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Abstract
In this paper, the spatial arrangement and possible interactions between
epidermal nerve fibre endings are investigated and modelled by using confo-
cal microscopy data. We are especially interested in possible differences between
patterns from healthy volunteers and patients suffering from mild diabetic neu-
ropathy. The locations of the points, where nerves enter the epidermis, the first
branching points and the pointswhere the nerve fibres terminate, are regarded as
realizations of spatial point processes. We propose an anisotropic point process
model for the locations of the nerve fibre endings in three dimensions, where
the points interact in cylindrical regions. First, the locations of end points in
ℝ2 are modelled as clusters around the branching points and then, the model
is extended to three dimensions using a pairwise interactionMarkov field model
with cylindrical neighbourhood for the 𝑧-coordinates conditioned on the planar
locations of the points. We fit the model to samples taken from healthy subjects
and subjects suffering from diabetic neuropathy. In both groups, after a hardcore
radius, there is some attraction between the end points. However, the range and
strength of attraction are not the same in the two groups. Performance of the
model is evaluated by using a cylindrical version of Ripley’s 𝐾 function due to
the anisotropic nature of the data. Our findings suggest that the proposed model
is able to capture the 3D spatial structure of the end points.

KEYWORDS
anisotropy, cylindrical K function, Markov chain Monte Carlo, Markov random field, point
process, pseudo-likelihood

1 INTRODUCTION

Epidermal nerve fibres (ENFs) are thin sensory fibres in
the epidermis, the outermost layer of the human skin. The
ENFs are tree-like structured nerves that grow and branch
within the epidermis until they terminate. The termination

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

points of the ENFs play an important role since they sense,
for example, pain and heat and transfer then the signals
to the brain. Peripheral neuropathy is a condition associ-
ated with poor nerve functionality and as the neuropathy
progresses, the ENFs are damaged causing pain and loss
of sensation. Here, we concentrate on diabetic neuropathy.
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Several studies1–4 conclude that the ENF counts as well
as the dermal and ENF coverage are reduced as the neu-
ropathy progresses. It is also well established, that the 2D
ENF patterns of subjects with diabetic neuropathy tend to
be more clustered than healthy patterns.2,5–7
The spatial structure of 2D locations of the end points,

that is, the points where the nerve fibres terminate, has
been investigated in earlier studies by regarding the loca-
tions of the points as realizations of spatial point processes.
Since it is important to detect the neuropathy as early
as possible, special attention has been paid to comparing
healthy ENF patterns and patterns from subjects suffering
from mild diabetic neuropathy both in terms of summary
statistics and in terms of models. In the so-called non-
orphan cluster (NOC) model7 and the uniform cluster
centre (UCC) model,2 end point locations are constructed
by conditioning on the observed base point patterns, which
are the points where the nerve trees enter the epider-
mis. The major difference between the two models is the
choice of the direction of the clusters with respect to the
base points. In the NOC model, end point clusters favour
directions towards open space, that is, away from the clos-
est other base point, while in the UCC model no specific
direction was preferred. For data from thighs from four
healthy subjects, Garcia et al.8 introduced a continuous
time birth and death process, where there is interaction
between the base points and within the points in each end
point cluster. Furthermore, Ghorbanbour et al.3 modelled
interaction between the entire nerve trees, each consisting
of an ENF base point and the end points connected to it,
by a sequential marked point process model. Planar point
process models for the spatial structure of the base points
can also be found in the literature.9,10
In the first 3Dmodel proposed for the ENF structure, the

first branching points were included.11 Given the observed
base points, a model similar to the NOC model was sug-
gested for the first branching points and then, a cluster
model for the end points given the first branching points.
However, this model was not able to describe the 3D ENF
structure very well.
In this paper, our main objective is to construct a 3D

point process model which takes into account interactions
between the end points of the nerve fibres and can describe
the complete ENF structure. For this purpose, we propose
a model that allows interaction, attraction or repulsion,
between pairs of end points. First, we model the planar
locations of the end points by the two-step NOC model
introduced in Ref. 11 and then, given the planar coor-
dinates, the third coordinate is modelled by a pairwise
interaction Markov random field using cylindrical inter-
action regions as in Ref. 12. Since the end point patterns
cannot be assumed to be isotropic, we use the cylindrical𝐾

function estimated in the three coordinate axis directions
when describing the 3D spatial structure of the points.13,14
The model is fitted to ENF samples taken from the feet

of healthy controls and of subjects suffering from mild
diabetic neuropathy. This comparison is particularly inter-
esting since if detected early, it might be possible to slow
down the progression of the neuropathy. We have some
samples available also from patients suffering from later
stages of the neuropathy which are not included in this
study. These samples have only a small number of end
points, not clusters of end points as in the healthy and
mild neuropathy samples, and therefore, themodel wewill
suggest here is not really suitable for such patterns. In addi-
tion, the nerve count alone is often enough to detect the
later stages of the neuropathy. Our main finding was that
the clusters in the mild neuropathy patterns tend to be
tighter in the 𝑥𝑦-direction but the end points are further
apart in the 𝑧-direction compared to the clusters in the
healthy patterns.
The paper is organized as follows. In Section 2, we

describe the ENF data set. A brief introduction to point
processes and point process summary statistics, includ-
ing the cylindrical 𝐾 function, is given in Section 3. In
Section 4, we recall the definition of the two-step NOC
model and describe the pairwise interaction model for the
𝑧-coordinates of the end points. Our results for the ENF
data are presented in Section 5 and further discussed in
Section 6.

