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PREFACE

In a recent book [1], technology historian Julia Ravanis has
shared her ideas about the development of physics, in
particular quantum mechanics. She finds parallel connections
between physics and human life. She regrets the lack of
ambitions in physics to reach a better understanding of quantum
mechanics. Physics students are trained to apply quantum theory
without questioning, instead of being openly informed about
remaining fundamental problems. At the same time, "in popular
culture, interpretations of quantum mechanics are flourishing
as sheer magic." Julia Ravanis was herself a physics student a
few years ago, and she states her critical position in the
book.

I started my own studies in quantum mechanics in Uppsala in
1956, and since that time, I have been carrying with me the
measurement problem of quantum mechanics. (My choice was to
consider it as an unsolved physical problem.) In later years, I
have come to realize that the schooling of physics students
that Ravanis criticized, has developed over a long time and is
now an integrated part of the physics culture. This culture
blocks the ways towards solving the measurement problem and it
prevents the understanding of the important progress that has
actually taken place. In particular, I am thinking about the
progress in quantum diffusion which took place roughly during
the period 1985-1995 [2].

In my own thinking, I have only slowly and stepwise been able
to break blockings and see new possibilities and connections.
Afterwards it has been difficult to understand how my blockings
could have been so strong.

One physicist who kept himself to purely physical reasoning in
his discussions about the measurement problem was John Bell
[3]. He meant that also methods used in everyday physics
research could be of value for a deeper understanding. Bell
appreciated very much the work that was done in quantum
diffusion. Unfortunately, his influence was not sufficient to
inspire more physicists to go into research on measurement as a
physical process. This little book is an attempt to continue
the physical analysis in the tradition of John Bell.
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A few months ago, I read quite carefully Erwin Schrödinger's
famous article from 1935 with Schrödinger's cat [4]. As has
been described quite recently by David Kaiser [5], the article
was primarily intended to criticize the quantum mechanics of
the time. Schrödinger, then a visitor in Oxford, had a frequent
exchange of letters with Albert Einstein in Princeton. The
fable about the cat does not take much space in the article.
Most of the article is an attempt to analyze the interaction
between a small quantum system and a measurement apparatus. The
description given by Schrödinger is clear and well structured.
His conclusions come from intelligent conjectures, not physical
calculations. He probably felt very sure of being right in his
guesses. If he had had access to relativistic quantum
mechanics, everything would have looked different and it could
have been possible to see how one definite measurement result
can come out.

I mention Schrödinger's article [4], because it was an early
confrontation of two opposite traditions in the same text, one
based on scientific questioning, the other on ideology, tied to
the author's conviction. While most readers now are drawn to
the fable, written to show that quantum mechanics is absurd, I
was fascinated by his early approach to analyze the measurement
problem. It could almost have led to a solution but critically
needed basic knowledge was not yet available to him and he did
not like open questions.

Both traditions are present in Ravani's book [1]. The
measurement problem is still an important arena for
confrontations between these two traditions.

It can be tempting to connect oneself to a thrilling system of
ideas, instead of analyzing a partial aspect of an unsolved
physical problem.

Many such partial aspects were collected in John Bell's
personal book Speakable and Unspeakable in Quantum Mechanics
[3], and in Andrew Whitaker's rich book on the history of
measurement theory, Einstein, Bohr and the Quantum Dilemma
[6]. These books have given me a valuable basis to build on.
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In this book, I have tried to continue in Bell's tradition, to
do physical analysis, as it is conventionally done in everyday
quantum mechanics. In the play in Chapter 2, I have also let
Albert Einstein and Marie Curie join Bell as spokespersons for
a realistic view.

Quantum Mechanics is not only a great theory with an enormous
explanatory power. Contrary to what is usually expressed in
comments on quantum mechanics, it is understandable. Also
contrary to what is usually claimed, quantum measurement can
be understood within the theory. Quantum Mechanics should be
freed from the heavy burden of mysticism and be given its
proper place in the modern scientific understanding of the
world. We should finally give Quantum Mechanics a chance!
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1. QUANTUM-MECHANICAL/STATISTICAL ANALYSIS OF MEASUREMENT

Background: new physics in early 20th century

Around 1900, several physical phenomena had been observed which
did not fit into the traditional physical understanding of the
19th century. Among these were: a different kind of matter
(radioactive) had been discovered; the speed of light seemed to
be independent of the frame of inertia in which it was
measured; the energy spectrum of heat radiation did not agree
with the known thermodynamics; the interaction of
electromagnetic radiation with atoms showed unexpected
features.

One person was active in the study of several of these
phenomena and made great contributions to the understanding of
them: Albert Einstein. He was a pioneer in the two great
theories of the century shift which led to a revolutionary
change in physics: the special theory of relativity and quantum
mechanics. About a decade later, he presented another new great
theory: the general theory of relativity. Some predictions of
this theory have been confirmed or reconfirmed in recent years,
gravitational radiation and black holes.

The special theory of relativity and quantum mechanics now form
the basis for the physical understanding of the structure and
interaction of matter, These two theories have an enormous
capacity to explain phenomena in physics, and due to their
special role of physics, in the whole of science. In some
instances, this includes a very accurate quantitative
understanding. This situation is unique in the history of
science.

To describe the special theory of relativity, it is quite
straightforward to use geometric concepts, even though one must
take into account the different nature of the fourth dimension,
time. Therefore relativity is recognized as a theory that is
fairly easy to comprehend. In contrast to this, quantum
mechanics is usually described, even by physicists, as
mysterious and difficult to understand. In relation to the
capacity of quantum mechanics to explain a very broad range of
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phenomena, this situation is absurd. We shall soon return to
the background of this situation.

The special theory of relativity and quantum mechanics are also
the foundation of scientific applications and hence of all
modern technology. Together with the general theory of
relativity, these theories help us to understand our universe,
to the extent that it can be understood. In this context, one
should mention the difficulties to make general relativity and
quantum mechanics fit together.

Determination of a measurement value in quantum mechanics

There is one reason behind the view of quantum mechanics as
difficult and mysterious. One important aspect in the
understanding of quantum mechanics is still incomplete.
Physicists do not have a common understanding of what happens
at the measurement of a physical quantity on a system,
described by quantum mechanics. First, only certain measurement
values can be obtained. What happens in a single measurement
event can be predicted only in special cases where the result
is unique. In general, more than one result is possible. If the
state of the measured system is known, one can predict the
probabilities for different results. This problem, the
measurement problem of quantum mechanics, goes back to the
1920s.

In general, the quantity to be determined in the studied
system, does not have a unique value. Instead, the value
becomes determined in the process itself. In his book
"Speakable" [1], John Bell described the situation as follows:

This word [measurement] very strongly suggests the ascertaining of some
preexisting property of some thing, any instrument involved playing a
purely passive role. Quantum experiments are just not like that, as we
learned especially from Bohr. The result has to be regarded as a joint
product of 'system' and 'apparatus', the complete experimental set-up.
["Speakable", p. 166]

In line with this, we have decided to use the term
'determination', rather than 'measurement'. We shall limit our
discussion to the determination of the value of a physical
quantity for a system that is not destroyed in the process but
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remains afterwards. We choose a system with two possibilities:
an electron (

€ 

e−) and the determination of the vertical
component of its spin. This component can be directed up (we
denote this state of 

€ 

e− by 

€ 

+ ) or it can be directed down (we
denote this state of 

€ 

e− by 

€ 

− ). When determining the vertical
spin component, these are the two possible outcomes. If the
electron, prior to the determination, is in the state 

€ 

+  or in
the state 

€ 

− , the result is spin-up or spin-down, respectively.

Mathematically, the states 

€ 

+  and 

€ 

−  can be viewed as
orthogonal basic vectors, spanning a two-dimensional space of
quantum states. If 

€ 

e− has been given another spin direction
(than up or down) before the determination of the vertical spin
component, its state 

€ 

ψ  can be expressed as a linear
combination, a superposition of 

€ 

+  and 

€ 

−  (See Box 1):

€ 

ψ =ψ+ + +ψ− − ,

with 

€ 

ψ+
2

+ ψ−
2

=1, so that 

€ 

ψ  is also a normalized vector.

In quantum mechanics, it is customary to use complex numbers
(

€ 

u = a + bi, where 

€ 

a and 

€ 

b are real numbers and 

€ 

i = −1 is the
imaginary unit, with the complex conjugate 

€ 

u* = a − bi , and the
squared norm (squared modulus) 

€ 

u 2 = uu* = a2 + b2). Here we may
assume that 

€ 

ψ+ and 

€ 

ψ− are real numbers (sufficient if we only
consider spin directions in one plane through the vertical
axis.).

If 

€ 

e− is in a state 

€ 

ψ  with both 

€ 

ψ+ and 

€ 

ψ− non-zero, and we
have to determine its vertical spin component, the result can
only be up (then after the determination, 

€ 

e− will be in the
state 

€ 

+ ) or down (then after the determination, 

€ 

e− will be in
the state 

€ 

− ). For a single case, it is impossible to predict
which result will be obtained. But taking a new 

€ 

e−, again in
the state 

€ 

ψ , and making a new determination and repeating

this many times, we will find the result 'up' (

€ 

+ ) in 

€ 

ψ+
2 of



8

Basis states: 

€ 

+  (spin up) and 

€ 

−  (spin down).

(for these states, measurement/determination results are
certain.)

Superposition of basis states: 

€ 

ψ =ψ+ + +ψ− −    (

€ 

ψ+
2

+ ψ−
2

=1

With 

€ 

e− in the state 

€ 

ψ , a determination of its vertical spin
component, leads to:

(+)  spin up and 

€ 

e− in the final state 

€ 

+ , or
(–)  spin down and 

€ 

e− in the final state 

€ 

− .

Born's rule: The probability for (+) is 

€ 

ψ+
2,

    and

    the probability for (–) is 

€ 

ψ−
2.

If the spin of 

€ 

e− initially points in the direction 

€ 

(sinθ,  0,  cosθ),
then the components of the state 

€ 

ψ  are:

      

€ 

ψ+ = cos(θ /2),

ψ− = sin(θ /2);

  and  

€ 

ψ+
2

=
1+ cosθ
2

= 1
2 BP,

ψ−
2

=
1− cosθ
2

= 1
2 PA.

BOX 1. Quantum states for the spin of an electron and
determination of the vertical spin component.

Kristian Lindgren

kristian
Stamp
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all cases, and 'down' (

€ 

− ) in 

€ 

ψ−
2 of all cases. This

experimental fact is known as Born's rule.

Thus we can predict probabilities but not single results. Among
physicists, no common opinion exists on how a single result
comes about. This is the measurement problem of quantum
mechanics. The description that we have just given here of a
determination/measurement and of the measurement problem
itself, however, are things that physicists agree on.

The measurement problem and the approach in the present work

The situation that there is something that should have been
explained but which has not yet got its final explanation, has
clearly influenced the situation in physics. Physicists have
tried different ways to interpret what is already known. One
has been open for the possibility that an unsolved problem can
be a window into new important knowledge. Sometimes one has
considered quantum mechanics to be only a theory about
probabilities. Through this development, in the cultural
context, physics has been given a mystical role; people from
different schools of ideas in other fields have looked into
physics for clues to their problems.

In "Speakable" [1], John Bell made a typology for different
approaches to solve the measurement problem: in unromantic
approaches, one seeks a solution in conventional research in
physics; romantic approaches are also open to epistemological
and metaphysical theories. Our approach is totally unromantic;
in Bell's classification it would be called pragmatic.
Determination of a measurement value is described completely
within quantum mechanics, in our case meaning relativistic
quantum mechanics. No special metatheories or generalizations
are needed.

For everyday work with quantum mechanics, the quantum-
mechanical state is a description of reality; this is a
functioning pragmatic ontology. Now with determination (of a
measurement value) also being possible to describe in quantum-
mechanical theory, the pragmatic ontology of quantum mechanics
can be considered as more generally valid. Thus the quantum-
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mechanical state can be more widely recognized as a description
of reality.

John von Neumann's dilemma

Already around 1930, John von Neumann tried to solve the
measurement problem but he found it necessary to use a special
kind of dynamics for measurement [2]. As we have seen, the
problem appears when the investigated system is in a state
where the physical quantity to be determined does not have a
predetermined value. One then gets one out of a set of possible
values (in our example, one out of two values), and it is
impossible to predict which one.

The interaction of 

€ 

e− with the measurement apparatus should be
such that the apparatus can register the vertical spin state of

€ 

e− without changing it. The components of 

€ 

e− may interact with
separate parts of the measurement apparatus. We have stayed
with our example, but the discussion can be generalized from 

€ 

e−
to any system under study. In his attempt to analyze the
determination process, von Neumann got entanglement between the
studied system and the measurement apparatus (i.e., a state
that is a superposition of product states), but he could not
see any way for the interaction to change the relative
proportions of the two components (+ and –). Therefore he could
see no way for one component to take over completely with one
single result obtaining. This situation has been called von
Neumann's dilemma [3]. We describe it in Box 2.

The famous article by Erwin Schrödinger about a cat in a cruel
superposition state where one component is a living cat and the
other one is a dead cat, was also published in the 1930s [4].
This is von Neumann's dilemma extended to a macroscopic, and
even living, object. We show the situation in Box 3, extended
with an extra component, an assistent known as "Wigner's Friend
[5]. It should be mentioned immediately that a system of this
kind would have an uncontrollable interacton with its
environment that would make it totally unrealistic to discuss
it as a closed quantum-mechanical system.
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Consider a determination of the vertical spin component of 

€ 

e−

through an interaction between 

€ 

e− and a measurement apparatus

€ 

M initially in a state of preparedness 

€ 

0 M .

First we assume 

€ 

e− to be initially in a definite state of
vertical spin, 

€ 

+ e−  or 

€ 

− e−. The combined initial state then is

€ 

+ e− ⊗ 0 M   or  

€ 

− e− ⊗ 0 M .

Interaction between 

€ 

e− and 

€ 

M gives a mark on 

€ 

M from the state
of 

€ 

e−. Thus, with simple notation, the interaction takes the
initial state into a final state as follows:

€ 

j e− ⊗ 0 M  is taken into 

€ 

j e− ⊗ ( j) M, 

€ 

j = ±.

We then take the case with 

€ 

e− initially in the superposition

€ 

ψ e− =ψ+ + e− +ψ− − e− ,

i.e, the combined initial and final states for 

€ 

e− and 

€ 

M are

€ 

ψ e− ⊗ 0 M =ψ+ + e− ⊗ 0 M +ψ− − e− ⊗ 0 M   (initial).

ψ+ + e− ⊗ (+) M +ψ− − e− ⊗ (−) M   (final).
.

