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Abstract

In the last decades thermodynamics has seen a resurgence because of the
interesting phenomena that happen in small-scale systems. Indeed, in
nanoscale devices, quantum effects and fluctuations cannot generally be
neglected and influence both the transport and their thermodynamic
performance. In particular, most devices operate out of equilibrium, where
additional fluctuations emerge and nonthermal distributions may occur.
Using the scattering theory formalism, the articles discussed in this thesis
contribute to two different aspects of transport in out-of-equilibrium
mesoscopic conductors, namely current fluctuations under out-of-equilibrium
conditions and the effect of nonequilibrium (or nonthermal) distributions as a
resource for thermodynamic operations.
On the one hand, we study the out-of-equilibrium fluctuations in the absence
of current, focusing on the shot noise for heat, spin, and charge currents. In
particular, we prove the existence of a general bound, namely that, when the
zero average charge current is achieved using a temperature and a voltage bias,
the charge shot noise is always smaller than the thermal noise.
On the other hand, we introduce a novel quantum transport model to analyze
the performance of a hot-carrier solar cell. This device combines aspects of
thermoelectric and photovoltaic devices to enhance its performance. Using our
model, we show that exploiting the nonequilibrium resource of a nonthermal
distribution improves power production.

Keywords: Fluctuations and noise; Charge, heat and spin transport; Shot
noise; Nonequilibrium thermodynamics; Mesoscopic thermoelectricity;
Hot-carrier solar cell
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gave me the opportunity to study as a PhD candidate in her group. Thank you
for your continuous and unwavering support and for your contagious enthusiasm
in doing science.

A special thank goes to Matteo Acciai, with whom I had fruitful and
insightful discussions and who had plenty of patience while I was looking for
inequalities.

I would also like to thank Robert Whitney, Christian Sp̊anslätt, and Juliette
Monsel for the useful discussions and for the helpful contributions to my project.

Finally, I want to acknowledge all who bore discussing science with me. I
am sure I learned something from each and every of you.

v





Contents

Abstract i

List of Publications iii

Acknowledgement v

1 Introduction 1
1.1 Equilibrium and out-of-equilibrium systems . . . . . . . . . . . 3
1.2 Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Scattering theory 7
2.1 Setup, scattering matrix and field operator . . . . . . . . . . . 7
2.2 Current operators . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Current fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 10
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Chapter 1

Introduction

This thesis and the appended papers deal with electronic mesoscopic systems
out of equilibrium. Mesoscopic systems are attracting increasing interest as
devices, for example transistors, become smaller and quantum effects affect
their behavior [1]. In particular, while quantum mechanics worsen the perform-
ance of classical devices, it offers new possibilities for novel and advantageous
technologies both from a theoretical and an experimental point of view, for
example quantum computing [2]. This is made possible by the low temperat-
ures reached in such quantum devices [3], ranging from 100 K to sub-Kelvin
temperatures, which allow quantum coherence to take place. The mesoscopic
devices considered in this thesis are such that their dimension is smaller than
the electron coherence and thermalization lengths. This makes the electron
wavefunction propagate through the device without losing coherence, thereby
allowing quantum mechanical effects to take place in the device. Such kind of
propagation is studied in the wider field of quantum transport, whose research
is focused on currents flowing under quantum effects. The currents investigated
are often charge and heat currents, which are fundamental for characterizing
the thermodynamic properties of electronic systems, and are crucial for ther-
moelectricity [4]. Nonetheless, additional kinds of currents are investigated
depending on the system. For instance, spin currents are fundamental in the
field of spintronics [5].

However, for transport to happen and currents to be non-zero, the system
needs to be out of equilibrium. In fact, equilibrium systems can be quite
uninteresting for their lack of dynamics and resources. This is illustrated by
the second law of thermodynamics, which does not allow entropy decrease,
when applied to the equilibrium state, which has maximum entropy. Therefore,
out-of-equilibrium systems are necessary for many useful tasks, for example re-
frigeration and power production. Mesoscopic devices improve the performance
of such tasks by exploiting quantum effects and offer the possibility of local op-
eration, for example on-chip cooling [6], thanks to their small size. Concretely,
most devices operate out of equilibrium through the presence of some bias, for
example voltage or temperature biases, driving the currents. This is the case in
quantum heat engines [7, 8], refrigerators [9, 10], current rectifiers [11–13], and
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2 CHAPTER 1. INTRODUCTION

many more [14–17]. However, it is also possible to induce currents by using the
nonequilibriumness of a particle distribution as the resource. This was recently
shown in Refs. [18, 19], where the nonequilibrium resource alone is used to
fuel a refrigerator. An interesting device that has the capability of exploting
such nonequilibriumness to produce power is the hot-carrier solar cell [20],
which proposes to improve solar cells performance by exploiting high-energy
(hot) carriers. In such a device the fast carrier extraction allows to exploit a
nonthermal particle distribution to drive a charge current, and, consequenly,
produce power. Additionally, with a slower extraction the particle distribution
thermalizes and the efficacy of nonequilibrium can be tested.

Another consequence of out-of-equilibrium is the rise of additional noise,
called shot noise. Usually, noise is considered detrimental because it hinders
the accuracy of the device. However, fluctuations can reveal additional insight
into the system considered, and therefore are worth studying and measuring.
In particular, shot noise observations are not only used to characterize the
conductance of mesoscopic conductors [21], but have also allowed to observe
physical phenomena, like the fractional quantum Hall effect [22, 23]. Ad-
ditionally, fluctuations play a crucial role in both stochastic and quantum
thermodynamics, in which the randomness of observation outcomes is an im-
portant feature. These fields have attracted increasing interest in the last
decades thanks to the technological developments in nanotechnology, which
provides an experimental testing ground for the theory. In particular, the role
of fluctuations is currently being investigated to establish fluctuation relations
out of equilibrium, thermodynamic uncertainty relations, and connections to
information.

While all the appended papers concern electronic mesoscopic systems out of
equilibrium, papers [I] and [II] contribute to the research towards fluctuations,
whereas paper [III] does it towards thermoelectric mesoscopic devices and
nonequilibriumness as a resource. Specifically, in [I] and [II] the shot noise in
the absence of currents is considered. This kind of noise was dubbed delta-
T noise for its emergence when establishing a temperature bias, and was
recently measured for the first time in Ref. [24]. While this experimental
result paves the way for future measurements, the theoretical work in paper
[I] studies the properties of such noise on both charge and heat currents. In
particular, paper [I] analyzes both shot and thermal noises and their relation,
proving a bound between them. Paper [II] extends the results of paper [I]
providing a more detailed description of the noises, and extending the results
to the finite-frequency noise and spin transport. Therefore, papers [I] and [II]
motivate further endeavors to experimentally test the theoretical results and
further studies on delta-T noise to investigate its properties and connections
to information. Instead, paper [III] proposes a quantum transport model
to describe the performance of hot-carrier solar cells. Recently, proofs of
concept experiments on such devices have been realized using nanowires [25–
29]. However, the theoretical characterization of the devices is often limited by
the complexity of the underlying processes. The model introduced in paper [III]
provides a simple description by focusing on the main properties of the involved
processes. In this way, the model allows us to describe power production out of
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Figure 1.1: (a): Examples of equilibrium (top panel) and nonequilibrium
(bottom panel) probability distributions. The equilibrium distributions have
well-defined chemical potential µ and temperature, hot (red) or cold (blue).
Instead, the nonequilibrium distribution does not. (b): Example of device
locally at equilibrium. The heater (red) establishes a temperature difference
between the ends of the nanowire (green). This out-of-equilibrium condition
generates electric current through the nanowire. Source: [30].

a nonequilibrium distribution, and provides a thermodynamic characterization
of the device. In particular, the latter shows that the hot-carrier solar cell is
a bridge between the fields of thermoelectrics and photovoltaics. Paper [III]
provides guidelines to improve the performance of hot-carrier solar cells in their
realization. However, further studies are required for the model to effectively
reproduce experiments.

1.1 Equilibrium and out-of-equilibrium systems

In order to discuss systems out of equilibrium, we first need to define what
equilibrium is and how systems at equilibrium are characterized. Equilibrium
represents the lack of information on a system [31]. In particular, the equilib-
rium state is described by the least-assuming probability distribution, namely
the distribution that maximizes the entropy under some constraints. Such
constraints depend on what quantities of the considered system are allowed to
fluctuate around their average, and determine the ensemble used to describe
the system. The ensemble in which both energy and number of particles
can fluctuate is the grand-canonical ensemble, in which the system exhibits
well-defined temperature T and chemical potential µ. Additionally, when the
system is comprised of fermions, such as electrons, the Pauli exclusion principle
allows to determine the occupation probability of each quantum state. This
probability is given by the Fermi distribution, namely

f(E) =
1

1 + exp[(E − µ)/kBT ]
, (1.1)

illustrated in Fig. 1.1(a), and where kB is the Boltzmann constant. Whenever
an electronic system is not described by a unique Fermi distribution we say that
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the system is out of equilibrium. In many experiments the out-of-equilibrium
regime is reached by having two sides of the system at different temperatures and
chemical potentials. This means that, while each side is locally at equilibrium,
the global system is not. Indeed, there are no unique temperature and chemical
potential describing the distribution of the whole system. An example of this
kind of setup is illustrated in Fig. 1.1(b): the two sides of the device have
different temperatures and chemical potentials thanks to the local heating and
voltage bias applied. These sides act as electronic reservoirs, namely systems
at equilibrium with large heat capacitance, such that their temperatures are
virtually unaffected by the transport. In the example above, transport is made
possible by a nanowire heterostructure connecting the electronic reservoirs.
Nonetheless, there are many other stuctures that can make transport happen, for
instance quantum point contacts [32], quantum dots [30, 33], or even molecules
[34]. Since controlling chemical potentials and temperatures is experimentally
feasible, many experiments investigate the thermoelectric properties of these
different structures, which can then be implemented in thermometry, heat
management, and work production. In Chapter 3 we will discuss thermoelectric
devices in more detail. By contrast, out-of-equilibrium systems which exploit
nonequilibrium probability distributions, namely local distributions different
from the equilibrium one, are more difficult to approach both experimentally
and theoretically. In fact, it is much harder to characterize and measure a
nonequilibrium distribution compared to an equilibrium one. However, this
kind of distribution can provide additional resources to perform useful tasks
due to the entropy difference between the nonequilibrium distribution and the
equilibrium one.

While papers [I] and [II] study the role of fluctuations in devices comprised of
two reservoirs in different equilibrium states, paper [III] investigates the effect of
nonequilibrium distributions on the performance of hot-carrier solar cell. In fact,
even though such distributions are more challenging to study, they can often
appear in transient dynamics or in regions between equilibrium distributions.
This is the case in hot-carrier solar cells, where the carrier distribution is highly
nonthermal when the carrier extraction is fast. Thus, such a nonequilibrium
resource can be exploited to further improve the performance of the device.

1.2 Fluctuations

In classical macroscopic thermodynamics fluctuations are often neglected be-
cause their relative strength decreases with the number of elements N in the
system, namely, for an observable O, 〈∆O2〉/〈O〉2 ∼ N−1/2. In mesoscopic sys-
tems this is not the case, and fluctuations can reveal additional insights on the
physics of the system. A seminal result on fluctuations was the Nyquist-Johnson
noise[35, 36], which relates the charge current fluctuations to the temperature
of the sample. This relation is an early example of the fluctuation-dissipation
theorem [37], which was further generalized in the Green-Kubo relations [38,
39] between correlations and transport coefficients. While these results are
fundamental in the study of fluctuations, they are valid only for systems close
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to equilibrium. In fact, in out-of-equilibrium systems such relations do not
generally hold, and fluctuations have much richer features. For example, in the
field of stochastic thermodynamics, fluctuation theorems [40–43] play a crucial
role in the description of nonequilibrium systems and their entropy, and were
instrumental for establishing the thermodynamic uncertainty relations [44–47].
Additionally, the out-of-equilibrium fluctuations have also proved to be useful
in characterizing mesoscopic conductors. Indeed, while at equilibrium the
noise is induced by the the randomness of the thermal excitation, hence called
thermal noise, a different kind of noise emerges out of equilibrium. This noise
is called shot noise (or partition noise) and originates from the discreteness of
the transported particles. Apart from characterizing nanoscopic conductors
[21], shot noise has been used in the detection of fractional charges [22, 23],
Cooper pairs [48, 49], Bogoliubov quasiparticles [50], as well as in thermometry
[51, 52] and quantum tomography [53–55].

While paper [III] focuses on the average currents, papers [I] and [II] are
centered around the delta-T noise. This kind of noise is named after the
temperature bias applied in the absence of a voltage bias which produced
the fluctuations. However, it was first measured in electron-hole symmetric
systems [24, 56, 57], in which the absence of a voltage bias corresponds to a
vanishing average charge current. Thus, a general extension of the delta-T
noise that applies to any mesoscopic conductor is the noise in the absence of
currents. This noise is particularly interesting because it is allows to detect
out-of-equilibrium conditions which maintain zero average current, as happens
at equilibrium. Moreover, the fluctuations in absence of current were shown
to satisfy the fluctuation-dissipation theorem in systems obeying the local
detailed balance [58]. Therefore, this kind of noise may be used to test the
fluctuation-dissipation theorem and possibly extend it to out-of-equilibrium
conditions.

