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Abstract
It has been a century since the species-area relationship (SAR) was first proposed as a power law to explain how species 
richness scales with area. There have been many attempts to explain the origin of this predominant form. Apart from the 
power law, numerous empirical studies also report a semi-log form of the SAR, but very few have addressed its incidence. 
In this work, we test whether these relationships could emerge from the assembly of large random communities on island-
like systems. The clustering of same-species individuals is central to our results, which we incorporate by modifying the 
self-interaction term in the generalized Lotka-Volterra equations. Our analysis demonstrates that the two most widely 
reported relationship forms can emerge due to differences in immigration rates and skewness towards weak interactions. We 
particularly highlight the incidence of the semi-log SAR for low immigration rates from a source pool, which is consistent 
with several previous empirical studies. The two SAR forms might show good fits to data over a large span of areas but a 
power-law overestimates species richness on smaller islands in remote archipelagoes.

Keywords Community assembly · Macroecology · Species-area relationship · Complex ecological communities

Introduction

The species-area relationship (SAR) is arguably the most 
widely studied scaling law in ecology, having received 
empirical support from numerous studies spanning different 
geographical regions and taxa (Drakare et al. 2006; Lomolino 
and Weiser 2001). The predominant power law form of the 
SAR was first described by O. Arrhenius in 1921 (Arrhenius 
1921). It related the number of species S to the area of a habi-
tat A as S ∼ Az , where the exponent z varies widely between 
0 and 1 (Drakare et al. 2006). A quantitative meta-analysis 
of a large number of SAR studies estimated its average value 
as 0.27 (Drakare et al. 2006). The power law was contested 
by a semi-log relationship in 1922, that advocated the form 
S ∼ z log(A) (Gleason 1922). While the power law relation-
ship is more widely reported, the semi-log SAR has also 
found support from numerous studies (Drakare et al. 2006; 
Lomolino and Weiser 2001). There have been attempts to 

explain the power law form based on species distributions 
(Coleman 1981; Leitner and Rosenzweig 1997; Picard et al. 
2004; Šizling and Storch 2004), abundance distributions 
(Preston 1948) or population dynamics through constraints 
on immigration (Bastolla et al. 2001; Durrett and Levin 
1996). The prevalence of SARs has also been attributed to 
the combined effects of widely observed abundance distri-
butions and the fact that individuals from the same species 
cluster together (Martín and Goldenfeld 2006). The semi-log 
relationship can be recovered from the power law SAR in 
some limit using species-incidence functions that depend on 
colonization and extinction rates (Ovaskainen and Hanski 
2003). However, there is no unified framework to explain the 
emergence of these competing SARs.

These scaling relationships are emergent in that they 
could be described by coarse-grained dynamics of large 
communities at the species level without reference to finer 
details and properties of individual organisms. Under-
standing the assembly of large communities could there-
fore underpin mechanisms that shape these scaling laws. 
The analysis of large systems has benefitted from many 
emerging approaches in the recent decades. In 1972, P.W. 
Anderson influenced the philosophy of science by sug-
gesting that ‘more is different’ (Anderson 1972), based 
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on accumulating evidence from various disciplines. This 
means that the properties of a collective composed of 
many parts could be drastically different from the parts 
themselves. In the same year, R. May used random matrix 
theory to show that large ecosystems become unstable 
when their complexity increases beyond a threshold (May 
1972), which contradicted the prevailing notion that diver-
sity increases stability. May’s analytical results showed 
that one cannot have indefinite stability in large and com-
plex ecosystems with many interactions. There is a limit 
beyond which an ecosystem is not resilient to small pertur-
bations and can exhibit large fluctuations in the population 
abundances of the constituent species. He defined com-
plexity in terms of connectance and interaction strength 
of the random matrix that encodes species interactions.

The complex dynamics of such random interaction net-
works can be modelled using the Generalized Lotka-Vol-
terra (GLV) equations. This model has been employed to 
uncover theoretical results ranging from identification of 
structural properties that affect co-existence (Serván et al. 
2018) to the study of generic assembly patterns that are 
consistent across network structures (Barbier et al. 2018; 
Bunin 2017). Some recent studies have investigated the 
distribution of number of coexisting species that results 
from GLV dynamics of much larger species pools (Serván 
et al. 2018). Others have even explored the progression 
and boundaries of extinction in large ecosystems (Pet-
tersson et al. 2020). These studies depart from identi-
fying constraints on parameters that result in complete 
co-existence of all species. When the interaction strength 
is increased beyond the regime where all species co-exist, 
the system wades through a phase characterized by single-
species extinctions (Pettersson et al. 2020). May’s stabil-
ity limit marks the end of this phase beyond which no 
stable equilibria exist.