The  final state of 

€ 

e− and 

€ 

M is entangled, i.e., it is no
longer a product of an 

€ 

e− state and an 

€ 

M state.

We thus have entanglement but since the coefficients 

€ 

ψ+ and 

€ 

ψ−
remain, no definite result (spin up or spin down) comes out.
This is von Neumann's dilemma [3].

BOX 2. von Neumann's dilemma.

The implicit assumption of one given initial state for the
measurement apparatus 

€ 

M leads to this dilemma. 

€ 

M has many
degrees of freedom and a large ensemble of available initial
states, that can cause very different interactions with 

€ 

e−.
Taking this into account and using relativistic quantum
dynamics leads to an entirely different situation that opens
for a solution of the measurement problem.

Kristian Lindgren



12

Box 3. Schrödinger’s Cat and Wigner’s Friend.

A radioactive nucleus A in a closed box can decay into another
nucleus B and emitted particles b1 and b2. In the box there is also a
cat. If A decays, this releases a mechanism that breaks a flask of
hydrocyanic acid that kills the cat. After one half-life of A,
Wigner’s Friend looks into the box to see if Schrödinger’s Cat is
still alive. If the cat is dead, he becomes very sad...
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Random walk in probabilities for spin-up och spin-down

Graphically we can represent the probabilities, 

€

p+ and 

€

p−, for
the two possible outcomes, spin up (+) and spin down as a point

€

(p+, p−), with 

€

p+ + p− =1, on a line between 

€

(0,1) to the left,
representing spin down, and 

€

(1,0) to the right, representing spin
up (see Figure 1). Assuming for 

€

e− the initial state 

€

ψ , the

corresponding position, 

€

(ψ+
2,ψ−

2), on the probability interval,
has also been marked.

Figure 1. The probability interval for a two-level system.
A random walk leads to one of the endpoints, corresponding to
an eigenstate of the observable to be determined, in our case
the vertical component of the spin, up (+) or down (–).

Giving the two endpoints 

€

(0,1) and 

€

(1,0), the weights suggested by
their probabilities 

€

ψ+
2 and 

€

ψ−
2 of the Born rule, their

resulting statistical center-of-mass is the starting point for

our 

€

e−, 

€

(ψ+
2,ψ−

2).

The process to get from 

€

(ψ+
2,ψ−

2) to the endpoints of the
probability interval can therefore be a random walk without
drift. Many random walks described simultaneously would be a
diffusion process. A single determination is described by a
random walk; the motion of an ensemble of many determinations
is described by diffusion. Figure 2 illustrates such a
diffusion process: the statistical distribution of positions
after successively increasing the number of steps. Can this

State
with certainty

State
with certainty

Probabilities
�or an� �or
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knowledge help us to find a process describing the
determination of a value for the vertical spin component? First
we comment on the diffusion process of Figure 2.

Figure 2. Diffusion on the probability interval. Distributions
on the probability axis for increasing numbers of steps of the
random walk.
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The endpoints, 

€ 

(0,1) and 

€ 

(1,0), of the probability interval are
special. Let us look at a random walk of a system on the
probability interval. When it gets close to one endpoint, its
next step has to be short. It cannot step outside the interval;
also it cannot go very far towards the interior, since it has
to keep the mean equal to zero. Only the endpoints have this
kind of restriction. This leads to a slow-down near the
endpoints. The result is that all diffusion, and hence all
random walks on the probability interval, go towards one of the
endpoints, as Figure 2 indicates. If the initial position is

€ 

(ψ+
2,ψ−

2), then 

€ 

(1,0) is reached with probability 

€ 

ψ+
2, and 

€ 

(0,1) is
reached with probability 

€ 

ψ−
2, thus reproducing Born's rule.

This leads us to the question: Is there any physical process
which mathematically could look like the described random walk?
The answer is YES. But this does not take place with the
dynamics as it was understood in the non-relativistic theory of
the 1930s, resulting in von Neumann's dilemma.

Choosing the right theory of quantum mechanics

In the quantum mechanics of the 1930s, one had not yet taken
the consequences of relativity theory into account. The
necessary adaptation of quantum mechanics to special relativity
had just started around 1930. With respect to the issue of this
article, its completion can be dated to the early 1950s.
Relativistic quantum mechanics has the form of Quantum Field
Theory and it is fundamental for understanding the physics of
elementary particles.

Relativistic quantum mechanics is very different from the
quantum theory of the 1930s. One important detail is that von
Neumann's dilemma is no more valid in quantum field theory. It
is hard to understand why the discussion of the measurement
problem has continued to take place within the undeveloped
theory of the 1930s. Instead of a deep analysis of the
measurement problem, an emerging theory was, for instance,
Everett's [6] and DeWitt's Many-Worlds Interpretation [7]. In
MWI, each measurement splits the universe into several worlds,
one for each result. We shall return to this theory.
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At present, also the view that the measurement problem is
unsoluble seems to be fairly widespread. It was expressed with
regret already in 1965 by Richard Feynman in his Lectures [8]:

[P]hysics has given up on the problem of trying to predict exactly what
will happen in a definite circumstance. Yes! physics has given up. We do
not know how to predict what would happen in a given circumstance, and we
believe now that it is impossible, that the only thing that can be
predicted is the probability of different events. It must be recognized
that this is a retrenchment in our earlier ideal of understanding nature.
It may be a backward step, but no one has seen a way to avoid it.

Continued scientific development in physics has not been
seriously hindered by the measurement problem. Physicists have
been reluctant to present wild theories or take part in
improductive discussions. Instead one has mostly followed David
Mermin's rule [9]: "Shut up and calculate!" However, this rule
has not helped to solve the measurement problem.

Random walk on the probability interval as a physical process

There exists a method to separate the two components of the
state of 

€ 

e−, the one with spin-up and the one with spin-down.
If 

€ 

e− passes an inhomogeneous magnetic field, one can separate
these components into different paths (the Stern-Gerlach-
effect). One can then make a determination of the vertical spin
by letting one component, let us say spin-up, pass a detector.
Then a positive reaction of the detector means spin-up and no
detection means spin-down. In each step, it is equally likely
that detection is supported as non-detection. (Of course, one
can also have two detectors, one for each component.)

Here we shall sketch briefly what happens with our 

€ 

e− in
interaction with the part 

€ 

A of the measurement apparatus that
it first meets. We can think of 

€ 

A as consisting of a row of
subsystems 

€ 

A1, A2, ...,  An ,  ...,  AN  along the path taken by the
wavepacket describing 

€ 

e− or one of its components. Each of
these subsystems in its turn is interacting with 

€ 

e− when 

€ 

e−

passes 

€ 

A. Figure 3 shows 

€ 

e− interacting with 

€ 

A1, A2, ...,  An ,  ...,  AN
leading in each step to new factors in the interaction
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strengths. We consider 

€

e− to pass fast so that there is little
time for the subsystems to interact with each other and this
interaction can be neglected.

Figure 3. Defining the system 

€

A as a row of subsystems around
the path taken by 

€

e− or one of its components. 

€

e− interacts
with each of the subsystems of 

€

A, but we neglect the
interaction of the subsystems with each other.

Each 

€

e−An-interaction gives a new factor to each of the
transition strengths, accidentally leading to enhancement of
one transition and suppression of the other, but in the mean,
leaving the transition strengths unchanged.

In relativistic quantum mechanics, what is important is the
transition strength for transitions to different final states.
What concerns us is the transition strength to the final
state with 

€

e− in 

€

+  and 

€

A in a state with the subsystems
marked +, and the transition strength to the final state with

€

e− in 

€

−  and 

€

A in a correspondingly marked state. (I use
'transition strength', although it is not an established
physical term; it suits my purpose here: a comparison between
two transitions where one transition totally dominates over the
other.)

For each subsystem 

€

An passed, each transition strength (for +
and for –) is multiplied by an unknown factor as a result of
the interaction between 

€

e− and 

€

An. This factor depends on
unknown details in the state of 

€

An.
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To be a functioning part of a measurement apparatus, in the
mean, 

€ 

A must be free from bias. Because of this, for each
subsystem 

€ 

An, the means of the multiplying factors must be the
same for spin-up and spin-down (

€ 

+  och 

€ 

− ). The probabilities
for reaching the two endpoints, 

€ 

(0,1) or 

€ 

(1,0), can change in each
step because of different new factors in the transition
strengths for + and –. But since the means are the same in each
step, the statistical centre-of-mass stays the same during the
whole process.

Thus we have found a process which follows the random walk that

we have been looking for. It starts in the point 

€ 

(ψ+
2,ψ−

2) of
the probability interval. For each subsystem 

€ 

An of 

€ 

A passed,
the strengths for + and – get a new factor, meaning a new step.
The factors have the same mean. The whole random walk has the

probability 

€ 

ψ+
2 to approach 

€ 

(1,0), and the probability 

€ 

ψ−
2 to

approach 

€ 

(0,1).

At the endpoints of the probability interval, the final state
is a product state where 

€ 

e− is in the state 

€ 

+  or 

€ 

−  with a
definite vertical direction for its spin, and 

€ 

A is marked by
this state of 

€ 

e−. The state of 

€ 

e− and 

€ 

A is a product state.

In this way, we can understand the process of determining a
definite result and why it follows Born's rule. The
determination takes 

€ 

e− into the eigenstate of the observable
that corresponds to the result.

We have assumed that 

€ 

A is free from systematic bias, but we
have not carried out a physical analysis of this neutrality
between + and –. This is an important question that needs to be
analyzed before we have a complete theory.

Schrödinger's discussion of measurement in his cat article

In the preface of this book, I mentioned Schrödinger's article
about the cat, who is now more famous than Schrödinger himself.
I mentioned that for me, what was most important in
Schrödinger's article was his attempt to analyze a measurement



19

process, what here has been called a determination process. He
described the interaction between the systems that we have
called 

€ 

e− and 

€ 

A and how it leads to entanglement which means
that the combined state for 

€ 

e− and 

€ 

A cannot be reduced to a
product of independent states:

When two systems interact, their 

€ 

ψ-functions [i.e., their states], as we
have seen, do not come into interaction but rather they immediately cease
to exist and a single one, for the combined system, takes their place. It
consists, to mention this briefly, at first simply of the product of the
two individual functions; which, since the one function depends on quite
different variables from the other, is a function of all these variables,
or "acts in a space of much higher dimension number" than the individual
functions. As soon as the systems begin to influence each other, the
combined function ceases to be a product and moreover does not again divide
up, after they have again become separated, into factors that can be
assigned individually to the systems. Thus one disposes provisionally
(until the entanglement is resolved by an actual observation) of only a
common description of the two in that space of higher dimension.

The crucial statement here is just something that Schrödinger
was guessing, and it is wrong:

[the combined function] does not again divide up, after they have again
become separated, into factors that can be assigned individually to the
systems.

Actually, such a separation does take place and, as we have
seen, it can be understood as a random walk on the probability

interval from 

€ 

(ψ+
2,ψ−

2) to either 

€ 

(0,1) or 

€ 

(1,0). Thus the walk
goes to an endpoint where 

€ 

e− is in the state 

€ 

+  or 

€ 

−  and the
state for 

€ 

e− and 

€ 

A is a product state.

For Schrödinger, this was totally impossible to imagine. His
conclusion is pessimistic:

best possible knowledge of a whole does not include best possible knowledge
of its parts—and that is what is keeping coming back to haunt us.

For Schrödinger, it was also impossible to see that
relativistic theory could simplify everything. A couple of
sentences later, he wrote that

[t]he conceptual joining of two or more systems into one encounters great
difficulty as soon as one attempts to introduce the principle of special
relativity into QM.
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Maybe one could have expected from later generations of
physicists that they should have checked whether new knowledge
could have helped them to complete the analysis of measurement
that Schrödinger had attempted but not been able to carry out.
This has not happened. Instead, the cat fable became a
confused, and confusing, model. Unfortunately, it has been used
as a foundation for the continued discussion.

After writing this and placing it in the general text, I could
not resist going back to the question: Would it have been
possible with Schrödinger's knowledge in 1935 to see a
mechanism for measurement within quantum mechanics? My answer
is YES! Here are my arguments:

First, von Neumann's dilemma was not at all necessary. It would
have been very reasonable with deterministic dynamics and the
initial state 

€ 

ψ  of 

€ 

e− given, to see the final result as an
effect of the initial state of 

€ 

A. One question would remain
however: How can transitions between spin-up and spin-down take
place without any interaction generating it. A reasonable
standpoint would then have been: "Let us wait and see. We have
not yet taken relativity fully into account in quantum
dynamics. If relativity has given the electron an antiparticle,
the positron, it may also change quantum dynamics and make
spin-up/spin-down transitions understandable."

Secondly, as often stressed by Bohr, 

€ 

A is macroscopic; it must
have been reasonable to handle 

€ 

A statistically and to think of
it as a source of the resulting statistics.

Thirdly, 

€ 

A should not introduce any systematic bias, i.e., in
the mean, it should handle spin up and spin down in the same
way. This points at an action on 

€ 

e− that can be described on
the probability interval as a random walk without drift.

Fourthly, such a process always leads towards one of the
endpoints of the probability interval. For the initial state

€ 

ψ  for 

€ 

e−, the resulting statistical frequencies are 

€ 

ψ+
2 and

€ 

ψ−
2.
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Let us look at 

€ 

p+p− which vanishes at the endpoints. One step,

€ 

(p+, p−)→ (p+ + Δp, p− −Δp), changes the mean of 

€ 

p+p− as follows:

€ 

(p+ + Δp)(p− −Δp) − p+p− = (p− − p+) Δp − Δp2 = − Δp2 < 0,

since 

€ 

Δp = 0. Thus in the random walk, 

€ 

p+p− steadily decreases
and the walk gets arbitrarily close to one of the endpoints,

€ 

(1,0) or 

€ 

(0,1). The frequencies for these approaches, 

€ 

ψ+
2 and 

€ 

ψ−
2,

are determined by the statistical mean which stays at the

starting point 

€ 

(ψ+
2,ψ−

2).

Fifthly, the states at the ends of the probability interval are
again product states without entanglement between 

€ 

e− and 

€ 

A.
Thus the final state of 

€ 

e− is an eigenstate of the vertical
spin component. This was excluded by Schrödinger as impossible.

The reasoning shown here, would not have been easy, but it
would have been possible. Since relativistic influence on the
theory still remained to be worked out, there was no reason to
believe that one had the final version of quantum dynamics.

My conclusion is that the available knowledge was there for
Schrödinger's cat paper to go in a totally different direction
where the understanding would have resulted and where a cat in
a superposition would have been totally irrelevant. Generations
of physicists would have been guided towards understanding
instead of confusion.