1.3 Thesis outline

Having discussed the general context and motivations behind the appended
papers, the thesis now delves into the theoretical background necessary to
understand these papers. The thesis is structured as follows.

First, in Chapter 2, we provide a brief introduction to the scattering theory,
which is the theorical toolbox used in the appended papers. Here, we define the
transport quantities and techniques of interest in the remainder of the thesis.

Next, in Chapter 3, we discuss a wide class of systems that are under the
scope of the appeded papers: thermoelectric devices. These devices are also
realized at the nanoscale and at low temperatures, where quantum mechanics
determines their transport properties. In this chapter we also introduce the
hot-carrier solar cell, a device in which the thermoelectric and photovoltaic
effect are combined. This device is investigated in paper [III], and in Sec. 3.3
we discuss the novel transport model used in that paper to describe the device.

While Chapter 3 focuses on the average currents flowing in thermoelectric
devices, Chapter 4 discusses the current fluctuations. In particular, we introduce
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the delta-T noise and generalize it to the noise in absence of currents, both of
which are investigated in papers [I] and [II].

In Chapter 5 we gather the main findings of the appended papers. The
conclusions are drawn in Chapter 6.



Chapter 2

Scattering theory

This chapter is dedicated to the theoretical formalism used in the appended
papers to describe transport, namely scattering theory. This simple approach
to transport was introduced by Landauer and Büttiker in Refs. [59–61], and
has proven to accurately predict and model many experiments [62–65]. The
scattering theory is appropriate to describe systems in which the electron
coherence length is large compared to the size of the device, such that electrons
propagate obeying the laws of quantum mechanics. Additionally, scattering
theory describes transport when electron-electron interactions are negligibly
small or described at mean-field level. This allows to consider single-particle
wavefunctions on a potential landscape.

2.1 Setup, scattering matrix and field operator

The setup considered is made of a central conductor, where the scattering
takes place, which is connected to the reservoirs (labeled with greek letters)
through one-dimensional leads. Here, we consider only stationary systems. The
time-dependent case can be found in Ref. [66]. We approximate the leads to
be semi-infinite, such that the particles propagating far from the conductor
are described by plane-waves, as illustrated in Fig. 2.1. Additionally, the leads
have multiple propagating modes, or channels (labeled with roman letters).
Then, given an incoming particle wavepacket propagating from reservoir α to
the conductor, we can decompose it into the othogonal basis of waves e−ik(E)x

with coefficients aαi(E). Similarly, we decompose the outgoing wavefunction
propagating in the opposite direction, namely from the conductor to reservoir
α, using the waves eik(E)x with coefficients bαj(E). The evolution that maps
the incoming particle into the outgoing one is determined by the Schrödinger
equation. Moreover, the linearity of the Schrödinger equation implies that the
incoming (aαi(E)) and outgoing (bβj(E)) coefficients are related through the
scattering matrix sαi,βj(E),

bαi(E) =
∑

βj

sαi,βj(E)aβj(E). (2.1)

7
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V (x)

aαi bβj

(a) (b)
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γ

Figure 2.1: (a): One-dimensional scattering problem. The incoming wave-
function aαi scatters onto the potential barrier V (x), leading to a transmitted
wavefunction bβj and a reflected one (not drawn). The different amplitudes
relate to the to the transmission probability of the barrier. (b): General
multi-terminal scattering setup. The reservoirs (greek letters) are connected to
the conductor through one-dimensional leads having multiple channels (roman
letters). The incoming (outgoing) particles from (to) reservoir α have amplitude
aαi (bβj).

The scattering matrix cannot be an arbitrary matrix. In fact, imposing the
conservation of particles during the scattering one finds that the scattering
matrix s(E) is unitary, namely s†(E)s(E) = 1, 1 being the identity matrix.
Additionally, if the system is also invariant under time-reversal, the scattering
matrix is symmetric.

The scattering matrix is the key to calculating transport quantities because
it contains the transmission and reflection amplitudes across the conductor.
However, in order to calculate the currents flowing in the system, we first need
to formulate the corresponding quantum-mechanical operators. To do so, we
use the canonical quantization procedure to obtain the quantum field associated
with the particle. This allows us to write the currents flowing in the system in
terms of such field, thereby obtaining a quantum description of the current.
First, we expand the wavefunction into the orthogonal basis of propagating
waves, exp(−iEt/~± ik(E)x), and the orthonormal basis of transverse bound
states χαi(E, r⊥). The former describes particles traveling between the reservoir
and the central region, whereas the latter describes the channel in which the
particle is propagating. The corresponding Fourier coeffients of the expansion,
aαi(E) and bαi(E), are promoted to ladder operators, indicated with the hat
•̂, and satisfy the canonical anti-commutation relations necessary for fermionic
particles, namely

{âαi(E), âβj(E
′)} = 0,

{
âαi(E), â†βj(E

′)
}

= δαβδijδ(E − E′), (2.2)

and similarly for b̂βj(E). Then, the field operator of particles moving from and
into reservoir α reads

Ψα(r, t) ≡
∑

i

∫
dEe−iEt/~

χαi(E, r⊥)√
hv(E)

[
âαi(E)e−ik(E)x + b̂αi(E)eik(E)x

]
,

(2.3)
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in which we used the unit-flux normalization by including the particle velocity
mv(E) = ~k(E). The summation runs over the open channels of the lead
connecting to reservoir α.

2.2 Current operators

Using the field operator in Eq. (2.3) we calculate the current operators. Here,
we provide the operators corresponding to the charge, Îα(t) and the energy

current, Î
(E)
α (t). Indeed, such currents are crucial in the study of most electronic

mesoscopic systems. Additionally, when the reservoir α is a thermal bath,
namely is described by a thermal distribution at temperature Tα and chemical
potential µα, the first law of thermodynamics allows us to write the average
entropy production in reservoir α as

TαṠα = 〈Ĵα(t)〉 ≡ 〈Î(E)
α (t)− µαÎ(N)

α (t)〉, (2.4)

where Ĵα(t) is the heat current, whereas Î
(N)
α (t) is the particle current. In

particular, the latter is related to the charge current via the particle charge

q as Îα(t) = qÎ
(N)
α (t). Additionally, other kinds of currents, for instance spin

currents, can be calculated in a similar fashion. In particular, for spin transport
it is possible to include the spin indices into the reservoir indices.

To calculate the current operators (see App. A for details), we consider the
case in which the energy scale of the transport, which typically is on the order
of the applied external biases, for instance the voltage bias, is much smaller
than the Fermi energy µ0 of the system, namely

|E − E′| � E ∼ µ0. (2.5)

This means that the the energy dependencies of wavenumber k(E), particle
velocity v(E), and transverse modes χαi(E) are weak compared to the energy-
scale of the transport, and we can thus approximate k(E) ≈ k(E′), v(E) ≈
v(E′), χαi(E, r⊥) ≈ χαi(E

′, r⊥). This allows one to write the charge current
operator flowing into the reservoir α as

Îα(t) =
q

h

∑

i

∫
dEdE′e−i(E−E

′)t/~
[
b̂†αi(E

′)b̂αi(E)− â†αi(E′)âαi(E)
]
, (2.6)

where q is the electric charge of the considered fermions, specifically q = −e
for electrons. Similarly, the energy current operator is

Î(E)
α (t) =

1

h

∑

i

∫
dEdE′

E + E′

2
e−i(E−E

′)t/~
[
b̂†αi(E

′)b̂αi(E)− â†αi(E′)âαi(E)
]
.

(2.7)
As expected, the currents flowing into reservoirs α account for the transferred
quantity, charge and energy respectively, at all energies and in all channels i.
Additionally, it is clear from Eqs. (2.6) and (2.7) that the particles propagating

towards the reservoir (corresponding to the operators b̂αi(E)) increase the
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currents, whereas the particles escaping the reservoir (corresponding to the
operators âαi(E)) decrease it. However, the particles propagating towards the
reservoir have been subjected to a scattering process in the conductor. Thus,
the operators b̂αi(E) are related to the operators âαi(E), and this relation is
governed by the scattering matrix through Eq. (2.1). Substituting this linear
relation in the charge current operator of Eq. (2.6), we obtain

Îα(t) =
q

h

∑

i

∫
dEdE′e−i(E−E

′)t/~AE
′,E

αi,βj,γkâ
†
βj(E

′)âγk(E) (2.8)

where the summation over the repeated indices βj and γk is understood and
the tensor in the integral is defined as

AE
′,E

αi,βj,γk ≡ s∗αi,βj(E′)sαi,γk(E)− δαi,βjδαi,γk, (2.9)

and contains all the information about the scattering process.
The currents in Eqs. (2.6), (2.7) and (2.8) are still operators. However, in

an experiment the actual measured currents will correspond to the spectrum
of such operators, and clearly relevant quantities to characterize the system
are the average currents flowing into the reservoirs. Such averages can be
calculated in this framework by taking the expectation value of the ladder
operators, resulting in

Iα = 〈Îα(t)〉 =
q

h

∑

i

∑

βj

∫
dEDαi,βj(E) [fα(E)− fβ(E)] , (2.10)

I(E)
α = 〈Î(E)

α (t)〉 =
q

h

∑

i

∑

βj

∫
dEEDαi,βj(E) [fα(E)− fβ(E)] , (2.11)

where Dαi,βj(E) = |sαi,βj(E)|2 is the transmission probability from reservoir
β and channel j to reservoir α and channel i, whereas the quantity fα(E) is
the occupation number at energy E of reservoir α. While the transmission
probabilities depend on the properties of the scatterer, the occupation number is
a boundary condition of the scattering theory formalism. Indeed, the reservoirs
are often considered large enough that the transport through the conductor
does not affect the particle distribution. Alternatively, the distribution in
the reservoirs can be kept fixed by an external agent. A particular and
often considered case is the one in which the reservoirs are thermal baths at
temperature Tα and chemical potential µα. Then, the occupation number is
given by the Fermi distribution,

fα(E) =
1

1 + exp [(E − µα)/kBTα]
. (2.12)

2.3 Current fluctuations

While average currents are important to establish the performance of devices,
the actual measuments will detect values fluctuating around such averages.
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These fluctuations can also give insight on the device and characterize its
performance, as discussed in Sec. 1.2. Here, we provide the procedure to follow
in order to calculate current fluctuations in the scattering formalism, focusing
on the charge current fluctuations. Other current fluctuations can be obtained
in a similar fashion. In Chapter 4 we will consider in more detail the current
fluctuations investigated in papers [I] and [II], especially regarding heat and
spin current fluctuations.

To study the current fluctuations, the symmetrized noise is often used. In
particular, for charge current fluctuations it is defined through the deviation
from the mean ∆Îα(t) = Îα(t)− 〈Îα(t)〉 as

SIαβ(t− t′) ≡ 〈∆Îα(t)∆Îβ(t′) + ∆Îβ(t′)∆Îα(t)〉, (2.13)

and analogously for other types of currents. Taking the Fourier transform
we analyze the finite-frequency components of the symmetrized charge noise,
obtaining

2πδ(ω + ω′)SIαβ(ω) = 〈∆Îα(ω)∆Îβ(ω′) + ∆Îβ(ω′)∆Îα(ω)〉. (2.14)

Now, we use the following relation on the expectation values of fermionic ladder
operators

〈â†1â2â
†
3â4〉 = 〈â†1â2〉〈â†3â4〉+ 〈â†1â4〉〈â2â

†
3〉, (2.15)

to calculate the current correlators in Eq. (2.14). Here, we show the result of
such a calculation for the current auto-correlator 〈Îα(ω)Îα(ω′)〉, given by

〈Îα(ω)Îα(ω′)〉 = 4π2δ(ω)δ(ω′)〈Îα(t)〉2+

+ δ(ω + ω′)
q2

~
∑

i,i′

∫
dEAE,E+~ω

αi,βj,γkA
E+~ω,E
αi′,γk,βjfβ(E) [1− fγ(E + ~ω)] .

(2.16)

The first term on the right-hand side corresponds to the product of the averages
〈Îα(ω)〉〈Îα(ω′)〉 and thus cancels out when calculating the noise. Instead, the
second term constitutes the noise. In particular, the term fβ(E)[1− fγ(E +
~ω)] suggests that the incoming particle absorbed a quantum of energy ~ω
during the scattering, thereby we refer to the noise generated by this current
correlator as absorption noise, S−αα(ω). By contrast, the current correlator
〈Îα(ω′)Îα(ω)〉 contributes to the noise with an analogous integral containing
fβ(E + ~ω) [1− fγ(E)], which suggests that the incoming particle emitted a
quantum of energy ~ω. Thus, we refer to the noise generated by this correlator
as emission noise, S+

αα(ω). These two noise contributions read

S−αα(ω) =
q2

h

∑

i,i′

∫
dEAE,E+~ω

αi,βj,γkA
E+~ω,E
αi′,γk,βjfβ(E) [1− fγ(E + ~ω)] , (2.17)

S+
αα(ω) =

q2

h

∑

i,i′

∫
dEAE+~ω,E

αi,βj,γkA
E,E+~ω
αi′,γk,βjfβ(E + ~ω) [1− fγ(E)] , (2.18)

where the summation over the indices βj and γk is understood. As expected,
the two noise contributions coincide at zero frequency, ~ω = 0, where the
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α β

Probe

p

Figure 2.2: Two-reservoirs system connected to a probe. The distribution of
particles inside the probe is determined by imposing constraints on the currents
flowing into it. When particles travel from α to β passing through the probe
coherence is (partially) lost.

distinction between emission and absorption is meaningless. An analogous
calculation can be performed for the current cross-correlators 〈Îα(ω)Îβ(ω′)〉.
Furthermore, the symmetrized noise entering Eq. (2.14) is simply the sum of
emission and absorption noise, SIαβ(ω) = S+

αβ(ω) + S−αβ(ω). Even though the
symmetrized noise is widely investigated both theoretically and experimentally,
the measured finite-frequncy noise depends on the detection scheme and can
take on non-symmetric combinations of absorption and emission noise [67, 68].

