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Abstract

One way of improving the behavior of finite element schemes for classical, time-dependent Maxwell’s equations is to render
heir hyperbolic character to elliptic form. This paper is devoted to the study of a stabilized linear, domain decomposition, finite
lement method for the time harmonic Maxwell’s equations, in a dual form, obtained through the Laplace transformation in
ime. The model problem is for the particular case of the dielectric permittivity function which is assumed to be constant in a
oundary neighborhood. The discrete problem is coercive in a symmetrized norm, equivalent to the discrete norm of the model
roblem. This yields discrete stability, which together with continuity guarantees the well-posedness of the discrete problem, cf
rnold et al. (2002) [3], Di Pietro and Ern (2012) [45]. The convergence is addressed both in a priori and a posteriori settings.

n the a priori error estimates we confirm the theoretical convergence of the scheme in a L2-based, gradient dependent, triple
orm. The order of convergence is O(h) in weighted Sobolev space H2

w(Ω ), and hence optimal. Here, the weight w := w(ε, s)
here ε is the dielectric permittivity function and s is the Laplace transformation variable. We also derive, similar, optimal a
osteriori error estimates controlled by a certain, weighted, norm of the residuals of the computed solution over the domain
nd at the boundary (involving the relevant jump terns) and hence independent of the unknown exact solution. The a posteriori
pproach is used, e.g. in constructing adaptive algorithms for the computational purposes, which is the subject of a forthcoming
aper. Finally, through implementing several numerical examples, we validate the robustness of the proposed scheme.
2022 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in

imulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Time harmonic Maxwell’s equations; P1 finite elements; Stability; A priori estimate; A posteriori estimate; Convergence

1. Introduction

Because of the growing efficiency of computing facilities, constructing efficient computational methods for
imulation of partial differential equations, in two and three dimensions, has become a reality. This is of vital
mportance and becomes more apparent in industrial applications, e.g. when the computational domain is very
arge. In particular, nowadays there are a lot of industrial applications in subsea and subsurface imaging where
he computational domains comprise very large subdomains with constant values of material parameters on
ach subdomain. Usually, only some part of these domains, where there is an over-admissible material change,
resents extra caution and therefore is of interest. Such phenomena are modeled, e.g. in equations possessing
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constant material parameters in a boundary neighborhood of a significant part of the computational domain. Some
applications of the Maxwell’s models, describing the electro-magnetic fields, fit well into this category.

As in the realm of finite elements: it is well known that for the stable implementations of the finite element
olution for the Maxwell’s equations divergence-free edge elements are the most advantageous choice from a
heoretical point of view, see, e.g. [40,43]. Recently, in [26], a second order method with mass lumping was
pplied for approximation of Maxwell’s equations in time domain using H (curl) conforming finite elements.

Also divergence-free edge elements for approximation of Maxwell’s equations are used in combination with other
methods, see [7,21,27,46]. But the edge elements are less attractive for numerical solution since they are too
expensive to implement. On the contrary, continuous P1 finite elements provide efficiently implemented non-
expensive solution of Maxwell’s equations compared to H (curl) conforming methods, see, e.g. [8,19,34]. In
particular, the advantage of the P1 approach is apparent for the case considered in the current work when the
dielectric permittivity function is a constant in a boundary neighborhood. This phenomenon is verified through
numerical simulations for time-dependent Maxwell’s equations in [8,10,11]. Furthermore, P1 schemes can be
efficiently used in a fully explicit finite element scheme with lumped mass matrix as in [10,28,39]. However,
applied to the solution of Maxwell’s equations, P1 elements have a number of drawbacks, e.g. in domains
with re-entrant corners and non-zero tangential components at the boundary, they result in spurious oscillatory
solutions [41,44]. Different techniques are used to correctly represent field singularities at re-entrants, e.g. the
singular field method [14]. A number of other techniques, which focus on removing oscillatory behavior from
the numerical approximations of Maxwell’s equations, are given, e.g. in [35–37,42], and [44].

We circumvent such difficulties considering convex computational domains with constant values of parameters
in a boundary neighborhood. More specifically, in this work we consider continuous stabilized P1, domain
decomposition, finite element method for the numerical solution of time harmonic Maxwell’s equations for the
special case when the dielectric permittivity function has a constant value in a boundary neighborhood. In this way
the Maxwell’s equations are transformed to a set of time-independent wave equations on the boundary neighborhood
with several adequate boundary conditions that can be handled by the P1 finite element approach.

Recently, stability and consistency of the stabilized P1 finite element method for time-dependent Maxwell’s
equations were presented in [10] and a, related, short communication [11]. Efficiency in using explicit P1
finite element schemes is evident for solution of Coefficient Inverse Problems (CIPs). In many algorithms, for
electromagnetic CIPs, a qualitative collection of experimental data (measurements) is necessary at the boundary of
the computational domain to determine the dielectric permittivity function inside it, whereas the numerical solutions
for time-dependent Maxwell’s equations are required in the entire space R3, see, e.g. [9,12,13,48], and [49]. In such
cases it is efficient to consider Maxwell’s equations with constant dielectric permittivity function in a neighborhood
of the boundary of a relevant computational domain. In this regard, an explicit P1 finite element scheme in non-
conductive media is numerically tested for solution of time-dependent Maxwell’s system in 2D and 3D cases in [8].
The P1 finite element scheme of [8] is used for solution of different CIPs, where the objective is to determine the
dielectric permittivity function in non-conductive media for time-dependent Maxwell’s equations using simulated
and experimentally generated data, see, e.g. [9,12,13], and [48,49].

In the present study we are using the Laplace transform to obtain time-harmonic model problem which, hopefully,
will have further applications in deriving algorithms for solution of CIPs. Thus, the convergence analysis of this note
can be important for future investigations. The Laplace transform is more convenient and easier, compared to Fourier
transform, since it keeps the problem in real space. Note that the Laplace transform is already applied in different
algorithms for solution of CIPs: in [9] the Laplace transform was applied to the time-dependent wave equation,
with the transform parameter s as the pseudo-frequency. Then the globally convergent method for reconstruction of
the wave speed function in the resulting time-harmonic equation was derived in a pseudo-frequency interval: with
s ∈ [s, s̄]. The method of [9] was further tested on experimental data in [48,49], and the references therein.