The irreversible part of the determination process

What we have called 

€ 

A, is only a small part of the measurement
apparatus. The rest of the apparatus which we name 

€ 

E  (see
Figure 4), is then so large that it must be considered as an
open system. Then 

€ 

E  has an uncontrollable interaction with its
environment and the interaction between 

€ 

A and 

€ 

E  is
irreversible. The determination (of the vertical spin component
of 

€ 

e−) that has already taken place in the 

€ 

e−A-interaction is
fixed in the 

€ 

AE-interaction.
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Figure 4. 

€

A as a subsystem of the whole measurement apparatus,

€

A∪ E , where 

€

E  is a large open system with irreversible
interaction.

The measurement problem and relativistic quantum mechanics

For some reason, it has been taken for granted that the
development within relativistic quantum mechanics is without
relevance for the measurement problem; the discussion has
continued within the old tradition. It has been overlooked that
the changes in the perspective of quantum mechanics brought in
by the theory of relativity, are crucial for the understanding
of the measurement problem.



23

Relativistic quantum mechanics, i.e., Quantum Field Theory, is
totally different from the non-relativistic theory. As already
mentioned, without relativity, one cannot understand why the
electron has an antiparticle, the positron. Space-time has a
different structure in relativistic theory. One consequence is
that for any elementary process included in a larger process,
also its inverse process has to be included. This is crucial
for the measurement process.

In spite of these differences, the non-relativistic theory has
been allowed to prevent progress. von Neumann's dilemma has
hindered the search for a solution of the measurement problem.
Why it has been like this, is a mystery in the history of
science.

The Many-Worlds Interpretation [7]

When the first article pointing in the direction of Many Worlds
was published [6] in 1957, good textbooks/handbooks in
relativistic quantum mechanics were already available. For
instance, The Theory of Photons and Electrons by J.M. Jauch and
F. Rohrlich [10] had been published already in 1955. For John
Wheeler in Princeton, Everett's supervisor, it was still
somehow natural to base the thesis work on the incorrect and
obsolete non-relativistic version of quantum mechanics. Looking
back, this choice can seem strange; it is part of the mentioned
mystery in the history of science.

The idea in Everett's paper is an interpretation of von
Neumann's dilemma: Let us accept that the proportions of
different state components cannot change and no measurement
result can outweigh the others. The main thing is the agreement
between the measured system and the apparatus (Box 2). In each
term of the resulting entangled superposition, there is
agreement. Everett's idea was then to continue and accept all
terms in the superposition as representing realities, later
interpreted as realities in different worlds, with the actual
observation occuring just in one of these worlds.
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The person who has become best known as spokesperson for the
Many-Worlds Interpretation is Bryce DeWitt with an article in
Physics Today in 1970. DeWitt's article follows quite closely
the fable in Schrödinger's cat article. DeWitt described the
consequence of the Many-Worlds Interpretation like this:

[E]very quantum transition taking place on every star, in every galaxy, in
every remote corner of the universe is splitting our local world on earth
into myriads of copies of itself.

This made him immediately hesitate:

I still recall vividly the shock I experienced on first encountering this
multiworld concept. The idea of 10100+ slightly imperfect copies of oneself
all constantly splitting into further copies, which ultimately become
unrecognizable, is not easy to reconcile with common sense.

Still DeWitt continued to speak for this theory. It is not
unusual that physicists still today understand measurement in
this way.

Vitalism and the measurement problem

There are important differences in the development of life
sciences and physics, but still it is tempting to compare the
measurement problem with the biological thinking around 1900.
One had believed that life, including the metabolism of cells,
was dependent on a special 'vital force'. This view was called
vitalism. But Eduard Buchner (1860-1917, Nobel Prize in
chemistry 1907) had ground yeast cells and showed that the
resulting material, no longer alive, could still ferment sugar
into alcohol and carbon dioxide, with the sum reaction,

€ 

C6H12O6 → 2C2H5OH + 2CO2.

This was a clear sign that the metabolic reactions could simply
be understood by the chemical knowledge which one already had.
No hypothesis about a 'vital force' was needed and vitalism
came to an end.

Magdalena Eriksson showed me how this was described in the
Lehninger Biochemistry textbook [11] (my underlining):
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Through the discovery of Buchner, Biology was relieved of another fragment
of mysticism. The splitting up of sugar into CO2 and alcohol is no more the
effect of a vital principle than the splitting up of cane sugar by
invertase. The history of this problem is instructive, as it warns us
against considering problems to be beyond our reach because they have not
yet found their solution.

Quantum mechanics has the knowledge needed to solve the
measurement problem. The Many-Worlds Interpretation or similar
speculative ideas are simply not needed. I think it is correct
to say that more than a century after the abandoning of
vitalism by biologists and chemists, the physics society is
still stuck in an unnecessary vitalism syndrom of its own.

There are now good reasons to free quantum mechanics of its
mystical load and appreciate it for its enormous explanatory
power.

History of the measurement problem: a personal perspective

As I argue several times in this book, it is reasonable to
consider the progress made in quantum diffusion during the
decade around 1990, as containing also the solution to the
measurement problem. The equation of motion for quantum
diffusion in a work by Gisin and Percival [12], can be derived
within our description of the interaction of 

€ 

e− with an
extended system 

€ 

A [13]. Other authors in the field of quantum
diffusion are P. Pearle who was very early to consider random
walk [14], and L. Diósi [15]. I shall not review this field
here.

It is not always clear how to interpret quantum diffusion. In
the Gisin-Percival treatment, entanglement between the system
corresponding to 

€ 

e− and 

€ 

A seems to be implicit. When
entanglement is only intermediate, the final state is again a
product state.

In 1986, John Bell described the development of quantum
diffusion as follows ("Speakable", p. 190):

The necessary technical development involves introducing what is called
'nonlinearity' and perhaps what is called 'stochasticity' into the basic
'Schrödinger equation'. There have been interesting pioneer efforts in this
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direction, but not yet a breakthrough. This possible way ahead is
unromantic in that it requires mathematical work by theoretical physicists,
rather than interpretation by philosophers, and does not promise lessons in
philosophy for philosophers.

In his book, Andrew Whitaker ([2] pp. 319-322] also refers to
the work of Gisin and Percival. He interprets the work as
providing a valuable phenomenological description but no direct
connection to fundamental quantum mechanics. In a recent paper
mentioned already [13], I have shown, however, that quantum
diffusion can be seen as a consequence of linear quantum
mechanics.

The random-walk idea [14, 16] presented in this chapter came at
the same time as several ideas in quantum diffusion.
Mathematical details of our work have then been published in
different papers [17]. For a more complete work on the theory,
Kristian Lindgren and I collaborated with Erik Sjöqvist and
Martin Cederwall [18]. A paper on our common work was then
published by Kristian Lindgren and myself [19].

I think of John Bell as the most careful and consistent
physicist in the analysis of quantum mechanics. In 1960, John
Bell came to CERN to join the permanent staff of the Theory
Division. At that time, I had a fellowship there and he got a
room very close to mine. One day when we met and discussed our
research projects, John Bell said: "It would be nice to derive
what should be on page 25 in any textbook in quantum
mechanics." I understood immediately that he meant measurement
in quantum mechanics and Born's rule. After this, I have always
had Bell's words with me as a challenge. (I apologize for
repeating here what I also tell in Chapter 4 on the background
of ideas.) I have been thinking a lot about this, but for long
periods, progress was held up by my poor understanding and lack
of insight. In this way, my difficulties have been very similar
to those of many of my physics colleagues.

John Bell did not allow himself to be confused. He kept a
consistently analytical attitude towards quantum mechanics.
This attitude is very clearly manifested in "Speakable".

My ambition in this chapter has been to present work in the
analytical tradition of John Bell.
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John Bell (1928-1990) lecturing 1982. (Photo: CERN PhotoLab.)
(https://commons.wikimedia.org/wiki/File:Physicist_John_Bell_at
_CERN,_June_1982.png)

In the quotation from "Speakable" by John Bell, he says that
"work by theoretical physicists [...] does not promise lessons
in philosophy for philosophers." But even if not promised, I
think the pragmatic view of the quantum-mechanical state as
describing reality can now be a valuable lesson also to
philosophers who have been lacking a proper ontology.

In this chapter, I have presented our theory of measurement
together with comments on the history of the measurement
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problem. For clarity, I now give a summary of the major steps
of the measurement theory that I have tried to communicate.

In the play of Chapter 2, I have tried to show steps of
understanding or possible understanding during the history of
the measurement problem. In my view, the knowledge basis, but
not the physics culture itself, was ready for a solution of the
measurement problem in the late 1950s.

Summary of the present analysis of measurement

1.  We describe quantum measurement, or the determination
process as we call it, as an interaction between the chosen
system 

€ 

e−, subject to measurement (of its vertical spin
component) and the part 

€ 

A of the measurement apparatus first
met by 

€ 

e−. Describing 

€ 

e− as a wavepacket, or two wavepacket
components, 

€ 

A is the part of the apparatus immediately
surrounding the 

€ 

e− wavepacket or wavepackets.

For a more detailed analysis, we look upon 

€ 

A as consisting of
a row of subsystems, 

€ 

A1, A2, ...,  An ,  ...,  AN , which interact, one by
one, with 

€ 

e−, as 

€ 

e− passes them, but not appreciably with each
other during the short time of passage.

The description of the process is given within relativistic
quantum mechanics. The interaction of 

€ 

e− with 

€ 

An then
contributes a factor to each of the transition amplitudes of
the 

€ 

e−A-interactions and hence also to the strengths of these
transitions.

2.  In the single case, each interaction step can accidentally
favour spin up (

€ 

+ ) or spin down (

€ 

− ). But as part of a
measuring equipment, in the mean, each 

€ 

An should stay neutral
with respect to + or –. Described on the probability interval
between 

€ 

(0,1) and 

€ 

(1,0), we have a random walk but no drift.

3.  Thus the result is that an incoming 

€ 

e− in the superposition

€ 

ψ =ψ+ + +ψ− − , starting its random walk from 

€ 

ψ+
2,ψ−

2( ),
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approaches 

€ 

(1,0) in 

€ 

ψ+
2 of all cases and approaches 

€ 

(0,1) in 

€ 

ψ−
2

of all cases. Thus a result is obtained and the probabilities
agree with Born's rule.

4.  The pragmatic ontology that has been used by physicists
working with quantum mechanics, with the quantum-mechanical
state describing reality, can be recognized as more generally
valid.

References

1.  J.S. Bell, Speakable and Unspeakable in Quantum Mechanics
      (Cambridge Univ. Press, 2004), here referred to as
      "Speakable".

2.  A. Whitaker, Einstein, Bohr and the Quantum Dilemma (2nd
      ed., Cambridge, U.K. 2006).

3.  M. Nauenberg, J. Cosmol. 14 (2011).

4.  E. Schrödinger, Naturwissenschaften 23, 807 (1935).
      English translation by John D. Trimmer in J.A. Wheeler
      and W.H. Zurek (eds), Quantum Theory of Measurement
      (Princeton Univ, Press, 1983).

5.  Wigner's Friend in Wikipedia (https://en.wikipedia.org/
      wiki/Wigner%27s_friend).

6.  H. Everett, Rev. Mod. Phys. 29, 454 (1957).

7.  B.S. DeWitt, Phys. Today 23, 30 (1970).

8.  R.P. Feynman, R.B. Leighton and M. Sands, The Feynman
      Lectures on Physics (Addison-Wesley 1965), Ch. 37,
      p. 37-10.

9.  D. Mermin, Physics Today 42, 4, 9 (1989).

10. J.M. Jauch and F. Rohrlich, Theory of Photons and
      Electrons (Addison-Wesley, 1955).



30

11. D.L. Nelson and M.M. Cox, Lehninger - Principles of
      Biochemistry, 6th edition (2013), Section 14.1
      Glycolysis, p. 544.

12. N. Gisin and I.C. Percival, J. Phys. A 25, 5677 (1992).

13. K.E. Eriksson, arXiv 2203.00586 (2022).

14. P. Pearle, Found. Phys. 12, 249 (1982).

15. L. Diósi, J. Phys. A. Math. Gen. 21, 2885 (1988).

16. K.E. Eriksson, Phys. Scr. 32, 277 (1985).

17. K.E. Eriksson, J. Phys. B 42, 085001 (2009).

18. K.E. Eriksson, M. Cederwall, K. Lindgren and E. Sjöqvist,
      arXiv 1708.01552v2 (2017).

19. K.E. Eriksson and K. Lindgren, Entropy 21, 834 (2019).



31

2. ALICE AND MR TOMPKINS BACK IN WONDERLAND — A DRAMA IN THREE
ACTS ABOUT QUANTUM MECHANICS

The situation is modelled after Lewis Carroll, George Gamow and
Michael Frayn.

Prelude: Planning the new visit
Act 1: The new tea party
Interlude: Talking to Marie Curie
First intermission
Act 2: Seminar on quantum measurement
Second intermission
Act 3: Seminar continued: consequences of the new theory of
    measurement

Characters, in order of appearance:

Alice
Mr Tompkins
Melanie Bayley
The Hatter
The March Hare
The Dormouse
Paul Dirac
Schrödinger’s Cat
Wigner’s Friend
Sankofa
Marie Curie
Albert Lehninger
Albert Einstein
Niels Bohr
John Bell
Bryce DeWitt
Richard Feynman

[The first appearance of each character is marked by * below.]
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Prelude: Planning the new visit

[Over the stage, there is a screen on which pictures can be
projected. The entrance of the town library is to the right of
the stage. Alice* is standing and waiting outside the library.
Mr Tompkins* comes walking with a stopwatch, a pen and a
notebook and with a folded meter stick visible in one of his
pockets.]

Mr Tompkins [noticing  Alice, slowing down, walking up to her
and greeting her politely]: Good afternoon, Alice. I know you
from John Tenniel’s portraits of you in ’Alice in Wonderland’.
Very happy to meet you. I am Mr Tompkins. I have also visited
Wonderland. I was taken there by George Gamow, the man with the
Big Bang. Are you going into the library?

Alice: Good afternoon, Mr Tompkins. No, I agreed to meet a
person here. My grandpa showed me an article in the New
Scientist by Melanie Bayley. She is a scholar in literature and
she has written about Lewis Carroll and my visit to Wonderland,
including the mad tea party. Dr Bayley has agreed to meet me
here, but I am a bit early.

Mr Tompkins: After returning from Wonderland, I have continued
my studies. I have also read Dr Bayley’s article. I would also
like to see her.

Alice: Then wait with me and join us in our discussion.

Mr Tompkins: Very kind of you; do you think she will accept
that.

Alice: Of course, she will, and you can tell us about your
physics experience.

Melanie Bayley* [arriving in fast walk]: Hello Alice, am I
late?