We hypothesize that a modified GLV model accounting 
for spatial scaling could exhibit SARs through the assembly 
of random communities of different sizes. Our analysis relies 
on introducing an area parameter to the GLV equations to 
test these questions. We explore a large part of this area 
parameter space to recover different number of surviving 
species beyond the regime of complete co-existence. By 
further allowing demographic immigration in the modified 
GLV model, we demonstrate that the two widely reported 
forms of the SAR stem from differences in immigration rates 
and the skewness towards weak interactions. We discuss the 
implications of our results in the context of island systems. 
The differences in the two SAR forms are more significant 
for smaller islands especially on distant archipelagoes, 
which we describe in 'Immigration shapes SARs: the case 
of remote archipelagoes' and Supplementary appendix S3 
using data from empirical studies (Diamond 1972; Diamond 
and Mayr 1976; Gooriah et al. 2020a; Whittaker et al. 2014).

Methods

Generalized Lotka‑Volterra with spatial scaling

In its usual form, the GLV model describes the dynamics of 
species with densities yi through the following equations:

where Ki and ri denote the carrying capacity and growth rate 
of ith species. Bij expresses pairwise interspecific interaction 
strengths between species i and any other species j. The full 
matrix B contains information about all possible pairwise 
interaction strengths between species. Equation 1 implies 
that in the absence of interactions, each species grows to 
its carrying capacity Ki . � is the interaction strength param-
eter that scales all pairwise interaction strengths and conse-
quently the variance of the interaction matrix B. Note that 
many studies do not use the � parameter explicitly in the 
GLV equations, but rather work directly with the variance 
of B.

For a given value of � below May’s limit, the system 
eventually relaxes to a stable equilibrium that represents an 
assembled community where species densities are resilient 
to small perturbations (Fig. 1). The equilibrium densities of 
species at this stable fixed point could either be zero or posi-
tive. Fixed points without any extinctions are called feasible 
solutions but these are of little concern to us since we are 

(1)
dyi

dt
= riyi(1 −

yi

Ki

) + �yi

∑

j≠i

Bijyj

Fig. 1  Equilibrium abundances of a competitive community of 100 
species for increasing values of the interaction strength parameter ( � ). 
Each set of vertical dots represents an assembled community corre-
sponding to a given value of � . The bold black line in the inset traces 
the corresponding number of surviving species. Note that higher val-
ues of � correspond to more extinctions. The interaction strengths, 
growth rates and carrying capacities are chosen from normal distribu-
tions with means -1, +1 and +1 respectively. The standard deviation 
is set to 0.2 for each of these
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interested in communities with different number of surviv-
ing species assembled from a species pool.

The number of species in the assembled community 
decreases monotonically as � (or equivalently the variance 
of the interaction matrix) is increased (Fig. 1). This presents 
an opportunity to recover monotonic SARs using a modified 
version of the GLV equations. Consider Eq. 1 without the � 
parameter, then species densities can be replaced by absolute 
biomass abundances to obtain:

where A is the area of a given island, and A0 parameter-
ises this model for a given ecosystem. We set this parameter 
equal to 1 from hereon. The carrying capacity Ki is now an 
absolute quantity instead of a density, which explains why an 
area factor does not appear in that term. We now assume that 
the carrying capacities scale non-linearly with area, which 
modifies Eq. 2 as:

where Ainit is the minimum area for which the assembled 
community contains all species from the mainland pool. � 
is the carrying capacity scaling parameter. We fix � = 0.25 
for the analysis described in this paper ( In general, 𝛾 < 0.5 
is consistent with the results that we report). The non-trivial 
scaling of the carrying capacity implies that in the absence 
of interactions, the absolute carrying capacities do not 
change proportionally with area. Equivalently, the equilib-
rium densities would increase with decreasing areas. This 
premise is central to the results that we report subsequently. 
The relevant ecological pattern corresponding to this scaling 
is the spatial clustering of conspecifics. In Appendix S1 of 
Supplementary Information, we argue for sub-linear scaling 
of absolute carrying capacities based on clustering indices 
such as relative neighbourhood density (Condit et al. 2000; 
Martín and Goldenfeld 2006; Ostling et al. 2000). Other 
ecological patterns might also correspond to this non-trivial 
scaling with areas, but spatial clustering is particularly inter-
esting since it has been previously used to explain the power 
law SARs (Martín and Goldenfeld 2006; Plotkin et al. 2000). 
Clustered conspecifics would already have saturated levels 
of negative density dependence that is expected to change 
less drastically with change in areas. The carrying capacity 
term generally captures negative density dependence, but 
the peculiarity of this term in our model draws connections 
to the spatial distribution of individuals.