2 DATA

The ENF data used in this study consist of skin samples
taken from 32 healthy volunteers and eight patients suf-
fering from mild diabetic neuropathy and were collected
by Dr. Kennedy’s group at the University of Minnesota.15,16
Suction induced skin biopsies, in which a piece of the epi-
dermis is removed, mounted on a slide and stained for
confocal microscopy imaging, are used to acquire three
to six samples from each patient. The nerves are then
manually traced usingNeurolucida software (microBright-
Field, Inc.) and the locations of the points, where the
points enter the epidermis (base points), branch (branch-
ing points) and terminate (end points) are recorded.15,16
Regarding the branching points, only the locations of the
first branching points, that is, the points where the nerve
fibres branch for the first time, are considered. For the
remainder of this paper, branching points will refer to the
first branching points.
The data are in 3D and the samples are in boxes of size

320𝜇m × 432 𝜇m × 𝑧 where 𝑧 varies from 50 to 200 𝜇m

depending on the local thickness of the epidermis. For each
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F IGURE 1 Structure of the nerve trees in 2D (left) and in 3D (right). Blue points correspond to the locations where the nerve fibres
terminate and red points to the corresponding base points.

subject, samples from six different body parts are avail-
able. As in some earlier studies,2,11 we concentrate on early
changes due to the neuropathy and compare data obtained
from skin samples from the feet of 112 healthy samples
and 28 samples from patients with mild diabetic neuropa-
thy. Also, non-spatial covariates such as age, gender and
BMI for every subject are available, and the effect of these
covariates on the spatial structure of ENF patterns taken
from feet and calves of the subjects has been investigated
using the same data set.6,17 The conclusion was that the
spatial pattern was affected by the covariates in the data
from calf but not in the data from foot. In this study, we
concentrate on the analysis of the observed spatial pat-
terns alone. An example of an ENF sample is illustrated
in Figure 1 (more samples are shown in Figure A.1 in the
Appendix). Only the locations of the base points and end
points are shown.

3 METHODS FOR SPATIAL POINT
PROCESSES

The locations of the base, branching and end points of
ENFs are regarded as realizations of spatial point pro-
cesses. In this section, we briefly present some basic theory
of spatial point processes. For more rigorous treatment of
the subject, the reader is referred, for example, to Illian
et al.,18 Diggle,19 Møller and Waagepetersen20 and Chiu
et al.21 The definitions and notations given here mainly
follow the book by Illian et al.18

3.1 Spatial point processes

Spatial point processes are mathematical tools used to
study the arrangement of a set of locations where some
phenomena of interest, such as locations of base points,
end points or branching points, occurred. Even though the
point process is defined in the whole spatial domain 𝐷 ⊂

ℝ𝑑, 𝑑 being either 2 or 3 in our case, we usually observe

a realization of the point process 𝑋 in an observational
window or box 𝑊 ⊂ 𝐷. A point process 𝑋 is simple, if at
any location there is at most one point of the process, and
𝑋 is locally finite, if for any bounded set 𝐴 in the Borel
set (ℝ𝑑), the process places a finite number of points in
𝐴. Moreover, a point process 𝑋 is stationary if it is invari-
ant under translations and isotropic if it is invariant under
rotations about the origin. The point patterns of the ENFs
are assumed to be realizations of simple, locally finite and
stationary point processes.

3.2 Ripley’s 𝑲 function

Ripley’s 𝐾 function is a second-order summary statistic
of point processes which was originally defined for sta-
tionary and isotropic point processes. It is defined as the
mean number of further points of the process in the 𝑑-
dimensional ball with radius 𝑟 centred in an arbitrary
point of the process divided by the intensity of the process
(the mean number of points per unit volume). An esti-
mator for the 𝐾(𝑟) function needs to be edge corrected,
as the points of the process outside the observation win-
doware not taken into account into the estimation,making
uncorrected estimators biased. The translation-corrected
estimator of the 𝐾 function is given by