Alice: Nice to meet you Melanie; no I was early. I guess you
have heard of Mr Tompkins who has also been to Wonderland.
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Melanie: Yes, I have. When I read the books. I think relativity
was well described but I had difficulties to appreciate the
quantum mechanics descriptions.

Mr Tompkins: Gamow and myself tried our best but it is very
difficult.

Alice: When I heard about you, Melanie, I got the idea to ask
you to come with me to Wonderland to find out more. Would you
like to do that? I would like to have a more peaceful visit
this time than the one that Lewis Carroll gave me.

Melanie: There are many things to find out about literature as
well as science.

Mr Tompkins: If I could come along, I would be curious to find
out more about quantum mechanics. It could even be constructive
to go there.

Melanie: How could you expect yourself or us to find out? So
many people have tried their best and failed.

Alice: I think the three of us would be a good team. We do not
get stuck as easily as physicists do.

Melanie: It might be a good idea. I can look back on history
and try to understand. But...

Mr Tompkins: I was fascinated by the play Copenhagen with Niels
and Margrethe Bohr and Werner Heisenberg meeting after death to
look back on history.

Alice: My grandpa told me about that play. We can go inside the
library to sit down and talk about our trip.

[All three of them enter the library.]

End of Prelude.
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 Act 1: The new tea party

[The Hatter’s house is to the left; in front of the house is a
tea table with a few chairs. The tea table is under a big tree.
On the tree trunk, a pendulum clock is hanging; it has stopped
at six o'clock. The right side of the stage looks like a park.

Alice is approaching the tea table. The Hatter*, The March
Hare* and The Dormouse* sit at the table. Tea is served.]

The Hatter [rising to greet her]: Welcome to another tea party,
Alice. Nice to have you here again. Please, sit down!

The March Hare: This time, we do not have to be rude to each
other.

[The Hatter starts to serve the tea.]

The Dormouse: ... since we have no script from Lewis Carroll to
follow. [To The Hatter and The March Hare:] In particular, the
two of you must not try to put me into the tea pot.

The Hatter: I am sorry about last time. And also you do not
have to be sleepy all the time. It is so nice to have you back,
Alice.

Alice: It is really nice to be back and to see you again. Mr
Hatter, do you have more tea cups? The thing is, I am here with
two new friends. But I wanted to greet you before I bring them
here... if I may?

The Hatter: Of course, you may. Your friends are our friends.

Alice: My friends have some facts to tell the three of you. It
is about Lewis Carroll's intention with you and your relevance
as characters.

The March Hare: I will be very interested to listen to them.

The Dormouse: As for me, I am curious by nature. I am happy if
they do not plan to put me to sleep too much, like Carroll did.
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[The Hatter brings the additional tea cups.]

Alice: My friend, Mr Tompkins, is a British gentleman and a
character from the literature just like the four of us. My
other friend Melanie Bayley comes from the real world. But do
not worry, she is a scholar of literature and science. [Calling
out]: My friends, please come and join us!

Melanie [hesitating]: I am not sure I dare come, thinking of
the previous tea party here.

Alice: This one will be decent and serious. Please come!

[Melanie comes and approaches the table. Mr Tompkins comes
walking with a wheelbarrow with some equipment. He sits down at
the table.]

The Hatter: Very welcome, indeed. Alice’s friends are our
friends. Nice to meet you Dr Bayley.

Melanie: Call me Melanie.

The Hatter: Come and sit down, Melanie. Nice to meet you Mr
Tompkins.

[Introductions and exchange of greetings. The Hatter serves the
tea.]

The March Hare: Alice said that you, Mr Tompkins, and you, Dr
Bayley...

Melanie: Melanie!

The March Hare: ... yes, Melanie, that you may have something
to say about us as characters. We are curious.

Mr Tompkins: The physicist George Gamow took me here to
demonstrate the ideas of relativity and atomic physics,
including quantum mechanics. But what I may have to say should
come after Melanie’s more direct information on your
mathematical relevance. Let me contribute this sculpture to
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level system, on a tree branch.]

The Hatter: Thank you.

The Dormouse: Are we relevant persons? The Hatter, the March
Hare and myself?

The March Hare: So we are not just crazy or mean figures, only
making trouble to Alice and to each other?

Melanie: You represent the three imaginary units of a number
system called quaternions. This system was new in Lewis
Carroll’s time. It had been introduced by William Rowan
Hamilton. It could be connected to spatial orientation.

Mr Tompkins: Hamilton’s notion of this was made more concrete 
much later by Wolfgang Pauli who used the quaternions in matrix 
form to describe the magnetic orientation of an electron. The 
imaginary units are then directly related to rotations around 
three perpendicular axes. I must confess, I have studied quite 
a bit. No one is too old to learn.

Let me show you now. [Shows his cubic (green, red, yellow) box 
with three cranks.] This is for all of you. There is also one 
crank for each of you. You see where you can connect the 
cranks.

Please, Dormouse, come here. You will handle rotations around 
the vertical axis. March Hare, you will handle rotations around 
an axis in the front direction, and you Mr Hatter, the side 
direction will be left to you to rotate around.

[Brings two very big dices of different coulors and puts them 
in equal positions beside each other.] Before we use the box, 
let the Dormouse rotate this one by 90° and then the March Hare 
by 90°. [They do so.] Let us now start with the same situation 
with the other dice but take the March Hare’s rotation first 
followed by that of the Dormouse. [They do so.] Now you see 
that the result is different. The order in which you do things 
is important.

36
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[Mr Tompkins prepares the box and the cranks. The Dormouse, The
March Hare and The Hatter takes turns to use their cranks.]

Mr Tompkins: Sorry to tie you up with this. I hope you are not
angry.

Figure 5. The tea-party persons of Alice in Wonderland,
representing Hamiltons imaginary units and hence Pauli's spin
matrices which are perpendicular generators of rotations.
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The Hatter: It is nice exercise. We will play with this when we
feel like it. Thank you, Mr Tompkins.

Melanie: So you guys, I mean the Hatter, the March Hare and the
Dormouse, represent rotations around perpendicular axes.
Hamilton would have liked to have time included, but he could
not make it. Lewis Carroll was true to Hamilton but very
critical of his ideas. Mr Time was missing in the party that
carried his name: t(ea) for time.

The Hatter: Yes, the time stopped at six o'clock, and the clock
refused to move.

Melanie: The fourth character in the tea party, you Alice, you
are an ordinary person and represent the ordinary unit (1) in
the quaternions.

Alice: So what do you and Mr Tompkins represent?

Melanie: We are not part of this. But let me tell you what
happened. The orientation in space for the electron was
generalized by Paul Dirac into a description of space-time
orientation. Pauli had three basic matrices, one for each of
you,... [The Dormouse who has fallen asleep, starts to snore
and The March Hare pushes him awake.] ...and Dirac had four
basic matrices. Dirac’s description includes time and
relativity theory.

Dirac* [walking by but stopping, listening and coming to join
the party]: Hello everybody. I happened to come walking by and
heard your discussion. Yes, it is true, I was lucky to be able
to extend Pauli’s matrices to four 4x4-matrices, the 

€ 

γ-
matrices, for relativistic quantum mechanics. Then time is
included! [The clock hanging on the trunk, starts to move. They
look at it in surprise.]

The Hatter: Concepts are important. You see Melanie, your
little lecture went beyond Hamilton and included time,
Professor Dirac joined us and our clock was liberated from
Lewis Carroll’s restriction.
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Mr Tompkins: I know relativity and I know simple quantum
mechanics, but I never got to know relativistic quantum
mechanics.

Melanie: Professor Dirac, you constructed a dynamical equation
for the electron.

Dirac: Yes, I did. Time is included and the theory is
relativistic.

Some laws of nature are similar to laws from legislation in a
parliament. But a few general laws are more like the
constitution describing the basic principles of how laws should
be made. We can still view the special theory of relativity and
quantum mechanics as such laws, forming the constitution of the
physics of the material world. Relativity and quantum mechanics
together form Quantum Field Theory.

Elementary particle physics is based on Quantum Field Theory.
It goes beyond the dynamics of Schrödinger. I was very lucky to
take part in this development.

Now, let me continue my walk and come back. [Goes.]

The Dormouse: That fellow Schrödinger, didn’t he have a cat?

Mr Tompkins: The cat was part of a thought experiment.
Schrödinger considered a radioactive atomic nucleus in a box.
After one half-life, the nucleus in the box is in a "both-and"
state of remaining and of having decayed into other particles.
The box also contains a detector that can register the decay.
In the box there is also a cat and if a decay is registered,
this triggers a little hammer to hit a small flask of hydrogen
cyanide...

Schrödinger's Cat* [who has been listening at the entrance]:
...and the poison then kills the cat. I am that cat.

The Hatter [turning towards the entrance]: Please, come in!
There is tea for you too. [Scrödinger’s Cat enters. They all
look at him/her with surprise. The Dormouse immediately climbs
one high cupboard.]
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Mr Tompkins: Hello Schrödinger's Cat. Please, join us! Yes, and
you become part of this both-and state: in the component where
the nucleus remains undecayed, you are alive, and in the other
component where it has decayed, you are dead.

Schrödinger's Cat [looking at The Dormouse]: Don't worry, I do
not eat friends. As you heard, I am the one who is really
threatened. I was conceived just to be under threat.

Mr Tompkins: But in one state component you are still alive.

Schrödinger's Cat [grabs the hanging sculpture in the right
hand and puts himself/herself in a Hamlet posture, then speaks
in a deep voice]: To be and not to be, that is the answer!

The Hatter: No, no, wrong! To be or not to be!

Schrödinger's Cat: Not in my case! Schrödinger wanted me to be
both dead and alive just to show the absurdity of quantum
mechanics.

Melanie: But still it is a question, not an answer, isn't it?

Schrödinger's Cat: To try to point out an absurdity was
Schrödinger’s answer; he was clever but not curious enough to
ask the questions. [Hangs the sculpture back in the tree.]

Mr Tompkins: But nothing has happened to you yet. They just
talk and talk but the experiment will never be done.

Schrödinger’s Cat: For me the constant threat is cruel enough.
I would like to be as clever as your famous friend, the
Cheshire Cat, who knows how to disappear, leaving only his
ironic smile behind.

Alice: My grandpa is a physicist. He thinks that the box
experiment is useless, even as a thought experiment. If that
were right, you would be safe.

Schrödinger’s Cat: Yes and I would become a purely mythical
character. But theoretical physics and its followers in culture
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are going in another direction. Heard of my friend known as
’Wigner’s Friend’? Wigner was a physicist, but his Friend was
introduced as a person to check the experimental result for
Wigner. Oh, let me call Wigner’s Friend. [Calls on his mobile
phone...] Yes, he is free to join us.

The Hatter [to himself]: Some more cups. Better make some new
tea. [He does so. The conversation goes on for a short while.]

Wigner’s Friend* [arriving]: Good afternoon!

The Hatter: Good afternoon and welcome! A cup of tea?

Wigner’s Friend: Would be refreshing.

Alice: Our new friend, Wigner’s Friend! Please, let me know how
it was in Wigner’s days. Did you know a fixed and ready result
of the measurement that you could tell to Wigner. Or were you
in a superposition, entangled — is that the word? [Mr Tompkins
nods.] — entangled with the quantum system, or you do not
remember?

Wigner’s Friend: Honestly, I do not remember. But Wigner used
to say that human consciousness is the ultimate reality.

Schrödinger’s Cat: So human consciousness was considered
superior to cat consciousness. This is not science; it is
simply racism.

The March Hare and The Dormouse: We animal characters are as
real and human as the Hatter or Mr Tompkins or Wigner’s Friend
or even Alice.

Schrödinger’s Cat: I do not like to be dead or entangled. I
must look up that Cheshire Cat and learn the art of escaping.

Alice: So, Mr Wigner’s Friend! If Schrödinger’s Cat can be
entangled (but I do not believe so), you could be entangled
too, and maybe Wigner himself got entangled. But Wigner was not
a made-up figure; he was really real, I guess.

Melanie and Mr Tompkins: Yes, he was.
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Alice: Was he two different characters then, one for each
experimental result?

Mr Tompkins: With this question you have just rediscovered Hugh
Everett’s interpretation of quantum mechanics as entanglement
in parallel universes. Everybody is like Schrödinger’s Cat. If
you continue beyond Wigner himself, you may finally involve the
whole universe. Then it becomes a multiverse of different
parallel universes. With different possibilities and more
entanglement, there will be new splitting into more parallel
universes.

Alice: My grandpa told me about this, but I was not quite sure
what he meant. But he does not believe in an entangled cat or a
multiverse. He says that he is childish and believes in one
world.

Schrödinger’s Cat: Either dead or alive but not both. Anyway,
since your grandpa wants me to live, he must be a nicer guy
than that man Schrödinger.

Mr Tompkins [to Alice and Melanie]: Let us take a small walk.
We have a few things to discuss.

[Wigner’s Friend gets ready to leave.]

The Hatter, The March Hare and The Dormouse: We are quite happy
to know that we are relevant. We now have equipment related to
our roles. It is all very exciting. Thanks for informing us, Dr
Melanie, and thanks Mr Tompkins, and goodbye.

Melanie and Mr Tompkins: Good luck and goodbye.

[Melanie, Mr Tompkins, Schrödinger’s Cat and Wigner’s Friend
wave good-bye and turn to go.]

Wigner’s Friend: Thanks for the refreshing tea. [Goes.]

The Hatter: Thank you for coming.
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Schrödinger’s Cat [to Alice]: I have to go and find that
Cheshire Cat and learn some good tricks. Good-bye. [Goes.]

Alice: Bye, bye. [Stands up.] My friends, I am happy that we
met again and that we could find out who you really are. Good
luck and goodbye.

[They part and wave happily. Alice catches up with Melanie and
Mr Tompkins.]

Mr Tompkins: In Wonderland we are also wondering. We are
wondering about physicists, how they came to think the way they
did.

Alice: Yes, why do physicists have so crazy ideas about looking
at things, decayed and not decayed, dead and alive?

Mr Tompkins: Yes, physicists have a fairly good idea what
happens to a physical system when it is left by itself. But
what happens in a measurement is not well understood.

Dirac [having just returned]: No, but we know what happens. The
electron has a spin. If we measure the spin component in the
vertical direction we find that it is either completely ’up’ or
completely ’down’; the probabilities for these outcomes depend
on its original orientation, but the specific result in a
single measurement (’up’ or ’down’) cannot be predicted. After
the measurement, the electron is in the state that agrees with
the measurement result.

Alice: But physicists do not agree about what happens just when
somebody measures?

Dirac: That is right.

Mr Tompkins: And most people even think that it is not possible
to understand.

Alice: This does not make sense. If you have such a good
theory, and you use it to describe measurement, then you must
get some understanding.
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Dirac: Maybe Alice is right, maybe we have not tried hard
enough.