In this study we derive optimal a priori and a posteriori convergence rates for the P1 finite element scheme, for the
ime harmonic Maxwell system, assuming a constant dielectric permittivity function at a boundary neighborhood,
ence with no in- and outflow. The Neumann type problem is well-conditioned due to the fact that the time-
armonic Maxwell’s equations are elliptic, whereas the original time-dependent Maxwell’s equations are hyperbolic.
n a priori approach has been considered by several authors in different settings, where some classical studies

re, e.g. the work [19] on continuous Galerkin for time dependent problem in 3D, and quasi-interpolation as
ell as edge finite element for low regularity solutions by [31,32], respectively. Our a posteriori approach for
557
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the time harmonic Maxwell’s equations, adopted to P1, possesses jump terms at interelement boundaries, hence
sought for discontinuous Galerkin-like treatment. There are many results for the a posteriori error estimates for the
classical time dependent Maxwell’s equations, e.g. [20] is addressing the robustness issue, a general work on error
estimations is given in [47], and in [25] the authors consider hp-adaption. There are many other studies relevant to
his work, e.g. in [18], the augmented formulations are derived, [22,23], and [24] are raising the issues as coercivity,
ingularities and weighted regularization in polyhedral domains. In [34] the continuous Galerkin is studied for the

axwell’s equations. But there are far less P1 a posteriori studies in the time-harmonic case for the non-constant
ielectric permittivity function. In our knowledge, a rigorous a priori and a posteriori FEM analyses with varying
ielectric permittivity function are missing for time-harmonic Maxwell’s equations, and this work fills the gap.

An outline of this paper is as follows. In Section 2 we introduce the mathematical model and present the problem
or the time harmonic Maxwell’s equations, where we assumed no dielectric volume charge. In Section 3 we describe
he structure of domain decomposition. Section 4 concerns the study of variational problem for the stabilized model,
et up of the finite element scheme and a proof for its well-posedness. Section 5 is devoted to the error analysis,
here optimal a priori and a posteriori error estimates are derived in a, gradient dependent, triple norm of Sobolev

ype (which, under certain assumptions, can be made equivalent to H 1-norm). In the a posteriori case the boundary
esidual, containing a normal derivative, is balanced by a multiplicative power of the mesh parameter. Finally, our
oncluding Section 6 is devoted to numerical implementations that justify the robustness of the theoretical results
nd the efficiency of approximations.

Throughout the paper C denotes a generic constant, not necessarily the same at each occurrence and independent
f the mesh parameter, the solution and other involved parameters, unless otherwise specifically specified.

. The mathematical model

The original model here is given in terms of the electric field Ê (x, s) , x ∈ Rd , d = 2, 3 and is varying with
he pseudo-frequency s > const. > 0, and under the assumption that the magnetic permeability of the medium
s µ ≡ 1. We consider the Cauchy problem for the time-harmonic Maxwell’s equations for electric field Ê (x, s)

assuming vanishing electric volume charges. Hence, the corresponding equation is:

s2ε(x)Ê(x, s) + ∇ × ∇ × Ê(x, s) = sε(x) f0(x), x ∈ Rd , d = 2, 3

∇ · (ε(x)Ê(x, s)) = 0.
(2.1)

Here, ε(x) = εr (x)ε0 is the dielectric permittivity function, εr (x) is the dimensionless relative dielectric permittivity
and ε0 is the permittivity of the free space. Further

∇ × ∇ × E = ∇(∇ · E) − ∆E . (2.2)

The Eq. (2.1) is obtained by applying the Laplace transform (in time)

Ê(x, s) :=

∫
+∞

0
E(x, t)e−st dt, s = const. > 0, (2.3)

to the function E (x, t) satisfying the time-dependent Maxwell’s equations below

ε(x)
∂2 E(x, t)

∂t2 + ∇ × ∇ × E(x, t) = 0, x ∈ Rd , d = 2, 3, t ∈ (0, T ].

∇ · (εE)(x, t) = 0,

E(x, 0) = f0(x),
∂ E
∂t

(x, 0) = 0, x ∈ Rd , d = 2, 3.

(2.4)

We note that in the problem (2.4) we take non-zero initial condition E(x, 0) = f0(x) which is important when
onsidering the solution of coefficient inverse problem, in order to determine the function ε(x) in (2.4) from finite
umber of observations of the function E at the boundary Γ , and when the problem is reformulated in a bounded
omain.

Numerically, it is unrealistic to solve the problem (2.4) in unbounded domains. As adequate computational spatial
omain, we consider a convex bounded, polygonal (here axi-parallel rectangular), subdomain Ω ⊂ Rd , d = 2, 3

with boundary Γ . More specifically, let Ω be a simply connected domain. We define Ω2 := Ω \Ω1, where Ω1 ⊂ Ω

as positive Lebesgue measure and ∂Ω ∩ ∂Ω1 = ∅. In this way, we are cutting out Ω1 from Ω , the new subdomain
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Fig. 1. Domain decomposition in Ω . The mesh in the domain Ω is a combination of the finite element mesh in Ω1 outlined in red and
light blue color, and the finite element mesh in Ω2 outlined by blue and light blue color. The mesh in Ω2 is also presented on b). Meshes
n Ω1 and Ω2 overlap by the layer of nodes outlined by the light blue color such that they have 2 common inner nodes and boundaries.

2 shares boundaries with both Ω and Ω1: ∂Ω2 = ∂Ω ∪ ∂Ω1, Ω = Ω1 ∪ Ω2, Ω1 = Ω \ Ω2 and Ω̄1 ∩ Ω̄2 = ∂Ω1,
Fig. 1).

To proceed we assume ε(x) ∈ C2(Rd ), d = 2, 3 and for a known constant d1 > 1,

ε(x) ∈ [1, d1] , for x ∈ Ω1 = Ω \ Ω2,

ε(x) = 1, for x ∈ Ω2 = Ω \ Ω1,
(2.5)

emark 1. Conditions (2.5) mean that, in the vicinity of the boundary of the computational domain Ω , Eq. (2.4)
ransforms to the usual time-dependent wave equation. To derive error bounds, the conditions on the size of ε, play
central role.

In the current work we are using the same set-up for boundaries as in many other works related to the solution
f CIPs for Maxwell’s equations, see [8,9,12,13]. We use mixed Neumann and first order absorbing boundary
onditions, since they provide particular interest from scientific community for solution of applied problems,
ee [8,12,13] and the references therein, where similar conditions were used.

