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ARTICLE

Integrative functional analysis uncovers metabolic
differences between Candida species
Neelu Begum1, Sunjae Lee1, Theo John Portlock2, Aize Pellon1, Shervin Dokht Sadeghi Nasab1, Jens Nielsen 3,4,

Mathias Uhlen 2, David L. Moyes 1✉ & Saeed Shoaie 1,2✉

Candida species are a dominant constituent of the human mycobiome and associated with the

development of several diseases. Understanding the Candida species metabolism could

provide key insights into their ability to cause pathogenesis. Here, we have developed the

BioFung database, providing an efficient annotation of protein-encoding genes. Along, with

BioFung, using carbohydrate-active enzyme (CAZymes) analysis, we have uncovered core

and accessory features across Candida species demonstrating plasticity, adaption to the

environment and acquired features. We show a greater importance of amino acid metabo-

lism, as functional analysis revealed that all Candida species can employ amino acid meta-

bolism. However, metabolomics revealed that only a specific cluster of species (AGAu

species—C. albicans, C. glabrata and C. auris) utilised amino acid metabolism including argi-

nine, cysteine, and methionine metabolism potentially improving their competitive fitness in

pathogenesis. We further identified critical metabolic pathways in the AGAu cluster with

biomarkers and anti-fungal target potential in the CAZyme profile, polyamine, choline and

fatty acid biosynthesis pathways. This study, combining genomic analysis, and validation with

gene expression and metabolomics, highlights the metabolic diversity with AGAu species

that underlies their remarkable ability to dominate they mycobiome and cause disease.
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Fungal infections affect around 7.5 million people around the
world every year. Within human fungal communities
(mycobiome), with the notable exception of the skin, Can-

dida species are the most common group1–3. These species are
generally pathobionts, being the most common human fungal
pathogens, despite also being commensal organisms4. Candida
infections are becoming increasingly concerning, and the World
Health Organisation (WHO) has recently emphasised interna-
tional surveillance for diagnosis and management of fungal
infection, particularly Candida albicans infection5–7. Recently, a
novel Candida species, Candida auris has been identified with
significant mortality and morbidity, as well as a high degree of
anti-fungal resistance8,9. There are over 200 Candida species
currently identified, but only a handful of these are present in the
human microbiota with the ability to cause infection and
pathology. Most notable examples of these include C. albicans, C.
glabrata, C. dubliniensis, C. tropicalis and C. auris9–15. Candida
species, most notably C. albicans and C. glabrata, can give rise to
a variety of superficial infections, including oral thrush and vul-
vovaginal candidiasis, but are also capable of causing a systemic
infection with significant mortality16–20. As well as direct infec-
tions, fungi such as Candida species have also been associated
with oncogenesis through complement activation, demonstrating
potential effects of the interaction of fungal species with human
host21.

An essential virulence determinant of fungi is their metabolic
plasticity22. Fungi are significant in their ability to utilise
numerous different anabolic and catabolic sources in their
metabolic processes, attributable to switching between carbon and
nitrogen sources23. Nutritional availability, environmental fac-
tors, competition and pathogenic factors all influence this
plasticity24,25. Investigations of Candida species-specific tran-
scriptional regulators of glycolytic genes (e.g. Tye2 and Gal4) and
enzymes of the glycolytic pathway (hexose catabolism), indicate
these factors play an essential role in central carbon metabolism
commonly applied during infection events22,24,26. Glycolytic
metabolism can activate virulence factors that initiate hypha
formation, activate fermentative pathways, repress gluconeogen-
esis, and the TCA cycle27–30. Alternatively, C. albicans can switch
to gluconeogenesis and the glyoxylate cycle to confer full
pathogenesis during systemic candidiasis31–34. Carbohydrate
metabolism is coupled with changes of cell wall architecture, host
immune response modulation, as well as adherence, biofilm
formation, stress response and drug resistance24,35–37. If carbo-
hydrate sources are limited, Candida species can use amino acids
and lipids as supplementation for metabolic adaptation22,38–40.
Amino acids produced by C. albicans have been shown to drive
tissue damage by initiating stress responses and adjusting the
surrounding environmental pH, helping induce of host invasion
processes35,41–47. Very little is known about the regulation, pro-
cess and utilisation of amino acid metabolism in Candida39.
However, C. albicans is known to use amino acids to replace
carbon and other nitrogen sources48. Candida’s ability to convert
arginine to urea allows the neutralisation of an acidic environ-
ment triggering the development of hyphae and biofilm
formation32,49,50. Notably, recent work has shown that C. albi-
cans phagocyted by macrophages induces fatty acid β-oxidation
and the glyoxylate pathway to induce hypha formation for escape.
In a harsh environment that lacks even a nitrogen source, Can-
dida can recycle and produce its own proteins and polyamines
without host nitrate51. Thus, understanding of metabolism and
functionality of Candida is instrumental in tackling infection and
mortality prevalence52.

Here, we have developed the BioFung tool—a database derived
from 128 fungal species using KEGG orthologs (KO) and focused
on functional information and interpretation of biological

information to address the issue of the lack of resources for
functional annotation of fungal genomes. We then go on to apply
this database tool to Candida species to identify enriched func-
tionality in specific clusters and further show how it can be
integrated with other tools such as CAZyme. In doing so, we
demonstrate the power of this tool to make functional analyses of
fungal species. Distinct clusters of Candida species were defined
based on literature review of contributions to candidemia and
mortality (Fig. 1a), cluster of C. albicans, C. glabrata and C. auris
referred to as AGAu species. This cluster has a high association
with infection and mortality, relative to other Candida
species18,53–55. We applied comparative analysis techniques based
on gene, protein, and enzyme-substrate levels and identified
metabolic pathways in Candida species, such as choline and
polyamine pathways. Metabolomics validation along with
experimental validation from gene expression confirmed impor-
tant AGAu cluster difference. This study (1) provides a tool for
functional annotation of fungal species, (2) highlights amino acid
metabolism importance in AGAu species that remarkably dom-
inate the mycobiome, and (3) identifies potential fungal bio-
markers and anti-fungal targets in metabolic pathway.

Results
Development of BioFung database and functional annotation
of Candida protein-encoding genes. There is currently a dearth
of tools for accurate and complete annotation of fungal genomes.
In order to analyse the global functionality of fungal species, we
decided to develop a database tool (BioFung) to help solve this
problem. The BioFung database takes a list of protein sequences
in fasta format (representing a fungal genome) and outputs
KEGG orthologues that are then used to annotate the associated
genome, giving an overview of the potential functionality. To
perform a global functional analysis of Candida species, we col-
lected 49 publicly available genomes of different Candida strains
covering 13 different species (Supplementary Table 1). We
selected species based on their clinical importance and abundance
within the human mycobiome56–60. All 49 Candida strains were
isolated from different body sites from people represented in a pie
chart demonstrating diverse survival of Candida species and in
different geographical locations illustrated on a global map
(Fig. 1b and Supplementary Fig. 1a). Comparisons of sequencing
platform, scaffold assembly and genome were performed to assess
how the quality of published genomes impacts on the annotations
(Supplementary Figure 1b, Supplementary Table 1). No distinct
impacts were seen based on differences in sequencing processes
and genome assembly. Although assessment of similarity of
sequence across 49 strains is not a direct assessment of integrity
of genome annotation, average nucleotide identity (ANI) using
nucleotide sequence reveals that the phylogenetic relationship of
all these Candida species are interlinked (Fig. 1c, Method). We
observed strain-specific differences in phylogenetic lineages with
11 distinct branches, including branching of C. auris, C. glabrata
and C. albicans, implying genetic diversity that could implicitly be
interpreted into functional variances. To elucidate functional
details for these strains, we built fungi-specific Hidden Markov
Models (HMM) using fungal gene clusters, named the BioFung
database (Fig. 1d, “Method”)61,62. We analysed 524,288 fungal
genes, from 128 fungal species, with a coverage of 4,822 KOs, and
4,430 fungal KO alignments to create BioFung (Supplementary
Data 1–3). Comparison of the BioFung database with similar
eukaryote-specific HMM sources (Euk90 and Euk100) indicated
that BioFung has both higher coverage and specificity of KOs
(Supplementary Fig. 2a–c)61,62. BioFung was applied to protein
sequences of Aspergillus fumigatus, Aspergillus niger and Asper-
gillus nidulans for robustness (Supplementary Figure 2d, e).
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Output of BioFung is compared to representative organisms in
the KEGG database (Supplementary Fig. 2f).