� can be used to capture the extent of spatial aggregation 
of conspecifics — individuals become more spatially aggre-
gated as � decreases from 1 to 0. Recently Brush and Harte 

(2)
dxi

dt
= rixi(1 −

xi

Ki

) +
xiA0

A

∑

j≠i

Bijxj

(3)
dxi

dt
= rixi(1 −

xi

Ki(
A

Ainit

)�
) +

xi

A

∑

j≠i

Bijxj

(2021) investigated how the strength of density dependence 
relates to the spatial aggregation of individuals. Their key 
result was that higher spatial aggregation corresponds to 
weaker density dependence. For a fixed area, lower values 
of � imply the same — high spatial aggregation and weak 
negative density dependence. The findings from our study 
break down for higher values of � (particularly 𝛾 > 0.75 ), 
which corresponds to weak spatial aggregation.

Clustering could affect interspecific interactions, but we 
assume that the clusters are well-mixed such that encounter 
rates depend on the island-level species densities as usual.

We are interested in an ecological setting where a regional 
pool of species is available to colonize different islands in 
a region (Kessler and Shnerb 2015). For an island defined 
by its area, the dynamics resulting from our model culmi-
nates in a final community where some species from the 
regional pool might not be feasible. Islands of different sizes 
yield communities with different compositions as a conse-
quence. We use our model to simulate ecosystem dynamics 
as follows: 

1. We pick entries of the interaction matrix Bij from a nor-
mal distribution that is symmetric around a negative 
mean (We fix mean = -1 and standard deviation = 0.2).

2. The growth rates ri are drawn from a normal distribu-
tion with mean = 1 and standard deviation = 0.2. The 
constraints on interactions and growth rates describe a 
community of competitive species.

3. The carrying capacities Ki are normally distributed with 
mean = 500 and standard deviation = 30. The parameter 
� is fixed as 0.25. The choice of Bij, ri and Ki allows for 
a large range of areas for which the system relaxes to 
stable equilibria.

4. Starting from an initial area, the number of surviving spe-
cies is plotted against successively smaller island areas A.

We are primarily interested in investigating the proper-
ties and processes of community assembly that could pos-
sibly influence SARs using our spatially implicit model. 
In all cases that we describe, we only show comparisons 
between the power-law and semi-log relationship forms. We 
perform a non-linear least-squares (NLSQ) analysis to fit 
and compare these forms using the least_squares function 
in ‘scipy.optimize’ package. This function implements the 
Trust Region Reflective algorithm described in Branch et al. 
(1999). We also plot the linear regression of the correspond-
ing better form for each of the cases. If there are consider-
able differences between the parameter estimates from the 
linear regression and the NLSQ analysis (this is the case 
only for the power-law estimates from an empirical dataset 
with few islands (Whittaker et al. 2014)) , then we perform 
model averaging using the R package ‘sars’ (Matthews et al. 
2019) to discern the better fit.
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Analogous to the scenario of increasing � , the system relaxes 
to a unique stable fixed point when the area parameter is above 
a certain threshold. We obtain the number of surviving spe-
cies from the fixed point for each value of the area parameter 
(Fig. 1). We hypothesize that the different number of surviv-
ing species obtained by varying the area parameter result in 
widely reported SARs. These relationships are usually studied 
for one type of species or species that are placed in the same 
trophic level. This is congenial to our choice of a competitive 
interaction matrix. A competitive system could represent func-
tional groups such as pollinators that compete for some com-
mon resources. A competitive GLV model with demographic 
noise has been shown to reproduce neutral island theories of 
Wilson-MacArthur and Hubbell (Kessler and Shnerb 2015). 
The power-law SAR has also been recovered from a spatially 
explicit extension of the Lotka-Volterra competition model that 
allowed migration between patches (O’Sullivan et al. 2019).