More specifically, for Γ := ∂Ω the boundary of the computational domain Ω , we use the split Γ = Γ1 ∪Γ2 ∪Γ3,
o that Γ1 and Γ2 are the top and bottom sides, with respect to y- (in 2d) or z-axis (in 3d), of the domain Ω ,
espectively, while Γ3 is the rest of the boundary. Further, ∂ν(·) denotes the normal derivative on Γ , where ν is the
utward unit normal vector at the boundary Γ .

emark 2. In most estimates below, it suffices to restrict the Neumann boundary condition for the dielectric
ermittivity function to: ∂νε(x) = 0, on Γ1 ∪ Γ2.

Now, using similar argument as in the studies in [8]–[12], and by Remark 1, for the time-dependent wave
quation, we impose first order absorbing boundary condition, see [29], at Γ1 ∪ Γ2:

∂ν E + ∂t E = 0, (x, t) ∈ (Γ1 ∪ Γ2) × (0, T ]. (2.6)

o impose boundary conditions at Γ3 we can assume that the surface Γ3 is located far from the domain Ω1. Hence,
e can assume that E ≈ E inc in a vicinity of Γ3, where E inc is the incident field. Thus, at Γ3 we may impose
eumann boundary condition
∂ν E = 0, (x, t) ∈ Γ3 × (0, T ]. (2.7)
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Finally, using the well known vector-analysis relation (2.2), and applying the Laplace transform to Eq. (2.4) and
he boundary conditions (2.6)–(2.7) in the time domain, the problem (2.1) will be transformed to the following

odel problem

s2ε(x)Ê(x, s) + ∇(∇ · Ê(x, s)) − △Ê(x, s) = sε(x) f0(x), x ∈ Rd , d = 2, 3

∇ · (ε(x)Ê(x, s)) = 0,

∂ν Ê(x, s) = 0, x ∈ Γ3,

∂ν Ê(x, s) = f0(x) − s Ê(x, s), x ∈ Γ1 ∪ Γ2.

(2.8)

. The structure of domain decomposition

We recall that in the current work we consider the special case when the dielectric permittivity function ε(x)
as a constant value in a boundary neighborhood and satisfies conditions (2.5). These conditions allow to consider
ifferent equations in different parts of computational domain, since the Maxwell’s equations are transformed to a
et of time-independent wave equations on the boundary neighborhood Ω2.

Hence, instead of solving the model problem (2.8) in the whole domain Ω , we propose to use the domain
ecomposition method presented below such that the problem (2.8) is solved by FE in the inner domain and the
ave equation is computed in the outer domain, see Remark 1. The domain decomposition can be motivated by the

act that in some applications, specially CIPs, (see [9,12,13,48,49]), only a part of the domain can be of interest for
nvestigations, where the dielectric permittivity functions varies in space, and thus, e.g. adaptivity can be applied
nly in this part. Thus we reduce the computational complexity, and time, for the solution of the whole problem
y avoiding the unnecessary computations in the outer domain.

Below we describe the domain decomposition procedure between the two domains Ω1 and Ω2 where the FEM
s used for computation of the solution of the following problem in Ω1:

s2ε(x)Ê(x, s) + ∇(∇ · Ê(x, s)) − △Ê(x, s) = sε(x) f0(x), x ∈ Ω1 ⊂ Rd , d = 2, 3

∇ · (ε(x)Ê(x, s)) = 0,

Ê(x, s) = g, x ∈ ∂Ω1,

(3.9)

nd another FEM scheme is used in Ω2 for solution of the wave equation (since ε(x) = 1 in Ω2), after Laplace
ransformation in time:

s2ε(x)Ê(x, s) − △Ê(x, s) = sε(x) f0(x), x ∈ Ω2 ⊂ Rd , d = 2, 3

Ê(x, s) = ÊΩ2,2 (x, s), x ∈ ∂Ω2,2,

∂ν Ê(x, s) = 0, x ∈ Γ3,

∂ν Ê(x, s) = f0(x) − s Ê(x, s), x ∈ Γ1 ∪ Γ2.

(3.10)

Communication between Ω1 and Ω2 takes place by having the common two-layer inner boundaries with elements
utlined by light-blue color, see Fig. 1. The common nodes of both Ω1 and Ω2 domains belong to either of the
ollowing boundaries (see Fig. 1):

• Nodes on the boundary ∂Ω1 of Ω1 (outlined by red dashed line in Fig. 1) are interior nodes for Ω2,
• Nodes on the inner boundary ∂Ω2,2 of Ω2 (outlined by green dotted line in Fig. 1) are interior nodes for Ω1.

By conditions (2.5) function ε = 1 at the overlapping nodes between Ω1 and Ω2, and thus, both discretization
chemes coincide on the common structured overlapping layer, and in this way we avoid instabilities at the interfaces.
he domain decomposition scheme is described in the Algorithm 1.

. Variational approach

We denote the standard inner product in [L2(Ω )]d , by (·, ·), d ∈ {2, 3}, and the corresponding norm by ∥ · ∥.
imilarly we denote by ⟨·, ·⟩Γ the standard inner product of [L2(Γ )]d−1 and the associated L2(Γ )-norm by ∥ · ∥Γ .
e define the L2 scalar products

(u, v) :=

∫
u · v dx, (u, v)ω :=

∫
u · v ωdx, ⟨u, v⟩Γ :=

∫
u · v dσ,
Ω Ω Γ
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Algorithm 1 Domain decomposition algorithm.

1: Solve the problem (3.9) using FEM on the FE mesh in Ω1.
2: Solve the problem (3.10) using FEM on the FE mesh in Ω2.
3: Copy FE solution obtained at the boundary ∂Ω2,2 by solving the problem (3.9) in Ω1 at the Step 1, as the

boundary condition for the FE solution in Ω2. Apply boundary condition at Γ .
4: Copy FE solution obtained at the boundary ∂Ω1 by solving the problem (3.10) at the Step 2, as the boundary

condition for the FE solution in Ω1.

and the ω-weighted L2(Ω ) norm

∥u∥ω :=

√∫
Ω

|u|
2 ωdx, ω > 0, ω ∈ L∞(Ω ).

