2020.

[3] S. Hu, F. Rusek, and O. Edfors, “Beyond massive MIMO: The potential
of positioning with large intelligent surfaces,” IEEE Transactions on
Signal Processing, vol. 66, no. 7, pp. 1761–1774, 2018.

[4] J. V. Alegrı́a and F. Rusek, “Cramér-Rao lower bounds for positioning
with large intelligent surfaces using quantized amplitude and phase,” in
2019 53rd Asilomar Conference on Signals, Systems, and Computers,
pp. 10–14, 2019.

[5] F. Guidi and D. Dardari, “Radio positioning with EM processing of the
spherical wavefront,” IEEE Transactions on Wireless Communications,
vol. 20, no. 6, pp. 3571–3586, 2021.

[6] Z. Abu-Shaban, K. Keykhosravi, M. F. Keskin, G. C. Alexandropoulos,
G. Seco-Granados, and H. Wymeersch, “Near-field localization with a
reconfigurable intelligent surface acting as lens,” in IEEE International
Conference on Communications (ICC), 2021.

[7] H. Wymeersch and B. Denis, “Beyond 5G Wireless Localization with
Reconfigurable Intelligent Surfaces,” in IEEE International Conference
on Communications (ICC), June 2020.

[8] A. Elzanaty, A. Guerra, F. Guidi, and M.-S. Alouini, “Reconfigurable in-
telligent surfaces for localization: Position and orientation error bounds,”
IEEE Transactions on Signal Processing, vol. 69, pp. 5386–5402, 2021.

[9] J. He, H. Wymeersch, L. Kong, O. Silvén, and M. Juntti, “Large
intelligent surface for positioning in millimeter wave mimo systems,”
in IEEE Vehicular Technology Conference (VTC), 2020.

[10] H. Zhang, H. Zhang, B. Di, K. Bian, Z. Han, and L. Song, “Towards
ubiquitous positioning by leveraging reconfigurable intelligent surface,”
IEEE Communications Letters, vol. 25, no. 1, pp. 284–288, 2021.

[11] K. Keykhosravi, M. F. Keskin, G. Seco-Granados, and H. Wymeersch,
“SISO RIS-enabled joint 3D downlink localization and synchronization,”
in IEEE International Conference on Communications (ICC), 2021.

[12] M. Rahal, B. Denis, K. Keykhosravi, B. Uguen, and H. Wymeersch,
“RIS-enabled localization continuity under near-field conditions,” in
IEEE International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), pp. 436–440, 2021.

[13] Y. Liu, E. Liu, R. Wang, and Y. Geng, “Reconfigurable intelligent
surface aided wireless localization,” in IEEE International Conference
on Communications (ICC), 2021.

[14] A. Abrardo, D. Dardari, and M. Di Renzo, “Intelligent reflecting sur-
faces: Sum-rate optimization based on statistical position information,”
IEEE Transactions on Communications, vol. 69, no. 10, pp. 7121–7136,
2021.

[15] X. Hu, C. Zhong, Y. Zhang, X. Chen, and Z. Zhang, “Location
information aided multiple intelligent reflecting surface systems,” IEEE
Transactions on Communications, vol. 68, no. 12, pp. 7948–7962, 2020.

[16] S. Kay, Fundamentals of Statistical Signal Processing: Practical al-
gorithm development. Fundamentals of Statistical Signal Processing,
Prentice-Hall PTR, 2013.

[17] H. Van Trees, Detection, Estimation, and Modulation Theory, Part I:
Detection, Estimation, and Linear Modulation Theory. No. pt. 1, Wiley
& Sons, Ltd, 2004.

[18] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge univer-
sity press, 2004.

[19] N. Garcia, H. Wymeersch, and D. T. M. Slock, “Optimal precoders for
tracking the aod and aoa of a mmwave path,” IEEE Transactions on
Signal Processing, vol. 66, no. 21, pp. 5718–5729, 2018.

[20] J. Li, L. Xu, P. Stoica, K. W. Forsythe, and D. W. Bliss, “Range
compression and waveform optimization for MIMO radar: A Cramér–
Rao bound based study,” IEEE Transactions on Signal Processing,
vol. 56, no. 1, pp. 218–232, 2008.

[21] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1.” http://cvxr.com/cvx, Mar. 2014.

[22] M. F. Keskin, F. Jiang, F. Munier, G. Seco-Granados, and H. Wymeersch,
“Optimal Spatial Signal Design for mmWave Positioning under Im-
perfect Synchronization,” IEEE Transactions on Vehicular Technology,
2022. arXiv: 2105.07664.

[23] J. Tranter, N. D. Sidiropoulos, X. Fu, and A. Swami, “Fast unit-modulus
least squares with applications in beamforming,” IEEE Transactions on
Signal Processing, vol. 65, no. 11, pp. 2875–2887, 2017.

[24] O. Rinchi, A. Elzanaty, and M.-S. Alouini, “Compressive near-field
localization for multipath RIS-aided environments,” IEEE Communica-
tions Letters, 2022.

[25] M. Rahal, B. Denis, K. Keykhosravi, F. Keskin, B. Uguen, G. C. Alexan-
dropoulos, and H. Wymeersch, “Arbitrary beam pattern approximation
via riss with measured element responses,” arXiv: 2203.07225.

http://cvxr.com/cvx

	Introduction
	System Model
	Localization-Optimal RIS Profile Design
	FIM and PEB
	PEB Minimization
	Practical RIS Phase Profiles and Time Sharing

	Simulation Results
	Simulation Parameters
	Performance Analysis
	Visualization of Beams
	Comparison of Design Strategies
	Feasible RIS Profiles

	Complexity

	Conclusions
	References