�̂�(𝑟) =
1

�̂�𝑛

≠∑
𝑥1,𝑥2∈𝑋∩𝑊

1

∣ 𝑊 ∩𝑊𝑥2−𝑥1
∣
𝟙{𝑥1 − 𝑥2 ∈ 𝐵(𝑜, 𝑟)}, 𝑟 ≥ 0, (1)

where the ≠ above the summation sign denotes the sum-
mation over all distinct pairs, 𝐵(𝑜, 𝑟) is a ball centred at the
origin with radius 𝑟 and 𝑊𝑥2−𝑥1

is the window 𝑊 trans-
lated by 𝑥2 − 𝑥1. Furthermore, 𝑛 is the total number of the
observed points in𝑊, ∣ ⋅ ∣ is the Lebesgue measure and �̂�

is an estimator of the intensity.
Due to its symmetric structuring element, that is a

2D disc or a 3D ball, the isotropic 𝐾 function is not an
appropriate summary statistic for anisotropic point pat-
terns. Directional 𝐾 functions with different structuring
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elements have been recently developed as extensions of
Ripley’s𝐾 function for anisotropic point processes.22 Here,
we recall the cylindrical 𝐾 function, 𝐾𝑢

𝑐𝑦𝑙
(𝑟),23 which, as

the name indicates, has a cylindrical structuring element.
Multiplied by the intensity of the process, it gives themean
number of further points of the process within distance 𝑟
from an arbitrary point 𝑥 of the process that are inside the
cylinderwith some specified half-width𝑤 directed towards
𝑢 centred at 𝑥. Typically in the anisotropic case, the 𝐾

function is estimated in different directions by orienting
the cylinder accordingly. A translation edge-corrected esti-
mator for the cylindrical 𝐾 function in the direction 𝑢 is

�̂�𝑢
𝑐𝑦𝑙
(𝑟) =

1

𝜆2

≠∑
𝑥1,𝑥2∈𝑋∩𝑊

1

∣ 𝑊 ∩𝑊𝑥2−𝑥1
∣
𝟙[𝑥1 − 𝑥2 ∈ 𝐵𝑢(𝑟, 𝑤)], 𝑟 > 0,

(2)

where 𝜆2 = 𝑛(𝑛−1)

∣𝑊∣2
and 𝐵𝑢(𝑟, 𝑤) denotes the shape created

by the intersection of a cylinder with fixed half-width 𝑤

and direction 𝑢 with a sphere of radius 𝑟 > 0. Note that
above, we fix the half-width 𝑤 and define the cylindrical
𝐾 function as a function of distance 𝑟 only.
The variance stabilized and centred variant of Ripley’s

𝐾 function is defined by

𝐿(𝑟) − 𝑟 =
𝑑

√
𝐾(𝑟)

𝑏𝑑
− 𝑟, 𝑟 > 0, (3)

where 𝑏𝑑 is the volume of the unit sphere in ℝ𝑑. A sim-
ilar transformed and centred variant of the cylindrical
𝐾 function in ℝ3 is given by

𝐿𝑢
𝑐𝑦𝑙
(𝑟) − 𝑟 =

𝐾𝑢
𝑐𝑦𝑙
(𝑟)

2𝜋𝑤2
− 𝑟, 𝑟 > 0. (4)

These versions of the𝐾 functions are convenient since they
equal 0 if the process is completely spatially random, that
is, a homogeneous Poisson process. Positive values indicate
clustering and negative regularity.
The summary functions described above can be used

to characterize the spatial structure of one point pattern.
When replicated data are available, we first estimate a
summary function for each sample and then, pool the
estimates together to obtain an estimate for the whole
group. Our data are hierarchical, as samples from different
subjects and subjects from different disease groups are
available. Subjectwise summary functions can be obtained
as a weighted average of the individual𝐾 functions, which
are estimated from the different samples of the subject. In a
similarmanner, groupwise summary functions can be esti-
mated as weighted averages of the subjectwise estimates.
A more detailed discussion regarding this pooling pro-
cedure can be found in the Appendix. The cylindrical 𝐾

function was estimated using the Kdirectional package
in R.24

4 MODELLING ENF SPATIAL
STRUCTURE

Below, we first recall the planar point process model for
the projected end point locations introduced in Ref. 11 and
then, suggest how to construct the 𝑧-coordinates by using
a Markov random field model.