.1. Stabilized model

The stabilized formulation for the problem (2.8), with d = 2, 3, is now written as:

s2ε(x)Ê(x, s) − △Ê(x, s) − ∇(∇ · ((ε − 1)Ê(x, s))) = sε(x) f0(x) x ∈ Ω ⊂ Rd ,

∂ν Ê(x, s) = 0, x ∈ Γ3,

∂ν Ê(x, s) = f0(x) − s Ê(x, s), x ∈ Γ1 ∪ Γ2,

(4.11)

here the second equation in (2.8) is hidden in the first one above.
Below we consider the variational formulation of (4.11) for all v ∈ [H 1(Ω )]3,

(s2ε Ê, v) + (∇ Ê, ∇v) + (∇ · (ε Ê), ∇ · v) − (∇ · Ê, ∇ · v)

− ⟨ f0, v⟩Γ1∪Γ2 + ⟨s Ê, v⟩Γ1∪Γ2 − ⟨∇ · (ε Ê) − ∇ · Ê, v · ν⟩Γ = (sε f0, v).
(4.12)

ssuming a certain relationship between |∇ε|, the lower bound of s: s, and ε, viz.

|∇ε| ≤
1
2

min(s2ε, ε − 1), (4.13)

the variational formulation (4.12) for the stabilized problem (4.11) yields an equivalent problem to the original
model (2.8).

Assumption 1. By condition (2.5) we may assume that the dielectric permittivity function ε(x) ≡ 1 on a
neighborhood of Γ , hence the last boundary integral above is indeed ≡ 0. Nevertheless, we have kept this term
in order to follow the general path in the computational steps. Fully varying ε(x), for time dependent problems, is
presented in [10,11].

Integration by parts, in the spatial domain, in the second, third and fourth terms in Eq. (4.12) yields; that for all
v ∈ [H 1(Ω )]3,

(s2ε Ê, v) + (∇(∇ · Ê), v) − (△Ê, v) − (∇(∇ · (ε Ê)), v) − ⟨ f0, v⟩Γ1∪Γ2 + ⟨s Ê, v⟩Γ1∪Γ2

− ⟨∇ · (ε Ê) − ∇ · Ê, v · ν⟩Γ + ⟨∂ν Ê, v⟩Γ + ⟨∇ · (ε Ê) − ∇ · Ê, v · ν⟩Γ = (sε f0, v),
(4.14)

which, canceling the zero terms ±⟨∇ · (ε Ê) − ∇ · Ê, v · ν⟩Γ ≡ 0, is simplified as

(s2ε Ê, v) + (∇(∇ · Ê), v) − (△Ê, v) − (∇(∇ · (ε Ê)), v)

− ⟨ f0, v⟩Γ1∪Γ2 + ⟨s Ê, v⟩Γ1∪Γ2 + ⟨∂ν Ê, v⟩Γ1∪Γ2 = (sε f0, v), ∀v ∈ [H 1(Ω )]3.
(4.15)

rom this equation, (4.11), and comparing with (2.8), it follows that ∇ · (ε Ê) = 0. To see this, we let Ẽ be the
unique solution of the problem (2.8) and consider the difference Ē = Ê − Ẽ between the solution Ê of the problem

˜ ¯
(4.11) and the solution E of the problem (2.8). We observe that the function E is the solution of the following
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s2ε Ē − ∆Ē − ∇(∇ · ((ε − 1)Ē)) = 0 in Ω ,

∂ν Ē = −s Ē on Γ1 ∪ Γ2,

∂ν Ē = 0 on Γ3.

(4.16)

ow we multiply Eq. (4.16) by v ∈ [H 1(Ω )]3 and integrate over Ω to get:

(s2ε Ē, v) + (∇ Ē, ∇v) − (∇(∇ · ((ε − 1)Ē)), v) + ⟨s Ē, v⟩Γ1∪Γ2 = 0 in Ω . (4.17)

Integrating by parts, and using ε ≡ 1 in Ω2, the third term in (4.17) can be written as

−(∇(∇ · ((ε − 1)Ē)), v) =

(
∇ · ((ε − 1)Ē), ∇ · v

)
− ⟨∇ (ε − 1)Ē, ν · v⟩Γ

− ⟨(ε − 1)∇ · Ē, ν · v⟩Γ =

(
(∇(ε − 1))Ē, ∇ · v

)
+

(
(ε − 1)∇ · Ē, ∇ · v

)
:= I1 + I2,

(4.18)

here the boundary term is vanished because ε ≡ 1 at Γ . Setting v = Ē in (4.17), and inserting terms corresponding
o I1 and I2 we end up with

∥ Ē ∥
2
s2ε

+ ∥ ∇ Ē ∥
2

+ ∥ ∇ · Ē ∥
2
(ε−1) + ∥ Ē ∥

2
s,Γ1∪Γ2

+

(
(∇(ε − 1))Ē, ∇ · Ē

)
= 0. (4.19)

stimating the last term in (4.19) as the right hand side we have

−

(
(∇(ε − 1))Ē, ∇ · Ē

)
= −

(
(∇ε)Ē, ∇ · Ē

)
≤

1
2

Ē
2

|∇ε|
+

1
2

∇ · Ē
2

|∇ε|
.

(4.20)

Now, recalling (4.13), we may use (4.19) and (4.20) to get Ē ≡ 0 and hence, Ê = Ẽ , or the solution Ê of the
stabilized problem (4.11) is the same as the solution Ẽ of the original problem (2.8).

4.2. Finite element discretization

We consider a partition of Ω into elements K denoted by Th = {K }, satisfying the standard finite element
subdivision with the minimal angle condition of elements K ∈ Th . Here, h = h(x) is a mesh function defined as
h|K = hK , representing the local diameter of the elements, see details in [4]. To formulate the finite element method
for (4.11) in Ω , we introduce the, continuous, piecewise linear, finite element space W E

h (Ω ) for every component
of the electric field E defined by

W E
h (Ω ) := {w ∈ H 1(Ω ) : w|K ∈ P1(K ), ∀K ∈ Th},

where P1(K ) denote the set of, continuous, piecewise-linear functions on K . Setting WE
h (Ω ) := [W E

h (Ω )]d , where
d = 2, 3. L2- projection of f0 with the extra property that it satisfies in the discrete version of the boundary condition
in problem (4.11). Then the finite element method for the problem (4.11) in Ω is formulated as:

Find Êh ∈ WE
h (Ω ) such that ∀v ∈ WE

h (Ω )

(s2ε Êh, v) + (∇ Êh, ∇v) + (∇ · (ε Êh), ∇ · v) − (∇ · Êh, ∇ · v)

+ ⟨s Êh, v⟩Γ1∪Γ2 = (sεPh f0, v) + ⟨Ph f0, v⟩Γ1∪Γ2 .
(4.21)

Since ε ≡ 1 on Γ , the outer boundary terms: ±⟨∇ · (ε Ê) − ∇ · Ê, ν · v⟩Γ in (4.12) and (4.14) are canceled, and
hence do not appear in (4.21) and the subsequent relations.