The collection of Candida strains used to integrate functional
annotations can be categorised into commonly invasive and non-
invasive (requiring a secondary factor to cause infection, such as
co-morbidity, immunodeficiency) based on the literature (Fig. 1e,
Supplementary Table 2, “Method”). These representative samples

of Candida were integrated into the functional analysis frame-
work, with a total of 49 Candida species annotated with BioFung,
Protein families (Pfam)63 and Carbohydrate-Active enZyme
(CAZyme)64 databases. We applied BioFung using the UCLUST
algorithm, to establish core genome features (found in all
Candida species) and accessory genome features (shared or
unique functions)65. In covering KEGG metabolic orthologs,

Fig. 1 Exploration of Candida species with BioFung database. a Contribution of individual Candida species to candidemia and mortality. The impact of each
species in AGAu species’ grouping is attributed in this study (literature-based)16–18,20,152. b Candida strain characterisation. Coverage of Candida sample
population per species available with the categorisation of species profiled. Numbers around the pie chart signify the number of strain representation in
each location. (Supplementary Data 3 for more information about strains and Supplementary Figure 1a for the global representation of Candida strains).
c Genome-based phylogenetic tree. The phylogenetic tree was constructed based on average nucleotide identity (ANI) between all strains revealing
evolutionary differences across strains (colour coordinated) and indicating distinct metabolic capabilities. See Supplementary Fig. 1b for quality of
sequences. d BioFung database creation workflow. Eukaryote annotation from KEGG database parsed to extract all fungal species. They were genes parsed,
sequences extracted and reassembled to KO. The multi-sequence alignment was performed on each KO with all corresponding sequence available. HMM,
profile built based on each KO and assembled to provide a more accurate annotation of fungal species for KO. e Distribution of Candida species based on
sample collection and the framework of protein-encoded genes analysis of Candida strains. Strains isolated from the various location providing relevant clinical
association to host mycobiome and environmental species. *indicates clinical strains used for metabolomics. Functional analysis performed on 49 Candida
species collected from public repositories. Protein sequences were annotated with Pfam, dbCAN2 and BioFung database for biological information. f Core
and accessory overview of the metabolic pathway across Candida strains. Shared genome feature refers to 6–48 species sharing the function and unique
genome features is exhibited by less than 5 Candida species denoting accessory functions. g Clustering of carbohydrate-active enzyme profile (CAZyme). Core,
shared genome (6–48 strains), and unique genome (<5 strains) illustrates distribution analysis of functions across all Candida species. h Breakdown of GH
family substrate-converter activity. Analysis of enzyme function of glycoside hydrolase family across all Candida strains. i Breakdown of cell wall composition
of core Candida strains with identification of 49 CAZymes.
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clustering analysis determined a larger number of accessory
features of metabolism compared to core characteristics seen in
all Candida strains (Fig. 1f, Supplementary Fig. 2g–i, “Method”).
Intra-strain analysis of C. albicans across 24 strains sequenced
showed largely conserved metabolic pathways and CAZyme
profiles (Supplementary Fig. 2j, k).

Identification of global functional annotation profiles in
Candida. We next determined the CAZyme profile by mapping
the 49 Candida protein sequences to the dbcan2 database64.
Doing this allowed us to infer molecular enzyme function64.
CAZymes are vital enzymes involved in the metabolism of
complex carbohydrates. Approximately 205 unique CAZymes
were identified in all Candida strains, with various functions
(Fig. 1g, Supplementary Data 4, “Method”). From core Candida
genome analysis, annotated enzymes were distributed across 6
active CAZyme families, with an assortment of enzymatic func-
tions. The glycoside hydrolase (GH) family showed the highest
degree of core coverage (Supplementary Fig. 3a), with much of
the GH family activity in starch and other storage carbohydrates
substrate converters (Fig. 1h).

Previous reports have determined the importance of fungal cell
wall composition a crucial virulence factor during infection, and
assessing CAZyme components of fungal cell wall substrate
converters has been extensively researched66. Here, we reveal the
presence of pectin lyases, glycan lyases, chitin lyases and mannan
lyases (Fig. 1i). Xylan and sugar utilisation appears to be
surprisingly present in the accessory genome (Supplementary
Data 4). Pectin substrate-conversion enzyme has been identified
as the core feature of Candida species’ functional cell wall
enzyme, though previously only reported in Candida bodinii67

and frequently seen in the fungal plant pathogen, including
Aspergillus Pencillium68. Alongside ß-glucan, mannan and chitin
carbohydrate enzyme profiles, Candida cell wall activity includes
pectin enzyme activity (Supplementary Table 3).

In addition, we identified 1182 Pfam clans from all Candida
strains and re-categorised them into 14 functional clans (Supple-
mentary Data 5). Pfam domain annotation indicating genetic
information processing, cell machinery, and metabolism was
among the most extensive Pfam domains exhibited (Supplemen-
tary Fig. 3b). We assessed the diverse functional association of
protein domains by analysing core functional clans, and deter-
mined similar patterns of dominance for carbohydrate, amino acid
and lipid processing-associated domains (Supplementary Fig. 3c).

The functional and metabolomic activity of clinical AGAu
Candida strains. Next, to better explore and understand the link
to metabolism and pathogenesis, we clustered Candida species
into groups based on the invasive nature of particular species,
from literature search of species contribution to candidemia and
mortality (Fig. 1a). C. albicans, C. glabrata and the emerging
invasive species C. auris were grouped together (AGAu cluster).
Alternative Candida species termed non-AGAu group include
opportunistic species that require virulence factors or a defective
immune system to cause disease pathology as well as environ-
mental Candida species. The AGAu cluster contains those Can-
dida species most commonly associated with clinical pathology,
contributing to a higher percentage of mortality and
candidemia16–18,53–55,69. This classification of AGAu is analysed
and discussed throughout the rest of this paper.

We compared the CAZyme profile coverage of AGAu and
non-AGAu groups, with classes highlighted based on colour
(Fig. 2a, b, Supplementary Table 4). The CAZyme GH43_8
(substrate conversion of α-L-arabinofuranosidase/β-xylosidase70)
was significantly enriched in AGAu possibly involved in the
breakdown of complex glucans (Wilcoxon rank-sum test,
P < 0.05)71. The identification of significant CAZymes in the
AGAu cluster showed carbohydrate conversion of xylan
(GH43_8), mucin (GH95), cellulose (GH66) and copper oxidase
family (AA5)72–74. The presence of xylan substrate converter is
unanticipated as xylan is only commonly found in plant cell walls

Fig. 2 CAZyme profile in AGAu Candida strains. a CAZyme analysis across AGAu and non- AGAu groups. (*Asterisk connotes statistically significant
CAZyme, Chi-square tests, p values < 0.05). b CAZyme enrichment and depletion in AGAu strains. Volcano plot showing statistically significant evidence of a
relationship between AGAu strains (Chi-square tests, p values < 0.05 and odds ratio on enriched and depleted in AGAu strains, in red).
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and more likely present in non-AGAu species. The presence of
GH43_8 has not been associated with any other host, bacterial or
fungal species. Interestingly, GH66 associated with human oral
plaque formation72 and AA5 enzyme has been reportedly linked
to fungal defence75. CAZymes seen in non-AGAu species showed
carbohydrate-binding module families involved in sugar, poly-
saccharide and cell wall breakdown, including CBM48.

The AGAu species are morphologically diverse, (C. albicans is
dimorphic—capable of growing a both filamentous hyphae and
single-celled yeast, whilst C. glabrata and C. auris are yeasts), and
they are all potential pathogens. Based on contrasting KO
annotations, the genetic potential of pathways between AGAu
and non-AGAu Candida strains showed little difference with
hypergeometric testing. Nevertheless, there is functional evidence
of significance in these pathways present in both clusters, indicating
a genetic potential for all Candida strains to undertake these
metabolic trajectories (Wilcoxon rank-sum test, P < 0.05; Fig. 3a).
All Candida strains notably revealed encoded pathways facilitating

carbohydrate catabolism within the system; thus, demonstrating
the potential to drive increasing metabolic activity, for example
through fructose and mannose metabolism. We did, however,
identify significant enrichment of amino acid metabolism with
metabolomics highlighting trajectories for arginine, proline,
cysteine and methionine metabolism. We also observed significant
levels of fatty acid biosynthesis and glutathione metabolism, which
have previously been associated with virulence mechanisms76–79.

Metabolomics revealed key metabolic pathways assimilated by
AGAu group. To elucidate the metabolic trajectory taking place
by each cluster group, we performed metabolomics on a collec-
tion of 7 clinical Candida isolates, representing the diverse
pathogenic species (Fig. 3b, “Method”). These clinical samples
were previously isolated from patients infections53,80–83 and were
used to evaluate in vitro the critical metabolic activity predicted
by our functional analyses (Supplementary Fig. 4a). These

Fig. 3 Comparison of functional and metabolomics in AGAu and non-AGAu strains. a Pathway enrichment in 49 Candida strains. Significant metabolic
pathways highlighted in Candida species indicating genetic pathway potential (Hypergeometric tests on contrasted annotation between AGAu and non-
AGAu species, p values < 0.05). b Framework outline of metabolomic analysis of Candida species’ metabolism levels of bioactive metabolites in Candida strains
exhausted media. Computer simulations were performed for pathway analysis, and statistical approach was applied for candidate metabolites that have a
potential influence on the host. c Enriched metabolites detected in targeted metabolomics between AGAu and non- AGAu groups (Wilcoxon rank-sum
tests, P values < 0.05, middle line for median with interquartile range (IQR) and whiskers 1.5× IQR, “Method”).
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Candida isolates were representative of both AGAu and non-
AGAu grouped species. The metabolomics data were used for
partial least squares discriminant analysis (PLS-DA), which
resulted in distinct cluster separation of significant analyte classes
(Supplementary Fig. 4b–d, “Method”). The PLS-DA models
identified distinct metabolites feature in AGAu Candida species
(Supplementary Fig. 4e).