4.1 Model for the planar point
process 𝑿𝒑

Even though the model introduced in Ref. 11 was not
able to completely capture the 3D structure of the ENF
patterns, its 2D version turned out to be a good model
for the 2D projections of the data. In this section, we
review the 2D version of the model. It consists of two steps
where in the first step the branching points are simulated
conditioned on a realization of the base point patterns.
In the second step, the end point clusters are simulated
conditioned on the branching points constructed in the
first step. As the model targets the whole nerve tree
structure both branching and end points are modelled
given the observed base points.
The model components in the first step of the model

consist of the distance between the base points and the
branching points𝐿1 and the planar angleΦ1 of the segment
connecting those points. The angle Φ1 is constructed to
favour directions towards open space, that is the direction
away from the closest other base point. This construction
is similar to the construction of the NOC model presented
in Ref. 7.
In the second step, the end point clusters are constructed

around the simulated branching points. In this step, we not
only have the distance between the end points and their
branching point 𝐿2 and the directionΦ2 of the correspond-
ing segments, but also the tree size 𝑆 as in Ref. 2, that is
the number of end points per cluster. The distributions
of the different components of the model for the planar
coordinates 𝑋𝑝 are the following:

1. Branching points | basepoints
𝐿1 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼1, 𝛽1)

Φ1 ∼ 𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠(𝑚, 𝜅), where𝑚 is known.

2. Endpoints | branching points
𝐿2 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼2, 𝛽2)

Φ2 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2𝜋)

𝑆 − 1 ∼ 𝑁𝐵(𝑠, 𝑝)
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withNB denoting a negative binomial distribution. Param-
eters𝛼1 and𝛼2 denote the shape parameters,which control
the shape of the respective Gamma distributions for the
length of the two segments. Similarly, 𝛽1 and 𝛽2 denote
the scale parameters, controlling the spread of the respec-
tive Gamma distributions. The concentration parameter 𝜅
of the von Mises distribution measures the concentration
of the distribution around the mean direction𝑚, where𝑚
is the direction away from the nearest other base point.
The case when 𝜅 = 0 corresponds to small concentration
(large variance) and is equivalent to the uniform angular
distribution while as 𝜅 increases, the distribution becomes
more concentrated around the mean direction 𝑚. Finally,
the parameters 𝑠 and 𝑝 of the NB distribution used for the
tree size denote the number of successes and probability
of success in a sequence of independent Bernoulli trials.
We are mainly interested in the mean of the distribution,
namely, 𝜇 =

𝑝𝑠

1−𝑝
.

To simplify the parameter estimation procedure, we
assume as in Refs. 2, 7, 11, that all individual parts of
the model are independent, hence parameter estimation
can be performed independently for each component.
The parameters of the Gamma and the NB distributions
were estimated using maximum likelihood. Furthermore,
since the mean directions 𝑚 in the von Mises distri-
butions are known, we used the simple approximation
of the maximum likelihood estimate for 𝜅 proposed
in Ref. 25.

4.2 Model for the 𝒛-coordinates 𝑿𝒛

conditioned on 𝑿𝒑

Following Ref. 12, we propose a model for 𝑋𝑧 condi-
tioned on a realization of 𝑋𝑝 defined by the conditional
probability density

𝑓
(
(𝑧𝑖)

𝑛
𝑖=1

|(𝑥𝑖, 𝑦𝑖)𝑛𝑖=1) ∝ 𝛾
𝑠
𝐵𝑟,𝑡((𝑧𝑖 )𝑛𝑖=1|(𝑥𝑖 ,𝑦𝑖 )𝑛𝑖=1) (5)

× 𝟙
(‖‖‖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) − (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)

‖‖‖ > ℎ for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
)
,

where ℎ > 0 denotes the hard core distance, that is the
minimum allowed distance between two points, and 𝛾 > 0

denotes the interaction parameter. If there is no interaction
between the points, 𝛾 = 1. As the exponent of the interac-
tion parameter is a non-negative integer, values larger than
1 indicate attraction and values smaller than 1 repulsion
between the neighbouring points in 𝑋. Moreover,

𝑠𝐵𝑟,𝑡((𝑧𝑖 )𝑛𝑖=1|(𝑥𝑖 ,𝑦𝑖 )𝑛𝑖=1) =
∑

1≤𝑖<𝑗≤𝑛
𝟙
(
(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) ∈ 𝐵(𝑥𝑗, 𝑦𝑗, 𝑧𝑗; 𝜃)

)
(6)

is the number of neighbouring points in the interaction
region 𝐵(𝑥𝑗, 𝑦𝑗, 𝑧𝑗; 𝜃) which in our case is a cylinder cen-
tred at (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)with radius and height parameters given
by 𝜃 = (𝑤, 2𝑡). To further illustrate this choice, an exam-
ple of the shape of the end point clusters in 3D together
with cylinders centred at the end points is displayed in
Figure 2.
As defined above, the model for𝑋𝑧 given the planar end

point process 𝑋𝑝 is a pairwise interaction Markov random
field, where two points 𝑤1,𝑤2 are neighbours if and only
if 𝑤1 ∈ 𝐵(𝑤2; 𝑤, 𝑡) or if ‖𝑤1 − 𝑤2‖ ≤ ℎ (in which case the
conditional probability is equal to zero). Hence, the con-
ditional density of 𝑧𝑖 given (𝑥𝑗, 𝑦𝑗)