 Spatial scaling patterns with immigration

Immigration slows down the decline in number of surviv-
ing species either by introducing new species (MacArthur 
and Wilson 1963) or through the rescue effect (Brown and 
Kodric-Brown 1977) that delays extinctions through incom-
ing individuals of existing species (demographic immigra-
tion). What effects do different levels of immigration have on 
spatial scaling patterns in our model ecosystem? To address 
this, we redefine our GLV model with an additional term for 
demographic immigration:

The last term represents the immigration rate. This 
term has a negligible contribution for smaller values of 

(4)
dxi

dt
= rixi(1 −

xi

Ki(
A

Ainit

)�
) +

xi

A

�

j≠i

Bijxj + �e−�∕
√

A

area, where a species may go extinct without support from 
the growth and interaction terms. A species is considered 
extinct in our simulations if its abundance falls below 10−5 . 
As the area of an island shrinks, it is less likely to be colo-
nized by immigrant individuals. The immigration term in 
the above equation has an exponential function that rep-
resents varying levels of demographic rescue (Brown and 
Kodric-Brown 1977) as a function of area. � is the maxi-
mum possible immigration rate on the archipelago being 
investigated. � is chosen such that islands of different sizes 
receive disproportionate contributions from immigration, 
with respect to the extinction cutoff. We fixed � = 1000 , 
for which the immigration term contributes 10−5 to 10−6 
for the larger islands that would not support a few species 
otherwise (Fig. 3). � is also analogous to the character-
istic length scale in the spatially extended GLV model 
described in O’Sullivan et al. (2019). We compared the 
results for different values of �.

We also consider interaction matrices with more realistic 
sparsity and distributions of interactions between species. 
Many ecological communities are predominantly composed 
of weakly interacting species that have important stabiliz-
ing effects (Berlow 1999). We study how the preponderance 
of weak interactions influences SARs. We use interactions 
drawn from exponential distributions that represent com-
munities with varying skewness towards weak interactions. 
The rate parameter of the exponential distribution serves as 
a measure of this skew.

In ‘Immigration shapes SARs: the case of remote archi-
pelagoes’, we discuss our results in the light of two related 
empirical studies (Diamond 1972; Diamond and Mayr 1976) 
that exemplify the dependence of SARs on immigration 
rates. Both studies investigated bird diversity in the South-
west Pacific but differ in terms of their remoteness from 
the ‘source island’ of New Guinea. Our findings for low 

A B

Fig. 2  Species-area plots generated through 50 realizations of interaction matrix with mean = -1 and variance = 0.2. A
init

 = 50000. A The semi-
log form shows a better fit. B The corresponding linear regression on a semi-log plot that shows an obvious upper asymptote
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immigration rates (equivalently remote archipelagoes) are 
also consistent with the data from the Andaman and Azores 
Islands (Gooriah et al. 2020a, b; Whittaker et al. 2014, See 
Supplementary Appendix S3).

The dataset used in Diamond (1972); Diamond and Mayr 
(1976) has islands with areas spanning over six orders of mag-
nitude, conclusively differentiating between competing forms 
of the SAR. These studies exclude ‘isolated’ islands from their 
analysis, that are far from large islands within the archipelago. 
Speciation might influence the assembled communities espe-
cially on islands with fewer species. Islands whose avifaunas 
have not reached equilibrium are not included either. These 
are recolonized volcanic islands and islands that have under-
gone overall size contraction or modification of connecting 
land-bridges in the past c. 10,000 years.

Results

A B

C D

Fig. 3  Species-area plots demonstrating the better fit of power law SAR 
for intermediate values of immigration rates. Panels A and C show the 
fits for � = 0.1 and � = 0.01 respectively for 50 instances of the interac-

tion matrix. Panels B and D correspond to the respective linear regres-
sions on log-log plots. The interaction strength mean and variance are 
-1 and 0.2 respectively. A

init
 = 15000

Fig. 4  Power law SAR exponent z decreases as � is increased. The plot 
is restricted to � ≤ 0.5 , beyond which the relationship form breaks 
down. � = 0.01 for all values of �
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Figure 2 corresponds to the simplest case of an ecosystem 
with full connectance and no immigration. Starting with 100 
species, we plot the number of surviving species for island 
areas where at least one species goes extinct. The SAR is 
best represented by a semi-log function through our model. 
The curve saturates at an upper asymptote for very high val-
ues of the area parameter (Fig. 2).

The slope of the semi-log SAR varies with changes in the 
means of interactions and growth rates. It is also worth noting 
that for an intermediate range of areas, even the log-log plot could 
show a misleadingly good fit for a power law SAR (Fig. 2).