For example, histidine metabolite production in AGAu species
supports this metabolite role in systemic infection and is potential
an anti-fungal target84,85. We also identified choline-derived
metabolites (choline, phosphatidylcholine and lysophosphatidyl-
choline) as increased in certain AGAu species (Fig. 3c; Wilcoxon
P < 0.05). We identified phosphatidylcholines analyte class as
contributing the highest number of features across selected
clinical Candida species (Supplementary Fig. 4d), which has been
observed previously in the hypervirulent C. albicans (SC5314)
strain38–41. Spermine and spermidine were found to be
significantly associated with AGAu strains, indicating polyamine
metabolism could play a functional role in the increased
association with disease pathology of these strains.

Integrative global metabolic map of AGAu Candida species.
Having identified these pathways in silico, we next determined
gene expression levels of essential polyamine (SPE11, SPE3),
choline (CKI1, TAZ1) and fatty acid (FAS1, FAS2) pathways in C.
albicans (representative of the AGAu cluster) to validate our
findings (Supplementary Fig. 5a, Supplementary Table 5 and
“Methods”). All 5 genes showed expression, demonstrating the

activity of these pathways. Our conclusions of key pathway asso-
ciations draws importance of nitrogen sources, specifically the
metabolism of amino acids, in this process (Fig. 4), although to date,
Candida species pathogenesis is better known to be driven by car-
bon sources22,37,86,87. Increased levels of metabolites were exhibited
in AGAu species in the choline pathway, polyamine and fatty acid
biosynthesis pathways that are primarily propagated through argi-
nine, cysteine, and methionine pathways (Supplementary
Fig. 5b–d). Based on integration of computational and experimental
data revealed fundamental metabolic pathways applied AGAu
species providing a link to the major advantage shown by AGAu
species across the human body with considerable contributions to
pathogenesis. These important pathways include polyamine, cho-
line and fatty acid biosynthesis. For instance, the polyamine path-
way is thought to be involved in Candida cell proliferation, and in
turn, causes host cellular dysfunction by modulating acetylation
levels of aminopropyl groups and inducing autophagy, thus
increasing cell life span86,88,89. We observed fatty acid biosynthesis
production with large numbers of metabolites of triglycerides fea-
turing in PLS-DA and family have previously been reported to
promote germination and virulence of AGAu Candida strains
(Supplementary Fig. 4d)90,91. Further, fatty acid biosynthesis is vital
in fungal cell membrane viability, energy storage, signalling, and cell
proliferation—all functions critical in pathogenesis92–95.

Discussion
In this study, we develop a tool for analysing fungal metabolism—
the BioFung database. Here, BioFung was used for building

Fig. 4 Global map metabolism in AGAu Candida strains. Enriched pathways observed in functional annotation and further validated by metabolomics with
key metabolites markedly significant. The boxplots indicate metabolomics of individual metabolites in corresponding pathway (Wilcoxon rank-sum test, P
value < 0.05, median middle line IQR and whiskers 1.5× IQR). *Colour in pathway red identify significant metabolites, blue indicate significant pathway
enrichment and green denotes validation with gene expression.
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metabolic maps of key Candida strains and the database provides
the mycology community with a resource allowing them to dive
more deeply into all fungal species’ metabolic capability based on
protein-encoding genes. Development of data generation tech-
nologies development, tools and database for fungal species is
currently in its infancy, despite significant advances in these areas
for bacteria and archaea. This database enables detailed
mechanistic annotations to optimise our understanding of fungal
species. to do this, it uses HMM to provide high specificity for
fungal annotation. As such, it is currently the best database
available for KEGG-based functional annotation of fungi (Sup-
plementary Fig. 1a–c and Supplementary Data 1–3). Currently,
alternative KEGG annotation tools are available including
Figfam96, Pathogen-Host Interaction97, GO terms98, Blast2Go99

and InterPro100. However, none of these provides fungal-specific
pathway annotation. BioFung is reliant on the KEGG database
and current fungal genome annotations, but in doing so is spe-
cifically oriented to fungi. Moreover, as updates to KEGG and
advances in the functional annotation of fungal genomes become
available, they will increase the power of this tool. The robustness
and effectiveness of functional annotation of BioFung compared
to similar tools have been explored in Supplementary Figure 1d–f,
demonstrating the utility of this tool.

Analysis of annotations allowed us to identify the influential
AGAu group of Candida strains, highlighting critical metabolic
pathways in these strains. In doing so, we developed increased
understanding of the metabolism of these strains through inte-
grating multi-omics and experimental data. BioFung can be used
extensively to better understand individual fungal species’ meta-
bolic pathways but can be extended to explore metabolic inter-
actions between fungi, other organisms, and within the host
mycobiome.

Using BioFung in combination with metabolomics validation
indicates that the AGAu species appear to be employing specific
pathways in amino acid metabolism to potentially improve their
competitive fitness during host pathogenesis. This shows a degree
of metabolic plasticity indicative of fungi, where secretion of these
metabolites associated with these pathways aiding in better
adaptability to growth, virulence factor production, hyphae and
biofilm formation39,101, enabling more effective adaptation to a
wide variety of environments and habitats. Amino acid metabo-
lism has been proposed as an alternative energy source in stress
responses and an alternative to carbon sources for growth. We
demonstrate here that all Candida species have an amino acid
pathways to employ metabolic remodelling (Fig. 3a)39,42,86.
However, integrating metabolomics from strains grown with
abundant nutrient source, shows that the AGAu group have
significantly more active production of polyamine and choline
metabolites, which requires the use of amino acid metabolism for
production (Fig. 4). The AGAu group employs arginine,
methionine and cysteine metabolism and more extensive
exploration and experimental data needed to understand the
causal effect of amino acid metabolism. For instance, we have
identified a confirmed target pathway for anti-fungal drugs with
glutathione metabolism (GSH), attributed to fungal mitochon-
drial maintenance, preservation of membrane integrity, regula-
tion of transcription factors in stress response and protection
against reactive oxygen species. Reducing activity of GSH is under
investigation as supplementary aid for anti-fungal drugs (azoles
and echinocandin) against resistant strains102–105. This finding
verifies that pathway enrichment analysis echoes feasibility in
clinical relevance within the host.

Among these metabolites identified are the polyamines,
including spermine and spermidine. Polyamines play critical roles
in normal cell physiology. Spermine is essential for Candida
hyphal formation, playing a pivotal role in Candida invasion106.

Spermidine, meanwhile, drives genetic modification in fungi by
regulating cell cycle and translating the modification of eukaryotic
initiation factor (eIF)107–109. Excessive polyamines prolong yeast
survival via delayed DNA degradation, increasing the likelihood
of mutations that could contribute to the development of anti-
fungal resistance110,111. These mutations are an important con-
sideration, given that C. glabrata and C. auris are heavily asso-
ciated with rising anti-fungal resistance112–114. Polyamines have
also been shown to be anti-inflammatory, depending on the
microenvironment, potentially explaining the additional benefits
of secondary metabolites to Candida species by modulating host
immune responses115. The use of polyamines is not limited to
fungi. Bacteria use polyamines to create and maintain biofilms in
order to withstand host defences as well as promoting
cancers116–118. Viruses use polyamines to promote cell pro-
liferation, thereby promoting their propagation and spread.
Intervention in polyamine synthesis has a high degree of potential
as a target for antimicrobials. DNA viruses upregulate polyamine
synthesis in host during infection and blocking polyamine
synthesis is a strategy used in broad-spectrum anti-viral119–121.
These examples along with our findings here indicate that
manipulating polyamine secretion from Candida species is a
realistic target for therapeutic intervention of associated diseases.

Choline metabolism is a critical function for both microbial
and host physiology, as demonstrated by the increase seen in
AGAu Candida species’ related metabolites. Disruption of
phospholipid biosynthesis in fungi can occur through inhibition
of phosphatidylcholine synthesis, showing preventing virulence
within the systemic mice model122–125. Further, acetylcholine is
essential in the formation of the chitin wall characteristic of
fungi126,127. Along with the bacteriome, Candida species con-
tribute towards host acquisition of choline. As understanding of
choline metabolism is in its infancy, further investigation of
host–mycobiome interactions is needed, potentially providing
insights for repurposing potential therapeutic intervention. For
instance, lack of choline in humans drives liver dysfunction due
to the accumulation of lipids within hepatocytes, which can lead
to fatty liver diseases and even hepatic liver cancer128–132. We
acknowledge the limitation of using in vitro metabolomics
experiments as the carbon source of the microbial media used
(SAB) is not representative of the profile of sources available
during human host infection. However, use of these metabo-
lomics datasets does give an indication of potential differences in
the metabolic potential of different Candida species, indicating
that this approach would have real value in exploring clinical
metabolomics datasets from different fungal infections.