While this section provided the general formulations and derivations of noise
in the context of the scattering formalism, in Chapter 4 these notions will be
applied to specific and experimentally feasible scenarios that are investigated
in papers [I] and [II], and the distinction between shot and thermal noise will
be discussed.

2.4 Büttiker and dephasing probes

The scattering theory discussed so far describes perfectly coherent transport
in a mesoscopic conductor. However, in a realistic setting, scattering with
impurities and interactions introduces incoherent or inelastic elements to the
scattering. To capture these phenomena and investigate their effect on the
transport, Büttiker and dephasing probes [69–73] are often used in mesoscopic
physics. These probes are additional elements in the scattering framework,
as illustrated in Fig. 2.2. However, unlike the reservoirs, the probe’s particle
distribution is not a boundary condition of the scattering problem but is
determined by imposing constraints on the currents flowing into the probe. The
imposed constraints govern the nature and properties of the probe. Büttiker
probes can be both conceptual tools used to model particular processes or
real, physical components used in experiments. The latter usually consist of
large metallic contacts attached to the mesoscopic conductor which are left
floating or are connected to a voltmeter, namely the charge current flowing
into them is ideally zero. Büttiker probes are often considered to have an
efficient thermalization, such that their particle distribution is thermal. The
chemical potential (or equivalently the voltage) and temperature of the probe’s

distribution are determined by imposing vanishing particle current, I
(N)
α = Iα/q,
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α β

µp, Tp

Ip = 0,
Jp = 0
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α β

µp, T

T

Ip = 0

(b)

α β

np(E)

ip(E) = 0

(c)

Figure 2.3: Diagrams of Büttiker and dephasing probes and their constraints
on the current flows. (a): Büttiker probe described by a thermal distributrion
of chemical potential µp and temperature Tp obtained by imposing zero charge
and heat currents into the probe. (b): Pure voltage probe, namely a Büttiker
probe connected to the environment (blue) at temperature T . The heat flow
into the probe is dominated by the flow between probe and environment,
hence the probe’s temperature corresponds to T . (c): Dephasing probe whose
distribution np(E) is determined by imposing zero current at each energy,
ip(E) = 0.

and heat current into the probe, namely

I(N)
p = 0, Jp = 0 ⇒ I(E)

p = 0, (2.19)

as depicted in Fig. 2.3(a). Indeed, if we imagine a situation in which the
probe has a chemical potential µp that allows a net particle flow into the probe
itself, the probe distribution is not stationary and needs to change because of
the inflow of particles, establishing a higher chemical potential. The opposite
happens if the chemical potential µp allows a net particle flow out of the probe.
Thus, the stationary condition is reached when the average particle current is
zero. The same argument applies for the heat flow. A particular instance of
a Büttiker probe happens when the thermal conductance between the probe
and the environment is large. In this case, the heat exchange between the
probe and the other reservoirs is negligible compared to the heat flow to the
environment, and consequently the probe’s temperature coincides with the
environment’s temperature, as shown in Fig. 2.3(b). Thus, only the probe’s
chemical potential is affected by the transport towards the other terminal, and
we refer to the probe as a pure voltage probe.

Since the distribution of the particles flowing into the Büttiker probe is
changed into the probe’s thermal distribution, the Büttiker probes add inelastic
scattering to the framework of scattering theory. Additionally, when a particle
exits the Büttiker probe, its phase is reset and carries no correlation with the
phase the particle had before entering the probe. Therefore, the Büttiker probe
also includes decoherence.

Another kind of probe is the dephasing probe, illustrated in Fig. 2.3(c).
Unlike the Büttiker probe, the dephasing probe does not have a physical
implementation, but is only a conceptual tool. This stems from the constraint
on the current flow required for this kind of probe. In fact, the dephasing
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probe requires the particle flow at each energy to vanish, namely, defining the
energy-resolved current into the probe ip(E) through the integral

Ip ≡
∫
dEip(E), (2.20)

the dephasing probe requires
ip(E) = 0. (2.21)

This condition is clearly much stronger than those of Eq. (2.19), and in fact the
probe distribution np(E) which satisfies the condition is generally a nonequilib-
rium distribution. Since the dephasing probe does not reorganize the particle
distribution, the energy of a particle escaping the probe is equal to the energy
the particle had when it entered the probe. However, the particle’s phase is
reset. Therefore, the dephasing probe is a tool to introduce elastic decoherence
to the scattering framework.

In conclusion, probes are useful tools to include inelastic or elastic de-
coherence in the scattering theory of transport. Paper [III] makes use of
such tools, specifically of Büttiker probes, to describe the processes of carrier
thermalization and carrier relaxation in a hot-carrier solar cell. These processes
are mediated by carrier-carrier and carrier-phonon interaction, respectively,
which are not included in the basic scattering formalism introduced in Sec. 2.1.
However, the use of Büttiker probes allows us to mimic their effects and include
them in the scattering description of the device.



Chapter 3

Thermoelectric devices

In this chapter a brief overview of thermoelectric devices is presented. Here,
we discuss the difference between classical and quantum thermoelectrics, as
well as introduce the setups considered in the appended papers. These consist
of quantum thermoelectric heat engines and hot-carrier solar cells, whose
descriptions are based on the scattering theory discussed in the previous
chapter. The transport quantities obtained with such a formalism allow to
characterize and quantify the performance of the devices both in linear and,
most importantly, nonlinear response.

3.1 Classical and quantum thermoelectrics

After the discovery of the Seebeck [74] and Peltier [75] effects, which make
use of temperature differences to induce charge currents and vice-versa, ther-
moelectric materials have been used in heat control, heat to work conversion
and refrigeration [76]. In particular, classical thermoelectric materials are
characterized by a thermalization length `th smaller than the typical size of

`th

I, JTh Tc

(a)
`th

I, Jh I, JcTh Tc

(b)

Figure 3.1: (a): Classical thermoelectrics. The thermalization length `th is
the smallest scale of the system. Thus, the electrons in the thermoelectric
structure are locally at equilibrium, and their temperature varies smoothly
between the hot temperature Th and the cold one Tc. Electric and heat flows,
I and J , can be described locally by the Boltzmann equation. (b): Quantum
thermoelectrics. The size of the thermoelectric structure is smaller than the
thermalization length, and quantum effects occur in it. Current flows need to
be calculated accounting for the whole system.
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the material, as illustrated in Fig. 3.1(a). In this case the electrons along the
material are locally at equilibrium, meaning that their local distribution is
a thermal distribution characterized by smoothly varying chemical potential
and temperature, and they are well described by the Boltzmann equation [77].
Recently, the technological advances in nanotechnology and refrigeration have
made possible the realization of structures with a typical size smaller than the
thermalization length [78]. Indeed, it is now possible to fabricate structures
with typical size on the order of 10 nm, and the low temperatures reached
in many experiments weaken the strength of electron-electron and electron-
phonon interactions [3, 79], thereby increasing the thermalization length to
many micrometers. Consequently, the behavior of such structures is influenced
by quantum phenomena like tunneling and interference, and we refer to them
as quantum thermoelectrics [4]. Since in quantum thermoelectrics the scale of
thermalization is larger than the size of the thermoelectric structure, there is
no local equilibrium, as shown in Fig. 3.1(b), and one must consider the whole
system to characterize the device. The study of quantum thermoelectrics allows
to design novel devices that exploit the quantum effects happening in them,
as well as explore new aspects of thermodynamics at the nanoscale, where it
coexists with quantum mechanics [80, 81]. Indeed, thermoelectricity is used
as a mean to study the state of nanostructures by observing its response to
external temperature and voltage biases [82]. Additionally, the small size of
quantum thermoelectrics would be excellent for local operation, like on-chip
refrigeration and heat management.

Since the appended papers are centered around quantum thermoelectrics,
in the following we will focus only on them and disregard the classical ther-
moelectrics. In particular, papers [I] and [II] investigate fluctuations in the
absence of currents. This condition is for instance reached in thermoelectric
heat engines when they are operating at the thermovoltage, namely the voltage
at which the power output of the device vanishes. Instead, paper [III] revolves
around the hot-carrier solar cell, which is a device combining the benefits of
thermoelectrics and photovoltaics.

3.2 Thermoelectric heat engine

Since the Seebeck effect allows to drive a charge current from a temperature
difference, it is natural to consider a device in which such effect is used to
produce power. This device is the thermoelectric heat engine [84–86]. Here,
we consider steady-state quantum thermoelectric heat engines where local
interactions can be neglected, such that the scattering theory description
applies. A typical two-terminal device is illustrated in Fig. 3.2(a), where left
(L) and right (R) reservoirs are kept at different temperatures and chemical
potentials. In particular, the left reservoir is hotter than the right one, namely
TL > TR, but has lower chemical potential µL < µR. Importantly, the two
reservoirs are connected by a conductor of energy-dependent transmission
probability D(E), which acts as an energy filter. Here, for simplicity, we
consider only the single-channel case, but these considerations can be easily



3.2. THERMOELECTRIC HEAT ENGINE 17

TL, µL TR, µR

D
(E

)

µR

µL

E (a) (b)

Figure 3.2: (a): Energy diagram of a quantum thermoelecric heat engine.
The transmission probability of the scatterer D(E) acts as an energy filter
allowing only high-energy electrons to tunnel. Combined with the temperature
difference of the reservoirs, this allows to drive a charge current against a
voltage bias, thereby producing power. (b): Scanning electron micrograph of a
thermoelectric heat engine in which the reservoirs (yellow) are connected by a
nanowire. Source: [83].

extended to multi-channel conductors. For example, when the transmission
allows only electrons with energy larger than a threshold energy E0 to be
transmitted, namely

D(E) =

{
1 ifE > E0,
0 otherwise,

(3.1)

as depicted in Fig. 3.2(a), the temperature bias can generate a particle current
against the chemical potential bias [32]. This makes the device generate power
starting from a temperature difference, in analogy to the traditional heat engine.
In particular, the power output of the device is determined by the product of
the particle flow I(N) = I/q and the chemical potential difference, namely

P ≡ (µR − µL) I(N) = ∆µI(N), (3.2)

where the current is defined as positive when it flows from left to right. Since
this power is generated only by using the heat resource, the traditional heat
engine efficiency is defined as power divided by heat flow out of the hot reservoir,
that we take here to be the left one without loss of generality. Such efficiency
η is bounded by the Carnot efficiency, namely

η ≡ P

JL
≤ ηCarnot ≡ 1− TR

TL
, (3.3)

because of the second law of thermodynamics. Indeed, the inequality stems
from the non-decrease of global entropy combined with energy conservation.
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Since both power and efficiency crucially depend on the transmission probab-
ility D(E) through the currents, see Eqs. (2.10) and (2.11), the characteristics
of the conductor play a fundamental role in determining the performance of
the device. To this end, different kinds of conductors have been studied and
implemented to achieve different effects: For example, the transmission of
(3.1) is approximated by the quantum point contact [32, 87], and was shown
to maximize the efficiency of the thermoelectric heat engine while achieving
the maximum power output [88, 89]. Instead, the resonant transmission of
quantum dots also provides the thermoelectric effect [30, 33, 90], and allows
heat engines to operate efficiently, albeit at reduced power output. Nonetheless
quantum thermoelectric heat engines have been realized also with other kinds
of structures, for instance nanowires [83, 91], as shown in Fig. 3.2(b).

In the study of transport in mesoscopic devices, and consequently of
quantum thermoelectric heat engines, the linear response is often considered. In
this regime, characterized by being close to the equilibrium condition, transport
is described through the kinetic coefficients. These comprise the electrical and
thermal conductance, G and K respectively, as well as the Seebeck and Peltier
coefficients, S and Π respectively. Such quantities are the linear coefficients in
the expansion around equilibrium, and are defined as

G ≡ I

∆V

∣∣∣∣
∆T=0

, K ≡ JL

∆T

∣∣∣∣
I=0

, S ≡ − ∆V

∆T

∣∣∣∣
∆T=0

, Π ≡ JL

I

∣∣∣∣
∆T=0

.