What determines a power law or a semi‑log SAR?

Our model — in its simplest form — supports the semi-
log relationship that is also widely reported in literature 

(Drakare et al. 2006). Our analysis suggests that varying lev-
els of immigration lead to different functional forms of the 
SAR. We start with a very low value of � and progressively 
increase it to check the resulting SAR. For very low immi-
gration rates, the semi-log relationship is supported (see 
Fig. S1 in Supplementary Material) as seen in the scenario 
without immigration (Fig. 2). However, there exists an inter-
mediate regime best characterized by a power law (Fig. 3). 
This form of the SAR also lacks the upper asymptote that 
we observed in the semi-log fit (Fig. 2). Interestingly, using 
area in the immigration term instead of its square root does 
not change the above results (Fig. S2 in Supplementary 
Material). The exponent z of the power law SAR decreases 
monotonically with increasing values of � (Fig. 4). The range 
of z values (Fig. 4) is consistent with what most empirical 
studies report (Drakare et al. 2006).

BA

DC

Fig. 5  SAR plots for exponentially distributed interactions with two 
different rate parameters. All plots correspond to � = 0.01 and con-
nectance = 0.1, where the entries of the interaction matrix are chosen 
randomly as an Erds-Rnyi graph. The semi-log form is better sup-
ported for rate parameter = 0.5, as demonstrated by the estimates in 

A ( A
init

 = 15000). Plots C shows the fits for rate parameter = 0.25, 
where the power law performs better ( A

init
 = 20000). B Linear regres-

sion on a semi-log plot using the same simulated data as in panel A. 
D Log-log plot showing the corresponding linear regression for data 
in C 
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The level of skew towards weak interactions strongly 
influences SAR shape. Given the same immigration level, a 
higher skew towards weak interactions favours a semi-log 
relationship (Fig. 5, Fig. S3 in Supplementary Material). 
This result does not change for fat-tailed distributions such 
as the Pareto distribution in the regime where stable solu-
tions exist (Fig. S3 in Supplementary Material).

Discussion

We studied competitive communities on island-like systems 
where inter-island immigration is very low and carrying 
capacities scale non-trivially as a consequence of conspe-
cific clustering. While clustering could result in such scal-
ing of carrying capacities (Appendix S1 in Supplemen-
tary Material), we are unaware of any empirical evidence 
that supports this assumption. We also assumed particular 
functional forms of the immigration rates (Eq. 4, Fig. S2 
in Supplementary Material) that represent island systems 
where rescue effect is negligible on the smallest islands and 
the immigration rates saturate for very large islands. Our 
results showed the emergence of two most widely observed 
forms of SAR through differences in immigration rates and 
skewness towards weak interactions (Fig. 6). Our analysis 
suggests that such spatial patterns emerge from community 
dynamics operating differentially on islands of different 

sizes. This is not surprising since there is emerging evidence 
that ecological mechanisms affect islands of different sizes 
disproportionately (Gooriah et al. 2021).

In addition to immigration rates and skewness towards 
weak interactions, sparsity of the interaction matrix also 
influences SAR slopes. If all other parameters are kept 
the same, then communities with more sparse interactions 
result in lower SAR slopes (Fig. 5, Fig. S3 in Supplemen-
tary Information). We also find that higher immigration rates 
correspond to higher SAR slopes, such that the number of 
surviving species fall off much more sharply with area for 
large areas. Our model does not capture intra-archipelago 
immigration that might change how SAR slopes vary with 
immigration from a mainland (Diamond and Mayr 1976). 
The SAR slopes we obtain are much more reasonable for 
choices based on realistic interaction networks (Fig. 5). We 
expect that some network structures could result in even 
lower slopes, but without much effect on the SAR form.

Some choices in our model incorporate effects of pro-
cesses affecting SARs, but other effects might be missed. 
Clustering might affect interspecific interactions in non-
trivial ways, which might be hard to analyse without using 
a spatially extended setting. Inter-island immigration could 
have important effects for some archipelagoes, which is not 
considered in our simplified mean-field model. Other func-
tional forms of the immigration term might be better suited 
to describe immigration from the mainland.

