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Modeling human gut microbiota: from steady states to dynamic systems 
Hao Luo 
Department of Biology and Biological Engineering 
Chalmers University of Technology 

Abstract 

Human gut microbes are an essential part of human sub-microscopic systems and involved in 
many critical biological processes such as Type 2 diabetes (T2D) and osteoporosis. However, 
the underlying mechanisms are unclear. Several mathematical modeling approaches, such as 
genome-scale metabolic models (GEMs) and ordinary differential equation (ODE) based 
models, have been used to simulate the dynamics of human gut microbiota. This thesis aims 
to explore, simulate, and predict the behavior of gut microbial ecosystems and the 
relationships between gut microbes and humans by modeling.  

The importance of the gut microbiome for bone metabolism and T2D has been demonstrated 
in mice and human cohorts. We first reconstructed a GEM for Limosilactobacillus reuteri ATCC 
PTA 6475, which is a probiotic that significantly reduces bone loss in older women with lower 
bone mineral density. To investigate the associations between T2D and the gut microbiota, 
GEMs for 827 gut microbial species and 1,779 community-level GEMs for T2D cohorts have 
also been constructed. With these GEMs, we investigated metabolic potentials such as short-
chain fatty acids, amino acids, and vitamins that play vital roles in the host metabolism 
regulation. Furthermore, the integration of the models with machine learning method 
provides potential insights into the possible roles of gut microbiota in T2D. 

Cybernetic models, which simulate metabolic rates by integrating the control of enzyme 
synthesis and enzyme activities, have been applied to explore the dynamic behaviors of small-
size metabolic networks. However, only a few studies have applied cybernetic theory to the 
microbial community so far. The remaining part of this thesis focuses on the use of cybernetic 
models to explore human gut microbiota's interactions and population dynamics. Considering 
the high computing burden of the current cybernetic modeling approach for processing the 
full-size GEMs, we have developed a computing-efficient strategy for model reconstruction 
and simulation to reveal the metabolic dynamics of human gut microbiota. 

In this thesis, we explore the human gut microbiota from single L. reuteri species to microbial 
gut communities, from simple steady state systems by GEMs to complex dynamic systems by 
cybernetic model. 

 
Keywords: metabolic modeling, gut microbiota, genome-scale metabolic model, cybernetic 
model, dynamics. 
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1. Background 

1.1. The human gut microbiota 

1.1.1 Hello, human gut microbiota 

Do you believe that half of the cells in your body do not belong to you?  

In 1676, Antonie van Leeuwenhoek observed microorganisms from a microscope of his own 
design (Cocquyt et al., 2021). Since then, humans have been observing and exploring 
microorganisms (Lane, 2015). After years of study, it was realized that we humans are 
inseparably related to microorganisms and that our human body is the host of trillions of 
microorganisms (Bengmark, 1998; Thursby & Juge, 2017). These microbes colonize almost 
every nook and cranny of our body, such as the skin, intestine, mouth, and nasal cavity. 
Especially the gastrointestinal (GI) tract, which is one of the largest interfaces between the 
body and the external environment (about 250–400 m2), is densely populated with a vast 
number of microbes and a wide variety of species (Luckey, 1972; Neish, 2009; Thursby & Juge, 
2017). This collection of microbes is known as the ‘human gut microbiota’. How many 
microbes are there in your body? Some studies estimate that there are approximately 1014 