Alice: We are in Wonderland where many things are possible. We
could collect people to discuss what happened in history and
what could have happened, like in the play Copenhagen.

Melanie: Yes, Michael Frayn made Werner Heisenberg meet Niels
and Margrethe Bohr after death for a penetrating discussion on
what had happened when Heisenberg visited Copenhagen in 1941.

Dirac: This is a very good idea. Alice, come with me! [Dirac
and Alice go.]

End of Act 1.
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The Solvay Conference of 1927. (Photo: Benjamin Couprie.)
https://commons.wikimedia.org/wiki/File:Solvay_conference_1927_
restored.jpg

Interlude: Talking to Marie Curie

[Dirac and Alice walk together. They are followed by a person,
Sankofa*, but they do not take much notice. They come to a park
area with lawns and flowers and walking paths. Marie Curie*
sits on a bench writing in a notebook. Dirac and Alice approach
her. Sankofa stops a few steps behind.]

Dirac: Good afternoon, Professor Curie. Sorry to disturb you.
[To Alice]: As you know, Professor Marie Curie is the grand old
person of modern science.



46

Marie Curie [looks up and smiles]: Good afternoon, Paul; nice
to see you. Good afternoon, young lady!

Dirac: Alice is a literary character that you know from Lewis
Carroll’s book. [Alice and Marie Curie shake hands.] She is a
critical young person; she is very dissatisfied with the
present understanding of quantum measurement. She wants to look
back to find out if science could have followed another path. I
was thinking of the 1927 Solvay Conference where we discussed
this issue.

Figure 6. An Adinkra symbol: Sankofa.
Among the philosophical/religious Adinkra symbols of the Akan
people in West Africa, one of the most well-known symbols is
Sankofa, “return and get it”, symbol of the importance of
learning from the past.

Sankofa [after coming closer, greeting with a bow]: Sorry to
disturb you, I am Sankofa. I think this is a very good idea.
One should always learn from the past.

Marie Curie [looking at Sankofa with kind curiosity]: Sorry
Sankofa, I do not know who you are but I understand you are
supporting Professor Dirac and Alice.

Sankofa: I am supporting. I am one of the Adinkra symbols, a
whole set of symbols for proverbs and thinking, from the
traditions of the Akan people in West Africa. [A whole chart of
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symbols is shown.] I often meet persons who wonder why I turn
around and look behind, but that is my message: ’Look back and
learn from the past!’.

Marie Curie: Alice, it is good to be critical; that takes
science forward. Paul, it is good to support a young curious
person, although Alice has been around longer than both of us.
Sankofa, thanks for supporting us with your Akan proverb.

Paul, what I and you have to do is to organize a small hearing
or seminar with some of our colleagues from the development of
physics. Clearly, Bohr and Einstein have to be with us.

End of Interlude.

First intermission
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Act 2: Seminar on quantum measurement

[The stage is a seminar room with a blackboard on the wall.
Marie Curie is in place as chairperson. Other persons present:
Alice, Melanie, Mr Tompkins, Dirac, Sankofa, Lehninger,
Einstein, Niels Bohr, Bell, DeWitt, Feynman.]

Marie Curie: We are gathered here to reconsider the measurement
problem of quantum mechanics. The first Wonderland traveller,
Alice, has come here with Mr Tompkins and she thinks the
problem has not been properly handled. She came to me with Paul
Dirac to ask if we could look back on the development in
physics to see if things could have followed another path. So
together with Paul, I have called you to this seminar. Let me
introduce you briefly to each other.

Alice, Mr Tompkins and Sankofa from West Africa are literary
persons; Dr. Melanie Bailey, also travelling with Alice, is a
scholar in literature and science from the real world. The rest
of us are 20th-century scientists, mostly from the area of
physics: Niels Bohr, Albert Einstein, Paul Dirac, Richard
Feynman, John Bell, Bryce DeWitt, but Professor Albert
Lehninger comes from biochemistry. Thank you all for joining
us. I am Marie Curie.

Before we discuss quantum mechanics, I would like to go back to
my own time as a young scientist. Around 1900, the life
sciences went through a paradigm shift. I call on Professor
Albert Lehninger to tell us about this.

Lehninger*: It may be good for the physics community to recall
the situation in the life sciences around 1900. To understand
the nature of life had been a problem. Vitalism was the
widespread idea that a special vital force is necessary to
explain how organic matter is functioning in metabolic
processes in living cells. Then Eduard Buchner showed in an
experiment that non-living extract from yeast cells can ferment
sugar; living cells are not needed for the process. From this,
one could draw the conclusion that no vital force is needed;
the metabolic process of fermentation can be completely
understood as a chemical process. This made vitalism come to an
end.
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Marie Curie: So what do we learn from this?

Lehninger: The history of cell metabolism is instructive. It
warns us against considering problems to be beyond our reach
because they have not yet found their solution.

So I encourage you physicists to carry on and continue to solve
your problem!

Marie Curie: Thank you, Professor Lehninger for sharing this
with us. Melanie, I see your hand.

Melanie: Here I think it is proper to use Daniel Dennett’s
notion of ’cranes’ and ’skyhooks’. Ordinarily, one tries to
build science on a firm basis. ’Cranes’ can stand on what has
already been constructed and be used to lift new elements to be
put in place in the construction. When there is no firm level
to stand on or when no crane is available, it is tempting to
invent an imaginary ’skyhook’ hanging down from heaven, a
doctrine, and to use this instead of a crane to lift in new
elements. We know this very well from the content of folklore
or religion, but skyhooks should have no place in science.

Around 1900, the ’vital force’ of vitalism was such a skyhook
till Buchner removed it.

Marie Curie: Some of us can date the measurement problem of
quantum mechanics back to the discussions of the 1920s. Bohr,
Einstein, Dirac and myself took part in the Solvay meeting in
1927. Paul, can you state the problem?

Dirac: Let us think of a two-level system, such as the spin of
a spin-

€ 

1
2 particle and a measurement of the vertical spin

component. The result of a measurement will either be up or
down. [Starts to draw and write on the blackboard.] If the
initial state has been prepared so that the electron spin forms
an angle 

€ 

θ with the up-direction, it is a superposition of
spin-up (

€ 

+ ) and spin-down (

€ 

− ),

€ 

ψ = cosθ2 + + sinθ2 − .



50

Then 'Born's rule' states that the probability for getting the

measurement result ’up’ is 

€

cosθ2( )
2
, and the probability to get

the result ’down' is 

€

sin θ2( )
2
.

After measurement, the spin will point in the direction that
agrees with the result of measurement.

Dirac's blackboard.

To predict the result for a single measurement is impossible
unless the spin is already pointing up or down. In the
interaction between the electron and the measurement apparatus,
there is no force for changing the up state into the down state
or vice versa.
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There is no common understanding for how the spin changes from
the original direction to point either up or down. This is the
measurement problem.

Marie Curie: I think, we all agree with your description.
Alice, you came to me with Professor Dirac. What do you say?

Alice: If quantum mechanics is a good theory about everything,
it should also be true for the measurement apparatus. It is
made of the same kind of matter as the small thing that is
being measured. We should use quantum mechanics to understand
better what the two things do to each other.

Marie Curie: In the old discussion, Professors Bohr and
Einstein were very active with very diverging ideas. Albert,
the experimental development in physics has continued to go
your way with respect to general relativity with many
observations of black holes and with detection of gravitational
radiation. But it has not gone your way with respect to quantum
mechanics. What do you say?

Einstein*: It is true that observations of quantum phenomena
have disproved some of my ideas. I have to admit that spatially
separated systems can be entangled. Maybe reality then lies in
the entangled state.

But quantum mechanics, the way it is used now, is not yet a
theory. In a proper theory, one should be able to derive Born's
rule and the change of state that Dirac described.

Marie Curie: Thank you, Albert. What about you, Niels? Can we
have your comments?

Niels Bohr*: Einstein is never satisfied. I like to think of
quantum mechanics as a statistical theory. Natural laws are
still laws, even if they are given in statistical form.

Bell*: But Professor Bohr, you have also said that measurement
is the joint result of an interaction between two systems, the
measured system, let us call it 

€ 

µ and the part of the apparatus
first met by 

€ 

µ; let us call this system 

€ 

A.
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Niels Bohr: Yes, you are right. If 

€ 

µ is initially in a
superposition, there is no unique measurement value available;
it is somehow determined in the interaction between 

€ 

µ and 

€ 

A.

Marie Curie: Thank you, Niels. Any comment? Yes, Albert.

Einstein: Niels, the system 

€ 

A, interacting with 

€ 

µ, must have
many degrees of freedom; it cannot be known. Then the unknown
initial state of 

€ 

A could be the source of statistics; we do
not have to blame the dynamics.

[Bohr looks ready to say something but he stays quiet.]

Marie Curie: We learnt from von Neumann that each state of 

€ 

µ
gets entangled with 

€ 

A, but the proportions of the two channels
stay the same. Neither spin up nor spin down can take over from
the other. This dilemma led to the stories about Schrödinger’s
Cat and Wigner’s Friend. The dilemma was turned into a formal
theory by Everett in 1957. I now call upon Bryce DeWitt. You
developed Everett’s theory into a whole world view.

DeWitt*: Thank you. The understanding is that in a measurement,
entanglement extends further and further, but all possibilities
remain with the same proportions. The quantum-mechanical state
contains all possibilities  even after measurement. Extending
the Schrödinger’s Cat idea to everything, one gets a multiverse
split in parallel worlds. Similar things may happen all over
the universe. I once described it like this:

“... every quantum transition taking place on every star, in
every galaxy, in every remote corner of the universe is
splitting our local world on earth into myriads of copies of
itself.”

Mr Tompkins: And then you continued:

“I still recall vividly the shock I experienced on first
encountering this multiworld concept. The idea of 10100+

slightly imperfect copies of oneself all constantly splitting
into further copies, which ultimately become unrecognizable, is
not easy to reconcile with common sense.”
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Marie Curie: Melanie, I see that you would you like to comment
on this.

Melanie: The Many-Worlds Interpretation also looks to me like a
skyhook. To solve one problem in our world, one assumes any
number of unknown worlds.

Marie Curie: Thank you, Melanie. John Bell, you have also
criticized the Everett-DeWitt theory.

Bell*: Yes, the multi-world idea involves branching of the
world but not debranching. That way, the theory brings in an
asymmetry in time that seems foreign to quantum mechanics. We
have to look for a description that keeps reversibility.

Marie Curie: Maybe the quantum mechanics of the 1930s was not
adequate. If we follow the physics development, does quantum
field theory have the reversibility that you are asking for.
[Niels Bohr shows that he would like to speak.] Please Niels,
let us wait with the discussion.

Bell: Quantum Field Theory is reversible. One can see this when
using Feynman diagrams to calculate. Actually, we have the
diagram architect with us here. But Richard, contrary to what
Professor Lehninger said, you have stated that we may have to
accept giving up our ambitions to solve the measurement
problem. What do you think now?

Marie Curie [after giving Niels Bohr the opportunity to speak,
but Niels Bohr only shakes his head]: Yes, Professor Feynman,
what do you think?

Feynman* [thoughtfully]: Right now, I think John opened a
possible path by stressing the importance of reversibility. Let
us think again of measuring the vertical spin component of an
electron! The state of the electron has two components, one for
spin up and one for spin down. In the interaction with the
measuring apparatus, these components get increasingly
entangled with the apparatus. In the 1930s, one did not see any
way back. [Drawing on the blackboard while he speaks more
thoughtfully:] But with reversibility, the apparatus and the
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electron can return to their initial state. So returning and
then taking the other way is a possibility. In this way, there
is a connecting path between spin up and spin down. Sorry, I
have not thought of this before. [With increasing excitement]:
I see now! We can simply refute the von Neumann dilemma! It is
an obsolete product of the 1930’s; it is not valid.

Feynman's blackboard.

Generally, the measurement apparatus should be unbiased. But
that must hold statistically, in the mean. Depending on the
state of 

€

A, a single process can accidentally favour one
outcome rather than the other one. But in the mean, an unbiased

€

A should be equally open to be marked by 

€

µ with spin up as
with spin down.

Marie Curie: To lead to a definite result, one of them must
totally dominate over the other. How can that come about?
[Makes an inviting sign to Einstein who has raised his hand.]

Einstein: We saw before that through the 

€

µA-interaction, 

€

A
could be a source of statistics. Let us think of the
probability interval with certainty for 'spin down', 

€

(0,1), to
the left, certainty for 'spin up', 

€

(1,0), to the right and
fifty/fifty, horizontal spin direction, in the middle. From our
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starting point, 

€

cosθ2( )
2
, sinθ2( )

2 
 
 

 
 
 , Born's rule gives probability

€

cosθ2( )
2
 for going to 

€

(1,0) and probability

€

sin θ2( )
2
 for going to 

€

(0,1).
Then we map the influence of interaction as motion on the
probability interval.

Einstein's blackboard,

We can think of 

€

µ as passing through the system 

€

A and
interacting stepwise. As Feynman said, in each step, we can
expect accidental support of spin up or spin down, but in the
mean, there should be strict neutrality.

Recording these steps on the probability interval, we get a
random walk: small steps are taken, supporting spin up or spin
down, but for each step, the mean is zero.
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Each walk ends up in one of the endpoints, 

€ 

(1,0) or 

€ 

(0,1), that is
in either spin up or spin down. But since the mean does not
change, the frequencies for getting spin up or spin down are

€ 

cosθ2( )
2
 and 

€ 

sin θ2( )
2
, respectively. So Born's rule is confirmed.

Maybe I should explain why a random walk ends up in an
endpoint. Simply because the mobilitiy is the same in both
directions, and the system must not move outside the interval;
therefore approaching an endpoint decreases mobility. Random
walks stop there.

Marie Curie: Thank you, Albert.[Looks around and Bell gives a
sign.] Yes, Professor Bell.

Bell*: Professor Einstein mentioned the steps along the
probability interval with 'spin up' at one end and 'spin down'
at the other. In the early 1990s, Gisin and Percival studied
quantum diffusion with a non-linear stochastic Schrödinger
equation. Like Professor Einstein, they got a definite value of
the measured quantity. They claimed to describe an open
quantum-mechanical system and that has later been supported.
Their results can be derived within traditional quantum
mechanics.

Actually, I think that it is fair to say that Gisin and
Percival, together with Lajos Diósi and Philip Pearle, solved
the measurement problem around 1990 with the theory of quantum
diffusion, analyzing the system 

€ 

µ in interaction with the
unknown system 

€ 

A, although not very explicitly described.

Their theory is now known to be a consequence of linear quantum
dynamics, and it should be recognized as a solution of the
measurement problem.