(3.4)
Additionally, they must satisfy the Onsager-Casimir relations [92, 93], which
state the invariance under time-reversal of both electrical and thermal conduct-
ance, while relating the Seebeck and Peltier coefficients together. Such kinetic
coefficients can be combined into the dimensionless figure of merit ZT , namely

ZT ≡ GS2T

K
, (3.5)

which is a measure of efficiency in the linear response regime. However,
beyond this regime the picture becomes more complicated. In fact, in out-of-
equilibrium conditions both charge and heat currents are nonlinear functions
of temperatures and chemical potentials, and screening effects take place [94,
95]. In such a case, the kinetic coefficients are not sufficient to give a complete
description of the system. Additionally, the ZT figure of merit does not measure
the thermodynamic efficiency any longer [96]. While the nonlinear regime is
more complex, it allows to study out-of-equilibrium fluctuations as well as
the impact of nonequilibrium distributions on the performance of devices.
Both such aspects are considered in the appended papers. Therefore, in the
following, we will not restrict the discussion to the linear response regime, but
rather consider full nonlinear quantities. Specifically, in papers [I] and [II] the
nonlinear fluctuations are investigated, whereas in paper [III] the nonlinear
power and efficiency are used to characterize the device.
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Figure 3.3: Schematic representation of the time-scales of the processes in a
hot-carrier solar cell. The dashed lines delimit the absorber bandgap, whereas
the coloured regions describe the carrier occupation probability. Before light
absorption, the carrier distribution is at equilibrium with the environment at low
temperature (gray), making the number of carriers small. The light absorption
generates a strongly nonthermal distribution (purple), which thermalizes due to
carrier-carrier interaction on the scale of 1 ps, resulting in a thermal distribution
(red) at high temperature. The carrier-phonon scattering deplete the carrier
excess energy, thereby cooling the carriers to the lattice temperature (blue) on
the scale of 1 ns. The carrier recombination depletes the carriers on the scale
of 1 µs, bringing them back to equilibrium with the environment. Depending
on the time-scale of the carrier extraction, the device can be a hot-carrier solar
cell (smaller than 1 ns), a solar cell (between 1 ns and 1 µs), or even not able
to produce power (larger than 1 µs).
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3.3 Hot-carrier solar cell

While heat engines use heat as the resource to produce power, conventional
solar cells convert the electrochemical energy resulting from the generation of
electron-hole pairs into power by separating the carriers. As suggested by the
name, hot-carrier solar cells [20] have elements of both kinds of devices. Indeed,
while the generation of electron-hole pairs by photon absorption is fundamental
for the operation of the hot-carrier solar cell, the device does not wait for the
electrochemical energy to be formed. In fact, in conventional solar cells this
energy is established when the carriers relax to the lattice temperature by
losing energy in the carrier-phonon scattering processes.

However, when the absorbed photon has energy larger than the bandgap
EG, the generated carriers have some excess energy. We call such carriers
hot-carriers [97], and their excess energy is wasted as heat to the lattice in
conventional solar cells. This loss limits notably the efficiency of solar cells [98].
The concept behind hot-carrier solar cells is to avoid such an energy loss and
instead exploit the hot-carrier excess energy to improve the performance of the
device.

This is made possible by the use of nanostructures in which the carrier
extraction is faster than the relaxation, such that the hot-carrier excess energy
is not completely wasted as heat to the lattice when the carrier is extracted
and its energy is harvested. In particular, the typical time scale of the carrier
relaxation to the lattice temperature depends on the specifics of the material,
but is typically on the order of 1 ns [99, 100], as depicted in Fig. 3.3. Additionally,
there are two more processes that crucially influence the distribution of carriers:
the recombination and the thermalization. The recombination process depletes
the number of carriers while emitting photons, therefore it is detrimental to
both power production and efficiency. This process has typical time scale on
the order of 1 µs, much slower than the relaxation time. In fact, conventional
solar cells using diffusion to extract the carriers operate after the relaxation
has taken place, but before the recombination comes into effect. By contrast,
the carrier thermalization is typically on the order of 1 ps, thereby faster than
the relaxation time. This process is mediated by carrier-carrier scattering
processes and drives the carrier distribution towards a thermal distribution,
with a temperature and chemical potential different from the ones established
after the relaxation. Hot-carrier solar cells operate in the timeframe prior to
the complete carrier relaxation.

In particular, if the extraction happens after the carrier thermalization,
the hot-carrier solar cell uses both heat and chemical energy as resources
thanks to the temperature and chemical potential of the hot-carriers. This
clarifies the connection of hot-carrier solar cells to both heat engines and solar
cells [101, 102]. Additionally, when the extraction is even faster than the
carrier thermalization, the distribution of carriers is highly nonthermal and
generally depends on both the light spectrum and the absorption properties of
the material. In this case the device exploits a nonequilibrium distribution to
produce power. Another similarity to heat engines is the use of energy filters,
which is often considered in hot-carrier solar cells to select the high-energy
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Figure 3.4: Schematic of the band diagram of a electron-hole symmetric hot-
carrier solar cell. In the absorber region, of bandgap EG an electron-hole pair is
generated with the absorption of a photon (orange). When the photon energy
is larger than EG the generated carriers have extra energy (hot-carriers). The
high-energy carriers are selected by energy filters, and electrons and holes are
separated to the respective collectors, thereby generating an electric current
against the voltage bias V .

carriers and avoid backflows from the collectors. A simple illustration of how a
hot-carrier solar cell works is depicted in Fig. 3.4, in which the separation and
the selection of high-energy carriers allows to drive a charge current against
the voltage V , thereby producing power.

Efforts in realizing and testing experimentally such kind of devices were
recently made [25–29, 103]. In particular, a realization of a hot-carrier solar
cell is shown in Fig. 3.5, where nanoantennas are placed at a defined position
on nanowires, concentrating light on the absorber region, while the energy
filter is obtained by changing the material composing the nanowire to one with
higher bandgap. The small size of the sample allows the fast extraction of
the hot carriers through the energy filter, which yields a net charge current
across the nanowire. This current allows the device to produce power and
is determined by the distribution of hot carriers that is extracted. However,
such a distribution is very difficult to determine because it heavily depends
on the spectrum of impinging light, the absorption of the material used, as
well as the carrier-carrier and carrier-phonon scattering which lead to carrier
thermalization, relaxation to the lattice temperature and carrier recombination.
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Figure 3.5: Experiment on a hot-carrier solar cell device based on InAs-InP-
InAs nanowire heretostructures. (a, b): Scanning electron micrographs of the
devices with dipole nanoantenna (a) and bowtie nanoantenna (b). The InP
region (blue) acts as an energy filter. (c): Schematic illustration of the device.
(d): Schematic band diagram of the heterostructure. In this experiment the
generated electron obtains most of the excess energy from the photon. Source:
[26].
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Figure 3.6: Diagram of the multi-probe model used to describe the hot-carrier
solar cell. The electron-electron (hole-hole) and electron-phonon (hole-phonon)
terminals are Büttiker probes accounting for carrier-carrier thermalization and
relaxation to the lattice temperature respectively. The sun, recombination and
collectors terminals are reservoirs accounting for the creation, the loss, and the
extraction of carriers. The injected electrons (solid arrow) and holes (dashed
arrows) can undergo thermalization, relaxation, recombination or be extracted
to their collector with probabilities controlled by the transmissions Dα,β(E)

and D
′
αβ(E), respectively. In the electron-hole symmetric case the top and

bottom part of the diagram are equivalent, hence we focus only on the electron
part.

3.3.1 Multi-probe model

Paper [III] approaches the task of modeling the hot-carrier distribution by
studying the device under the scattering theory formalism and including the
effects of carrier thermalization, relaxation and recombination through the use
of Büttiker probes. To this end, a multi-probe model, illustrated in Fig. 3.6,
is devised. The terminals we consider describe each a different process and
thus have different characteristics. In particular, they comprise both thermal
reservoirs and Büttiker probes, previously discussed in Sec. 2.4. Therefore,
each terminal requires some description.

• Collector reservoir (α = col) allows the extraction of carriers. In par-
ticular, the electron collector and the hole collector are distinct, such
that a charge current is driven across the device, and electrical power
can be produced. The collector distribution is considered to be thermal
at fixed temperature Tcol equal to the environment temperature. Instead,
its chemical potential µcol is controlled by an external voltage bias or is
determined by a resistor characterizing the power production in a closed
circuit.

• Sun reservoir (α = sun) represents the quasiparticles created in the
absorber via the absorption of sun photons. This reservoir makes the
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device work providing the necessary resources. While the principle behind
this terminal can be applied to any kind of light source, we focus on
sunlight by considering the injection reservoir’s distribution to be a
thermal distribution of temperature Tsun, and zero chemical potential,
µsun = 0. Indeed, this distribution corresponds to the distribution of
carriers at equilibrium with a photon bath at the same temperature.

• Electron-electron probe (α = e-e) is a Büttiker probe modeling the electron-
electron elastic scattering, in which both the total number of carriers and
the total energy of the carriers are conserved, and that is responsible for
the carrier thermalization. Since this process drives the carriers towards
a thermal distribution, we characterize the thermalization probe by a
thermal distribution of temperature Te-e and chemical potential µe-e.
These intensive properties are determined by imposing the Büttiker probe
conditions on the flows into the probe, namely

I(N)
e-e = 0, I(E)

e-e = 0. (3.6)

In particular, these conditions mirror the particle and energy conservation
of the carrier-carrier elastic scattering.

• Electron-phonon probe (α = e-ph) is a Büttiker probe modeling the
electron-phonon scattering, in which the total number of carriers is
conserved, while the total carrier energy is not. In fact, hot carriers lose
their excess energy to the lattice through this mechanism, which causes
the carrier distribution to relax to the lattice temperature. Thus, the
relaxation probe is characterized by a thermal distribution in which the
temperature is fixed to be the environment temperature, and coincides
with the collector temperature, Te-ph = Tcol. Indeed, the interaction with
the phonon lattice means that this probe is exchanging heat with that
phonon bath, which dominates over the heat exchanged with the other
terminals. This means that the relaxation probe is a pure voltage probe,
whose chemical potential µe-ph is obtained by imposing the constraint on
the particle flow into it, namely

I
(N)
e-ph = 0, I

(E)
e-ph 6= 0. (3.7)

Again, these conditions mirror the particle conservation and the energy
loss happening in the carrier-phonon scattering.

• Recombination reservoir (α = rec) accounts for the recombination process,
in which an electron-hole pair is annihilated and a photon is produced.
Unlike the injection reservoir, which describes the creation of carriers
from high-energy photons, namely photons of a high-temperature bath,
the recombination probe accounts for the carrier interaction with the
low-energy photons of the bath at the environment temperature. Indeed,
opposite to the injection reservoir, the recombination reservoir depletes
both the total number of carriers and the total carrier energy, thereby
reducing the resources available to the device. Therefore, this reservoir is
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characterized by a thermal distribution at the environment temperature,
which coincides with the collector temperature, Trec = Tcol, and zero
chemical potential, µrec = 0, which corresponds to the distribution of
carriers at equilibrium with the low-temperature photon bath.

The terminals considered are connected by a single-channel scatterer with
transmission probabilities Dα,β(E). These transmission probabilities account
for the strength of the various mechanisms described by the model, as well as
the presence of energy filters. Further details can be found in the appended
paper [III]. Additionally, we consider electron-hole symmetric systems, as
the one depicted in Fig. 3.4, such that the electron and hole transport are
completely equivalent and we can focus only on the electronic one. In this
symmetric picture, we set the energy lying at the middle of the absorber
bandgap to be the zero-energy reference, such that all chemical potentials µα
are measured starting from there. The electron-hole symmetry allows us to
treat transport through the whole device while focusing only on the electron
transport, simplifying the discussion of the model. However, many systems
are not electron-hole symmetric, see for instance Fig. 3.5. In such a case it is
necessary to perform an analogous analysis of the hole transport, and combine
it with the electron transport to obtain the whole description of the device.
This analysis can again be done using the multi-probe model introduced in
paper [III].

3.3.2 Performance quantifiers

Similarly to the thermoelectric heat engine, in paper [III] we characterize the
performance of the device through the power output and the efficiency. To this
end, we employ the scattering formalism to calculate the currents flowing in the
system, namely charge and energy current, which are given by Eqs. (2.10) and
(2.11), respectively. However, since we are now focusing only on the electronic
transport and the available states in the absorber start from the bottom of
the conduction band, which is located at the energy EG/2, the integrals are
defined starting from such energy.

Similar to the heat engine, the power produced by the hot-carrier solar
cell in the electronic transport is then given by the current extracted by the
electronic collector multiplied by its chemical potential, namely

P ≡ µcolI
(N)
col . (3.8)

Notice that since we are considering the electron-hole symmetric case and we
fixed the zero-energy reference of the system, µcol corresponds to the difference
between the collector chemical potential and the Fermi energy of the unbiased
device. The power generated by the combined electron and hole transport is
simply 2P .

This power is generated by the combination of multiple terminals. In
particular, while the sun reservoir provides all the resources to the device, the
electron-electron and electron-phonon probes can also be used in the power
production. In the latter chemical potentials are established, meaning that not
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only heat is used in the power production. Additionally, the combination of
multiple terminals can generate a nonequilibrium distribution of carriers. For
these reasons, we do not use the standard heat engine efficiency of Eq. (3.3),
but instead we use the nonequilibrium free-energy efficiency to characterize the
device. This efficiency is defined as

ηfree
global ≡

P

−∑α6=col Ḟα;col

≤ 1, (3.9)

where at the denominator lies the sum of the nonequilibrium free-energy currents
used in the power production. In particular, the nonequilibrium free-energy is
defined as

Fα;env ≡ Uα − TenvSα, (3.10)

where Tenv is the environment temperature, which in our case corresponds to
Tcol. This thermodynamic quantity represents the maximum amount of work
that can be extracted from a general nonequilibrium resource when it is put in
contact with a thermal bath at the temperature Tenv, as detailed in App. B.
Then, it is clear that the efficiency of Eq. (3.9) is always smaller than 1 due
to the second law of thermodynamics. In particular, since all the terminals
considered are characterized by a thermal distribution the nonequilibrium
free-energy current flowing into terminal α can be decomposed into two terms,
namely

Ḟα;col =

∫ +∞

EG/2

dE

h

[
E − Tcol

Tα
(E − µα)

]∑

β

Dα,β(E)[fβ(E)− fα(E)]

≡
∑

β

Ḟαβ;col = ηCarnot
col,α Jα + µαI

(N)
α ,

(3.11)

where ηCarnot
αβ = 1−Tα/Tβ is the Carnot efficiency between the temperatures of

the terminals. The first term corresponds to the maximum heat resource that
can be converted into power, namely the heat current multiplied by the Carnot
efficiency. Instead, the second term corresponds to the maximum chemical
energy that can be converted to power and coincides with the product between
the particle current and the chemical energy carried by such particles, the
chemical potential µα. Unlike the power, the efficiency remains the same
when considering both electron and hole transport because both power and
nonequilibrium free-energy double.