bacterial cells, and the ratio of microbial cells and human cells is close to 1:1 (Sender et al., 
2016). This is why half of the cells in your body may not belong to you, they are microbes. 
One more exciting topic than cell counts is the study of gut microbiota species and 
composition. The human microbiota is a complex and dynamic population of microorganisms 
that consists of probably more than 2,000 different species of bacteria, viruses, fungi, and 
other microbes (Gill et al., 2006). Due to the advent of culture-independent approaches 
(Moore & Holdeman, 1974) such as high-throughput sequencing, i.e. 16S ribosomal RNA 
(rRNA) or shotgun metagenomic sequencing, methods (Mizrahi-Man et al., 2013; Poretsky et 
al., 2014), more and more species are identified (Gill et al., 2006). Some studies use 
metagenomic analysis classified them mainly into 12 different phyla, most belonging to 
Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. A recent study identified 
9,879,896 genes from 1,018 samples, 100 times more genes than that in the human genome 
(Hugon et al., 2015; J. Li et al., 2014). The composition and structure of gut microbiota have 
significant interindividual variations and multiple environmental factors throughout the life 
span can affect the gut microbiota, as shown in Figure 1.1. 
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Figure 1.1| The human gut microbiota. a) There are approximately 1014 bacterial cells in our 
gastrointestinal (GI) tract, and the ratio of human cells and microbial cells is close to 1:1. There are over 
2,000 species identified by metagenomic analysis. The average weight of adult human gut microbiota is 
approximately 1.5 kg. About 107 genes are identified, 100 times that in the human genome. Most species 
cannot be isolated in the laboratory. b) The microbiota is generally believed to begin at birth and stay with 
us for a lifetime. The original microbiota comes from our mother. Environmental factors and life events 
can shape the microbiota composition, such as daily diet, antibiotic or probiotic treatment, and illness. The 
microbiota offers many benefits to the host, such as producing short-chain fatty acids (SCFAs), branched-
chain amino acids and vitamins. Microbiota composition is also associated with many diseases, such as 
type 2 diabetes (T2D) and osteoporosis. 

It seems like the “army of microbes” has “taken over” our GI tract. In fact, the symbiotic 
relationship benefits both microbes and humans as long as the body is in a healthy state. 
Additionally, the microbiota provides many benefits, plays a critical role for the host, and has 
become an indispensable 'organ' for us (Bäckhed, 2011). For example, some physiological 
functions, such as harvesting energy, protecting against pathogens, and regulating host 
immunity (Gensollen et al., 2016). The status of the gut microbiota is also associated with 
many diseases. For example, in a state of dysbiosis of gut microbiota, the risk of intestinal 
disease increases (Schroeder & Bäckhed, 2016). 

1.1.2 Where does the gut microbiota come from 

When we are born, all we have come from our mothers, including our gut microbiota. A 
previous study reported that human genetics determines to some extent the composition of 
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the gut microbiota and that some microbial species from the phylum Firmicutes and the genus 
Wolbachia are heritable (Aagaard et al., 2014; Rodríguez et al., 2015). These species can be 
detected in the womb tissues of the mother. After birth, the GI tract is rapidly colonized, and 
the mode of delivery and feeding methods can affect the microbiota composition. It has been 
reported that babies delivered by natural birth have more Lactobacillus and Prevotella species 
(Aagaard et al., 2012; Avershina et al., 2014), and those delivered by cesarean section have 
more species of Staphylococcus and Corynebacterium (Jakobsson et al., 2014; Salminen et al., 
2004). Compared to babies born by cesarean section, babies born naturally have a more 
similar microbiota to their mothers (Rodríguez et al., 2015). Human milk-fed infants have 
more abundances of Bifidobacterium longum and Bacteroides species. In the early stages of 
development, microbiota diversity is generally low and dominated by two phyla, 
Actinobacteria and Proteobacteria (Bäckhed, 2011; Rodríguez et al., 2015). During the first 
year of life, microbial diversity increases, and the microbiota composition tends to resemble 
the unique microbial spectrum of adults. 

The composition of the intestinal microbiota is relatively stable during the adulthood, but it 
can still change over time (Rodríguez et al., 2015). Individuals older than 65 years have an 
increase in the abundance of Bacillus-like phylum and Clostridium class IV, and a more 
prevalent XIVa group compared to younger subjects (Biagi et al., 2010; Claesson et al., 2011). 
There is an important relationship between diversity and living arrangements, the microbiota 
of the centenarian population is significantly less diverse, and the microbiota of the elderly 
has a reduced ability to carry out metabolic processes such as SCFAs production and 
amylolysis (Biagi et al., 2013; Woodmansey et al., 2004). It has been hypothesized that the 
reduction in SCFAs may harbor inflammatory aging in the gut of the elderly processes (Biagi 
et al., 2013). 

One of the main factors shaping the gut microbiota composition is diet. Some studies 
estimate that over 60 tons of food pass through the GI during a human lifetime (Bengmark, 
1998). Different food contacts GI environment and influences community structure. The gut 
bacteria mainly rely on carbohydrates which have escaped the digestive enzymes and 
reached the colon (Donaldson et al., 2015). Other nutrients may promote the growth of 
different microbial species. For example, increased fiber availability promotes the diversity of 
gut microbes and the production of short-chain fatty acids (Woodmansey et al., 2004). 
Vegetarians have a different gut microbiota composition to process fiber (David et al., 2013; 
Zoetendal et al., 2012). 