𝑛
𝑖=1

and all other (𝑧𝑗)𝑗≠𝑖
depends only on the neighbouring points of (𝑥𝑖, 𝑦𝑖, 𝑧𝑖). In
particular, the conditional density of 𝑧𝑖 given all other 𝑧𝑗 ,
𝑗 ≠ 𝑖, and a realization of the planar point process 𝑋𝑝 is
given by

𝑓
(
𝑧𝑖|(𝑥𝑘, 𝑦𝑘)𝑛𝑘=1, (𝑧𝑗)𝑗≠𝑖) ∝ 𝛾𝑠𝑖𝟙(‖‖‖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) − (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)

‖‖‖ > ℎ for 𝑗 ≠ 𝑖
)
, (7)

where

𝑠𝑖 =
∑
𝑗∶𝑗≠𝑖

𝟙
(
(𝑥𝑗, 𝑦𝑗, 𝑧𝑗) ∈ 𝐵(𝑥𝑖, 𝑦𝑖, 𝑧𝑖; 𝜃)

)
. (8)

4.3 Parameter estimation

To estimate the parameters Φ = (𝛾, ℎ, 𝑤, 𝑡) of the model
(6), we first estimated the hard core distance ℎ by ℎ̂ =

(𝑛 − 1)𝑑𝑚𝑖𝑛∕𝑛, where 𝑑𝑚𝑖𝑛 is the observed minimum dis-
tance between two points. Then, the remaining parameters
were estimated by combining pseudo-likelihood estima-
tion of 𝛾 and grid search of the parameters 𝑤 and 𝑡. We
maximize the log pseudo-likelihood given by

𝑝𝑙(𝛾, ℎ, 𝑤, 𝑡) =

𝑛∑
𝑖=1

log
(
𝑓(𝑧𝑖|(𝑥𝑗, 𝑦𝑗)𝑛𝑗=1, (𝑧𝑗)𝑗≠𝑖)

=

𝑛∑
𝑖=1

log
(
𝛾𝑠𝑖 𝟙(

‖‖‖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) − (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)
‖‖‖ > ℎ for 𝑗 ≠ 𝑖)∕𝑐𝑖

)
,

(9)

where 𝑐𝑖 is the normalizing constant defined as

𝑐𝑖 =

𝑛−1∑
𝑘=0

𝛾𝑘 ∫
𝑊𝑧

𝟙
(‖‖‖(𝑥𝑖, 𝑦𝑖, 𝑧) − (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)

‖‖‖ > ℎ for 𝑗 ≠ 𝑖
)

×𝟙

(∑
𝑗≠𝑖

𝟙((𝑥𝑗, 𝑦𝑗, 𝑧𝑗) ∈ 𝐵(𝑥𝑖, 𝑦𝑖, 𝑧; 𝑤, 𝑡)) = 𝑘

)
𝑑𝑧,

(10)
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F IGURE 2 Example of the cylindrical interaction regions centred at the end points (blue dots) with parameters (𝑤, 2𝑡) = (15, 8). The
locations of the base points (red dots) and the locations of the branching points (green dots) as well as the connections between them are
shown.

with respect to 𝛾 where 𝑊𝑧 = [0, 𝑍𝑚𝑎𝑥] is the window in
the 𝑧-direction. More specifically, numerical optimization
was used to maximize the pseudo-likelihood 𝑝𝑙(𝛾, ℎ̂, 𝑤𝑖, 𝑡𝑖)

over a grid of values for the parameters𝑤𝑖 and 𝑡𝑖 that define
the region of interaction. In other words, �̂� is the parame-
ter estimate for 𝛾 that gives the highest pseudo-likelihood
value and the corresponding grid values give estimates �̂�
and 𝑡 for 𝑤 and 𝑡, respectively. Minus sampling was used
to reduce the bias in the parameter estimates caused by
edge effects.

4.4 Simulation

To simulate a 3D point pattern from themodel, we initially
choose amodel that can produce reasonable realizations of
the planar point process𝑋𝑝 model described in Section 4.1.
Simulating from this planarmodel is a two-step procedure.
First, conditioned on an observed point pattern for the
base point locations, the directions of the branching points
are calculated from the data and the branching points are
simulated given the distribution for the branch length.
Then, the end point clusters are constructed around the
simulated branching points.
To obtain a realization from the full model, we then con-

ditioned on a simulated planar pattern 𝑋𝑝 and then, sim-
ulated the 1D point process using a Metropolis–Hastings
algorithm, where the number of points in𝑋𝑝 is fixed (algo-
rithm 7.1 in Ref. 20). Moreover, properties of the Markov
chain created by the specific Markov chain Monte Carlo
(MCMC) algorithm, such as irreducibility and reversibility,
are proved in proposition 7.11 in Ref. 20.
Let us assume without any loss of generality that 𝑋𝑝

consists of 𝑛 points. For each point in 𝑋𝑝, we initialize its
𝑧-coordinate as a random location in 𝑊𝑧. Then, in every
iteration of the algorithm, we cycle through every point