Imposing the conditions and assumptions made on the terminals, which were
discussed previously, one finds that the nonequilibrium free-energy efficiency
reduces to

ηfree
global =

P

−ηCarnot
col,in Jsun

(3.12)

which corresponds to the heat engine efficiency normalized by the Carnot
efficiency. Indeed, the e-e and e-ph probes do not add resources into the
system, but only transform the initial heat resource provided by the injection
reservoir into a combination of heat and chemical or pure chemical resource,
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respectively. Instead, the recombination reservoir only depletes resources in
the system. Therefore, the only source of resources is the sun reservoir, and
everything that happens between the carrier injection and their extraction to
the collector can be understood as the manipulations of a heat engine that
allows for dissipation. For this reason the efficiency of Eq. (??) is a global
efficiency, namely an efficiency for the whole device that accounts for the all
the losses happening in it.

However, in many setups it is possible to act against only some of such loss
mechanisms, or even what are considered to be losses for the power production
may be used to perform other useful tasks [104], going against the idea of “loss”.
Consequently, it is useful to define a partial efficiency accounting exclusively
for the losses happening in a specific process. Hence, we introduce a partial
efficiency accounting only for the losses that happen during the final step of
power production, namely the carrier extraction. We define this efficiency as

ηfree
neq ≡

P

−∑α6=col Ḟα,col;col

≤ 1, (3.13)

which contains, at the denominator, only the components of the nonequilibrium
free-energy currents, see Eq. (3.11), that directly contribute to the power
production. This novel performance quantifier was used in paper [III] to
compare the hot-carrier solar cell in different regimes. The application of the
model and the use of these performance quantifiers discussed will be presented
in Chapter 5.
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Chapter 4

Noise in mesoscopic
conductors

This chapter discusses the core topic of papers [I] and [II], namely out-of-
equilibrium noise. In particular, we discuss the separation of noise into two
contributions: the shot and the thermal contributions. We focus on systems
described with the scattering formalism, discussed in Chapter 2, concentrating
on two-terminal setups in which both a temperature and a voltage bias are
present, as in the thermoelectric devices discussed in Chapter 3. Additionally,
we discuss systems in which there are also spin imbalances, and study the spin
current fluctuations in such systems. Shot and thermal noise in the presence
of voltage and temperature biases, as well as spin imbalances are investigated
in papers [I] and [II], which consider a particular case of out-of-equilibrium
noise, called delta-T noise, and generalize it to the broader concept of noise in
absence of current.

4.1 Shot and thermal noise

Noise is usually considered detrimental because it hinders the accuracy of
measurements and the reliability of the device. Indeed, noise does not provide
additional information when the system considered is close to equilibrium,
where the fluctuation-dissipation theorem holds. To illustrate this, we consider
a famous instance of the this theorem: the Johnson-Nyquist noise, which is
given by

SIth = 4GkBT. (4.1)

Here, G is the electrical conductance defined in Eq. (3.4) and T is the tem-
perature of the system. This noise has its roots in the thermal fluctuations
that affect the system, as hinted by the temperature on the right-hand side
of Eq. (4.1). Hence, we refer to noise generated by such kind of fluctuations
as thermal noise. The relation in Eq. (4.1) means that the Johnson-Nyquist
noise does not provide additional information on the system. Indeed, one

29



30 CHAPTER 4. NOISE IN MESOSCOPIC CONDUCTORS

TL TR = 0

Thermal noise Sth
(a)

(b)

TL TR = 0

Shot noise Ssh

Figure 4.1: Illustration of noise components in a two-terminal system where
the left reservoir has finite temperature TL, whereas the right reservoir is at
zero temperature, TR = 0. (a): Thermal noise, which is generated by the
randomness in the thermal excitations of the electrons. (b): Shot noise, which
is generated by the randomness in the current partitioning at the scatterer.

could simply measure the conductance G and the temperature T of the system
directly, without measuring the current fluctuations.

However, this relation between fluctuations and dissipation only holds close
to equilibrium. In fact, when systems are out of equilibrium, the thermal noise
is generally modified and additional noise is observed on top of the thermal
noise. This noise is called shot noise, or partition noise, and has its origin in
the discreteness of the particle transported, in this case electrons. In particular,
the name partition is due to the separation of particles at an interface, for
instance a scatterer, placed along the direction of the current. This separation
introduces additional randomness in the current fluctuations because particles
not only may or may not be thermally excited, but also may or may not
be transmitted through the scatterer, as illustrated in Fig. 4.1. Hence, shot
noise not only requires the system to be out of equilibrium, but also contains
additional information on the current statistics. In fact, shot noise has seen
many applications, ranging from the characterization of mesoscopic devices
[21] to the observation of fractional charges in the quantum Hall effect [22, 23].

Using the framework of scattering theory, as described in Chapter 2, we can
calculate the noise in a two-terminal device operating under arbitrary voltage
and temperature biases. Clearly, when calculating (or measuring) the noise,
both thermal and shot components contribute to the result. Therefore, the
separation of the total noise into these two contributions is done according
to physical principles. First of all, we define the shot noise as the additional
contribution that appear when the system is out of equilibrium. Therefore, the
shot noise component must vanish at equilibrium. Additionally, the thermal
noise depends crucially on the statistics of the particles emitted by a terminal.
In fact, if we consider the electrons emitted at a fixed energy from a terminal
such that on average the occupation number is 〈n〉 = f , we can write the
fluctuations in the number of electrons as

〈(n− 〈n〉)2〉 = 〈n2〉 − 〈n〉2 = 〈n〉 − 〈n〉2 = f(1− f). (4.2)
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To obtain this we used the fermionic nature of electrons, which yields 〈n〉 = 〈n2〉
due to the Fermi statistics. When the terminal is a reservoir at thermal equilib-
rium, f takes the form of the Fermi distribution, see Eq. (1.1). Additionally, as
one would expect, these fluctuations vanish when the reservoir’s temperature
approaches zero. Therefore, fluctuations of the kind f(1 − f) are typical of
thermal noise.

By contrast, shot noise crucially depends on the statistics of the particles
transmitted (or reflected) by the scatterer. Consider, for example, the case in
which a terminal emits electrons at a given energy with average occupation
number 〈nin〉 = 1, namely electrons are always emitted. Then, these electrons
impinge on a scatterer and are either transmitted or reflected, with average
occupations 〈nT〉 = D and 〈nR〉 = 1−D, respectively. Importantly, the correl-
ation between transmitted and reflected electrons is zero, namely 〈nTnR〉 = 0,
because after the scattering one between nT and nR is always zero. Indeed,
each electron is either transmitted (nT = 1, nR = 0) or reflected (nT = 0,
nR = 1). This allows us to calculate the fluctuations in the occupation number
of transmitted and reflected electrons, which read

〈n2
T〉 − 〈nT〉2 = 〈n2

R〉 − 〈nR〉2 = D(1−D). (4.3)

Interestingly, the fluctuations induced by the randomness of the scattering
event have the same structure to the thermal one, namely x(1 − x) with x
a probability. However, instead of having the occupation probability f , the
partition fluctuations are determined by the transmission probability D.

Combining these considerations, we separate the noise obtained with the
scattering formalism into a thermal and a shot noise contribution. In particular,
for a two-terminal spin-degenerate system, the zero-frequency charge noise is
separated into thermal SIth and shot SIsh contributions as follows

SIth(0) =
4q2

h

∫
dED(E)

∑

α=L, R

fα(E)[1− fα(E)], (4.4)

SIsh(0) =
4q2

h

∫
dED(E)[1−D(E)][fL(E)− fR(E)]2. (4.5)

As wanted, the thermal contribution in Eq. (4.4) contains the thermal fluctu-
ations f(1− f) of both terminals and is finite at equilibrium. By contrast, the
shot contribution in Eq. (4.5) contains the partition fluctuations D(1−D) of
the scatterer and vanishes at equilibrium, namely when fL(E) = fR(E) for all
energies.

While Eqs. (4.4) and (4.5) are the thermal and shot contribution to the
charge current noise, this separation of the noise can be applied also to other
quantities, for instance heat and spin currents, as discussed in the following.

4.2 Heat and spin noise

Charge noise is the noise studied the most both theoretically and experimentally
because of its accessibility. Indeed, accurate measurements of charge currents
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(a) (b)

Figure 4.2: (a): The thermometer measures the absorber temperature T + δT ,
which is affected by the fluctuations of the heat exchanged with the bath or
injection of hot-electrons. (b): Measurement setup including scanning electron
micrograph. The absorber (brown) is connected to two superconducting leads
(blue) acting as thermometer and injector. Source: [109].

can be achieved in particular in mesoscopic systems thanks to current amplifiers.
Nevertheless, access to fluctuations of other kinds of quantities can provide
further insights into the system investigated. In particular, here we consider
the fluctuations of heat currents and spin currents.

Heat current fluctuations reveal features that are not shown in charge noise
[105], and can be used as a tool to detect coherence and entanglement in
open quantum systems [106]. Additionally, they are crucial in the fields of
stochastic and quantum thermodynamics, where fluctuations allow to prob-
abilistically violate the second law of thermodynamics, while fulfilling it on
average. However, measuring heat currents in quantum systems is challenging
because they are small in magnitude (ranging between 0.1 and 100 pW at
cryogenic temperatures) [107]. Nonetheless, indirect measurements of heat
flows have been performed by complete electrical characterization of the system.
For example, this can be done by detecting single electron transitions across
a junction in a single-electron box [108]. Recently, a direct measurement of
temperature fluctuations was performed at sub-Kelvin temperatures [109], in
the setup illustrated in Fig. 4.2. These temperature fluctuations are directly
generated by the fluctuations of the heat current between the substrate thermal
bath and the sample observed (namely the absorber in Fig. 4.2). Therefore,
the possibility of accessing heat fluctuations allows further investigation of
out-of-equilibrium and quantum thermodynamics [107, 110].

Similarly, spin currents are difficult to measure, but the fluctuations asso-
ciated with them can provide useful insights into the system. In particular,
the presence of spin currents modifies the charge current noise, which can
instead be easily detected. Such modifications can be used to measure the
spin injection efficiency from a ferromagnet [111], or to reveal information on
the relative orientation between ferromagnets [112] and the spin relaxation
processes [113]. Additionally, the charge current noise allows to detect spin
accumulations [114]. This last application was recently proven experimentally
[115], albeit without exploring the regime in which only a pure spin current
flows in the system, namely when the charge current vanishes. Clearly, spin
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Figure 4.3: (a): Schematic setup used to measure the delta-T noise in electron-
hole symmetric systems. The transmission probability D(E) = D is uniform, so
the temperature bias alone does not induce a charge current. The two terminals
are kept at the same chemical potential, µL = µR but have different temperat-
ures. (b): Experimental data of noise equivalent temperature TNoise at different
contact temperatures, THot (x-axis) and TCold (legend). Out of equilibrium, i.e.
when THot is not close to TCold, the noise deviates from the Johnson-Nyquist
noise (blue) and instead approaches THot ln 2 (red). Source:[57]

currents are crucial in the field of spintronics, and the information revealed by
fluctuations in spintronic devices can further boost the research in that field.

4.3 Delta-T and zero-current noise

The studies done in papers [I] and [II] stem from the notion of delta-T noise.
This noise was recently measured for the first time in Ref. [24], and since then
other experiments [56, 57, 107, 116, 117] and theoretical studies [118–122] have
been performed. This kind of noise emerges when only a temperature bias is
imposed on the system, hence the name delta-T noise. In particular, these
first measurements have been performed in electron-hole symmetric systems, in
which a pure temperature bias does not induce any charge current. Therefore,
the delta-T noise is an instance of noise in absence of currents.