It has also been shown that antibiotic use can lead to dysbiosis of the microbiota. The direct 
exposure of gut microbes to antibiotics can kill large numbers of microbes (Jernberg et al., 
2007; Maurice et al., 2013). The gut homeostasis can be disturbed to dysbiosis. Drug therapy 
may affect the gut microbiota and associate with human disease (Browne et al., 2016; 
Jernberg et al., 2007).  
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Gut microbiota is sensitive because it can be influenced by multiple environmental factors. 
The composition will be stable after a long period of environmental influence and adapt to 
changes to maintain balance (Gustafsson et al., 2012; Plovier et al., 2016; Tailford et al., 2015). 
Some studies show that a person's gut microbiota is more similar to members from the same 
family than to members from different families. Previous studies have shown that smoking 
may lead to an increase in Prevotella (Biedermann et al., 2013). And stress leads to altered 
gut microbial composition and reduced levels of lactobacilli (Tyakht et al., 2013). 

1.1.3 Metabolic functions of the human microbiota  

The gut microbiota is complementary to the human digestive system and provides many 
metabolic functions. One of the most critical functions is to digest food components that are 
otherwise indigestible. They can provide enzymes to help humans break down plant cellulose, 
such as complex polysaccharides and polyphenols. Gut microbes help humans absorb energy 
nutrients from food, and also synthesize some positive metabolites such as SCFAs, vitamins, 
and amino acids (Biagi et al., 2013; Louis et al., 2014; Macfarlane & Macfarlane, 2003; 
Morrison & Preston, 2016; Woodmansey et al., 2004). 

Short-chain fatty acids (SCFAs): many species in gut microbiota express carbohydrate-active 
enzymes to ferment complex carbohydrates generating SCFAs. Include acetate, propionate, 
and butyrate and the proportion is close to 3:1:1 (Louis et al., 2014). SCFAs play vital roles in 
the regulation of host metabolism and are produced by different species from different 
metabolic pathways. Acetate is the most abundant SCFA and produced by most gut 
anaerobes; propionate is mainly produced by Bacteroidetes (Louis & Flint, 2017); butyrate is 
produced by Firmicutes. Propionate formation is mainly synthesized via the succinate or 
propanediol pathway and butyrate is synthesized from carbohydrates via glycolysis and 
acetoacetyl-CoA (Louis & Flint, 2017; Macfarlane & Macfarlane, 2003; Morrison & Preston, 
2016; Musso et al., 2010). 

Vitamins: The gut microbiota is necessary for vitamin synthesis (LeBlanc et al., 2013; Martens 
et al., 2002; Pompei et al., 2007). The host is incapable of synthesizing some vitamins like the 
majority of vitamin B and vitamin K. The vitamin B group is synthesized by lactic acid bacteria 
and different B vitamins can also be synthesized by different bacteria (Martens et al., 2002; 
Pompei et al., 2007). For example, folate is synthesized by certain species of bifidobacteria 
and cobalamin is synthesized by L. reuteri and propionibacteria (Palau-Rodriguez et al., 2015; 
Pompei et al., 2007). 

Amino acids: The gut microbiota also contributes to producing amino acids from dietary 
nitrogen sources and carbohydrates (Pompei et al., 2007). It is a supplementary source of 
amino acids. Even though most amino acids for humans come from food, the gut microbiota 
produced amino acids are important for maintaining the community stable (Carbonero et al., 
2012; Ridlon et al., 2014). 
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1.1.4 Limosilactobacillus reuteri  

Limosilactobacillus reuteri, previously known as Lactobacillus reuteri, is a well-studied gut 
microbial species and has many applications (Su et al., 2012; Zheng et al., 2020): 

As a probiotic, some specific strains of L. reuteri are widely used as probiotic supplements. 
Probiotics are “live microorganisms that, when administered in adequate amounts, confer a 
health benefit on the host” (Dore et al., 2019; Nelson et al., 2010). Many strains of L. reuteri 
are applied in disease treatment and food products. For example, some strains of 
Lactobacillus and Bifidobacterium affect host health and metabolism. Several studies have 
suggested that the health benefits of probiotics include positive effects on the immune 
system, prevention of infections, and treatment of antibiotic diarrhea (Britton et al., 2014; 
Nilsson et al., 2018; Savino et al., 2007). However, more details about health benefits remain 
unclear. Multiple factors shape the probiotic dynamics and their survival and mechanisms in 
the intestine. With the shown beneficial properties of Lactobacillus/Limosilactobacillus 
strains, L. reuteri proved to have positive effects on several diseases such as improving 
symptoms of infantile colic, reducing diarrhea in children, preventing bone loss in the elderly 
and promoting regulatory immune system development (Santos et al., 2009; Schepper et al., 
2019). 