Fig. 6  Immigration rates and 
skewness towards weak interac-
tions determine SAR forms. 
Semi-log relationship dominates 
in the absence of immigration. 
Higher immigration rates from 
a source pool result in power 
law relationships but these 
could shift to semi-log SARs if 
the relative proportion of weak 
interactions is increased. S, A 
and z represent the number of 
species, area and the scaling 
law exponent respectively. Fig-
ure S10 in the Supplementary 
Information shows a more quan-
titative form of this trade-off
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Immigration shapes SARs: the case of remote 
archipelagoes

Our results have important implications for island systems, 
which we illustrate using two extensive empirical studies 
from the Southwest Pacific (Diamond 1972; Diamond and 
Mayr 1976). The Solomon archipelago in Diamond and Mayr 
(1976) is more than 600 km away from the ’source island’ 
of New Guinea. The authors assume that intra-archipelago 
immigration rates are much higher than the immigration rates 
from the ‘source’ island of New Guinea.

They further plot the SAR for three groups of islands 
within the Solomon Archipelago, which supports a 

semi-log form. The slope of the SAR is nearly the same 
across these three groups of islands (Fig. 7). We surmise 
that the immigration of birds into an island is also balanced 
by emigration to other islands within the same group. In 
other words, the system is at a steady-state of zero or very 
low immigration within the archipelago. Thus, any effec-
tive immigration should emanate from the source island 
or from islands in other distant archipelagos. The large 
distance from these other sources implies that the net 
immigration rates to the Solomon islands are very low. 
In fact, the authors state that with increasing isolation of 
an archipelago, the SAR may shift in form from a power 
function to an exponential (semi-log). The species richness 
data from the Azores (Whittaker et al. 2014) as well as 
Andaman Islands (Gooriah et al. 2020a) also concurs with 
this claim (See Supplementary Appendix S3). The Azores 
archipelago includes only nine islands but has been exten-
sively studied over the past many decades. Both relation-
ship forms show good fits to the data primarily because of 
the small number of islands but the semi-log form is more 
predictive for smaller islands. All of these studies are con-
sistent with our theoretical finding that low immigration 
rates lead to semi-log SARs.

The dataset in Diamond and Mayr (1976) also has many 
islands smaller than a few square kilometres, which are 
usually absent in many SAR studies (Lomolino and Weiser 
2001). Both forms of the SAR could show a very good (and 
similar) fit to data for larger island sizes (Fig. 7). As the 
authors point out, really small islands should be included in 
SAR analyses to conclusively identify the correct form of 
the relationship (Diamond and Mayr 1976).

Another study from islands that lie 5 to 300 miles from 
New Guinea, found a power-law SAR (Diamond 1972). Con-
sidering that these islands lie closer to the ‘source’ island of 
New Guinea, the immigration rates are likely to be higher 
than those for the Solomon Archipelago. This lends sup-
port to our theoretical results on the incidence of power-law 
SARs for higher immigration levels.

Conclusion

Using a simple model of interacting species that incorpo-
rates the effect of conspecific clustering, we recover many 
known features of SARs while also identifying factors that 
might best explain the variation in these relationships. 
The two SAR forms might show similar fits to data for a 
large span of areas but their differences could be stark for 
smaller islands especially when immigration rates from 
a source pool are low. Our results imply semi-log rela-
tionships for low immigration rates, which are possible 
through factors such as remoteness of an archipelago as in 
Diamond and Mayr (1976). Assuming a power law SAR 

A

B

Fig. 7  SAR plots for three groups of non-isolated islands within the 
Solomon Archipelago. These groups differ in how the islands within 
them were connected during the Pleistocene period. The islands in 
Group 3 did not have any history of connections. The semi-log rela-
tionship shows a good fit to data (A). The R2 values for the regression 
lines are 0.978, 0.982 and 0.955 for Group 1, 2 and 3 respectively. 
The slopes for the different groups are very similar. Panel B shows a 
clear departure from a power-law relationship for smaller areas. The 
linear regression lines indicate a good fit for islands larger than one 
square mile. In particular, the R2 value for such islands in group 1 is 
0.976 from the power-law SAR. This demonstrates that a naive infer-
ence could support a power law, in spite of the islands spanning over 
four orders of magnitude in area ( > 1 square mile)
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in such situations could mislead extinction scenarios since 
these would overestimate the species richness for smaller 
areas. It is extremely important to investigate the effects 
of habitat loss, especially on small islands in distant archi-
pelagoes, given that islands have witnessed disproportion-
ately large number of extinctions (Loehle and Eschenbach 
2012; Spatz et al. 2017). We hope that our study prompts 
empirical studies to systematically evaluate the effects 
of immigration and community structure on species-area 
relationships.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12080- 022- 00545-x.
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