Theorem 1 (Well-posedness). Under the condition (4.13) and with

Ph f0 ∈ L2,ε ∩ L2,1/s(Γ1 ∪ Γ2), (4.22)

where L2,ε and L2,1/s(Γ1 ∪Γ2) are the usual ε-weighted L2(Ω ) and 1/s-weighted L2(Γ1 ∪Γ2) spaces, respectively,
he problem (4.21) has a unique solution Ê ∈ WE (Ω ).
h h
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Proof. We define the, discrete, bilinear and linear forms, respectively, as

a(Êh, v) =(s2ε Êh, v) + (∇ Êh, ∇v) + (∇ · (ε Êh), ∇ · v) − (∇ · Êh, ∇ · v)

+ ⟨s Êh, v⟩Γ1∪Γ2 ,
(4.23)

and

L (v) := (sεPh f0, v) + ⟨Ph f0, v⟩Γ1∪Γ2 ,

and restate Eq. (4.21) in its compact form as

a(Êh, v) = L (v). (4.24)

Thus, for the well-posedness via a Lax–Milgram like approach, it suffices to show that the discrete bilinear form
(·, ·) is coercive, and both a(·, ·) and L (·) are continuous. To this end we introduce the triple norm

|||Êh |||
2

:=∥ Êh ∥
2
s2ε

+ ∥ ∇ Êh ∥
2

+ ∥ ∇ · Êh ∥
2
ε−1 + ∥ Êh ∥

2
s,Γ1∪Γ2

. (4.25)

The proof of theorem is now a result of the following well-posedness inequalities: There are constants Ci , i = 2, 3
such that for all Êh and v ∈ WE

h (Ω ),

a(Êh, Êh) ≥
1
2
|||Êh |||

2 (Coercivity of a), (4.26)

a(Êh, v) ≤ C2|||Êh ||| · |||v|||, (Continuity of a), (4.27)

|L (v)| ≤ C3|||v|||, (Continuity of L ). (4.28)

Here, to justify the well-posedness, we do not need the, additional, stabilization bilinear form as in [3], [45], and
rely on the approach by, e.g. [16,17], and [33], that yields discrete coercivity, and hence also discrete stability.

To derive (4.26) is straightforward: letting v = Êh in (4.23),

a(Êh, Êh) = (s2ε Êh, Êh) + (∇ Êh, ∇ Êh) + (∇(ε − 1)Êh, ∇ · Êh)

+ ((ε − 1)∇ · Êh, ∇ · Êh) + ⟨s Êh, Êh⟩Γ1∪Γ2

=∥ Êh ∥
2
s2ε

+ ∥ ∇ Êh ∥
2

+ ∥ ∇ · Êh ∥
2
ε−1

+ (∇(ε − 1)Êh, ∇ · Êh)+ ∥ Êh ∥
2
s,Γ1∪Γ2

.

(4.29)

where we have used the equality

(∇ · (ε Êh), ∇ · v) − (∇ · Êh, ∇ · v) = (∇ · ((ε − 1)Êh), ∇ · v)

= (∇(ε − 1)Êh + (ε − 1)∇ · Êh, ∇ · v).
(4.30)

Here, using ∇(ε − 1) = ∇ε, the contribution from the first term on the right hand side can be estimated, from
above, as

±

(
(∇ε)Êh, ∇ · Êh

)
≥ −

1
2

Êh

2

|∇ε|
−

1
2

∇ · Êh

2

|∇ε|
, (4.31)

hich recalling the assumption (4.13), can be hidden in the first and third terms in the triple norm and proves the
oercivity.

As for the continuity of a(·, ·), using Cauchy–Schwarz’ inequality and (4.31),

a(Êh, v) = (s2ε Êh, v) + (∇ Êh, ∇v) + (∇ · ((ε − 1)Êh), ∇ · v) + ⟨s Êh, v⟩Γ1∪Γ2

= (s
√

ε Êh, s
√

εv) + (∇ Êh, ∇v) + ((ε − 1)∇ · Êh, ∇ · v)

+ ((∇ε)Êh, ∇ · v) + ⟨
√

s Êh,
√

sv⟩Γ1∪Γ2

≤∥ Êh ∥s2ε∥ v ∥s2ε + ∥ ∇ Êh ∥∥ ∇v ∥ + ∥ ∇ · Êh ∥ε−1∥ ∇ · v ∥ε−1

+ ∥ Êh ∥|∇ε|∥ ∇ · v ∥|∇ε| + ∥ Êh ∥s,Γ1∪Γ2∥ v ∥s,Γ1∪Γ2

ˆ E

(4.32)
≤ C |||Eh ||| · |||v|||, ∀v ∈ Wh (Ω ).
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Likewise, for Ph f0,h ∈ L2,ε(Ω ) ∩ L2,1/s(Γ1 ∪ Γ2), we can easily verify that

L (v) =

(√
εPh f0, s

√
εv

)
+ ⟨Ph f0, v⟩Γ1∪Γ2

≤∥ Ph f0 ∥ε∥ v ∥s2ε + ∥ Ph f0 ∥1/s,Γ1∪Γ2∥ v ∥s,Γ1∪Γ2

≤

(
∥ Ph f0 ∥ε + ∥ Ph f0 ∥1/s,Γ1∪Γ2

)
|||v|||,

(4.33)

and hence L is continuous as well, and the proof is complete.

5. Error analysis

In this section first we prove an a priori error bound based on an additional assumption on ε, and then continue
with a posteriori error estimates for the continuous piecewise linear approximation of time harmonic Maxwell’s
equations formulated in (4.21).