A l g o r i t hm 1

in 𝑋𝑝 and propose a new point 𝑧𝑛𝑒𝑤
𝑖

in 𝑊𝑧 using a uni-
form proposal. The new proposed point is accepted with
probability

𝛼 =
𝑓(𝑧𝑛𝑒𝑤

𝑖
|𝑋𝑝, (𝑧𝑗)𝑗≠𝑖)

𝑓(𝑧𝑖|𝑋𝑝, (𝑧𝑗)𝑗≠𝑖)
, (11)

where 𝑓 is the conditional density defined in Equation
(7). The algorithm used to simulate the 𝑋𝑧 given 𝑋𝑝 is
displayed in Algorithm 1.

5 MODELLING THE NERVE FIBRE
DATA

Below, we fit the model introduced in Section 4 to each
subject in the healthy and mild groups. The subjectwise
estimates for the model parameters are obtained by using
all the samples available for that subject. The spatial
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F IGURE 3 Dotplot for the parameter estimates of the 2D non-orphan cluster (NOC)-like model for all the subjects in the two groups:
concentration parameter 𝜅 of the von Mises distribution, means 𝛼1∕𝛽1 and 𝛼2∕𝛽2 of the Gamma distributions representing the segment
lengths base point–branching point and branching point–end point, respectively, and the mean 𝜇 of the NB distribution representing the
number of end points per cluster.

structure of the end points in the healthy and mild groups
is compared in terms of the parameter estimates and the
pooled cylindrical 𝐾 functions.

5.1 Model for the planar process 𝑿𝒑

First, we fit the two-step model for the planar process
𝑋𝑝. The subjectwise parameter estimates are illustrated in
Figure 3. The estimates for the branch length and concen-
tration parameter of the von Mises distribution differ in
the two groups. In particular, the branches are longer and
the concentration parameters smaller in the healthy group,
indicating smaller clusters (in area) and less concentration
of the segment directions around the mean direction than
in the mild group. Moreover, the number of end points per
cluster tends to be smaller in the mild group than in the
healthy group.

5.2 Model for the 3D structure

5.2.1 Parameter estimates

The parameters of the Markov field model are estimated
using the methodology described in Section 4.3 and a box-
plot of the estimates is given in Figure 4. The interaction
volumes (cylinders) are wider in the healthy group com-
pared to the mild group. Outside the hardcore distance,
there is some attraction (𝛾 > 1) between the end points in
both groups. The hard core distanceℎ and cylinder height 𝑡
are estimated quite accurately. However, there is quite a lot
of variation in the estimates of the interaction parameter 𝛾

in the healthy case and the cylinder width in themild case.
The half-width parameter 𝑤 and the interaction parame-
ter 𝛾 are highly correlated which would suggest to fix 𝑤

to a constant value. However, fixing 𝑤 did not affect the
estimates of 𝛾 a lot, and we, therefore, kept the individual
estimates. We also identified some outlier samples, which
have significantly smaller end point intensities and larger
hardcore distances than the other samples. The outlier
samples were not included when the groupwise goodness
of fit of the model was evaluated.

5.2.2 Goodness of fit of the 3D model

Goodness of fit of themodel is evaluated in terms of group-
wise pooled cylindrical 𝐿𝑢

𝑐𝑦𝑙
(𝑟) − 𝑟 functions in the three

coordinate axes directions using the fixed cylinder half-
width 𝑤 equal to 7 𝜇m. The half-width of the cylinder was
chosen to be smaller than the cluster radius. As can be
seen in Figure 5, the model is able to capture the 3D spa-
tial structure of the end points within the groups quite well
even though the envelopes (based on 2500 simulations)
do not completely cover the empirical curves. The corre-
sponding results for the mild group are very similar (see
Figure 6). The subjectwise models fit also quite well to the
data in most cases (see Figure A.2 and Figure A.3 in the
Appendix). We can also see in Figures and 6 that the point
patterns are not isotropic, especially in the healthy group,
since the summary function curves in the 𝑧-direction dif-
fer from the curves in the 𝑥- and 𝑦-directions. The points
seem to be in tighter clusters in the 𝑧-direction compared
to the other two since the maximum of the 𝐿 function is
reached at a shorter distance.
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F IGURE 4 Parameter estimates of the hardcore distance ℎ, the interaction parameter 𝛾, and the optimal cylindrical parameters 𝑡 and 𝑤
for the two groups

F IGURE 5 Groupwise pooled 𝐿𝑢
𝑐𝑦𝑙
(𝑟) − 𝑟 functions with 95% global envelopes for the end points from the healthy samples in the 𝑥-axis