Marie Curie: Thank you, John Bell. This may be the most elegant
way of looking at measurement. [Bell raises his hand.] Maybe
you have something to add.

Bell: After the interaction between 

€ 

µ and 

€ 

A, there is
interaction between 

€ 

A and the rest of the apparatus. This is
irreversible and the mark by 

€ 

µ on 

€ 

A gets irreversibly fixed.
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Marie Curie: Thank you, Professor Bell. To me it seems that we
are close to having solved the whole problem. Any comment?
Alice!

Alice: Then it is not God who plays dice but the physicist with
unknown details in the system 

€ 

A of her apparatus.

Sankofa [after approval from Marie Curie]: It seems like the
system is moving forward in time to check various ways, then
reversing back to make the best choice. I am preaching
’learning from the past’ but this looks like learning from the
future! Maybe we should have a new Adinkra symbol for that?
Very thrilling!

Bell [commenting to himself]: Yes, just like Feynman’s integral
over histories!

Feynman [looks up with a smile]: Let me mention a small
technical thing. In all this, reversibility is important, but
very often it is not explicitly visible.

Alice [eagerly waving her hand and allowed by Marie Curie to
speak]: I understand that Schrödinger’s experiment with a cat
is meaningless and Everett’s description of measurement is
wrong.

Melanie [also waving and allowed to speak]: ... and Professor
DeWitt! Your skyhook is gone, so you can return to common
sense.

[DeWitt smiles quietly but says nothing.]

Schrödinger’s Cat [enters, very upset]: He is impossible to
talk to, disappears and disappears, always leaving that stupid
smile behind.

Marie Curie: Order! Order!

Alice [after requesting the floor, goes to Schrödinger’s Cat
and takes him/her in front of everybody]: This is Schrödinger’s
Cat. All since (s)he was conceived by Schrödinger, (s)he has



58

been threatened by the poison that could kill him/her or one
component of him/her. [To Schrödinger’s Cat]: The idea of
putting you in that box is no more valid. You are now a
historical figure; you have been brave to stand all that
suffering, but now you are free. Go and tell your friends!

Schrödinger’s Cat: Is it true?

Marie Curie: Yes, go and tell your friends!

Before we celebrate our achievements, I think we should hear
the views of Albert Einstein and Niels Bohr. What do you say?

Einstein: My main concern is always the possibility to
understand and I think we have reached a good understanding
now.

The quantum-mechanical state represents a reality that develops
according to a deterministic dynamics. As Bell helped me to
clarify, the probabilistic features come from details of the
apparatus that are unknown and even not knowable, like in
statistical mechanics. Subtle is the Lord, but malicious He is
not.

Together we have been very constructive? What do you say Niels?

Niels Bohr: All the time I have believed in Quantum Mechanics.
When others were not satisfied with it, I liked to step in to
defend it. What I see now is, of course, that it is even better
than I could dream of. So I am very satisfied. Marie, you were
right in taking us into Quantum Field Theory. We have been able
to develop this together.

Marie Curie: Thank you, Albert and Niels! We are now free from
von Neumann’s dilemma and we have more or less solved the
problem. Richard Feynman, you took the first step! This is an
occasion when it would be proper to listen to your drumming.

DeWitt [while Feynman is putting up his drums]: It is fine to
go back to common sense and to one world.
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[When Feynman is ready, he starts drumming with a big smile.
The Dormouse comes and dances with Schrödinger’s  Cat. The
Hatter, The March Hare, and The Doormouse come and dance
together. Wigner’s Friend and Sankofa join in the dancing.
Marie Curie is resting. Lehninger and DeWitt sit quietly
together. Melanie, Alice and Mr Tompkins have a small quiet
meeting. Bell and Dirac  sit together. Niels Bohr and Einstein
comment to each other (not audible) and nod quietly. When
Feynman stops drumming, dancing stops and everybody claps.
Feynman recieves the appreciation smiling.

End of Act 2.

Second intermission
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Act 3. Continued seminar: Looking forward and looking out

[The same room with Marie Curie in place as chairperson.
Persons present are again: Alice, Melanie, Mr Tompkins, Dirac,
Sankofa, Lehninger, Einstein, Niels Bohr, Bell, DeWitt,
Feynman.]

Marie Curie [clapping her hands to bring order]: Let us
continue! [When people are seated]: Any comment? Melanie!

Melanie: In our discussion, Quantum Mechanics has shown its
strength. Measurement is a quantum-mechanical process that we
can understand. Congratulations to all of us, in particular to
Professor Bohr, the strongest supporter of quantum theory.

Marie Curie: Could we now have a comment from Professor
Lehninger?

Lehninger: I have looked at you physicists from the outside. In
everyday practice, you have very much followed David Mermin’s
rule: ’Shut up and calculate!’ You have not disturbed each
other with dogmatic quarrel. So physics has evolved peacefully
and efficiently with the measurement problem remaining
unsolved.

To listen today has been a remarkable experience.
Congratulations to physics for catching up with biochemistry!

Marie Curie: Thank you, Professor Lehninger. Paul, at the
beginning, you stated the problem. What do you say now?

Dirac: We now understand how a non-destructive measurement
leads to one of the possible results. The measured system goes
to the state related to the result. But still we need to
develop more realistic models of actual measurement processes.
Without this, our young colleagues will consider our result as
simply talking, talking.

Marie Curie: After nearly 100 years with the problem, our
talking here has not been bad. But I agree, of course.
Realistic models of measurement processes are needed. What
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about consequences of what we have achieved? What do you say,
Feynman?

Feynman: Physical reality is hard to guess. Therefore it is
almost impossible to anticipate physical knowledge through
philosophical discussions. But progress in physics can give
knowledge that must be analyzed in philosophy and incorporated
in our general scientific and philosophical understanding.

Let us continue our discussion and ask Dr Bayley to take notes
of what could be of importance to her and her friends in
philosophy. [Melanie immediately opens a new page in her
notebook and takes up her pen.]

Marie Curie: Thank you, good idea! Let me say something about
one consequence of our new insights. The understanding of
measurement means that we now have a better description of the
interaction between the instruments used in science and the
object systems studied. This means that we have given an
important contribution to epistemology, the part of philosophy
that deals with the gaining of human knowledge.

Professor Bell, I see that you would like to say something.

Bell: In the everyday work with quantum mechanics, when we
study some quantum-mechanical system, we have a pragmatic way
of describing reality for practical use: the quantum-mechanical
state of the system studied. Up till now, this description has
only been pragmatic for most of us, representing a potentiality
rather than a reality. Now we can describe measurement in the
same scheme. [To Feynman]: What do you say, Richard?

Feynman: Yes, we should follow Professor Einstein’s idea and
consider the pragmatic concept of the quantum-mechanical state
as representing or even being reality, the whole way.

[Marie Curie gives the floor to Melanie.]

Melanie: So what has been only a pragmatic ontology for
physicists, can now be promoted to a more general ontology.
[Slowly and thoughtfully:] The quantum-mechanical state is
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recognized as real rather than a potentiality. Very
interesting! [Eagerly writing in her notebook.]

DeWitt [after raising his hand and getting a sign from Marie
Curie]: I could say with some pride that this has been our
ontology all the time in the multi-world picture. But being
stuck with von Neumann’s dilemma, our reality became so
extremely complicated. Now without the dilemma and with the
statistical reduction mechanism shown to us by Professors
Einstein and Bell, it all comes out very nicely.

Marie Curie: Thank you, Professor DeWitt. Yes, first Alice,
then you, Niels!

Alice: We have seen how one component wins in a measurement. We
get only one out of the two possible results. The other one has
disappeared. Doesn’t that mean end of entanglement?  Finally,
it becomes very simple.

Niels Bohr: Just what I wanted to comment. In our everyday
life, the world appears classical; we do not witness strange
superpositions. Maybe the random-walk or quantum diffusion
mechanism shown to us by Einstein and Bell, is more generally
active. It can remove entanglement and make our every-day world
classical, as we experience it.

Marie Curie: Thank you Niels. And what about causality, about
cause and effect? The ontology that Paul described to us was
about small systems. For them we often know the dynamics. But
what about bigger systems? Albert.

Einstein: Most of you know my 1935 paper with Boris Podolsky
and Nathan Rosen. We showed that, in quantum mechanics, pairs
of particles could become entangled and correlated over large
space-like separations. We wanted to show that quantum
mechanics is paradoxical. Now we have to accept such entangled
particles as reality.

Bell [after receiving approval from Marie Curie]: All the time
and all over the universe, fast pairs of entangled particles
may be created; they can tie systems together over space-like
distances. This means that almost any localized system can have
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small but far-reaching entanglement. Then such a localized
system cannot be described by a pure quantum-mechanical state;
it must be described statistically. Even if we view the
quantum-mechanical state as fundamental in ontology, a
statistical description has to be the rule for systems in
general. Only very limited systems can be considered as
isolated.

Marie Curie: Thank you Albert, and thank you, John Bell, for
these clarifications. Melanie!

Melanie: I think that in this seminar, we have found a quantum-
mechanical basis for a new understanding of the world as we
meet it in our every-day experiences. It seems that science and
common sense can work closely together to achieve a consistent
description of the same reality.

Alice: Sometimes physicists have had a loose connection to
reality. What Lewis Carroll wrote about me after my first visit
in Wonderland became true about physicists of the 20th century:
"So many out-of-the-way things had happened in science that
maybe the physicists had begun to believe that very few things
indeed are really impossible."

Melanie: Yes, in the evolution of physics, strange ideas
appeared. Probably some physicists were hoping to make
discoveries similar to relativity and quantum mechanics.

Lehninger: In biology we have examples of extreme evolution
processes such as the development of the peacock’s tail.
Cultural evolution is based on ideas instead of genes. The
postmodern denial of reality can be viewed as an example of
extreme cultural evolution. The notion that quantum mechanics
is incomprehensible may be an example of extreme evolution in
the physics culture.

Throughout history there have been developments of extremism in
religion and in political thinking. We know all too well the
dangers inherent in such phenomena.

Dirac: Are we moving away from physics now?



64

Marie Curie: Yes maybe. But physics is everywhere. For me, the
physical substances that I was studying, finally killed me.
Some of you took an active part in developing nuclear arms,
based on the understanding of atomic nuclei. That turned out to
be the beginning of an irresponsible game. Now almost 80 years
later, such arms are still a serious threat to the human
society and to higher life forms on Earth. Physics is far from
innocent.

It is also difficult to predict how tools based on
sophisticated science can be used. Communication technology is
of this kind. It is now widely used to spread threats and lies,
to misrepresent science, to support stupidity and to undermine
democracy.

Scientists should follow science-and-society issues very
closely and develop the ability to take responsible action when
it is needed.

Sankofa: In our minds and together we should move into the
future to see the outcome of different ways of acting or non-
acting, then return to the present to make good decisions and
agreements. [To this, participents react with restrained
surprise and approval.]

Marie Curie: Good suggestion, Sankofa. Let us end our meeting
here. Thanks everybody. Is Alice satisfied?

Alice: Oh yes!

Marie Curie: Thanks everybody! Thank you, Alice and Mr
Tompkins! Thank you Dr Bayley! Thanks for your coming here to
study quantum mechanics more deeply with us. What about you,
Niels and Albert? Are you satisfied?

Niels Bohr: Here we have met in a world of fiction to help
people in the real world get a better grip of their reality.
This is a paradoxical situation of a kind that I like...
[laughing] ... in contrast to Albert.

Einstein [first smiling, then becoming serious]: Confusion is
lethal. We have to be realists and to combat confusion.
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Bell [after looking at Marie Curie and getting approval]: Yes,
we have to. But we must remain humble. Remember, we used to
think that we know what our world consists of. Now we know that
we know only a small fraction of the stuff making up our world.

[The Hatter, The March Hare and The Dormouse come with their
box and their cranks and start turning. Feynman starts
drumming. Marie Curie, Bell and Melanie begin a small
discussion.]

Melanie: Where could we publish the proceedings of this
meeting?

THE END
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Tradition, characters and story of the play

Charles Lutwidge Dodgson (1832-88) published in 1865, under the
pseudonym Lewis Carroll, Alice's Adventures in Wonderland with
illustrations of John Tenniel. The Hatter, The March Hare and
The Dormouse are the persons of the tea party in the book.

With Alice, I have introduced an ambiguity based on the fact
that I have a grandchild named Alice.

George Gamow (1904-1968) was a Russian/Ukrainian-American
theoretical physicist and cosmologist. Further reading about
the book series in http://en.wikipedia.org/wiki/Mr_Tompkins.

George Gamow's Mr Tompkins in Wonderland was first published in
1940, and Mr Tompkins explores the atom was first published in
1944.

Michael Frayn (born 1933) is an English playwright and
novelist. His play Copenhagen deals with a meeting in 1941 in
Copenhagen between Niels Bohr and the German physicist Werner
Heisenberg. In the play they meet, together with Niels’ wife
Margrethe Bohr, after death and try to reconstruct what
happened in 1941. The focus is on Heisenberg’s responsibility
to develop a nuclear weapon for Nazi Germany.

In Alice's adventures in Wonderland solved (New Scientist 16
December 2009), Melanie Bayley shows that the tea party in
Lewis Carroll's book (with The Hatter, The March Hare and The
Dormouse) is a parodic allegory of W.R. Hamilton's theory of
quaternions, later used by Wolfgang Pauli in matrix form to
describe electron spin.

Melanie Bayley (born 1959) is a literary scholar with a
background in mathematics and science and experience in science
journalism. One of her research interests is the impact of
mathematics on nineteenth century fiction.
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Paul Dirac (1902-1984, Nobel prize in physics 1933) was an
English theoretical physicist. He made fundamental work in
quantum mechanics and quantum electrodynamics. He formulated
the Dirac equation for particles with spin 1/2. From this the
existence of antimatter could be predicted. Dirac was known to
be an eccentric person. Because of the importance of his ideas,
I have chosen to portray him as more social than he was known
to be. Eugene Wigner (see below) and Dirac were the only early
physicists in the play that I got to know a bit.

Schrödinger's  Cat is a thought experiment, sometimes described
as a paradox, devised by Erwin Schrödinger in 1935. It
illustrates what he saw as the problem of the Copenhagen
interpretation of quantum mechanics applied to everyday
objects. The scenario presents a cat in a state of being both
alive and dead, this state being tied to an atomic system.
(Wikipedia's description.)

Erwin Schrödinger (1887-1961, Nobel prize in physics 1933) was
an Austrian physicist. He made important contributions to
quantum theory but was not willing to accept it.