5.1. A priori error estimates

To derive a priori error estimates we need the continuous versions of the linear and bilinear forms introduced in
the well-posedness theorem. To this end, we rewrite (4.23) replacing Êh by Ê and with a new continuous linear
form defined with the same expression as L (v), but for v ∈ [H 1(Ω )]d rather than in the space WE

h (Ω ):

a(Ê, v) =(s2ε Ê, v) + (∇ Ê, ∇v) + (∇ · (ε Ê), ∇ · v)

− (∇ · Ê, ∇ · v) + ⟨s Ê, v⟩Γ1∪Γ2 , ∀v ∈ [H 1(Ω )]d
(5.34)

and

L c(v) := (sε f0, v) + ⟨ f0, v⟩Γ1∪Γ2 , ∀v ∈ [H 1(Ω )]d . (5.35)

ence we have the concise form of the variational formulation

a(Ê, v) = L c(v), ∀v ∈ [H 1(Ω )]d . (5.36)

o proceed we derive a quasi Galerkin orthogonality relation by restricting, in (5.34) and (5.35), v ∈ WE
h (Ω ), and

hen subtracting (4.24) from the, such obtained, version of the continuous problem (5.36) to get

a(Ê − Êh, v) = L c(v) − L (v)

=

(
sε( f0 − Ph f0), v

)
+ ⟨ f0 − Ph f0, v⟩Γ1∪Γ2 , ∀v ∈ WE

h (Ω ).
(5.37)

For the P1 approximation, using the linear interpolant Ph f0 of f0 ∈ L2(Ω ), we may assume that, the weighted
ifference ∥ f0 − Ph f0∥ε is of the order O(h):

∥ f0 − Ph f0∥ε ∼ | f0 − Ph f0|1/s,Γ1∪Γ2
(∼ O(h)). (5.38)

sually, we need more than f0 ∈ L2(Ω ) to have the O(h) estimate which we assumed is the case for f0 here. The
elation in (5.38) is straightforward in non-weighted norms.

Now we are ready to derive the following theoretical error bound.

heorem 2. Let Ê and Êh be the solutions for the continuous problem (4.11) (in the variational form (4.12)) and
ts finite element approximation, (4.21), respectively. Then, assuming (5.38), as well as adequate lower bounds for
he coefficients s2ε and (ε − 1) there is a constant C, independent of Ê and h, such that

|||e||| ≤ C ∥ h Ê ∥H2
w(Ω) +O(h).

here w = w(ε(x), s) is the weight function which depends on the dielectric permittivity function ε(x) and
he pseudo-frequency variable s. Further, O(h), corresponds to the contributions from the interpolation and

L2-projection errors in (5.38).
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Proof. Let e = Ê − Êh , using the quasi Galerkin orthogonality (5.37), applied to the term a(e, Êh) below, we have
that

a(e, e) = a(e, Ê − Êh) = a(e, Ê) − a(e, Êh)

= a(e, Ê) −

(
sε( f0 − Ph f0), Êh

)
− ⟨ f0 − Ph f0, Êh⟩Γ1∪Γ2

= a(e, Ê − πh Ê) + a(e, πh Ê) −

(
sε( f0 − Ph f0), Êh

)
− ⟨ f0 − Ph f0, Êh⟩Γ1∪Γ2 .

(5.39)

ext, we apply the quasi Galerkin orthogonality (5.37) to term a(e, πh Ê) above, and combine the initial data terms
ppearing on the right hand side to get

a(e, e) =a(e, Ê − πh Ê)

+

(
sε( f0 − Ph f0), πh Ê − Êh

)
+ ⟨ f0 − Ph f0, πh Ê − Êh⟩Γ1∪Γ2 .

(5.40)

ow using the Cauchy–Schwarz’ inequality and the interpolation error estimates we can estimate the first term on
he right hand side of (5.40) as follows:

a(e, Ê − πh Ê) = (e, Ê − πh Ê)s2ε + (∇e, ∇(Ê − πh Ê)) + (∇ · e, ∇ · (Ê − πh Ê))ε−1

+ ((∇ε)e, ∇(Ê − πh Ê))

≤ ∥ e ∥s2ε∥ Ê − πh Ê ∥s2ε + ∥ ∇e ∥∥ ∇(Ê − πh Ê) ∥

+ ∥ ∇ · e ∥ε−1∥ ∇ · (Ê − πh Ê) ∥ε−1 + ∥ e ∥|∇ε|∥ ∇ · (Ê − πh Ê) ∥|∇ε|

+ ∥ e ∥s,Γ1∪Γ2∥ Ê − πh Ê ∥s,Γ1∪Γ2

≤c1 ∥ e ∥s2ε∥ h2 D2 Ê ∥s2ε +c2 ∥ ∇e ∥∥ h D2 Ê ∥ +

+ c2 ∥ ∇ · e ∥ε−1∥ h D2 Ê ∥ε−1 +c2 ∥ e ∥|∇ε|∥ h D2 Ê ∥|∇ε|

+ c4 ∥ e ∥s,Γ1∪Γ2

(
∥ h2 D2 Ê ∥

1/2
s,L2(Ω) · ∥ h D2 Ê ∥

1/2
s,L2(Ω)

)
.

Thus, we have

a(e, Ê − πh Ê) ≤C |||e||| ·

(
∥ h2 D2 Ê ∥s2ε + ∥ h D2 Ê ∥ + ∥ h D2 Ê ∥ε−1

)
+ ∥ h D2 Ê ∥|∇ε| +∥ h3/2 D2 Ê ∥s ≤ C |||e|||· ∥ h D2 Ê ∥w

(5.41)

where we used (4.13), w = max(hs2ε, ε − 1, h1/2s), and to estimate the interpolation error at the boundary we
applied the trace estimate (see Brenner–Scott [15]).

∥ Ê − πh Ê ∥s,Γ ≤ C̃ ∥ Ê − πh Ê ∥
1/2
s,L2(Ω)∥ Ê − πh Ê ∥

1/2
s,H1(Ω)

≤ C̃ ∥ Ê − πh Ê ∥
1/2
s,L2(Ω)∥ ∇(Ê − πh Ê) ∥

1/2
s,L2(Ω)

≤ C̃ ∥ h2 D2 Ê ∥
1/2
s,L2(Ω) · ∥ h D2 Ê ∥

1/2
s,L2(Ω) .

(5.42)

Here, D2 stands for the differential operator which, e.g. for the 2-dimensional domain Ω , i.e. in xy-geometry and
for u ∈ C (2)(Ω ) is given by

D2u := (u2
xx + 2u2

xy + u2
yy)1/2.

Finally, C̃ is a general constant and ci :s are the interpolation constants. Hence, recalling the definition (4.25) of the
triple norm, coercivity and continuity of a(e, e) (see (4.26) and (4.27)) which also hold for functions in H 1(Ω ),
assumptions (5.38) on the order of interpolation and L2-projection errors, a kick-back argument yields the result.
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Remark 3. We note that the obtained error is of order O(h) in H 2
w(Ω ) which is optimal due to the gradient term

n the triple norm. This may be further improved to achieve superconvergence and estimations in the negative norm
hich in scalar form is defined as

∥w∥H−s (Ω) = sup
ϕ∈H s (Ω)∩H1

0 (Ω)

(w, ϕ)
∥ϕ∥H s (Ω)

.