Spefically, the setups of many of such experiments can be schematically
pictured as in Fig. 4.3 (a), where a scatterer with uniform transmission probab-
ility D(E) = D makes the system electron-hole symmetric. Therefore, a pure
temperature bias does not generate any charge current. In fact, the charge
current carried by electrons flowing above the Fermi energy is balanced by the
one carried by the holes flowing below it. In such a setup the thermal noise
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contribution of Eq. (4.4) becomes

SIth =
4e2

h
DkB [TL + TR] , (4.6)

which is proportional to the sum of the contact temperatures. Additionally, if
the hot temperature is much larger than the cold one, we can approximate the
latter as the zero temperature. Here, we take without loss of generality the
right contact to be the colder one. The low temperature assumption simplifies
the calculations and allows us to approximate the shot noise contribution of
Eq. (4.5) as [21]

SIsh ≈
4e2

h
D(1−D)kBTL [2 ln 2− 1] . (4.7)

In particular, if the scatterer is very opaque, namely the transmission probability
is small D � 1, the total noise contribution becomes

SI ≈ 8e2

h
DkBTL ln 2. (4.8)

This result was shown experimentally in Ref. [57], the data of which is shown
in Fig. 4.3, where the noise is quantified in terms of the noise equivalent
temperature TNoise. This temperature corresponds to the temperature that
both contacts need to be at for achieving the same amount of equilibrium noise,
namely

SI =
8e2

h
DkBTNoise. (4.9)

Here, the transition between the near equilibrium regime and the out-of-
equilibrium regime is apparent: When the contact temperatures are close to
each other the fluctuation-dissipation theorem holds, and the noise equivalent
temperature coincides with the hot temperature. Instead, when the contact
temperatures differ greatly the noise equivalent temperature becomes THot ln 2,
see Eq. (4.8). This additional noise is provided by the shot noise contribution.
Importantly, for the shot noise to emerge it is not required that a finite charge
current is present, but that the system is subject to an out-of-equilibrium
condition.

Papers [I] and [II] enlarge the scope of inquiry around the delta-T noise by
considering the more general noise in absence of currents. Indeed, the noise
in absence of currents allows us to consider systems that are not electron-hole
symmetric. In such systems the zero-current condition is generally achieved
by having both a temperature and a voltage bias. This allows us to study the
impact that the out-of-equilibrium condition has on the fluctuations in more
generic systems. In fact, this noise also allows us to generalize the delta-T
noise to other kinds of currents, like the heat and the spin currents described in
Sec. 4.2. Having a vanishing average current is also favourable for comparing
the out-of-equilibrium noise with the fluctuation-dissipation theorem. In fact,
the latter holds at equilibrium, where the average currents vanish. Additionally,
the zero-current condition was shown to yield an out-of-equilibrium extension
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of the fluctuation-dissipation theorem for systems obeying the local detailed
balance principle [58]. Therefore, investigating this kind of noise provides a
better understanding of fluctuations in systems out of equilibrium.



36 CHAPTER 4. NOISE IN MESOSCOPIC CONDUCTORS



Chapter 5

Results

In the previous chapters we provided an introduction to the general scientific
context, as well as more detailed information about the formalism and the
setups considered in the appended papers. Additionally, the model proposed
in paper [III] was described in Sec. 3.3. Therefore, the previous chapters
provide the basic background to understand the contents and the results of the
appended papers. This chapter gathers the main findings.

5.1 Shot noise in absence of currents

As discussed in Sec. 4.1, to have a finite shot noise it is necessary for the system
to be out of equilibrium. Importantly, this condition can still be achieved
when the average current vanishes. The shot noise in absence of currents is
studied in papers [I,II], and their results are discussed jointly in this section.
In particular, paper [I] focuses on the zero-frequency noise in charge and heat
transport. Paper [II] expands the studies on noise in absence of currents by
considering also spin currents, finite-frequency noise, and by improving the
results of paper [I]. These papers show that the heat shot noise can be arbitrarily
large even in the absence of an average heat current. In particular, we prove
that the heat fluctuations can be dominated by the shot noise. Additionally, in
spin-nondegenerate systems it is possible to achieve the zero-current condition
for charge and spin transport without any temperature bias. Therefore, when
the voltage bias or spin imbalance is much larger than the system temperature,
the thermal noise becomes neglible, and only the shot noise contributes the
fluctuations. Finally, in spin-degenerate systems, in which charge transport
is controlled through voltage and temperature biases, we prove that the zero-
current charge shot noise is always limited by its thermal counterpart. This
bound also holds on the finite-frequency shot noise, and limits the influence of
shot noise on the zero-current charge fluctuations generated using a temperature
bias.
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Figure 5.1: (a): Zero heat current condition achieved for the transmission
probability D(E) depicted. (b): Ratio between zero-frequency heat shot noise
and heat thermal noise when varying the parameters of the transmission. The
shot noise can be much larger than the thermal noise.

5.1.1 Heat current noise

We consider a spin-degenerate setup similar to those described in Chapter 3,
illustrated in Fig. 5.1(a), where only a temperature and a chemical potential
bias are present. In paper [I] we show that, for a Lorentzian transmission,
the heat shot noise is smaller than the heat thermal noise. However, this is
not the case for all types of conductors. In fact, in the same paper, it is also
demonstrated that, with an appropriate transmission, the shot noise can be
arbitrarily large while the thermal noise remains finite. The transmission used
in paper [I] to show this is rather mathematical, and does not have a direct
physical counterpart. Nonetheless, it illustrates the main features necessary
to obtain large heat shot noise, namely that the transmission should have
two transmission windows which are distant in energy. Paper [II] uses this
insight to show that the heat shot noise can become much larger than the
thermal noise in an experimentally feasible transmission, depicted in Fig. 5.1
(see appended paper [II] for details). This transmission was shown in Ref. [123]
to be the two-terminal transmission for a quantum spin Hall edge [124] coupled
to a small magnetic island with characteristic length and energy scales ` and
ε⊥, respectively. This setup allows to obtain heat shot noise much larger than
the thermal noise, as illustrated in Fig. 5.1(b). Therefore, even in the absence
of an average heat flow, it is possible to achieve large heat shot noise. The
fundamental reason why this happens is that heat grows with the energy of
the transferred particle. In particular, while the heat current contains the heat
(E − µL), the noise contains (E − µL)2, which grows faster at large energies,
and thereby leads to larger contributions when the transmission windows are
distant in energy.
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Figure 5.2: (a): Zero charge current condition achieved with the spin imbalance
σL between the spin populations of the left contact. (b): Zero spin current
condition achieved without any spin imbalances, but with the chemical potential
difference ∆µ between the contacts.

5.1.2 Spin current noise

On the other hand, when considering spin currents, we consider spin-nondegenerate
systems. In particular, we allow the spin populations in each terminal to be
characterized by different distributions, that we indicate with fατ (E), where
α = L, R indicates the contact, while τ =↑, ↓ indicates the spin. Electrons with
different spin in the same contact may have different chemical potentials [115].
We refer to this difference as spin imbalance. Spin transport is mediated by
electrons from the contacts undergoing scattering processes, which we assume
to be spin-conserving, such that the spins of an electron before and after the
scattering event coincide. Then, we calculate the zero-frequency noise of the
spin current generated in such a way, and serapate it into its thermal and shot
components, obtaining

SΣ
th(0) =

∑

τ

2

h

∫
dE

(
(−1)δτ↑~

2

)2

Dτ (E)
∑

α=L,R

fατ (E)[1− fατ (E)], (5.1)

for the thermal noise, and

SΣ
sh(0) =

∑

τ

2

h

∫
dE

(
(−1)δτ↑~

2

)2

Dτ (E)[fLτ (E)− fRτ (E)]2, (5.2)

for the shot noise. Here, the quantity in the round brackets is the spin carried
by the electrons, while Dτ (E) is a spin-dependent transmission probability
preserving the particle spin.

Having different spin populations increases the control parameters of the
system, and makes it similar to a spinless four-terminal setup. These additional
control parameters allow to reach large shot noise in the absence of currents.
In particular, we consider now the case in which the contact temperatures are
equal and much smaller than the voltage bias between the contacts or the spin
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imbalances, such that we can approximate them with the zero temperature.
This means that the thermal noise contribution to the fluctuations are negligible
compared to the shot noise contributions. Additionally, we consider a uniform
and spin-independent transmission probability, namely Dτ (E) = D. Under
these conditions, we study the noise in absence of currents. First, we consider
the case in which there is no voltage bias between the contacts, but the
left contact has a finite spin imbalance σL, such that the spin populations
distributions are

fLτ (E) = fL(E + (−1)δτ↑σL/2). (5.3)

Instead, the right contact as no spin imbalance. This configuration is illustrated
in Fig. 5.2, and has no average charge current. Indeed, the charge current
carried by the spin-↑ electrons flowing above the Fermi energy is balanced
by the one carried by the spin-↓ electrons flowing below the Fermi energy.
Nonetheless, the total charge current noise is finite, and uniquely given by the
shot noise contribution, namely

SI(0) =
2e2

h
D(1−D)σL. (5.4)

Notably, the charge current noise is directly proportional to the spin imbalance
σL. Therefore, by measuring the charge current fluctuations in the absence of
average charge current it is possible to detect the presence of spin imbalances.

Instead, by considering the case in which there is no spin imbalance in
either contact, but there is a voltage bias between them inducing the chemical
potential difference ∆µ = µL − µR, we reach an out-of-equilibrium setup in
which the average spin current vanishes. This setup is illustrated in Fig. 5.2(b),
and has clearly no net spin current because the contribution of the spin-↑
electrons balances with the contribution of the spin-↓ electrons. Nonetheless,
the total spin current noise is finite, and reads

SΣ(0) =
~

2π
D(1−D)∆µ, (5.5)

which again coincides with the shot noise since the temperatures are low.
Similarly to the charge fluctuations in Eq. (5.4), also the spin fluctuations in
Eq. (5.5) are directly proportional to the bias imposed on the system, in this
case the voltage bias ∆µ/(−e).

5.1.3 Charge current noise

We now consider the charge current fluctuations when the average charge current
vanishes. In particular, we study two-terminal, spin-degenerate setups in which
both a temperature and a voltage bias are present, as the thermoelectric devices
described in Chapter 3.

Unlike the previous cases of Secs. 5.1.1 and 5.1.2, here the shot noise behaves
differently. In particular, in paper [I] we show that the charge shot noise is
always smaller than the thermal noise. We further improved upon this bound
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in paper [II], resulting in the following inequality chain on the zero-frequency
noise components:

SIsh(0) ≤ Θh −Θc ≤ Θh + Θc = SIth(0) (5.6)

where

Θh/c =
4e2

h

∫
dED(E)fh/c(E)[1− fh/c(E)] (5.7)

is the contribution to the thermal noise of the hot (h) or cold (c) contact.
Crucially, the bound in Eq. (5.6) holds for any transmission probability D(E)
and any temperatures TL, TR, as long as the chemical potential difference is
chosen to satisfy the zero-current condition. Therefore, this bound between
shot and thermal noise is both general and fundamental. Interestingly, the first
inequality in Eq. (5.6), which was proven in paper [II], correctly recovers the
behavior of shot noise close to equilibrium. Indeed, when the temperatures of
the contacts are close together, their thermal noise contributions are similar,
namely Θh −Θc ≈ 0, making the shot noise vanishingly small compared to the
thermal noise.

Furthermore, in paper [II] we proved that even at finite frequency the
shot noise is bounded by the remaining noise contributions, which include the
thermal noise, albeit with a less strict bound and with an additional condition.
In fact, measuring the noise without loss of generality on the left contact, the
finite-frequency shot noise is limited by

SIsh(ω) ≤ SIrest(ω)−R(ω)−ΘL(ω) ≤ SIrest(ω), (5.8)

as long as the current fluctuations are measured in the cold contact, namely
TL ≤ TR. The terms introduced in Eq. (5.8) are both frequency-dependent and
positive, see appended paper [II] for the details. Similarly to the zero-frequency
bound, the finite-frequency bound in Eq. (5.8) holds for any transmission
probability D(E) and any temperatures satisfying TL ≤ TR, as long as the
chemical potential difference is chosen to satisfy the zero-current condition.
The requirement of measuring the noise on the cold contact is due to the fact
that, at finite-frequency, the current correlators do not satisfy the noise power
conservation rules that stem from particle conservation [66], and noise depends
on where it is measured.

Interestingly, it is possible to overcome the first inequality in Eq. (5.8) when
the noise is measured in the hot contact. Nonetheless, a numerical analysis
did not show any instance of finite-frequency shot noise being larger than the
remaining fluctuations even if the measurement is carried on the hot contact.
Therefore, we conjecture the charge shot noise to be always bounded under the
zero-current condition, for any transmission probability D(E), temperatures
TL, TR, and frequency ω.
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5.2 Quantum transport in a hot-carrier solar
cell

In paper [III] we introduce the novel transport model and performance quanti-
fiers, discussed in Sec. 3.3, to describe a hot-carrier solar cell. In particular, we
use Büttiker probes to mimic the effects of carrier-carrier and carrier-phonon
scattering, which lead to carrier thermalization and relaxation to the lattice
temperature, respectively. Additionally, we study the performance of the device
by considering, in addition to the power, a global and a partial efficiency, both
of which are based on the nonequilibrium free energy. By changing the balance
between the different loss mechanisms, the multi-probe model ranges among
different regimes, from the solar engine, in which there are no such losses, to
the conventional solar cell, in which all the carrier excess energy is lost to the
lattice. Between such regimes lie the cell exploiting thermalized hot-carriers,
in which the carriers take on a thermal distribution at a temperature higher
than the lattice, and the cell exploiting nonequilibrium hot-carriers, in which
the carriers take on a nonequiliubrium distribution. Interestingly, extracting a
nonequilibrium carrier distribution improves the performance of the device.

Nonetheless, if the carrier thermalization is fast, their distribution is thermal.
In this case, in paper [III] we prove that a boxcar-shaped transmission maximizes
the efficiency at any given power output, thereby extending the result of
Refs. [88, 89] to systems in which both a temperature and a chemical potential
bias are used to generate power.