Functional analysis indicates that both the AGAu and non-
AGAu groups show a high degree of metabolic plasticity
(Fig. 3a)56,59,60,133. CAZymes also demonstrated functional dif-
ferences seen between AGAu and non-AGAu groups. The
unexpected findings of xylan in AGAu cluster, that is normally
present in plant cell walls. We contemplate that AGAu clusters
are pathobionts in humans, they are also common environmental
fungi, and thus the enrichment of functions related to breakdown
of wood biomass potentially reflect the range of environments
and nutrient sources that can be utilised by the AGAu cluster. It is
possible that this is a further reflection of their virulence,
demonstrating that one of their main virulence attributes is an
ability to thrive in a variety of environments.

The AGAu group show GH66, which has previously only been
associated with the human oral microbiome and as a potential
marker for plaque formation72. Given that C. albicans is a con-
stituent of oral plaque, this is consistent with clinical data (Fig. 2a,
b)134. The function of GH43_8 found in the AGAu group is
inconclusive but was recently detected in bacteria as β-
galactofuranosidase70. Although the modes of action for both
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GH43_8 and AA5 are currently unknown their enrichment in the
AGAu group may provide a function-targeted biomarker for
Candida infections135,136. We also highlight fatty acid biosynth-
esis pathway in AGAu species with significant levels of trigly-
cerides production detected (Fig. 3c). Fatty acid synthesis has
been identified in Candida species previously, with focus on
OLE1, FAS1 & FAS2 genes as key indicators to pathogenesis and
virulence76–79. This validates the notion of targeting fatty acid
biosynthesis pathway within Candida species to disrupt Candida
overgrowth in the host.

Our study has addressed the need for functional data and tools
for fungal species by developing the BioFung resource using the
KEGG database. This enables detailed mechanistic pathway
analysis of fungi. Our integrative analysis of the AGAu group
(associated with the disease pathogenesis) highlighted key path-
ways that potentially increase virulence and have associated
effects in the host. We hypothesise that these markers can aid in
identifying routes for intervention in invasive infection and
suggest polyamine, choline and fatty acid biosynthesis metabo-
lism as potential targets for further investigation. The presence of
these metabolites from AGAu Candida species potentially directly
affects host homoeostasis with the mycobiome and adversely
affects the host during infection. As such, the AGAu Candida
species’ metabolic reprogramming may present a method of
controlling interaction and infection with these fungi. Finally, we
focus on fungal metabolism exploration and distinctively towards
amino acid metabolism, playing a more significant role in viru-
lence and pathogenicity.

Methods
BioFung database construction. Kyoto Encyclopedia of Genes and Genomes
(KEGG) database were downloaded for the investigation of all 128 fungal species
(3GB file size) from eukaryote database (5GB file size) (downloaded on August
2019)137. Around 1,210,746 genes, which are annotated with 4717 KEGG orthology
(KO), were selected among 128 fungal species genes. There were 6071 fungal genes
missing sequence to place into KO, and 105 KO failed in multi-sequence alignment
due to default settings (minimum of 3 genes sequence required). Those genes per
each KO were performed multiple-sequence alignment by ClustalW and generated
Hidden Markov Model (HMM) profiles using the hmm-build function of HMMER
software (Fig. 1A for workflow and supplementary 2a for coverage)138,139. BioFung
database is a fungal-specific HMM model made up of 4,722 KOs was freely shared
via Github repository (https://github.com/sysbiomelab/BioFung). Missing KO from
fungal species was not added due to missing gene sequences from KEGG, or the
low number of sequences per KO (<3), thereby failed to perform ClustalW
alignment (See details in Supplementary Data 3).

BioFung quality assessment. Quality check was performed by comparing Bio-
Fung HMMs to pre-trained HMMS for eukaryotes (euk90 and euk100 version
91.0) from Raven Toolbox57,58, and we observed that BioFung coverage was much
higher than both eukaryote profiles (Supplementary Fig. 1c). Application of Bio-
Fung to Aspergillus species present in KEGG database were compared to assess
robustness (Supplementary Fig. 2f).

Application of BioFung and other functional annotations. Fungal KO annota-
tion of each species was performed by HMM scanning of BioFung HMM models
by HMMER software. An in-depth exploratory analysis was performed by
manually checking KO annotations of individual species. Pathway abundance for
AGAu and non-AGAu species was performed using KEGG pathway annotations.
Hypergeometric testing uses hypergeometric distribution for pathways and com-
puting p value with Wilcoxon rank-sum test (<0.05). CAZyme annotations were
performed by mapping Candida protein sequences using HMMs of dbCAN2
database64. Substrate conversion of CAZyme families was checked based on lit-
erature review68,140–146. Candida protein sequences to map against Pfam-A
families using HMMs, that are fully annotated and curated above a threshold63.
Pfam clans’ annotations were sub-set into a broader annotation based on a
reported standard function of protein domains (please see Supplementary Data 5).

Genome sequence collection. Genome sequences of 49 Candida species were
collected from NCBI database with version release 45 of Ensemble Fungi (date
accessed: April 2019)147,148. Applied assembly strategy and sequencing platform is
associated to predicting gene function, thus supplementary information of sample
strain, genome ID, ENA ID, Biosample ID, sequence platform, year of collection,

sample location of collection, sample tuple and available biological annotation has
been provided in Supplementary Table 1. The quality of the sequences was checked
to look at GC content, scaffold and genome size (see Supplementary Fig. 1b).
Nucleotide sequences were used with Average Nucleotide Identity (ANI) to
determine the phylogenetic relationship and determine differences between strains
using Pyani package149.

Contrasted functional annotation of Candida species grouping. Presence and
absence of microbial annotations, i.e., prevalence, was tested for significance based
on condition using Chi-squared tests and odd ratio. Percentage coverage of each
was also tested between AGAu and non-AGAu Candida species (Supplementary
Data 6). Contrasted functional annotations were checked on individual strains and
placed into presence/absence to perform chi-squared for significance (<0.05), and
the odds ratio was performed to identify enriched and depleted in AGAu samples.
Additional significant functional annotations are seen in AGAu cluster (Supple-
mentary Table 4).

Clustering of protein sequences. Core, shared, and unique proteins were identified
based on sequence similarity by a clustering approach called UCLUST algorithm65.
In short, UCLUST algorithm was applied to identify similarity in protein-encoding
gene sequences by clustering and unique protein sequences were identified if
included in singleton protein clusters. Core proteins were identified if corre-
sponding proteins from all 49 species were included in the same cluster. Shared
proteins were selected if they did not belong to unique and core proteins. Protein
sequence clusters were selected based on a threshold 0.5 for representative seed
sequence, a default threshold in UCLUST software65 (Supplementary Fig. 2g).
Based on definitions of the core, shared, and unique proteins, we were able to
determine the core, shared and unique annotations for KO and CAZymes,
accordingly.

Strain growth. 8 strains of Candida species (C. albicans (SC5314), C. dubliniensis
(CD36), C. tropicalis (CBS94), C. glabrata (CBS 138), C. auris (47477), C. para-
psilosis (73/037), and C. krusei (CBS573)). Strains were grown in 5ml liquid
sabouraud dextrose broth (Thermo Scientific-Oxoid microbiology, UK)150. All
strains were grown in a shaking incubator 95rpm at the temperature of 25 °C.
Timepoint measurement of growth was taken to measure the exponential and
stationary phase of the optical density of 1 at 600 nm absorbance (iEMS Ascent
absorbance 96-well plate reader).

Collection and targeted metabolomics on fungal extracellular matrix. Mid-
exponential phase indicates bioactive metabolites and time points for the extrac-
tion of extracellular metabolites (see Supplementary Figure 4a). Five hundred
microlitres of extracellular medium, proximity to the pellet was removed from
growing fungal cells. Samples were placed through a 20 µm Whatman filter and
snap-frozen in liquid nitrogen. Targeted metabolomics performed using the MxP
Quant500 kit (Biocrates, Austria). Partial Least Square—Discriminant Analysis
(PLS-DA) was performed on targeted metabolomics of fungal extracellular
matrices and media as control, using ropls package151. First, PLS-DA was per-
formed to distinguish between Candida samples and control (media). Further, PLS-
DA was performed to distinguish between AGAu species and non-AGAu Candida
samples. PLS-DA indicated a significant difference between AGAu clusters (Sup-
plementary Data 7). Further analysis of metabolite concentrations of targeted
metabolomics was normalised, and the Wilcoxon rank-sum test was performed to
identify critical metabolites (<0.05). Boxplot mid-line notes median with inter-
quartile range (IQR) with whiskers 1.5x IQR.