This, however, extended to vector form, yields extra computational complexity. Besides in P1 approximation the
contributions from the assumption on interpolation error of the initial data deteriorates any convergence rate beyond
O(h).

5.2. A posteriori error estimates

In the a posteriori error estimates we need the residual (loosely speaking, the difference between the left and the
right hand side of the continuous equation, when the exact solution is replaced by its current approximation). Starting
from the finite element formulation, the residual is obtained through the converse use of Green’s formula, resulting
inter-element jump terms at the element-boundaries. In the discrete formulations, the second order derivatives are
defined as in the form of discrete Laplacian:

(∆huh, vh) : = −(∇uh, ∇vh) +

∑
K∈Th

∫
∂K

[∇uh · ν] vh dσ,

(∇uh, ∇vh) : =

∑
K∈Th

∫
K

∇uh · ∇vhdx, ∀uh , vh ∈ WE
h (Ω ).

(5.43)

Now if we relabel the boundaries of the internal element as

∂K± = {σ ∈ ∂K : ξ (σ ) · ν(σ ) ≥ (<)0}, ξ = ∇u, or ξ = ∇uh,

hen the jump is:

[ξ · ν]
⏐⏐⏐
∂K

= ξ · ν

⏐⏐⏐
∂K+

− ξ · ν

⏐⏐⏐
∂K−

.

f K1 and K2 are two elements with a common side S, and ξ = ∇u, then ∂K1,+

⏐⏐⏐
S

= ∂K2,−

⏐⏐⏐
S

and hence the
hole contributions from the jumps will cancel out except the integrals over the outer boundaries where there are
o jumps, (see, e.g. [38], p. 193). Note that in the elliptic type problems, the natural boundary condition is (see,
.g. [15] p142):∑

∂K∈∂Th

∫
∂K

[∇u · ν] vh dσ = 0. (5.44)

owever, the contribution of discrete jumps are non-zero:∑
∂K∈∂Th

∫
∂K

[∇uh · ν] vh dσ ̸= 0, (5.45)

nd therefore are involved in the weak formulations. Here, ∂Th = {∂K }: is the set of all boundaries ∂K of elements
K ∈ Th , and we denote by SΓ ⊂ ∂Th , the set of all sides ∂K of the elements K such that 2 or 3 vertices of these
lements, a side in 2- and a surface in 3-dimensions, respectively, belongs to Γ .

We also introduce the local measuring environments (scalar product and norm):

(u, v)K :=

∫
K

u · v dx, (u, v)K :=

∫
K

u · v ωdx, ⟨u, v⟩Γ :=

∫
∂K

u · v dσ,

nd local ω-weighted L2(K )-norm

∥u∥K ,ω :=

√∫
|u|

2 ωdx, ω > 0, ω ∈ L∞(K ).

K
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Then, the global scalar product and norm are the obvious sums,

(u, v)Ω =

∑
K∈Th

(u, v)K , ∥u∥
2
Ω =

∑
K∈Th

∥u∥
2
K .

e may define the residuals as

−R(Êh) :=s2ε(x)Êh − ∆h Êh − ∇h(∇ · ((ε(x) − 1)Êh)) − sε(x) f0(x), or

−Rh(Êh) :=s2ε(x)Êh − ∆h Êh, e)K +

∑
K∈Th

(∇h(∇ · ((ε(x) − 1)Êh), e))K

−

∑
∂K∈∂Th

1
2

∫
∂K

[(
∇ Êh + ∇ · ((ε − 1)Êh)

)
· ν

]
e dσ − ⟨s Êh, e⟩Γ1∪Γ2 .

(5.46)

hus using the notation for Rh(Êh), and η = (∇ Êh +∇ · ((ε−1)Êh)) ·ν on ∂K ∈ ∂Th , we write the above equation
interpreting the scalar products involving twice differentiation as sums and noting that ⟨∂ν Êh + s Êh, e⟩Γ1∪Γ2 =

Ph f0, e⟩Γ1∪Γ2 as

a(e, e) =(sε( f0 − Ph f0), e) + (RE (Êh), e) + ⟨( f0 − Ph f0), e⟩Γ1∪Γ2

+ ⟨∂ν Êh + s Êh, e⟩Γ1∪Γ2 −
1
2

∑
∂K∈∂Th

⟨[η], e⟩∂K − ⟨s Êh, e⟩Γ1∪Γ2

=(sε( f0 − Ph f0), e) + (RE (Êh), e) + ⟨ f0 − Ph f0, e⟩Γ1∪Γ2

+ ⟨∂ν Êh, e⟩Γ1∪Γ2 −
1
2

∑
∂K∈∂Th

⟨[η], e⟩∂K ,

(5.47)

where, in above the ±⟨s Êh, e⟩Γ1∪Γ2 terms are canceled. With the presence of the L2 projection Ph f0, and in view
of (5.40) Eq. (5.47) can be rewritten as

a(e, e) =(sε( f0 − Ph f0), e) + (Rh(Êh), e − πhe) + ⟨ f0 − Ph f0, e⟩Γ1∪Γ2

+ ⟨∂ν Êh, e − πhe⟩Γ1∪Γ2 −
1
2

∑
∂K∈∂Th

⟨[η], e − πhe⟩∂K

=(
√

ε( f0 − Ph f0), s
√

εe) + (hRh(Êh), h−1(e − πhe))

+ ⟨1/
√

s( f0 − Ph f0),
√

se⟩Γ1∪Γ2

+

∑
∂K∈SΓ

⟨∂ν Êh, e − πhe⟩∂K −
1
2

∑
∂K∈∂Th

⟨h−1
K [η], (e − πhe)hK ⟩∂K

≤ ∥ f0 − Ph f0∥ε ∥e∥s2ε + Ci

hRh(Êh)
 ∥∇e∥ + | f0 − Ph f0|1/s,Γ1∪Γ2

∥e∥s,Γ1∪Γ2

+ max
∂K∈SΓ

⏐⏐⏐h−1
K ∂ν Êh

⏐⏐⏐ (h ∥∇e∥) + Ci
1
2

max
∂K∈∂Th

{h−1
K |[η]|}(h ∥∇e∥)

≤Ci

hR̃h(Êh)
 ∥∇e∥ + Ch

(
∥e∥s2ε + ∥e∥s,Γ1∪Γ2

)
≤C̃i

(
h +

hR̃h(Êh)
)

|||e|||,

where for the justification for the maximum terms above we refer to [15,30]. Now, recalling the definition of the
triple norm and coercivity the proof is complete.