Wigner's Friend: The Wigner's Friend thought experiment posits
a friend of Wigner who performs the Schrödinger's cat
experiment after Wigner has left the laboratory. Only when he
returns does Wigner learn the result of the experiment from his
friend, that is, whether the cat is alive or dead. The question
is raised: was the state of the system a superposition of "dead
cat/sad friend" and "live cat/happy friend," reduced only when
Wigner learned the result of the experiment, or was it
determined at some previous point? (Wikipedia's description.)

Eugene P. Wigner (1902-95, Nobel prize in physics 1963) was a
Hungarian-American theoretical physicist. He believed that
human consciousness was a necessary component in the analysis
of quantum measurement.
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Sankofa is one of the Adinkra symbols, a religious and
philosophical set of symbols from the Akan people of West
Africa. Sankofa's message is: Look back, and learn from the
past!

Marie Curie (1867-1934, Nobel prize in physics 1903, in
chemistry 1911) was a Polish-French physicist and chemist who
studied radioactivity. She was a pioneer who opened the field
of atomic and nuclear science and thus the whole of modern
physics.

I have tried to describe Marie Curie as an openminded person
and as a grand old lady of science. I have not made any attempt
to learn about her as a person to have a model for my
character.

Albert L. Lehninger (1917-86) was an American biochemist, who
wrote a very widely used textbook in biochemistry, still in
use, regularly updated. (When Magdalena Eriksson showed me what
Lehninger had written about the development in the life
sciences 110+ years ago, it changed my view on physics.)

Albert Einstein (1879-1955, Nobel prize for 1921 in physics)
was a German-born theoretical physicist, founder of relativity
theory and cofounder of quantum mechanics, but also very
critical against the common interpretations of quantum
mechanics. He played a crucial role both in the development of
nuclear arms and in the efforts to prevent a nuclear-arms race.
Albert Einstein is considered to have been one of the greatest
scientists of all times; further description here is
superfluous.

Niels Bohr (1885-1962, Nobel prize in physics 1922) was a
Danish theoretical physicist, one of the founding fathers of
modern atomic and subatomic physics. His Bohr Institute was for
a long time the most important international meeting point for
theoretical physicists.
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Niels Bohr considered nature to be capricious and beyond reach
for detailed physical analysis.

John Bell (1928-1990) was a physicist from Northern Ireland. He
worked with accelerator physics, elementary particle physics and
the foundation of quantum mechanics. Bell did the theory work for
the best direct experimental tests of quantum mechanics. He was
firm in his principle to solve physical problems within physics.
I first met John Bell in 1960 and I got to know him quite well.

Hugh Everett (1930-82), American physicist, proposed in 1957
(at the time working with John Wheeler in Princeton) a
'relative-state interpretation' of quantum mechanics. This is
like extending a superposition of the measuring device,
entangled with the quantum system to Schrödinger's Cat,
Wigner's Friend and beyond, until the whole universe is
included in different components of an entangled quantum-
mechanical state.

Bryce S. DeWitt (1923-2004) was an American physicist. With his
famous article 1970 in Physics Today, he made Everett's
Relative-State Formulation into a total world view, the Many-
Worlds Interpretation of Quantum Mechanics. This is still a
relatively common view among physicists.

Richard Feynman (1918-1988, Nobel prize 1965) was an American
theoretical physicist. He worked in quantum physics, in
particular quantum electrodynamics, where he developed his
’Feynman diagrams’, a scheme for calculating transition
amplitudes.
-  -  -

The whole story deals with the solution of the old measurement
problem in quantum mechanics. This work is based on
relativistic quantum mechanics, known as Quantum Field Theory.
The main ideas in the play date back to the 1950s.
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The main discussion in Act 2 of the play goes along the
following line:

Reminded by Bell, Bohr recalls his own picture of the
measurement as a joint product of the measured (two-level)
system and the apparatus. This immediately gives Einstein the
idea to view unknown details of the apparatus as a cause of
random influence, making the process statistical. Marie Curie,
accepting von Neumann's dilemma for the non-relativistic
quantum mechanics, asks for ideas in the emerging relativistic
quantum mechanics (not ready in her time). Feynman responds to
this and in his instant analysis, he finds the reversibility,
requested by Bell in the discussion. On the relativistic basis,
Feynman can refute von Neumann's dilemma and find a new
opening. He also emphasizes the necessity for the apparatus to
be statistically unbiased. Supported by this, Einstein resumes
his analysis of the interaction between the measured system and
the apparatus. It is a random walk on the probability interval
for the two possible results. His conclusion is that a definite
result always obtains and that it follows Born's rule.

In the play, I have tried to create constructive opportunities
and a mutually constructive interplay for very gifted
scientists of different times:

Marie Curie asks about ideas in the synthesis of relativity and
quantum mechanics which she could see coming but after her
time. Bohr and Einstein, very divergent in their thinking, are
here given an opportunity to cooperate. The Quantum-Field-
Theory man, Feynman, gets a chance to better appreciate his own
theory. Here he hands over to Einstein relativistic results
that came too late for Einstein in his life. Einstein who
disliked the idea of God playing dice, can instead do a proper
statistical-mechanical analysis of the measurement interaction.

Bell sees how Einstein's analysis supports the ideas in quantum
diffusion of the late 1980s. At that time, Bell had found these
ideas very promising but not yet ready to form a theory. In the
play however, Bell can tell that quantum diffusion is now known
to be closely related to the ordinary quantum mechanics.
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Quantum diffusion, suggested as a solution to the measurement
problem, was an active field of research 1985-95. The main
paper in quantum diffusion, related to the play, was published
by Nicolas Gisin and Ian Percival in 1993. Other persons in
this field were Lajos Diósi and Philip Pearle.

Other works related to the play, done by Cederwall, Eriksson,
Lindgren and Sjöqvist, are discussed in Chapter 1 of this book.

In the play, the Special Theory of Relativity and Quantum
Mechanics are mentioned as forming a Constitution for Physics.
The General Theory of Relativity that deals with gravitation
and cosmology should be included as well but it is not yet
clear how general relativity and quantum mechanics can function
together. In this sense the constitution of physics is
incomplete. As Bell points out towards the end of the seminar,
we know now that our world picture is very far from complete.

A Reading of the play is being planned to take place at
Chalmers a short time after the book has been published. We
hope that we can film the event and make the film easily
available.
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3. THE ROLE OF QUANTUM MECHANICS IN THE CULTURE OF THE 2020s

Since the early days of quantum mechanics, many physicists have
had a double attitude towards the theory. They have done
regular research and they have developed the theory. But
parallel to that they have described quantum mechanics as
mysterious and difficult to understand. This double attitude
still continues.

I recently had the opportunity to watch a very informative and
pedagogical television documentary with David Kaiser on
neutrino physics. Kaiser is also a science historian and I have
read his very interesting paper [1] on Schrödinger's cat
article and on the correspondence between Schrödinger and
Einstein about the arguments of that article, meant to show the
weakness of quantum mechanics.

In Kaiser's writings, I have also found the other attitude
towards quantum mechanics. In the presentation of his book
Quantum Legacies, "a series of engaging essays that explore
iconic moments of discovery and debate in physicists' ongoing
quest to understand the quantum world", quantum mechanics is
described as follows [2]:

The ideas at the root of quantum theory remain stubbornly, famously
bizarre: a solid world reduced to puffs of probability, particles that
tunnel through walls, cats suspended in zombielike states, neither alive
nor dead; and twinned particles that share entangled fates. For more than a
century, physicists have grappled with these conceptual uncertainties...

My interpretation is that this text extends the art of
mystifying quantum mechanics to a new level: "ideas at the root
of quantum theory remain stubbornly, famously bizarre".

'Cats suspended in zombielike states, neither alive nor dead',
only refers to Schrödinger's cat fable; it is not part of any
serious physical theory. I interpret 'puffs of probability' as
an expression of the rather common view that quantum mechanics
is a basically probabilistic theory. This would mean implicit
rejection of the view that there could be a physical
explanation behind the statistical effects, as suggested more
than 30 years ago in papers on quantum diffusion. If a source
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of statistics can be identified, no mysterious 'puffs of
probability' are needed. What is mentioned as 'tunnelling' and
'entangled fates' (of EPR pairs) are wellknown phenomena of
quantum mechanics which do not have to cause any 'conceptual
uncertainties'.

David Kaiser, an excellent popularizer of physics and of
science history, thus chooses to follow and develop the
tradition in the physics culture, to propagate a picture of
quantum mechanics as mysterious and difficult to understand.

To be meaningful, the term 'quantum mechanics' should refer to
relativistic quantum mechanics, not the non-relativistic
quantum mechanics that John von Neumann or Erwin Schrödinger
were struggling with. Relativistic quantum mechanics is the
supreme scientific theory for explaining the human experiences
of the structure of our material world. In some instances the
agreement between theory and experiment is of a very high
numerical precision.

Maybe it is still understandable that physicists look at
quantum mechanics as mysterious. What happened in physics in
the early 20th century, gave a taste for discovery of new and
fundamental ideas. Niels Bohr considered nature as inherently
unpredictable [3]. Eugene Wigner liked to think that the
consciousness of the observer caused what was called "the
collapse of the wavefunction" [4]. Among physicists, the belief
in Everett's [5] and DeWitt's Many-Worlds Interpretation [6]
still seems to be quite widespread.

The back side of the radical ideas, is a lack of respect for
everyday physical work, with an ambition to explain physical
phenomena from what is already known.

John Bell was very critical towards this kind of thinking, but
he was well aware of the advantages of what he considered
'romantic approaches' to create a wider public interest [7]:

It is easy to understand the attraction of the three romantic worlds for
journalists, trying to hold the attention of the man in the street. The
opposite of truth is also a truth! Scientists say that matter is not
possible without mind! All possible worlds are actual worlds! Wow! And the
journalists can write these things with good consciences, for things like
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this have been said ... out of working hours ... by great physicists. For
my part, I never got the hang of complementarity, and remain unhappy about
contradictions. As regards mind, I am fully convinced that it has a central
place in the ultimate nature of reality. But I am very doubtful that
contemporary physics has reached so deeply down that that idea will soon be
professionally fruitful. For our generation I think we can more profitably
seek Bohr's necessary 'classical terms' in ordinary macroscopic objects,
rather than in the mind of the observer. The 'many world interpretation'
seems to me an extravagant, and above all an extravagantly vague,
hypothesis.

Bell himself viewed measurement, what we call 'determination'
in our discussion, as a physical process. To understand this
process is then a physical problem. Then neither metaphysics,
nor epistemology or psychology, would have anything to
contribute to the solution.

The measurement problem of quantum mechanics is stll considered
by many physicists as unsolved. The theory that was developed
during a decade around 1990, quantum diffusion, can in some
ways be viewed as incomplete. Still it was a clear indication
of one mechanism that can solve the measurement problem: The
uncontrollable interaction between the measurement instrument
and the system subject to measurement is the source of
statistics. Neither a capricious nature nor the consciousness
of the observer take part in the process which produces one
single measurement result, not many results, requesting many
worlds. This is discussed in some detail in Chapter 1.

One may wonder if there is an unconscious collective will in
the physics community to preserve a mystical tradition, rather
than to seriously evaluate ideas for physical solutions of the
measurement problem.

The culture of the physics community is part of a wider
culture. In the global culture of today, the common science-
based reality concept is questioned. Arbitrary beliefs and
conspiracy theories are expanding in combination with
resistence against science and experience-based information.
Postmodern relativism has gained influence in humanistic and
social-science faculties of the universities, and led to
erosion of the reality concept.
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In this development, physics has not been innocent. Mysterious
views of quntum mechanics have been gratefully received by
postmodernists as a reason to question the concept of reality
itself. What is real, becomes a question of opinion, rather
than a question of truth.

The present global situation is that young people on Earth have
to solve very difficult planetary problems created by earlier
generations and still largely neglected by the generation that
currently is in power.

In the generation in power, cross-cultural understanding is
seriously missing. This is in contrast to the coming
generation. Young persons communicate globally without
hindrance from cultural or national barriers. It is now
important to support the young people with the best possible
scientific, technical and social knowledge available, and to
help them take over responsibility for global development in a
democratic and peaceful way.

A useful concept is Modernity, understood as a constructive
enlightenment project, still remaining unfinished. It can be
defined as: on one hand Human Rights and Democracy, on the
other Science and Technology. At present, Modernization has
slowed down and important decision-making follows largely
premodern principles. We must support young people to restore
Modernity as a common human project to form a livable global
society.

To contribute to this, physics should leave the myths and
mysteries of its past history and resume its role among the
sciences. Physics has a great tradition, first in collecting
scientific knowledge into large bodies of coherent
understanding and, secondly, in structuring, analyzing, and
solving problems in a scientific way. This tradition should be
made available to the young generation.
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4. ROOTS OF BACKGROUND IDEAS AND SUPPORT OF MY WORK

Since 1956, nearly 66 years ago, when I first was confronted with 
quantum mechanics, I have lived with the measurement problem of 
quantum mechanics.

During long periods, my connection to the problem was dormant, but 
during other periods, it has been quite intense. I have afterwards 
understood that, also when I did not think of measurement, in my 
studies and work, I collected knowledge that I later found was 
relevant for understanding quantum measurement.

Many different impacts and ideas have given me hints in the 
direction of the theory that is outlined in this book. If the work 
is correct, I think I have been very lucky to receive many impulses 
pointing in the same direction.

(1) One essential aspect is the basic view on the science of 
theoretical physics as it was taught in Uppsala University with a 
main emphasis on understanding. I can mention my teachers there, 
Ivar Waller, Alf Sjölander, Stig Lundqvist and Ture Eriksson. Nils 
Svartholm and Jan Nilsson, my colleagues in Göteborg, were also 
very much part of the same tradition.

Another, quite different, aspect is my experience from a long 
intense period (roughly 1972-1987) of work on interdisciplinary 
collaboration at The University of Gothenburg with the aim of a 
better understanding of knowledge relevant for a global human 
future. There one had always to ask oneself: Do I get a 
sufficiently wide perspective or am I missing something essential?

Work related to knowledge for the future continued during my stay 
at Karlstad University (2001-2014). The close connection between 
Karlstad University and the regional cultural life was also very 
inspiring for me.

A lot of my work was done during visits to Ghana, mainly during the 
period 1985-2015. In most of these visits, I stayed with my 
colleague and friend, Francis Allotey, in connection with teaching 
in mathematics courses for West-African graduate students. During a
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period, I was also a frequent guest of the Physics Department of
the University of Cape Coast. The possibility to consider my
research problems in a totally different context, was very
stimulating.

I shall now go into more specific topics and ideas.

(2) In 1956, I first learnt quantum mechanics in Stig Lundqvist’s
lectures in Uppsala. I still remember my problem with the
measurement postulate. The postulate itself was clear. My problem
was the question why it was just postulated and not derived. The
year after, I read Dirac’s book Quantum Mechanics [1] with one of
the classical formulations of the measurement postulate.