(left), 𝑦-axis (middle) and 𝑧-axis (right) directions

F IGURE 6 Groupwise pooled 𝐿𝑢
𝑐𝑦𝑙
(𝑟) − 𝑟 functions with 95% global envelopes for the end points for the samples from patients with mild

diabetic neuropathy in the 𝑥-axis (left), 𝑦-axis (middle) and 𝑧-axis directions
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F IGURE 7 Groupwise pooled isotropic 𝐿(𝑟) − 𝑟 function (left) and groupwise pooled cylindrical 𝐿𝑢
𝑐𝑦𝑙
(𝑟) − 𝑟 functions with cylinders

directed towards the three axes, for the end points from the healthy group (red) and from the mild group (black) with 95% pointwise bootstrap
envelopes (dashed lines). The theoretical value of the function under complete spatial randomness (CRS) is illustrated with a dashed blue line.

5.3 Groupwise comparisons

We first compared the 3D spatial structure of the end points
in the two groups by plotting the estimated groupwise
cylindrical 𝐿𝑢

𝑐𝑦𝑙
(𝑟) − 𝑟 functions with fixed cylinder half-

width 𝑤 = 7 𝜇m directed towards the three coordinate
axes. We clearly see in Figure 7 that the end point patterns
are not isotropic. Furthermore, even though the mild pat-
terns seem to be slightly more clustered than the healthy
patterns, this difference is not statistically significant.
Some differences can, however, be seen in the param-

eter estimates of the model shown in in Figures 3 and 4.
Branching points tend to be further away from their base
points and angles more concentrated away from the near-
est other base points in the mild group than in the healthy
group. Also, there are less end points per cluster and the
end points are closer to their branching points in the
mild case compared to the healthy case. Concerning the
Markov model parameters, the hard core distance seems
to be larger, attraction stronger (𝛾 larger), and cylinder
width larger in the healthy group than in the mild group.
However, the variation of the estimates is quite large.

6 DISCUSSION

We have treated the locations of the base, branching and
end points of ENFs extracted from confocal microscopy
images as realizations of multi-type 3D point processes
and proposed a point process model for the spatial struc-
ture of the nerve trees given the base points. The model is
constructed in two steps. First, we constructed the planar

coordinates of the end points using a planar point process
model suggested in Ref. 11 and then, we constructed the
𝑧-coordinates given the planar coordinates using a
pairwise interaction Markov field model which allows
interaction between the end points. Due to the anisotropy
of the end point patterns, cylindrical interaction regions
were chosen.
The underlying point process is assumed to be station-

ary. Some of the patterns look heterogeneous but since the
samples are quite small, it is difficult to say whether they
are heterogeneous or taken from a larger, homogeneous,
area. Therefore, we think that the assumption of stationar-
ity is reasonable. One possible cause for the heterogeneity
of the base points could be the dermal papillae in the der-
mis, the layer below the epidermis, which forms ridges in
the dermis and makes the thickness of the epidermis vary.
However, we do not have any spatial information on the
dermal papillae.
The model was fitted to the nerve patterns from healthy

subjects and from subjects suffering from mild diabetic
neuropathy. In both groups, there is someminimum inter-
point distance between the end points but at slightly larger
distances they attract each other. However, the attrac-
tion is weaker and the interaction range smaller in the
neuropathy patterns compared to the healthy ones.
Recall that in the planar case, the end point pat-

terns from patients suffering with diabetic neuropathy
are clearly more clustered than the patterns from healthy
volunteers,2,7 particularly, the patterns in themild diabetic
group are more clustered than the patterns in the healthy
group. The difference in clustering is not as clear in 3D.
The 𝐾 functions did not show any significant difference
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in clustering and the differences in the estimates of the
model parameters were quite small in the two groups. This
indicates that the end point clusters in mild neuropathy
patterns tend to be tighter on the 𝑥𝑦-direction but the end
points are further apart in the 𝑧-direction compared to
clusters in healthy patterns.
Having only small differences in 3D clustering between

healthy and neuropathy patterns supports the idea that the
depth of the end points does not affect their ability to sense
(personal communication with Adam Loavenbruck, Uni-
versity of Minnesota). Therefore, when investigating the
change in clustering of ENFs as neuropathy advances, our
results indicate that it seems to be enough to study only
the 2D ENF coverage across the skin and therefore, the
results presented here do not provide any straightforward
clinical implications. However, to understand the com-
plete 3D structure of the ENFs, how the nerve fibres grow
and interact with each other, and whether there are differ-
ences between healthy subjects and patients with diabetic
neuropathy concerning these issues, a 3D model for the
structure is necessary.
Even though the 3D model suggested in this paper fits