5.2.1 Regimes in the multi-probe model

The different contacts making up the multi-probe model are described in
Sec. 3.3.1. Transport between these terminals is mediated by a scatterer con-
necting them with transmission probabilities Dα,β(E) of tunneling from contact
β to contact α. These transmissions regulate how often the corresponding
process happens. In particular, by choosing the transmission probabilities
appropriately, we can explore different regimes in which the device operates.
The regimes considered are illustrated in Fig. 5.3, and are briefly explained
below (more details are found in appended paper [III]).

(a) The ideal solar engine is obtained when no loss mechanism happens. Then,
the carriers take on the a thermal distribution at the sun’s temperature
and the device operates as a thermoelectric heat engine.

(b) The cell exploiting thermalized hot-carriers is obtained when the carriers
are extracted after they thermalize between themselves through electron-
electron interaction, but before they lose all their excess energy to the
lattice through electron-phonon interaction. In this case the carriers
establish well-defined temperature higher than the lattice temperature
and a finite chemical potential, both of which are used to produce power.

(c) The conventional solar cell is obtained when the carriers relax to the
lattice temperature through electron-phonon interaction before being
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Figure 5.3: Schematic representation of the regimes of operation considered.
(a): Ideal solar engine in which there are no loss mechanisms. (b): Thermalized
hot-carrier solar cell, in which the extracted carriers have thermalized and
reached a well defined temperature Te-e and chemical potential µe-e. (c): Solar
cell, in which the extracted carriers have relaxed to the lattice temperature Tcol,
while having chemical potential µe-ph. (d): Nonequilibrium hot-carrier solar
cell, in which the extracted carriers are described by a nonthermal distribution,
in this case a combination of the former.
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extracted. In this case all the excess energy of the carriers is lost, and the
carriers take on the ambient temperature, but establish a finite chemical
potential, which is used to produce power.

(d) The cell exploiting nonequilibrium hot-carriers is obtained when the
device exploits the nonequilibrium nature of the hot carriers. To obtain
the nonequilibrium carrier distribution, all kinds of carriers are extracted
equally. In this case the carriers extracted by the collector do not exhibit
a well-defined temperature or chemical potential.

Unsurprisingly, the ideal solar engine produces more power and does so
with a better global efficiency compared to the other regimes. In fact, the
ideal solar engine does not have any loss mechanism. On the opposite, the
conventional solar cell has the lowest power output and global efficiency of the
regimes considered because it incurs in more losses. By contrast, the picture
is reversed for the partial efficiency. In fact, since the solar cell exploits cold
carriers to produce power, it extracts them more efficiently compared to the
other regimes, in which the carrier distributions are spread in energy. Both the
thermalized and nonequilibrium hot-carrier solar cells produce more power with
a higher global efficiency than the conventional solar cell because they do not
have as many losses. However, the use of a nonequilibrium carrier distribution
improves the power generated by the cell while operating at the same global
efficiency of the thermalized hot-carrier solar cell.

5.2.2 Best efficiency at a given power

The second major achievement of paper [III] is obtained when the device
exploits a thermal distribution, irrespective of the origin of its temperature and
chemical potential. Therefore, this covers the ideal solar engine, the thermalized
hot-carrier solar cell, and the conventional solar cell discussed previously. For
such regimes we prove that the boxcar-shaped transmission, defined as

D(E) =

{
1 for E0 < E < E1

0 otherwise
, (5.9)

maximizes the extraction efficiency at any given power output for an appropriate
choice of the initial (E0) and final (E1) energy. This kind of transmission was
already recognized to be optimal for thermoelectric heat engines in Refs. [88,
89]. Here, we generalize it to systems in which also a chemical potential is
present, influencing the choices of E0 and E1.

The proof is based on a variational analysis that can be found in paper [III].
Importantly, the proof requires the carrier distribution to be thermal, thereby
excluding the nonequilibrium hot-carrier solar cell regime. Nonetheless, we
expect a boxcar with a suitable choice of width and position, or possibly a
combination of multiple distinct boxcars, to be optimal even for nonthermal
distributions.



Chapter 6

Conclusions

6.1 Summary

This thesis studies transport in out-of-equilibrium systems focusing on two
different aspects: the current fluctuations under out-of-equilibrium conditions,
and the effect of nonequilibrium (or nonthermal) distributions as a resource.

On the one hand, we investigate the current fluctuations in various meso-
scopic systems, with particular focus on thermoelectric devices. These fluctu-
ations become particularly interesting out of equilibrium, where the shot noise
contribution is finite, even if the average current vanishes. We find that, even
with vanishing average current, the heat shot noise can be arbitrarily large.
The same applies to both charge and spin shot noise in spin-nondegenerate sys-
tems. Instead, in spin-degenerate systems in which the zero-current condition
is achieved by means of a temperature and a voltage bias, we prove that the
charge shot noise is always smaller than the thermal one.

On the other hand, we analyze a hot-carrier solar cell, where we propose
a transport model to describe the main loss mechanisms happening. This
particular device combines the thermoelectric and the photovoltaic effects, and
its working principle relies on the fast carrier extraction, which can exploit
nonthermal carrier distributions. Therefore, we tackle the crucial task to
investigate the effects of nonequilibrium distribution on the performance of the
device. We find that the extraction of a nonequilibrium carrier distribution
indeed improves the power generated by the device. Nonetheless, if the carrier
distribution is thermal, we prove that the maximum efficiency at any given
power output is obtained using a boxcar-shaped transmission, see Eq. (5.9).

6.2 Outlook

The presented results lay the basis for a number of open questions, which are
briefly described in the following.

First, in Sec. 5.1.3 a conjecture is presented, namely that the finite frequency
charge shot noise in absence of current is smaller than its thermal counterpart
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even when the noise is measured on the hotter contact. Proving this would
further reinforce the generality of the bound on charge shot noise in absence of
currents. Additionally, the results of paper [I] and [II] raise questions about
the existance of an analogous bound in interacting or bosonic systems, which
would be interesting to investigate in the future.

Concerning the hot-carrier solar cell analysis, on the other hand, the results
of paper [III] beg for an application of the model to realistic systems, like
devices based on nanowires heterostructures or 2D graphene sheet, and for a
deeper analysis of the nonequilibrium effects on the performance of the device.

These different aspects of out-of-equilibrium thermodynamics could also be
combined. In fact, studying the noise generated by nonequilibrium distributions,
for which the bound on shot noise is not guaranteed to hold, is interesting. For
example, fluctuations could be useful in distinguishing a “pure” nonequilibrium
resource, namely a reservoir described by a nonequibrium distribution, from
an “artificially” generated nonequilibrium distribution, namely a distribution
obtained by the mixing of thermal ones. In particular, the latter is what is con-
sidered in paper [III], as well as in Refs. [18, 19], where the nonequilibriumness
of a distribution is used to power a refrigerator.

Last, we mention that the bound obtained on shot noise is different from
the thermodynamic uncertainty relations. In fact, in our result, only the shot
and thermal current noise components appear, whereas in the thermodynamic
uncertainty relations the total current noise as well as the entropy production
and the average charge current do. Investigating whether a connection between
such inequalities exists or how they can be combined can provide further
insights into the out-of-equilibrium fluctuations.



Appendix A

Probability current and
current operators

The probability density n(x, t) of finding a non-relativistic particle around the
position x at time t evolves according to

∂tn(x, t) = ∂t |ψ(x, t)|2 = [∂tψ
∗(x, t)]ψ(x, t) + ψ∗(x, t)∂tψ(x, t),

=
i

2m~
[
[p̂2ψ∗(x, t)]ψ(x, t)− ψ∗(x, t)p̂2ψ(x, t)

]
,

=
i~
2m

∇ [ψ∗(x, t)∇ψ(x, t)− [∇ψ∗(x, t)]ψ(x, t)] ,

(A.1)

where the Schrödinger equation was used to determine the evolution of the
wavefunction ψ(x, t). The operator p̂ is the momentum operator, which, in
the coordinate representation becomes proportional to the spatial derivatives,
namely p̂ = −i~∇. The last line of Eq. (A.1) highlights the structure of the
probability density evolution, which take the form of a continuity equation,
namely

∂tn(x, t) + ∇J (x, t) = 0. (A.2)

Here J (x, t) is the probability current of the particle, and is defined as

J (x, t) ≡ − i~
2m
{ψ∗(x, t)∇ψ(x, t)− [∇ψ∗(x, t)]ψ(x, t)} . (A.3)

Using this quantum-mechanical notion of current we calculate the current
operators in the scattering formalism by substituting the particle field Ψα(r, t)
in place of the wavefunction ψ(x, t). In particular, the currents flowing across
lead α are obtained by integrating the flow in the direction of the lead along the
direction perpendicular to the particle propagation, namely r⊥. In particular,
using the shorthand notation • = •(E) and •′ = •(E′), for the charge current
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we have

Îα = − iq~
2m

∫
dr⊥

[
Ψ†α(r, t)∂xΨα(r, t)− [∂xΨ†α(r, t)]Ψα(r, t)

]

= − iq~
2m

∫
dr⊥dEdE

′∑

ii′

χαiχ
′∗
αi′√

hvhv′
e−i(E−E

′)t/~×

×
{
−ik

[
â′†αi′e

ik′x + b̂′†αi′e
−ik′x

] [
âαie

−ikx − b̂αieikx
]

−ik′
[
â′†αi′e

ik′x − b̂′†αi′e−ik
′x
] [
âαie

−ikx + b̂αie
ikx
]}

.

(A.4)

Now, the approximations done in Sec. 2.2 allow us to greatly simplify the
calculations. Indeed, the orthonormality of χαi(E, r⊥) can then be used,
yielding a Kronecker delta δii′ . Additionally, when k = k′ the annihilation and
creation operators simplify, and since ~k(E) = mv(E) the particle velocities
disappear. For this cancellation to happen it is crucial that the propagation
happens in a one-dimensional lead. In the end, we get the simple formulation
in Eq. (2.6).

One can proceed in a similar fashion for the energy and spin currents, placing
the operator corresponding to the quantity of interested between Ψ†α(r, t) (or
∂xΨ†α(r, t)) and ∂xΨα(r, t) (or Ψα(r, t)). For example, the energy current is
obtained by considering the flow for the Hamiltonian Ĥ, which yields

Î(E)
α = − i~

2m

∫
dr⊥

[
Ψ†α(r, t)Ĥ∂xΨα(r, t)− [∂xΨ†α(r, t)]ĤΨα(r, t)

]

= − i~
m

∫
dr⊥dEdE

′
(
E + E′

2

)∑

ii′

χαiχ
′∗
αi′√

hvhv′
e−i(E−E

′)t/~×

×
{
−ik

[
â′†αi′e

ik′x + b̂′†αi′e
−ik′x

] [
âαie

−ikx − b̂αieikx
]

−ik′
[
â′†αi′e

ik′x − b̂′†αi′e−ik
′x
] [
âαie

−ikx + b̂αie
ikx
]}

.

(A.5)

Where we used Ĥ = Ĥ† to make the operator act on Ψα(r, t) and Ψ†α(r, t)
respectively.

As stated in the main text, when we also consider the spin of the particles, we
can include the corresponding index τ in the reservoir index. In spin-degenerate
systems, this only adds a degeneracy factor (2 for electrons). However, we can
also use it to calculate spin transport quantities. In this case, the spin current
operator is obtained by considering the flow of the particle spin. For electrons,
this corresponds to the operator ŝ = ~σ̂z/2, where σ̂z is the Pauli matrix, and
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yields

Σ̂α = − i~
2m

∫
dr⊥

[
Ψ†α(r, t)ŝ∂xΨα(r, t)− [∂xΨ†α(r, t)]ŝΨα(r, t)

]

= − i~
m

∫
dr⊥dEdE

′ ∑

ii′ττ ′

~
2

(
(−1)δτ↓ + (−1)δτ′↓

2

)
χατiχ

′∗
ατ ′i′√

hvhv′
×

× e−i(E−E′)t/~
{
−ik

[
â′†ατ ′i′e

ik′x + b̂′†ατ ′i′e
−ik′x

] [
âατie

−ikx − b̂ατieikx
]

−ik′
[
â′†ατ ′i′e

ik′x − b̂′†ατ ′i′e
−ik′x

] [
âατie

−ikx + b̂ατie
ikx
]}

.

(A.6)
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Appendix B

Nonequilibrium free energy

Consider a closed system made of different subsystems, labeled with α. The
(average) total entropy production between the final and the initial state obeys
the second law of thermodynamics, namely

∆Stot =
∑

α

∆Sα ≥ 0. (B.1)

We consider one of the subsystems to be a large thermal reservoir, such that
its thermal state is not disturbed by the transformation. We refer to this
subsystem as the environment (env), which has a well defined temperature
Tenv. Applying the first law of thermodynamics to the environment, we obtain

Tenv∆Senv = ∆Uenv −Wenv (B.2)

where ∆Uenv is the variation of internal energy of the environment, while Wenv

is the (positive) work performed on the environment reservoir. Using the total
energy conservation of the system, namely

∑
α ∆Uα = 0, we can use the second

law in Eq. (B.1) to obtain the thermodynamic maximum of the work performed
on the environment. Indeed, we rewrite the second law as

Tenv∆Stot =
∑

α 6=env

(Tenv∆Sα −∆Uα)−Wenv ≥ 0, (B.3)

from which we obtain

Wenv ≤ −
∑

α6=env

∆Fα;env = −
∑

α 6=env

(∆Uα − Tenv∆Sα) . (B.4)

Here we have defined the thermodynamic quantity Fα;env ≡ Uα − TenvSα, that
we call nonequilibrium free energy because of its similarities with the Helmholtz
free energy. In particular, since the nonequilibrium free energy only contains
the extensive quantities of subsystem α (the internal energy Uα and the entropy
Sα), it does not require the subsystem α to be at local equilibrium. Therefore,
as the name suggests, the nonequilibrium free energy accounts also for the
possibility of using nonequilibrium resources to produce work.