When I asked Alf Sjölander, about the problem, he referred me to a
book by Werner Heisenberg from 1930 with an attempt to describe the
formation of a track in a cloud chamber. The work by Mott and by
Heisenberg [2] on this is also well described in John Bell's
Speakable [3]. I found this discussion interesting and relevant. It
was interesting to see that pioneers in quantum theory had been
struggling so early with the problem of understanding measurement.

(3) In 1959, I came to the Theory Division of CERN in Genève as a
research fellow. There I worked with André Petermann who gave me
the task to compute radiative corrections to muon-electron
scattering. At this stage, I had already studied quantum
electrodynamics (QED) in Uppsala. I used the book Theory of Photons
and Electrons by J.M. Jauch and F. Rohrlich [4] as a handbook. In
this work, I learnt about the infrared problem of QED, which had
been discussed already by Jauch and Rohrlich. I saw that I could
continue their work and sum the perturbation expansion to all
orders with an improved accuracy.

The infrared part of the interaction means the long-range part. It
affects the ingoing and the outgoing states of a process. The
change of the energies and momenta of the ingoing and outgoing
particles is however small and the effects on amplitudes can
usually be neglected. The main effect of the infrared interaction
is a factor in the transition amplitude, related to the total
energy loss through soft-photon emission by the incoming and
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outgoing charged particles. It was shown by Jauch and Rohrlich that
the dynamics is the same as if the charged particles were classical
point particles, simultaneously reaching or emerging from a
pointlike collision centre.

This experience was useful later in my research on particle
scattering. (The very convenient use of coherent states to describe
the soft part of the electromagnetic field came some time later.)
It took time before I understood that the factorizable interaction
via the infrared part of the electromagnetic field is very relevant
for the description of the interaction in measurement processes.
Finally, it led me to describe the influence of non-destructive
measurement on the measured system as a factorizable final-state
interaction.

(4) With Ernst C.G. Stueckelberg, André Petermann had discovered
the renormalization group of QED [5]. This group was also
independently found by Murray Gell-Mann and Francis E. Low [6]. The
renormalization group was used by Russian physicists as a quite
powerful mathematical tool to connect terms of different orders in
the perturbation expansion of QED with each other.

After reading about this, I found that I could continue along these
lines and make partial summations over the perturbation expansion
and in that way reduce the needed computations of radiative
corrections.

In my paper with Kristian Lindgren in Entropy [7], the summation
over the no-change graphs of measurement interaction, can be viewed
as a renormalization of the ingoing state of 

€ 

A, the relevant part
of the measurement apparatus.

(5) In the CERN Library, I found and read the 1957 article by Hugh
Everett on the relative-state interpretation of quantum mehanics
[8], the basic work in the direction of the Many-Worlds
Interpretation. This was probably in 1960. I remember that I found
Everett’s article amusing but I did not take it very seriously.
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(6) In 1960, John Bell joined the permanent staff of the Theory
Division at CERN. He got an office very close to mine. One day when
we told each other about our research, he said something that
stayed in my mind after that. He said: “I would like to do what
should be on page 25 in any textbook on quantum mechanics.” I
understood immediately what he meant: He would like to find a way
to derive the measurement postulate within the theory. During a
period, I also followed Bell’s important work in quantum mechanics,
that he regularly reported at conferences. Bell also came and
visited our particle physics group in Göteborg several times.

(7) Before I got a room of my own at CERN, I had shared office with
Franco Selleri from Bologna. We had similar interests and a few
years later, he came and stayed with me for a year in Göteborg.
During this stay, we had a few seminars on quantum measurement. The
main actors in the discussions where Franco and my Göteborg
colleague Nils Svartholm who had worked near Niels Bohr in
København. After the time in Göteborg, Franco devoted much of his
research to the study of the foundations of quantum mechanics.

Years later, when I visited Franco Selleri in Bari, the relevance
of the measurement problem to the wider theory of science became
clear to me. I was in Franco’s office when Franco was out for a
short time. The phone rang and I picked it: “This is Karl Popper.”
When Franco returned, I told him about the call. It was clear that
Franco had an ongoing dialogue with Karl Popper on the nature of
physical reality.

(8) In the mid-eighties, I developed a mathematical model of
measurement as a random walk in a probability simplex with the mean
of each step being zero [9]. Near the corners the step size had to
be close to zero to guarantee that each step stayed within the
simplex. Each random walk led to one of the corners of the simplex
(reduction of the wave packet). Because of the zero mean of the
steps, the statistics of the walks agreed with the Born rule.
Kristian Lindgren helped me with the numerical work in simulations
of this model.

This was a purely mathematical model; I had no physical picture of
what was going on. When I tried to make a physical picture, I made
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a mistake and got an unwanted drift; for some time, the model did
not feel right. The idea was not new but it took time before I
found it in a paper by P. Pearle [10].

I soon learnt that Nicolas Gisin of Université de Genève had made a
more elegant model in quantum diffusion that led to the same
result. We had contact for a few years and visited each other. For
me this contact was very stimulating. I especially appreciated an
elegant paper [11] by Gisin and Ian Percival, where measurement
interaction was included. Their starting point was a generalized
high-degree stochastic Schrödinger equation. As mentioned in
Chapter 1, I have recently shown that their equation, translated
into density matrix form, can be derived from linear quantum
mechanics [12]. I therefore consider their work as an early
solution to the measurement problem. I have to confess that I have
not evaluated in a similar way, other works in quantum diffusion
from this time.

It was also fascinating to follow, at a distance, the experimental
work of Gisin and his colleagues: in quantum cryptography and on
EPR pairs, entangled over large distances.

(9) During a period around 1990, Kristian Lindgren and I worked
with self-organizing systems, such as chemical systems which
spontaneously form geometrical structures [13]. This gave us an
experience of bifurcating systems where microscopic fluctuations
can have a decisive influence on the macroscopic scale. Kristian
Lindgren has done quite a lot of modelling in this field of
research. He has also done fundamental work on the connections
between information theory and statistical mechanics.

(10) A major step in my understanding of the measurement process
was, when I saw the interplay between non-linear relations that
apply to single measurements and linear relations that apply when
determining the means. It became clear to me that my work on random
walk in a probability simplex was quite relevant after all.

When I reached this insight, the results could be properly derived
instead of being postulated and there was no more any tendency for
a drift to appear together with the random walk. Still it took me a
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long time to get a clear picture of what it all really meant.
Several years of intense discussions and collaboration, mainly with
Kristian Lindgren, but later also with Erik Sjöqvist and Martin
Cederwall, were necessary for this.

(11) Over several decades, from time to time, I have troubled my
colleague and friend Kazimierz Rzazewski in Warszawa with
discussions on the measurement problem. He has been willing to
offer his time; he has listened to me and he has answered my
questions. From his field of expertise, quantum optics, he has told
me about phenomena that are relevant to my questions and that I
should know about. Kazik’s willingness to offer his time and
knowledge has been very valuable to me.

(12) When nobody seemed to bother to read what I had written in
arXiv [14] or in Journal of Physics [15], I decided to choose
another forum to present my work: art. Karin Bodland-Johnson had
introduced me to the art life of Värmland. In the summer of 2010,
Marc Broos at The Alma Löv Museum in Östra Ämtervik in Värmland,
gave me his Finland Pavillion where I could present my own
exhibition, both of quantum mechanics, as it is commonly known in
physics, and of the measurement process as I had learnt to
understand it. The same exhibition has also been shown at Museum
Gustavianum, Uppsala, at Karlstad University and KKV-Bohuslän (KKV
= Konstnärernas Kollektivverkstad, The Artisis' Collective
Workshop).

This new way of presenting things had its own dynamics. Marc Broos
had the idea that art which had served its purposes could be
solemny buried at Alma Löv. When I asked him, he accepted the idea
that outdated scientific ideas could also be buried. Before that,
in the morning of 8 August 2014, I presented a doctoral thesis in
art, as a performance at Alma Löv; in the afternoon it was followed
by a funeral for ideas.

The doctoral examination followed the usual procedure, played by
persons in the usual functions, thanks to Hans Olof Boström, Karin
and Marc Broos, Bengt Gustafsson, Bo Göranzon. Erik Sjöqvist,
Roland Spolander and Elin Wikström. Two physics colleagues took the
trouble to travel to Östra Ämtervik for the occasion from Vienna
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and Warsaw, respectively, Herbert Pietschmann and Kazimierz
Rzazewski.

Doctoral examination as a performance.
In the morning of 8 August 2014, at the Museum of Alma Löv, Östra
Ämtervik, we performed a doctoral examination. My thesis, Quantum
Art and Interactual Reality, was examined with respect to its
physical content and its artistic value. For the occasion, I was
dressed in my Ghanaian fugu. Sitting next to me was the physics
opponent, Erik Sjöqvist. Bo Göranzon was the chair person, and Elin
Wikström was the artistic opponent. The idea came from Roland
Spolander and Marc Broos opened the museum for us. (Photo: Denis
Romanovski.)

After the doctoral examination, in the funeral performance, three
ideas were solemnly buried: Schrödinger's cat idea, Bohr's idea of
a capricious nature [16] and Everett's and DeWitt's Many-Worlds
idea [17]. To me, the situation where both scientific and artistic
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criteria had to be met was very challenging. After these events,
Erik Sjöqvist, who had been the scientific opponent on my art
thesis, joined Kristian and me for collaboration.

Funeral of outdated physical ideas as a performance.
In the afternoon of 8 August, 2014, a second performance took
place, a funeral for outdated ideas. It was inspired by a
relatively new art form in Ghana where coffins are made in the
spirit of the life of the dead person. The idea of quantum
mechanics as an intrinsically probabilistic theory was buried in a
dice in the colours of Niels Bohr’s nation; Schrödinger’s cat idea
was buried in a cat-shaped coffin; the Many-Worlds interpretation
was buried in a coffin symbolizing parallel worlds. My arts
opponent, Elin Wikström and I performed the funeral rituals,
assisted by Nana Akoto Bruce, master drummer from the Music
Department of The University of Cape Coast. Karin Bodland-Johnson
followed the whole event closely. (Photo: Denis Romanovski.)



85

Poster session: Physical theory of measurement as graphic art.
Erik Weststrand, a graphic artist in Bohuslän, invited me to make
art with him in a professional way. At a stage when I expressed our
theory in a series of Feynman diagrams, Erik and I formed it into
this picture which we called ‘Poster Session’. (Photo: Jan
Holmstrand.)



86

(13) When my collaboration with Kristian Lindgren and Erik Sjöqvist
had been established, it became clear that I was the only one in
the team who had direct experience of work with field-theoretical
computations. Since my ideas had to be checked, we felt the need
for having one more person in the group with work experience in
field theory and we invited Martin Cederwall to join us. This is
how our group of four persons was formed. When we had a common
paper ready, we presented it in arXiv [18]. To have it published in
a journal turned out to be difficult however. Among editors, there
seems to be a belief that quantum measurement can not be understood
within quantum mechanics. Kristian Lindgren and I had a reedited
version published in Entropy [7]. In some sense, this is a final
version of our theory.

A way of describing this final version, is that it is done within
relativistic quantum mechanics and that the step to relativistic
theory is crucial. In a separate arXiv paper [19], I have given
detailed arguments for the importance of relativistic theory.

The collaboration with Kristian Lindgren has been essential for
the completion of the work reported in this book.

(14) As part of my thesis in art, I had written a theatre play
about the difficulties to communicate quantum-mechanical ideas.
An article by Melanie Bayley [20] had given me the idea of
using Lewis Carroll's Wonderland as a setting for this. I was
strengthened in my theatre idea by encouraging comments from my
art opponent at Alma Löv, Elin Wikström. With improved
understanding, I found it mecessary to have living and
historical persons together to discuss measurement in
Wonderland. To have a person who could be an authority for both
Niels Bohr and Albert Einstein, my choice was Marie Curie.

Whether this is a good way of presenting ideas, I am not sure,
but it was amusing to write the play. On 6 October 2019, it was
read (in the version of that time) by colleagues at Physical
Resource Theory, Chalmers, under the guidance of an experienced
theatre director, Magnus Wetterholm. Tomas Kåberger is helping
me with various aspects of the play. Magnus and Tomas are
planning to arrange a second reading within a few months.
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(15) I had read Andrew Whitaker's book Einstein, Bohr and the
Quantum Dilemma [21]. When in January 2018, I was in Dublin for
a conference, I took the opportunity to sneak away from the
conference and visit Andrew Whitaker in Belfast for one day.
This led to a period of dialogues between him and Kristian and
myself, still continuing. These dialogues have helped me to a
more profound understanding of several issues and also to a new
view on how ideas can be presented. Andrew Whitaker has also
been very kind and read this manuscript.

(16) To write a simple account of measurement on a two-level
system, I have gone back to the idea of random walk on the
probability interval [9, 10]. An interaction between a two-
level system and a non-biased first part 

€ 

A of a measurement
apparatus, considered to be composed of a series of independent
parts, free from bias, would lead to a random walk (zero mean
value for each step) on the probabiliy interval. The random
walk ends at one of the endpoints with a definite result; the
probabilities for the endpoints are given by the starting point
and agree with Born's rule. In this way, the whole picture of
the measurement process, or as I have preferred to call it, the
determination process, becomes very simple.

As written in Chapter 1, I have come to view work in quantum
diffusion by persons such as Nicolas Gisin, Ian Percival[11],
Philip Pearle and Lajos Diósi [22] to give an acceptable
explanation of the measurement process as an interaction
between the measured system and part of the measurement
apparatus. In his book [3], John Bell did not consider this
line of thinking (the way it looked at the time) as a finished
theory. In one of the main papers [11], Gisin and Percival
described their generalized Schrödinger equation as quantum
mechanics for an open system, but Andrew Whitaker [21]
interpreted their theory as phenomenological. I have recently
shown [12] that the basic equation of Gisin and Percival [11]
(transformed into density matrix form) can be derived from
linear quantum mechanics.
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(17) To understand more of science history and of the cultural
aspects of scientific theories, I have started a fruitful
dialogue with Sven-Eric Liedman. He has also kindly read my
presentation in Chapter 1 and found it comprehensible.

I have collected my writings in this small electronic book, which
is now freely available at Chalmers. To finish the work, I have
needed much support, not only from Kristian Lindgren but also from
Tomas Kåberger and Christian Löwhagen. For this, I am very
grateful.

In the rural area where I live, essential technical support has
been given to me by Lennart Ericson, Per Olof Hahne and Jan
Holmstrand.
–  –  –

From my family, my wife Kristina and our children, Gunnar,
Magdalena and Elin, I have received much love and support.
Because of the general nature of the work, my family members
have also commented and criticized and given me valuable ideas.
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