6. Numerical examples

Computations in this section are inspired by the works [10,11], devoted to the study of stabilized time-dependent
Maxwell’s system. In [10,11], we perform numerical tests in the computational domain Ω = [0, 1] × [0, 1] with

2
Ω1 = [0.25, 0.75]×[0.25, 0.75]. The time dependent model problem with source data f (x, t), x := (x, y) ∈ R , t ∈
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T

Fig. 2. The function ε(x, y) in the domain Ω = [0, 1] × [0, 1] for different m in (6.51).

[0, 0.5] (the right hand side) is given by:

ε(x)
∂2 E(x, t)

∂t2 + ∇ × ∇ × E(x, t) = f (x, t),

∇ · (εE)(x, t) = 0,

E(x, 0) = 0,
∂ E
∂t

(x, 0) = 0,

E |Γ = 0.

(6.48)

he electric field E(x, t) = (E1(x, t), E2(x, t)) is chosen such that the functions

E1(x, t) =
t2

ε
π sin2 πx cos πy sin πy,

E2(x, t) = −
t2

ε
π sin2 πy cos πx sin πx

(6.49)

give rise to the exact solution of this problem. After application of the Laplace transform (2.3) to (6.49) the exact
solution of the transformed (time harmonic) model problem will be

Ê1(x, s) =
2

s3ε
π sin2 πx cos πy sin πy,

Ê2(x, s) = −
2

s3ε
π sin2 πy cos πx sin πx .

(6.50)

In (6.49) the function ε is defined for an integer m > 1 as

ε(x, y) =

{
1 + sinm π (2x − 0.5) · sinm π (2y − 0.5) in Ω1,

1 otherwise, (6.51)

such that the condition ∇·(εE)(x, t) = 0 is fulfilled. Fig. 2 shows the function ε for different values of m = 2, . . . , 9
which we used in computations.

For numerical solution of (6.48) the software package WavES implemented in C++/PETSc [1] is used [2].
In the time harmonic version, we discretize the computational domain Ω denoting by Thl := {K } a partition of

the domain Ω into triangles K of sizes hl = 2−l , l = 1, . . . , 6. Numerical tests are performed for s = 20 in (2.3)
(this value is justified by experimental studies in [12,48,49]) and for different m = 2, . . . , 9 in (6.51). The relative
568
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Fig. 3. Relative errors for m = 3 (left) and m = 4 (right).

rrors are then measured in both L2- and H 1-norms, which are computed as

e1
l =

∥Ê − Êh∥L2

∥Ê∥L2

, and (6.52)

e2
l =

∥∇(Ê − Êh)∥L2

∥∇ Ê∥L2

, (6.53)

respectively, where, as in the sequel⏐⏐⏐Ê⏐⏐⏐ :=

√
Ê2

1 + Ê2
2

⏐⏐⏐Êh

⏐⏐⏐ :=

√
Ê2

1h + Ê2
2h . (6.54)

ere, Ê = (Ê1, Ê2) is the exact solution given by (6.50), and Êh = (Ê1h, Ê2h) is the computed solution.
Figs. 3–5 present convergence of P1 finite element numerical scheme for the function ε defined by (6.51) and for
= 3, . . . , 8. Convergence rates q1 and q2 in these figures are computed according to the logarithmic expressions:

q1 =

⏐⏐⏐⏐log
(

el1
h

el1
2h

)⏐⏐⏐⏐
| log(0.5)|

,

q2 =

⏐⏐⏐⏐log
(

el2
h

el2
2h

)⏐⏐⏐⏐
| log(0.5)|

,

(6.55)

where el j
h , el j

2h, j = 1, 2 are computed relative norms el j , j = 1, 2 on the mesh Th with the mesh size h and 2h,
espectively. Similar convergence rates are obtained for m = 2, 3, 4, 6, 8, 9 (these rates are not presented here), see
heir convergence results in the extended preprint version of this paper [5] and in the short version of the current
aper [6].

Figs. 6 show computed |Êh | and exact |Ê | solutions on meshes Thl with the mesh sizes hl = 2−l , l = 3, 4, 5, 6,
or m = 5 and m = 7 in (6.51), respectively.

We have implemented the domain decomposition algorithm as well, see Algorithm 1 of Section 3, taking
= [0, 1] × [0, 1] and Ω1 := [0.25, 0.75] × [0.25, 0.75] such that Ω = Ω1 ∪ Ω2. Fig. 1 illustrates a such type

f domain decomposition for h = 0.0625. But since convergence results in the domain decomposition method are
imilar to the finite element computations in the whole domain Ω , we omit presenting them here. Fig. 7 illustrates
omputational solution of the problem (6.48) using the domain decomposition method presented in Section 3.

Using Figs. 3–5 we observe that our scheme behaves like a first order method for H 1(Ω )-norm and second order
ethod for L2(Ω )-norm for all values of m. The obtained numerical results confirm the analytic estimates derived
n Theorem 2.

569



M. Asadzadeh and L. Beilina Mathematics and Computers in Simulation 204 (2023) 556–574

7

t
ε

p
o
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Fig. 5. Relative errors for m = 7 (left) and m = 8 (right).

. Conclusion

In this paper we consider the time harmonic Maxwell’s equations obtained through Laplace transform applied
o a time-dependent model problem with a certain bounded, variable, and positive dielectric permittivity function
(x).

We construct a P1 stabilized finite element approximations for this problem and prove its consistency and well-
osedness in a special case when the dielectric permittivity function has a constant value in a boundary neighborhood
f the spacial domain. This problem is of vital importance in solving the Coefficient Inverse Problems (CIPs) [9]

with several applications ranging from medical physics (radiation therapy) to micro turbines, computer chips, devices
in fusion energy studies, etc.

As for the accuracy of the constructed numerical scheme we derive, optimal, a priori and a posteriori error
bounds, in some, gradient dependent, weighted energy norms.

Finally, we have implemented several numerical examples that validate the robustness of the theoretical studies.
570
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Fig. 7. Computed vs. exact solution for different meshes taking m = 2 in (6.51) using the Algorithm 1 in the domain decomposition method.
Common boundaries between Ω1 and Ω2 are outlined by solid lines. Common nodes in Ω1 and Ω2 are in the domain outlined by light
blue color. The computations are performed on four refined meshes Thl with the mesh sizes hl = 2−l , l = 3, 4, 5, 6.
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