the data quite well, it could be further improved. Instead
of modelling the planar coordinates first, we could find a
3Dmodelwith interactionwithin and between base points,
branching points and end points. For instance, the inter-
action cluster point process model introduced in Garcia
et al.8 for the planar point patterns could be a good start-
ing point. Furthermore, the 2D model for the branching
points could be improved by taking into account not only
the closest base point but all base point. Another interest-
ing research question would be to model the alterations
in the spatial structure of the nerve patterns as the neu-
ropathy develops. As every diseased pattern is obtained
from a healthy pattern by removing some of the nerve trees
and/or end points, appropriate thinning strategies could
be constructed to mimic the removal of parts of the nerve
structure. Finally, given a good model for the ENF struc-
ture, the ENF data set could be augmented with simulated
point patterns obtained by themodel. Such data could then
beused to train discrimination algorithms to determine the
level of the neuropathy in a patient.
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APPENDIX A
A.1 Some examples of nerve patterns

F IGURE A . 1 Structure of the nerve trees in 2D (left) and in 3D (right). Blue points correspond to the locations where the nerve fibres
terminate and red points to the corresponding base points. The first point pattern is a healthy pattern and the other two patterns are mild
diabetic patterns.

A.2 Pooling procedure of the summary functions
Our data are hierarchically structured into disease groups
(healthy and patients with mild diabetic neuropathy), dif-
ferent subjects from those groups, and different samples
from the subjects, and we are especially interested in com-
paring the spatial structure of the epidermal nerve fibres
(ENFs) between the two groups. Given that estimates for
the samplewise summary functions �̂�𝑖𝑗(𝑟) of subject 𝑖 and
sample 𝑗 ∈ {1, … ,𝑚𝑖} are available, we can estimate the
subjectwise summary functions �̄�𝑖(𝑟) for subject 𝑖 by

�̄�𝑖(𝑟) =

𝑚𝑖∑
𝑗=1

𝑤𝑖𝑗�̂�𝑖𝑗(𝑟), 𝑤𝑖𝑗 =
𝑛2
𝑖𝑗∑𝑚𝑖

𝑘=1
𝑛2
𝑖𝑘

. (A.1)

Then, the estimates for the groupwise summary function
�̄�𝑔(𝑟) are given by

�̄�𝑔(𝑟) =

𝑁∑
𝑖=1

𝑤𝑖�̄�𝑖(𝑟), 𝑤𝑖 =
𝑛2
𝑖∑𝑁

𝑘=1
𝑛2
𝑘

, (A.2)

where 𝑛𝑖𝑗 are the total number of points in sample 𝑗 of
subject 𝑖 and 𝑛𝑖 =

∑𝑚𝑖

𝑘=1
𝑛𝑖𝑘 are the total number of points

in the samples of subject 𝑖. We used square point number
weights as the patterns fromdifferent subjects, and the pat-
terns from different subjects within a disease group cannot
be assumed to have the same intensity.
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A.3 Global envelope tests
Graphical non-parametric Monte-Carlo tests for func-
tional andmultivariate statistics known as global envelope
tests have recently been developed.26 Let {𝐓𝑖}

𝑠
𝑖=1

be 𝑠 dis-
cretized at 𝑑 points functional statistics with 𝐓1 being
the empirical statistic and {𝐓𝑖}

𝑠
𝑖=2

the simulated statistics
obtained under the null model. A global envelope is a band
constructed by simulated statistics under the null model
such that the probability that a statistic under the null
model wanders outside the envelope in any of the 𝑑 points
is 𝛼. Hence, global envelope test are widely used to assess
goodness of fit of spatial point process models.
The construction of global envelopes is based on the

choice of a measure  which determines the 𝛼 most
extreme statistics obtained under the null model. Then
minima and maxima of the less extreme statistics for each

of the 𝑑 points, are used to construct the envelope. In
this work, the extreme rank length (ERL) measure was
considered to obtain 95% global envelopes. For more rigor-
ous description of the chosen measure, you are referred to
Ref. 27.
Generalizations of the global envelopes, called com-

bined global envelopes, have been developed for the case
where we want to jointly assess the significance of 𝐺 dif-
ferent statistics 𝐓

𝑗

𝑖
with 𝑗 ∈ {1, … , 𝐺}. We note that the

combined global envelope provides one 𝑝-value for the
test but constructs 𝐺 different global envelopes, one for
each test statistic. In this work, global envelope tests
were used to test the hypotheses that cylindrical 𝐿 func-
tions directed towards the three main axes obtained from
the model are the same as the empirical corresponding
summary statistics.

A.4 Individual goodness of fit of the 3Dmodel

F IGURE A . 2 Subjectwise pooled cylindrical 𝐿(𝑟) − 𝑟 functions with global envelopes for the end points for every subject with mild
diabetic neuropathy from the model
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F IGURE A . 3 Subjectwise pooled cylindrical 𝐿(𝑟) − 𝑟 functions with global envelopes for the end points of 10 healthy subjects from the
model
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