Validation experiment. RNA was extracted from 3 biological repeats C. albicans
(SC5139) using RNA Qiagen Powersoil kit adapted with bead beating with interval
placement on dry ice and additional 100 µl of isopropanol. DNAse clean-up per-
formed using RNA clean-up and concentration kit (NORGEN, Biotek corpora-
tion). Primers designed for specific amplification of genes SPE1 targeting Ornithine
Carboxylase, SPE3 gene for spermidine synthase, CKI1 specific for bifunctional
choline kinase/ethanolamine kinase, TAZ1 gene focused on lysophosphatidylcho-
line acyltransferase and FAS1/FAS2 gene target for fatty acid synthase (Supple-
mentary Table 5 for primer information). These primers are specific for C. albicans.
Other Candida species only predicted gene ontology-based on C. albicans and
Saccharomyces annotation (http://www.candidagenome.org/cgi-bin/GO/
goAnnotation.pl?dbid=CAL0000224407&seq_source=C.%20auris%20B8441).
Conventional RT-qPCR was performed to identify the expression of these critical
pathways for samples, two standard curve analysis with RDN25 which encodes the
25s rRNA subunit and error bars are representative of mean ± SD.

Statistics and reproducibility. All statistical analyses were performed using R
software v3.6.3. In the analysis for functional pathway annotation with BioFung
hypergeometric testing uses hypergeometric distribution and p value computed
with Wilcoxon rank-sum test (<0.05) using built into R version 3.6.2 package. We
further conducted comparison of species with CAZyme annotation by applying
chi-squared (<0.05) to determine significant CAZyme and odd ratio analysis
indicated presence and absence of these CAZyme in AGAu species. To test
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significant metabolites between AGAu and non-AGAu species, Wilcoxon rank-
sum test (≤0.05) was performed on normalised concentration of significant critical
metabolites.

Strains of Candida species analysis was based on availability of protein sequence
at the time of data collection at NCBI database. Metabolomics was performed for
triplicate biological experiments and placed through MaxQuant500 kit that was
analysed with PLS-DA. qPCR validation with C. albicans was performed for each
primer in triplicates

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
BioFung is public open access database that can be downloaded from GitHub repository:
https://github.com/sysbiomelab/BioFung.

Code availability
The instruction and the pipeline scripts for BioFung can be found at our GitHub
repository https://github.com/sysbiomelab/BioFung. BioFung.hmm file was uploaded via
GitHub large file storage (lfs) on the GitHub page. Additionally, BioFung is on an
automated pipeline with Nextflow v21.04.1 and either singularity v3.8.3 or docker
20.10.7. All software executed by the pipeline is containerised meaning that no additional
installation is required for both local or high-performance computing. ReadME file
contains code for usage and example fasta.

Received: 23 April 2021; Accepted: 7 September 2022;

References
1. Kam, A. P. & Xu, J. Diversity of commensal yeasts within and among healthy

hosts. Diagn. Microbiol. Infect. Dis. 43, 19–28 (2002).
2. Bougnoux, M.-E. et al. Multilocus sequence typing reveals intrafamilial

transmission and microevolutions of Candida albicans isolates from the
human digestive tract. J. Clin. Microbiol. 44, 1810–1820 (2006).

3. Angebault, C. et al. Candida albicans is not always the preferential yeast
colonizing humans: a study in Wayampi Amerindians. J. Infect. Dis. 208,
1705–1716 (2013).

4. Moyes, D. L., Richardson, J. P. & Naglik, J. R. Candida albicans-epithelial
interactions and pathogenicity mechanisms: scratching the surface. Virulence
6, 338–346 (2015).

5. Meeting on global surveillance of antimicrobial resistance invasive Candida
infections. https://www.who.int/news-room/events/detail/2018/04/24/default-
calendar/meeting-on-global-surveillance-of-antimicrobial-resistance-invasive-
candida-infections.

6. Invasive fungal infections: a creeping public health threat. ASM.org https://
www.asm.org/Articles/2018/September/Invasive-Fungal-Infections-A-
Creeping-Public-Healt.

7. Fungal Disease Frequency | Gaffi - global action fund for fungal infections.
https://www.gaffi.org/why/fungal-disease-frequency/.

8. Nett, J. E. Candida auris: an emerging pathogen “incognito”? PLoS Pathog. 15,
e1007638 (2019).

9. Lockhart, S. R. et al. Thinking beyond the common Candida species: need for
species-level identification of Candida due to the emergence of multidrug-
resistant Candida auris. J. Clin. Microbiol. 55, 3324–3327 (2017).

10. Guinea, J. Global trends in the distribution of Candida species causing
candidemia. Clin. Microbiol. Infect. 20, 5–10 (2014).

11. Yapar, N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin.
Risk Manag. 10, 95–105 (2014).

12. Spampinato, C. & Leonardi, D. Candida infections, causes, targets, and
resistance mechanisms: traditional and alternative antifungal agents. BioMed.
Res. Int. 2013, e204237 (2013).

13. Jenkinson, H. F. & Douglas, L. J. Interactions Between Candida Species And
Bacteria In Mixed Infections. In: Polymicrobial Diseases (ASM Press, 2002).

14. Pannanusorn, S., Fernandez, V. & Römling, U. Prevalence of biofilm
formation in clinical isolates of Candida species causing bloodstream
infection. Mycoses 56, 264–272 (2013).

15. Colombo, A. L. et al. Global distribution and outcomes for Candida species
causing invasive candidiasis: results from an international randomized double-
blind study of caspofungin versus amphotericin B for the treatment of invasive
candidiasis. Eur. J. Clin. Microbiol. Infect. Dis. 22, 470–474 (2003).

16. Pfaller, M. A. et al. Epidemiology and outcomes of invasive candidiasis due to
non-albicans species of candida in 2,496 Patients: Data from the Prospective
Antifungal Therapy (PATH) registry 2004–2008. PLoS ONE 9, e101510
(2014).

17. Lindberg, E., Hammarström, H., Ataollahy, N. & Kondori, N. Species
distribution and antifungal drug susceptibilities of yeasts isolated from the
blood samples of patients with candidemia. Sci. Rep. 9, 3838 (2019).

18. Adam, R. et al. 378. Candida auris fungemia: risk factors and outcome. Open
Forum Infect. Dis. 5, S147–S147 (2018).

19. de Almeida, J. N. et al. Candida haemulonii complex species, Brazil, January
2010-March 2015. Emerg. Infect. Dis. 22, 561–563 (2016).

20. Gomez-Lopez, A. et al. Prevalence and susceptibility profile of Candida
metapsilosis and Candida orthopsilosis: results from population-based
surveillance of candidemia in Spain. Antimicrob. Agents Chemother. 52,
1506–1509 (2008).

21. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via
activation of MBL. Nature 574, 1–4 (2019).

22. Brown, A. J. P., Brown, G. D., Netea, M. G. & Gow, N. A. R. Metabolism
impacts upon candida immunogenicity and pathogenicity at multiple levels.
Trends Microbiol 22, 614–622 (2014).

23. Miramón, P. & Lorenz, M. C. A feast for Candida: metabolic plasticity confers
an edge for virulence. PLoS Pathog. 13, e1006144 (2017).

24. Sandai, D. et al. The evolutionary rewiring of ubiquitination targets has
reprogrammed the regulation of carbon assimilation in the pathogenic yeast
Candida albicans. mBio 3, e00495-12 (2012).

25. Chew, S. Y. et al. Physiologically relevant alternative carbon sources modulate
biofilm formation, cell wall architecture, and the stress and antifungal
resistance of Candida glabrata. Int. J. Mol. Sci. 20, 3172 (2019).

26. Sandai, D., Tabana, Y. & Sandai, R. Carbon sources attribute to pathogenicity
in Candida albicans. In Candida Albicans (InTechOpen, 2018). https://doi.
org/10.5772/intechopen.73454.

27. Tucey, T. M. et al. Glucose homeostasis is important for immune cell viability
during Candida challenge and host survival of systemic fungal infection. Cell
Metab. 27, 988–1006.e7 (2018).

28. Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal
infection. Nature 532, 64–68 (2016).

29. Naglik, J. R., Gaffen, S. L. & Hube, B. Candidalysin: discovery and function in
Candida albicans infections. Curr. Opin. Microbiol. 52, 100–109 (2019).

30. Rodaki, A. et al. Glucose promotes stress resistance in the fungal pathogen
Candida albicans. Mol. Biol. Cell 20, 4845–4855 (2009).

31. Deacon, J. W. In Fungal Biology (John Wiley & Sons, 2013).
32. Yin, Z. et al. Glucose triggers different global responses in yeast, depending on

the strength of the signal, and transiently stabilizes ribosomal protein mRNAs.
Mol. Microbiol. 48, 713–724 (2003).

33. Childers, D. S. et al. The rewiring of ubiquitination targets in a pathogenic
yeast promotes metabolic flexibility, host colonization and virulence. PLoS
Pathog. 12, e1005566 (2016).