51





Bibliography

1J. R. Powell, “The Quantum Limit to Moore’s Law”, Proc. IEEE 96, 1247–
1248 (2008) (cit. on p. 1).

2D. P. DiVincenzo, “Quantum Computation”, Science 270, 255–261 (1995)
(cit. on p. 1).
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21Ya. M. Blanter and M. Büttiker, “Shot noise in mesoscopic conductors”,
Phys. Rep. 336, 1–166 (2000) (cit. on pp. 2, 5, 30, 34).

22L. Saminadayar, D. C. Glattli, Y. Jin and B. Etienne, “Observation of the
e/3 Fractionally Charged Laughlin Quasiparticle”, Phys. Rev. Lett. 79,
2526–2529 (1997) (cit. on pp. 2, 5, 30).

23R. De-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin and
D. Mahalu, “Direct observation of a fractional charge”, Nature 389, 162–164
(1997) (cit. on pp. 2, 5, 30).

24O. S. Lumbroso, L. Simine, A. Nitzan, D. Segal and O. Tal, “Electronic
noise due to temperature differences in atomic-scale junctions”, Nature 562,
240–244 (2018) (cit. on pp. 2, 5, 33).

25S. Limpert, A. Burke, I.-J. Chen, N. Anttu, S. Lehmann, S. Fahlvik, S.
Bremner, G. Conibeer, C. Thelander, M.-E. Pistol and H. Linke, “Single-
nanowire, low-bandgap hot carrier solar cells with tunable open-circuit
voltage”, Nanotechnology 28, 434001 (2017) (cit. on pp. 2, 21).

https://doi.org/10.1088/1367-2630/10/8/083016
https://doi.org/10.1088/1367-2630/10/8/083016
https://doi.org/10.1088/1367-2630/ac53b8
https://doi.org/10.1088/1367-2630/ac53b8
https://doi.org/10.1103/PhysRevLett.111.230402
https://doi.org/10.1103/PhysRevB.100.045418
https://doi.org/10.1103/PhysRevB.103.085409
https://doi.org/10.1103/PhysRevB.103.085409
https://doi.org/10.1103/PhysRevE.105.044137
https://doi.org/10.1103/PhysRevE.105.044137
https://doi.org/10.1103/PhysRevLett.123.216801
https://doi.org/10.1103/PhysRevB.102.155405
https://doi.org/10.1063/1.331124
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1103/PhysRevLett.79.2526
https://doi.org/10.1103/PhysRevLett.79.2526
https://doi.org/10.1038/38241
https://doi.org/10.1038/38241
https://doi.org/10.1038/s41586-018-0592-2
https://doi.org/10.1038/s41586-018-0592-2
https://doi.org/10.1088/1361-6528/aa8984


BIBLIOGRAPHY 55

26I.-J. Chen, S. Limpert, W. Metaferia, C. Thelander, L. Samuelson, F. Ca-
passo, A. M. Burke and H. Linke, “Hot-Carrier Extraction in Nanowire-
Nanoantenna Photovoltaic Devices”, Nano Lett. 20, 4064–4072 (2020) (cit.
on pp. 2, 21, 22).

27J. Fast, E. Barrigon, M. Kumar, Y. Chen, L. Samuelson, M. Borgström,
A. Gustafsson, S. Limpert, A. Burke and H. Linke, “Hot-carrier separation
in heterostructure nanowires observed by electron-beam induced current”,
Nanotechnology 31, 394004 (2020) (cit. on pp. 2, 21).

28J. Fast, U. Aeberhard, S. P. Bremner and H. Linke, “Hot-carrier optoelec-
tronic devices based on semiconductor nanowires”, Appl. Phys. Rev. 8,
021309 (2021) (cit. on pp. 2, 21).

29J. Fast, Y.-P. Liu, Y. Chen, L. Samuelson, A. M. Burke, H. Linke and
A. Mikkelsen, “Optical-Beam-Induced Current in InAs/InP Nanowires for
Hot-Carrier Photovoltaics”, ACS Appl. Energy Mater. 5, 7728–7734 (2022)
(cit. on pp. 2, 21).

30D. Prete, P. A. Erdman, V. Demontis, V. Zannier, D. Ercolani, L. Sorba, F.
Beltram, F. Rossella, F. Taddei and S. Roddaro, “Thermoelectric Conversion
at 30 K in InAs/InP Nanowire Quantum Dots”, Nano Lett. 19, 3033–3039
(2019) (cit. on pp. 3, 4, 18).

31E. T. Jaynes, “Information Theory and Statistical Mechanics”, Phys. Rev.
106, 620–630 (1957) (cit. on p. 3).

32H. van Houten, L. W. Molenkamp, C. W. J. Beenakker and C. T. Foxon,
“Thermo-electric properties of quantum point contacts”, Semicond. Sci. Tech-
nol. 7, B215–B221 (1992) (cit. on pp. 4, 17, 18).

33S. F. Svensson, E. A. Hoffmann, N. Nakpathomkun, P. M. Wu, H. Q.
Xu, H. A. Nilsson, D. Sánchez, V. Kashcheyevs and H. Linke, “Nonlinear
thermovoltage and thermocurrent in quantum dots”, New J. Phys. 15,
105011 (2013) (cit. on pp. 4, 18).

34P. Gehring, J. K. Sowa, C. Hsu, J. de Bruijckere, M. van der Star, J. J. Le
Roy, L. Bogani, E. M. Gauger and H. S. J. van der Zant, “Complete mapping
of the thermoelectric properties of a single molecule”, Nat. Nanotechnol. 16,
426–430 (2021) (cit. on p. 4).

35J. B. Johnson, “Thermal Agitation of Electricity in Conductors”, Nature
119, 50–51 (1927) (cit. on p. 4).

36H. Nyquist, “Thermal Agitation of Electric Charge in Conductors”, Phys.
Rev. 32, 110–113 (1928) (cit. on p. 4).

37H. B. Callen and T. A. Welton, “Irreversibility and Generalized Noise”,
Phys. Rev. 83, 34–40 (1951) (cit. on p. 4).

38M. S. Green, “Markoff Random Processes and the Statistical Mechanics of
Time-Dependent Phenomena. II. Irreversible Processes in Fluids”, J. Chem.
Phys. 22, 398–413 (1954) (cit. on p. 4).

39R. Kubo, “Statistical-Mechanical Theory of Irreversible Processes. I. General
Theory and Simple Applications to Magnetic and Conduction Problems”, J.
Phys. Soc. Jpn. 12, 570–586 (1957) (cit. on p. 4).

https://doi.org/10.1021/acs.nanolett.9b04873
https://doi.org/10.1088/1361-6528/ab9bd7
https://doi.org/10.1063/5.0038263
https://doi.org/10.1063/5.0038263
https://doi.org/10.1021/acsaem.2c01208
https://doi.org/10.1021/acs.nanolett.9b00276
https://doi.org/10.1021/acs.nanolett.9b00276
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1088/0268-1242/7/3b/052
https://doi.org/10.1088/0268-1242/7/3b/052
https://doi.org/10.1088/1367-2630/15/10/105011
https://doi.org/10.1088/1367-2630/15/10/105011
https://doi.org/10.1038/s41565-021-00859-7
https://doi.org/10.1038/s41565-021-00859-7
https://doi.org/10.1038/119050c0
https://doi.org/10.1038/119050c0
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570


56 BIBLIOGRAPHY

40C. Jarzynski, “Nonequilibrium Equality for Free Energy Differences”, Phys.
Rev. Lett. 78, 2690–2693 (1997) (cit. on p. 5).

41G. E. Crooks, “Nonequilibrium Measurements of Free Energy Differences
for Microscopically Reversible Markovian Systems”, J. Stat. Phys. 90, 1481–
1487 (1998) (cit. on p. 5).

42M. Campisi, P. Hänggi and P. Talkner, “Colloquium: Quantum fluctuation
relations: Foundations and applications”, Rev. Mod. Phys. 83, 771–791
(2011) (cit. on p. 5).

43C. Van den Broeck and M. Esposito, “Ensemble and trajectory thermody-
namics: A brief introduction”, Physica A 418, 6–16 (2015) (cit. on p. 5).

44T. R. Gingrich, J. M. Horowitz, N. Perunov and J. L. England, “Dissipation
Bounds All Steady-State Current Fluctuations”, Phys. Rev. Lett. 116,
120601 (2016) (cit. on p. 5).

45U. Seifert, “Stochastic thermodynamics: From principles to the cost of
precision”, Physica A 504, 176–191 (2018) (cit. on p. 5).

46S. Kheradsoud, N. Dashti, M. Misiorny, P. P. Potts, J. Splettstoesser and
P. Samuelsson, “Power, Efficiency and Fluctuations in a Quantum Point
Contact as Steady-State Thermoelectric Heat Engine”, Entropy 21, 777
(2019) (cit. on p. 5).

47G. Falasco, M. Esposito and J.-C. Delvenne, “Beyond thermodynamic uncer-
tainty relations: nonlinear response, error-dissipation trade-offs, and speed
limits”, J. Phys. A: Math. Theor. 55, 124002 (2022) (cit. on p. 5).

48A. A. Kozhevnikov, R. J. Schoelkopf and D. E. Prober, “Observation of
Photon-Assisted Noise in a Diffusive Normal Metal–Superconductor Junc-
tion”, Phys. Rev. Lett. 84, 3398–3401 (2000) (cit. on p. 5).

49X. Jehl, M. Sanquer, R. Calemczuk and D. Mailly, “Detection of doubled
shot noise in short normal-metal/ superconductor junctions”, Nature 405,
50–53 (2000) (cit. on p. 5).

50Y. Ronen, Y. Cohen, J.-H. Kang, A. Haim, M.-T. Rieder, M. Heiblum, D.
Mahalu and H. Shtrikman, “Charge of a quasiparticle in a superconductor”,
Proc. Natl. Acad. Sci. U.S.A. 113, 1743–1748 (2016) (cit. on p. 5).

51L. Spietz, K. W. Lehnert, I. Siddiqi and R. J. Schoelkopf, “Primary Electronic
Thermometry Using the Shot Noise of a Tunnel Junction”, Science 300,
1929–1932 (2003) (cit. on p. 5).

52U. Kemiktarak, T. Ndukum, K. C. Schwab and K. L. Ekinci, “Radio-
frequency scanning tunnelling microscopy”, Nature 450, 85–88 (2007) (cit.
on p. 5).

53T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin and D. C. Glattli,
“Quantum tomography of an electron”, Nature 514, 603–607 (2014) (cit. on
p. 5).

https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1023/A:1023208217925
https://doi.org/10.1023/A:1023208217925
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1016/j.physa.2014.04.035
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1016/j.physa.2017.10.024
https://doi.org/10.3390/e21080777
https://doi.org/10.3390/e21080777
https://doi.org/10.1088/1751-8121/ac52e2
https://doi.org/10.1103/PhysRevLett.84.3398
https://doi.org/10.1038/35011012
https://doi.org/10.1038/35011012
https://doi.org/10.1073/pnas.1515173113
https://doi.org/10.1126/science.1084647
https://doi.org/10.1126/science.1084647
https://doi.org/10.1038/nature06238
https://doi.org/10.1038/nature13821


BIBLIOGRAPHY 57

54R. Bisognin, A. Marguerite, B. Roussel, M. Kumar, C. Cabart, C. Chap-
delaine, A. Mohammad-Djafari, J.-M. Berroir, E. Bocquillon, B. Plaçais,
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tomography of electrical currents”, Nat. Commun. 10, 1–12 (2019) (cit. on
p. 5).

55E. S. Tikhonov, A. O. Denisov, S. U. Piatrusha, I. N. Khrapach, J. P.
Pekola, B. Karimi, R. N. Jabdaraghi and V. S. Khrapai, “Spatial and energy
resolution of electronic states by shot noise”, Phys. Rev. B 102, 085417
(2020) (cit. on p. 5).

56E. Sivre, H. Duprez, A. Anthore, A. Aassime, F. D. Parmentier, A. Cavanna,
A. Ouerghi, U. Gennser and F. Pierre, “Electronic heat flow and thermal
shot noise in quantum circuits”, Nat. Commun. 10, 1–8 (2019) (cit. on pp. 5,
33).

57S. Larocque, E. Pinsolle, C. Lupien and B. Reulet, “Shot Noise of a
Temperature-Biased Tunnel Junction”, Phys. Rev. Lett. 125, 106801 (2020)
(cit. on pp. 5, 33, 34).

58B. Altaner, M. Polettini and M. Esposito, “Fluctuation-Dissipation Relations
Far from Equilibrium”, Phys. Rev. Lett. 117, 180601 (2016) (cit. on pp. 5,
35).

59R. Landauer, “Electrical resistance of disordered one-dimensional lattices”,
Philosophical Magazine: A Journal of Theoretical Experimental and Applied
Physics 21, 863–867 (1970) (cit. on p. 7).
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