34. Lorenz, M. C., Bender, J. A. & Fink, G. R. Transcriptional response of Candida
albicans upon internalization by macrophages. Eukaryot. Cell 3, 1076–1087
(2004).

35. Ene, I. V. & Brown, A. J. P. Integration of metabolism with virulence in
Candida albicans. Fungal Genom. 13, 349–370 (2014).

36. Ene, I. V. et al. Carbon source-induced reprogramming of the cell wall
proteome and secretome modulates the adherence and drug resistance of the
fungal pathogen Candida albicans. Proteomics 12, 3164–3179 (2012).

37. Ene, I. V. et al. Host carbon sources modulate cell wall architecture, drug
resistance and virulence in a fungal pathogen. Cell. Microbiol. 14, 1319–1335
(2012).

38. Tudzynski, B. Nitrogen regulation of fungal secondary metabolism in fungi.
Front. Microbiol. 5, 656 (2014).

39. Garbe, E. & Vylkova, S. Role of amino acid metabolism in the virulence of
human pathogenic fungi. Curr. Clin. Microbiol. Rep. 6, 108–119 (2019).

40. Ramachandra, S. et al. Regulatory networks controlling nitrogen sensing and
uptake in Candida albicans. PLoS ONE 9, e92734 (2014).

41. Maidan, M. M., Thevelein, J. M. & Van Dijck, P. Carbon source induced yeast-
to-hypha transition in Candida albicans is dependent on the presence of
amino acids and on the G-protein-coupled receptor Gpr1. Biochem. Soc.
Trans. 33, 291–293 (2005).

42. Vylkova, S. et al. The fungal pathogen Candida albicans autoinduces hyphal
morphogenesis by raising extracellular pH. mBio 2, e00055-11 (2011).

43. Hudson, D. A. et al. Identification of the dialysable serum inducer of germ-
tube formation in Candida albicans. Microbiology 150, 3041–3049 (2004).

44. Kaur, R., Ma, B. & Cormack, B. P. A family of glycosylphosphatidylinositol-
linked aspartyl proteases is required for virulence of Candida glabrata. Proc.
Natl Acad. Sci. USA 104, 7628–7633 (2007).

45. Cheng, S. et al. Profiling of Candida albicans gene expression during intra-
abdominal candidiasis identifies biologic processes involved in pathogenesis. J.
Infect. Dis. 208, 1529–1537 (2013).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03955-z ARTICLE

COMMUNICATIONS BIOLOGY |          (2022) 5:1013 | https://doi.org/10.1038/s42003-022-03955-z | www.nature.com/commsbio 9

https://github.com/sysbiomelab/BioFung
https://github.com/sysbiomelab/BioFung
https://www.who.int/news-room/events/detail/2018/04/24/default-calendar/meeting-on-global-surveillance-of-antimicrobial-resistance-invasive-candida-infections
https://www.who.int/news-room/events/detail/2018/04/24/default-calendar/meeting-on-global-surveillance-of-antimicrobial-resistance-invasive-candida-infections
https://www.who.int/news-room/events/detail/2018/04/24/default-calendar/meeting-on-global-surveillance-of-antimicrobial-resistance-invasive-candida-infections
https://www.asm.org/Articles/2018/September/Invasive-Fungal-Infections-A-Creeping-Public-Healt
https://www.asm.org/Articles/2018/September/Invasive-Fungal-Infections-A-Creeping-Public-Healt
https://www.asm.org/Articles/2018/September/Invasive-Fungal-Infections-A-Creeping-Public-Healt
https://www.gaffi.org/why/fungal-disease-frequency/
https://doi.org/10.5772/intechopen.73454
https://doi.org/10.5772/intechopen.73454
www.nature.com/commsbio
www.nature.com/commsbio


46. Schrevens, S. et al. Methionine is required for cAMP-PKA-mediated
morphogenesis and virulence of Candida albicans. Mol. Microbiol. 108,
258–275 (2018).

47. Silao, F. G. S. et al. Mitochondrial proline catabolism activates Ras1/cAMP/
PKA-induced filamentation in Candida albicans. PLoS Genet. 15, e1007976
(2019).

48. Han, T.-L., Cannon, R. D., Gallo, S. M. & Villas-Bôas, S. G. A metabolomic
study of the effect of Candida albicans glutamate dehydrogenase deletion on
growth and morphogenesis. Npj Biofilms Microbiomes 5, 1–14 (2019).

49. Naglik, J. R., Challacombe, S. J. & Hube, B. Candida albicans secreted aspartyl
proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67,
400–428 (2003).

50. Richardson, J. P. & Moyes, D. L. Adaptive immune responses to Candida
albicans infection. Virulence 6, 327–337 (2015).

51. Mayer, F. L. et al. The novel Candida albicans transporter Dur31 Is a multi-
stage pathogenicity factor. PLoS Pathog. 8, e1002592 (2012).

52. Global and temporal state of the human gut microbiome in health and disease.
https://www.researchsquare.com (2021).

53. Moran, C., Grussemeyer, C. A., Spalding, J. R., Benjamin, D. K. J. & Reed, S. D.
Candida albicans AND non-albicans bloodstream infections in adult and
pediatric patients: comparison of mortality and costs. Pediatr. Infect. Dis. J. 28,
433–435 (2009).

54. Hirano, R., Sakamoto, Y., Kudo, K. & Ohnishi, M. Retrospective analysis of
mortality and Candida isolates of 75 patients with candidemia: a single
hospital experience. Infect. Drug Resistance 8, 199–205 (2015).

55. Horn, D. L. et al. Epidemiology and outcomes of candidemia in 2019 patients:
data from the prospective antifungal therapy alliance registry. Clin. Infect. Dis.
48, 1695–1703 (2009).

56. Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project
healthy cohort. Microbiome 5, 153–153 (2017).

57. Sam, Q., Chang, M. & Chai, L. The fungal mycobiome and its interaction with
gut bacteria in the host. Int. J. Mol. Sci. 18, 330–330 (2017).

58. Seed, P. C. The human mycobiome. Cold Spring Harb. Perspect. Med. 5,
a019810–a019810 (2015).

59. Galloway-Peña, J. R. & Kontoyiannis, D. P. The gut mycobiome: the
overlooked constituent of clinical outcomes and treatment complications in
patients with cancer and other immunosuppressive conditions. PLoS Pathog.
16, e1008353 (2020).

60. Huseyin, C. E., O’Toole, P. W., Cotter, P. D. & Scanlan, P. D. Forgotten fungi-
the gut mycobiome in human health and disease. FEMS Microbiol. Rev. 41,
479–511 (2017).

61. Agren, R. et al. The RAVEN toolbox and its use for generating a genome-scale
metabolic model for Penicillium chrysogenum. PLoS Comput. Biol. 9, e1002980
(2013).

62. SysBioChalmers/RAVEN. GitHub https://github.com/SysBioChalmers/
RAVEN.

63. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids
Res. 47, D427–D432 (2019).

64. Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active
enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).

65. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461 (2010).

66. Zhao, Z., Liu, H., Wang, C. & Xu, J.-R. Erratum to: Comparative analysis of
fungal genomes reveals different plant cell wall degrading capacity in fungi.
BMC Genomics 15, 6 (2014).

67. Nakagawa, T. et al. A methylotrophic pathway participates in pectin
utilization by Candida boidinii. Appl. Environ. Microbiol. 66, 4253–4257
(2000).

68. Barrett, K., Jensen, K., Meyer, A. S., Frisvad, J. C. & Lange, L. Fungal
secretome profile categorization of CAZymes by function and family
corresponds to fungal phylogeny and taxonomy: example Aspergillus and
Penicillium. Sci. Rep. 10, 1–12 (2020).

69. Sfeir et al. Breakthrough bloodstream infections caused by echinocandin-
resistant Candida tropicalis: an emerging threat to immunocompromised
patients with hematological malignancies. J. Fungi 6, 20–20 (2020).

70. Mewis, K., Lenfant, N., Lombard, V. & Henrissat, B. Dividing the large
glycoside hydrolase family 43 into subfamilies: a motivation for detailed
enzyme characterization. Appl. Environ. Microbiol. 82, 1686–1692 (2016).

71. Mewis, K. Functional Metagenomic Screening for Glycoside Hydrolases
(University of British Columbia, 2016).

72. Cantarel, B. L., Lombard, V. & Henrissat, B. Complex carbohydrate utilization
by the healthy human microbiome. PLoS ONE 7, e28742 (2012).

73. Katayama, T. et al. Molecular cloning and characterization of Bifidobacterium
bifidum 1,2-α-l-fucosidase (AfcA), a novel inverting glycosidase (Glycoside
Hydrolase Family 95). J. Bacteriol. 186, 4885–4893 (2004).

74. Manzo, N. et al. Carbohydrate-active enzymes from pigmented Bacilli: a
genomic approach to assess carbohydrate utilization and degradation. BMC
Microbiol. 11, 198 (2011).

75. Ramzi, A. B., Me, M. L. C., Ruslan, U. S., Baharum, S. N. & Muhammad, N. A.
N. Insight into plant cell wall degradation and pathogenesis of Ganoderma
boninense via comparative genome analysis. PeerJ 7, e8065 (2019).

76. Nguyen, L. N., Gacser, A. & Nosanchuk, J. D. The stearoyl-coenzyme A
desaturase 1 is essential for virulence and membrane stress in Candida
parapsilosis through unsaturated fatty acid production. Infect. Immun. 79,
136–145 (2011).

77. Rodrigues, M. M. In Fatty Acid Synthase 1 in Candida albicans Virulence and
the In Vitro Effects of Fluconazole, Tetracycline in Combinatorial Therapy.
Masters theses (University of Tennessee, KnoxvilleUnivers, 2012). https://
trace.tennessee.edu/cgi/viewcontent.cgi?referer=https://www.google.com/
&httpsredir=1&article=2437&context=utk_gradthes

78. Southard, S. B. & Cihlar, R. L. Analysis and expression of the Candida albicans
FAS2 gene. Gene 156, 133–138 (1995).

79. Zhao, X. & Cihlar, R. L. Isolation and sequence of the Candida albicans FAS1
gene. Gene 147, 119–124 (1994).

80. Odds, F. C., Brown, A. J. & Gow, N. A. Candida albicans genome sequence:
a platform for genomics in the absence of genetics. Genome Biol. 5, 230
(2004).

81. Bader, O. et al. Gross karyotypic and phenotypic alterations among different
progenies of the Candida glabrata CBS138/ATCC2001 reference strain. PLoS
ONE 7, e52218 (2012).

82. Douglass, A. P. et al. Population genomics shows no distinction between
pathogenic Candida krusei and environmental Pichia kudriavzevii: one
species, four names. PLoS Pathog. 14, e1007138 (2018).

83. Barchiesi, F. et al. Experimental induction of fluconazole resistance in
Candida tropicalis ATCC 750. Antimicrob. Agents Chemother. 44, 1578–1584
(2000).

84. Alcazar-Fuoli, L. Amino acid biosynthetic pathways as antifungal targets for
fungal infections. Virulence 7, 376–378 (2016).

85. Jastrzębowska, K. & Gabriel, I. Inhibitors of amino acids biosynthesis as
antifungal agents. Amino Acids 47, 227–249 (2015).

86. Mayer, F. L., Wilson, D. & Hube, B. Candida albicans pathogenicity
mechanisms. Virulence 4, 119–128 (2013).

87. Lorenz, M. C. & Fink, G. R. The glyoxylate cycle is required for fungal
virulence. Nature 412, 83–86 (2001).

88. Minois, N., Carmona-Gutierrez, D. & Madeo, F. Polyamines in aging and
disease. Aging 3, 716–732 (2011).

89. Valdés-Santiago, L. & Ruiz-Herrera, J. Stress and polyamine metabolism in
fungi. Front. Chem. 1, 42 (2014).

90. Noverr, M. C. & Huffnagle, G. B. Regulation of Candida albicans
morphogenesis by fatty acid metabolites. Infect. Immun. 72, 6206–6210
(2004).

91. Nguyen, L. N., Trofa, D. & Nosanchuk, J. D. Fatty acid synthase impacts the
pathobiology of Candida parapsilosis in vitro and during mammalian
infection. PLoS ONE 4, e8421 (2009).

92. Pan, J., Hu, C. & Yu, J.-H. Lipid biosynthesis as an antifungal target. J. Fungi 4,
50 (2018).

93. Gajewski, J., Pavlovic, R., Fischer, M., Boles, E. & Grininger, M. Engineering
fungal de novo fatty acid synthesis for short chain fatty acid production. Nat.
Commun. 8, 14650 (2017).

94. Tehlivets, O., Scheuringer, K. & Kohlwein, S. D. Fatty acid synthesis and
elongation in yeast. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 1771,
255–270 (2007).

95. Rattray, J. B., Schibeci, A. & Kidby, D. K. Lipids of yeasts. Bacteriol. Rev. 39,
197–231 (1975).

96. Meyer, F., Overbeek, R. & Rodriguez, A. FIGfams: yet another set of protein
families. Nucleic Acids Res. 37, 6643–6654 (2009).

97. Urban, M. et al. PHI-base: the pathogen–host interactions database. Nucleic
Acids Res. 48, gkz904 (2019).

98. Harris, M. A. et al. The Gene Ontology (GO) database and informatics
resource. Nucleic Acids Res. 32, D258–D261 (2004).

99. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and
analysis in functional genomics research. Bioinformatics 21, 3674–3676
(2005).

100. Blum, M. et al. The InterPro protein families and domains database: 20 years
on. Nucleic Acids Res. 49, D344–D354 (2021).

101. Desai, J. V. Candida albicans hyphae: from growth initiation to invasion. J.
Fungi 4, 10 (2018).

102. Miramón, P. et al. A family of glutathione peroxidases contributes to oxidative
stress resistance in Candida albicans. Med. Mycol. 52, 223–239 (2014).

103. Liu, Y. et al. Glutathione reductase promotes fungal clearance and suppresses
inflammation during systemic Candida albicans Infection. J. Immunol. 200,
50.1–50.1 (2018).

104. I, P., Ra, P. & Mj, P. Glutathione, altruistic metabolite in fungi. Adv. Microb.
Physiol. 49, 1–76 (2004).

105. Maras, B. et al. Glutathione metabolism in Candida albicans resistant strains
to fluconazole and micafungin. PLoS ONE 9, e98387 (2014).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03955-z

10 COMMUNICATIONS BIOLOGY |          (2022) 5:1013 | https://doi.org/10.1038/s42003-022-03955-z | www.nature.com/commsbio

https://www.researchsquare.com
https://github.com/SysBioChalmers/RAVEN
https://github.com/SysBioChalmers/RAVEN
https://trace.tennessee.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=2437&context=utk_gradthes
https://trace.tennessee.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=2437&context=utk_gradthes
https://trace.tennessee.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=2437&context=utk_gradthes
www.nature.com/commsbio


106. Dorighetto Cogo, A. J. et al. Spermine modulates fungal morphogenesis and
activates plasma membrane H + -ATPase during yeast to hyphae transition.
Biol. Open 7, bio029660 (2018).

107. Hoyt, M. A. & Davis, R. H. Polyamines in Fungi. In Biochemistry and
Molecular Biology (eds. Brambl, R. & Marzluf, G. A.) 335–347 (Springer,
2004).

108. Tome, M. E. & Gerner, E. W. Cellular eukaryotic initiation factor 5A content
as a mediator of polyamine effects on growth and apoptosis. Biol. Signals 6,
150–156 (1997).

109. Belda-Palazón, B. et al. Biochemical quantitation of the eIF5A hypusination in
Arabidopsis thaliana uncovers ABA-dependent regulation. Front. Plant Sci. 5,
202 (2014).

110. Yu, Y. et al. Position of eukaryotic translation initiation factor eIF1A on the
40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic
Acids Res. 37, 5167–5182 (2009).

111. Chattopadhyay, M. K. et al. Microarray studies on the genes responsive to the
addition of spermidine or spermine to a Saccharomyces cerevisiae spermidine
synthase mutant. Yeast 26, 531–544 (2009).

112. Bhattacharya, S., Sae-Tia, S. & Fries, B. C. Candidiasis and mechanisms of
antifungal resistance. Antibiotics 9, 312 (2020).

113. Hendrickson, J. A., Hu, C., Aitken, S. L. & Beyda, N. Antifungal resistance: a
concerning trend for the present and future. Curr. Infect. Dis. Rep. 21, 47
(2019).

114. Silva, S. et al. Candida glabrata, Candida parapsilosis and Candida tropicalis:
biology, epidemiology, pathogenicity and antifungal resistance. FEMS
Microbiol. Rev. 36, 288–305 (2012).

115. Choi, Y. H. & Park, H. Y. Anti-inflammatory effects of spermidine in
lipopolysaccharide-stimulated BV2 microglial cells. J. Biomed. Sci. 19, 31
(2012).

116. Li, B. et al. Polyamine-independent growth and biofilm formation, and
functional spermidine/spermine N-acetyltransferases in Staphylococcus aureus
and Enterococcus faecalis. Mol. Microbiol. 111, 159–175 (2019).

117. Patel, C. N. et al. Polyamines are essential for the formation of plague biofilm.
J. Bacteriol. 188, 2355–2363 (2006).

118. Villanueva, M. T. Bacterial biofilms may feed colon cancer. Nat. Rev. Cancer
15, 320–320 (2015).

119. Li, M. M. H. & MacDonald, M. R. Polyamines: small molecules with a big role
in promoting virus infection. Cell Host Microbe 20, 123–124 (2016).

120. Firpo, M. R. & Mounce, B. C. Diverse functions of polyamines in virus
infection. Biomolecules 10, 628 (2020).

121. Mounce, B. C., Olsen, M. E., Vignuzzi, M. & Connor, J. H. Polyamines and
their role in virus infection. Microbiol. Mol. Biol. Rev. 81, e00029-17 (2017).

122. Tams, R. N. et al. Overproduction of phospholipids by the kennedy pathway
leads to hypervirulence in Candida albicans. Front. Microbiol. 10, 86 (2019).

123. Klig, L. S., Friedli, L. & Schmid, E. Phospholipid biosynthesis in Candida
albicans: regulation by the precursors inositol and choline. J. Bacteriol. 172,
4407–4414 (1990).

124. Wang, J. et al. Phospholipid homeostasis plays an important role in fungal
development, fungicide resistance and virulence in Fusarium graminearum.
Phytopathol. Res. 1, 16 (2019).

125. Chen, Y.-L. et al. Phosphatidylserine synthase and phosphatidylserine
decarboxylase are essential for cell wall integrity and virulence in Candida
albicans. Mol. Microbiol. 75, 1112–1132 (2010).

126. A, A. & Sm, K. Acetylcholine induces yeast to hyphal form transition in
Candida albicans. Fungal Genomics Biol. 8, p154 (2018).

127. Markham, P., Robson, G. D., Bainbridge, B. W. & Trinci, A. P. J. Choline: Its
role in the growth of filamentous fungi and the regulation of mycelial
morphology. FEMS Microbiol. Rev. 10, 287–300 (1993).

128. Mehedint, M. G. & Zeisel, S. H. Choline’s role in maintaining liver function:
new evidence for epigenetic mechanisms. Curr. Opin. Clin. Nutr. Metab. Care
16, 339–345 (2013).

129. Sherriff, J. L., O’Sullivan, T. A., Properzi, C., Oddo, J.-L. & Adams, L. A.
Choline, its potential role in nonalcoholic fatty liver disease, and the case for
human and bacterial genes. Adv. Nutr. 7, 5–13 (2016).

130. Brown, A. L. et al. Dietary choline supplementation attenuates high-fat-
diet–induced hepatocellular carcinoma in mice. J. Nutr. 150, 775–783 (2020).

131. Sun, S. et al. Choline and betaine consumption lowers cancer risk: a meta-
analysis of epidemiologic studies. Sci. Rep. 6, 35547 (2016).

132. Zhou, R. et al. Higher dietary intakes of choline and betaine are associated
with a lower risk of primary liver cancer: a case-control study. Sci. Rep. 7, 679
(2017).

133. Forbes, J. D., Bernstein, C. N., Tremlett, H., Van Domselaar, G. & Knox, N. C.
A fungal world: could the gut mycobiome be involved in neurological disease?
Front. Microbiol. 10, 3249–3249 (2019).

134. Zijnge, V. et al. Oral biofilm architecture on natural teeth. PLoS ONE 5, e9321
(2010).

135. Arfi, Y. et al. Characterization of salt-adapted secreted lignocellulolytic
enzymes from the mangrove fungus Pestalotiopsis sp. Nat. Commun. 4, 1810
(2013).

136. Kumar, V. et al. Poplar carbohydrate-active enzymes: whole-genome
annotation and functional analyses based on RNA expression data. Plant J. 99,
589–609 (2019).

137. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M.
KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49,
D545–D551 (2021).

138. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23,
2947–2948 (2007).

139. Eddy, S. R. What is a hidden Markov model? Nat. Biotechnol. 22, 1315–1316
(2004).

140. Kovatcheva-Datchary, P. et al. Simplified intestinal microbiota to study
microbe-diet-host interactions in a mouse model. Cell Rep. 26, 3772–3783
(2019). e6.

141. Zhao, Z., Liu, H., Wang, C. & Xu, J.-R. Comparative analysis of fungal
genomes reveals different plant cell wall degrading capacity in fungi. BMC
Genomics 14, 274 (2013).

142. Borin, G. P. et al. Comparative secretome analysis of Trichoderma reesei and
Aspergillus niger during growth on sugarcane biomass. PLoS ONE 10,
e0129275 (2015).

143. Baroncelli, R. et al. Gene family expansions and contractions are associated
with host range in plant pathogens of the genus Colletotrichum. BMC
Genomics 17, 555 (2016).

144. Looi, H. K. et al. Genomic insight into pathogenicity of dematiaceous fungus
Corynespora cassiicola. PeerJ 5, e2841 (2017).

145. Wegmann, U. et al. Complete genome of a new Firmicutes species belonging
to the dominant human colonic microbiota (‘Ruminococcus bicirculans’)
reveals two chromosomes and a selective capacity to utilize plant glucans.
Environ. Microbiol. 16, 2879–2890 (2014).

146. Geisler-Lee, J. et al. Poplar carbohydrate-active enzymes. Gene identification
and expression analyses. Plant Physiol. 140, 946–962 (2006).

147. Sayers, E. W. et al. Database resources of the national centre for biotechnology
information. Nucleic Acids Res.. 47, D23 (2019).

148. Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995
(Nucleic Acids Res, 2022).

149. Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G. & Toth, I. K.
Genomics and taxonomy in diagnostics for food security: soft-rotting
enterobacterial plant pathogens. Analytical Methods 8, 12–24 (2016).

150. Oxoid - Product detail. http://www.oxoid.com/UK/blue/prod_detail/prod_
detail.asp?pr=CM0041.

151. Thévenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the human
adult urinary metabolome variations with age, body mass index, and gender
by implementing a comprehensive workflow for univariate and OPLS
statistical analyses. J. Proteome Res. 14, 3322–3335 (2015).

152. Almeida, J. N. de et al. Candida haemulonii complex species, Brazil, January
2010–March 2015. Emerg. Infect. Dis. J. 22. https://doi.org/10.3201/eid2203.
151610 (2016).

Acknowledgements
This study was supported by Engineering and Physical Sciences Research Council
(EPSRC), EP/S001301/1, Biotechnology Biological Sciences Research Council (BBSRC)
BB/S016899/1, Science for Life Laboratory, Swedish National Infrastructure for
Computing at SNIC through Uppsala Multidisciplinary Centre for Advanced Com-
putational Science (UPPMAX) under projects SNIC 2020-5-222, SNIC 2019/3-226,
SNIC 2020/6-153, SNIC 2021/5-248, SNIC 2022/5-334 and King’s College London
computational infrastructure facility, Rosalind (https://rosalind.kcl.ac.uk) for high-
performance computing. We thank Professor Bernhard Hube for kindly sending C.
parapsilosis strain.

Author contributions
N.B, D.M. and S.S. conceived the project. N.B. performed all sample preparation,
metagenomics, metabolomics, gene expression data preparation and extraction protocols
for the paper. N.B. developed the pipeline, analysis, and made all the figures. N.B. wrote
and drafted the figures and manuscript. S.L. advised on design, statistical and functional
analysis of the data. T.J.P advised on streamlining BioFung pipeline. A.P. and S.S.N.
processed prepared samples on qPCR platform. J.N. and M.U. provided critical feedback
on the data and manuscript. All authors read, edited, and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03955-z ARTICLE

COMMUNICATIONS BIOLOGY |          (2022) 5:1013 | https://doi.org/10.1038/s42003-022-03955-z | www.nature.com/commsbio 11

http://www.oxoid.com/UK/blue/prod_detail/prod_detail.asp?pr=CM0041
http://www.oxoid.com/UK/blue/prod_detail/prod_detail.asp?pr=CM0041
https://doi.org/10.3201/eid2203.151610
https://doi.org/10.3201/eid2203.151610
https://rosalind.kcl.ac.uk
www.nature.com/commsbio
www.nature.com/commsbio


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-022-03955-z.

Correspondence and requests for materials should be addressed to David L. Moyes or
Saeed Shoaie.

Peer review information Communications Biology thanks the anonymous reviewers for
their contribution to the peer review of this work. Primary Handling Editor: Karli
Montague-Cardoso. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03955-z

12 COMMUNICATIONS BIOLOGY |          (2022) 5:1013 | https://doi.org/10.1038/s42003-022-03955-z | www.nature.com/commsbio

https://doi.org/10.1038/s42003-022-03955-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Integrative functional analysis uncovers metabolic differences between Candida species
	Results
	Development of BioFung database and functional annotation of Candida protein-encoding genes
	Identification of global functional annotation profiles in Candida
	The functional and metabolomic activity of clinical AGAu Candida strains
	Metabolomics revealed key metabolic pathways assimilated by AGAu group
	Integrative global metabolic map of AGAu Candida species

	Discussion
	Methods
	BioFung database construction
	BioFung quality assessment
	Application of BioFung and other functional annotations
	Genome sequence collection
	Contrasted functional annotation of Candida species grouping
	Clustering of protein sequences
	Strain growth
	Collection and targeted metabolomics on fungal extracellular matrix
	Validation experiment
	Statistics and reproducibility

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