As a lactic acid bacterium, some strains of L. reuteri have been applied to a large variety of 
food products and food supplements. The lactic acid bacterium is generally recognized as a 
safe microorganism such as the bacteria in yogurt (Alayande et al., 2020; Sauer et al., 2017; 
Vankerckhoven et al., 2008). 

As a potential cell factory, L. reuteri produces several industrially important compounds such 
as 1,3-propanediol, folate, and reuterin. Some studies discussed the potential of L. reuteri as 
a cell factory and provided some metabolic engineering strategies (Bosma et al., 2017; 
Kristjansdottir et al., 2019). 

Osteoporosis is a bone disease that reduces bone mineral density and decreases bone 
strength. This disease increases the risk of fracture in the elderly population (Britton et al., 
2014; Nilsson et al., 2018). Due to the limited understanding of osteoporosis mechanisms, the 
treatment rate for patients is very low. The gut microbiota has been suggested to have a 
positive effect on bone metabolism, and gut microbiota supplements are a potentially 
effective intervention for the prevention and treatment of osteoporosis. Some studies 
showed that some specific probiotic strains of Limosilactobacillus can produce butyrate and 
thus promote bone formation in mice (Britton et al., 2014; Nilsson et al., 2018). Supplements 
of L. reuteri ATCC PTA 6475 chewable tablets could also prevent osteoporosis in a mouse 
model. The interest in studying L. reuteri has increased significantly in recent years. More and 
more studies have shown that L. reuteri or L. reuteri, which produced butyrate can improve 
bone mineral density loss (Mu et al., 2018). 
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1.1.5 Gut microbiota and type 2 diabetes 

Type 2 diabetes (T2D) is characterized by hyperglycaemia and some metabolic disorders like 
dysfunction of insulin resistance and pancreatic beta-cell, abnormal glucose and fatty acid 
metabolisms and limited control of the postprandial glycemic level (Association, 2011; Tabák 
et al., 2012). Increasing metagenomic studies have suggested that diabetes is associated with 
altered gut microbiota composition and functional capacity. For example, a previous study 
indicated that discriminatory microbial markers of T2D were heterogeneous between cohorts 
and revealed an increase in the abundance of Lactobacillus species and a decrease in the 
number of Clostridium species in individuals with T2D (Karlsson et al., 2013). Furthermore, 
enrichment of Escherichia coli and an increased quantity of Bacteroides spp. also related to 
T2D. Some gut microbiotas affect glucose tolerance and T2D by producing detrimentally 
microbial metabolites such as branched-chain amino acid (BCAA) (Pedersen et al., 2016), 
imidazole propionate (Koh et al., 2018) and butyrate (J. Wang et al., 2012). 
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1.2. Steady-stay modeling and Genome-scale metabolic models (GEMs) 

 
Figure 1.2| Different approaches of metabolic modeling. Different types of metabolic models have their 
advantages for different type of research questions. Topological metabolic networks require biochemical 
information to represent nodes and edges. Considering metabolites and enzymes as the nodes in a graph 
separately, the network could be ‘metabolite-centric’ or ‘enzyme-centric’. Stoichiometric models like GEMs 
require gene-protein-reaction biochemical information of target organisms. Quantitative constraints such 
as substrate uptake rate can make quantitative flux predictions. Kinetic models like cybernetic models 
could predict metabolites abundance in a specific time span. Some kinetic models need to reduce the scope 
of the models to the level of pathways but also many kinetic parameters. These parameters are often used 
in specific contexts. 

Different types of metabolic models have been developed to understand and simulate 
biological metabolism (Figure 1.2). In systems biology, different models can be primarily 
categorized into three groups, topological, stoichiometric, and kinetic. Topological models 
require little data to create simple edges or links between nodes (Steuer, 2007). There are 
two types of networks, one is an enzyme-centric network, and the other is a metabolite-
centric network. The former uses enzymes as nodes, and metabolites as edges, and the latter 
is the opposite (Aric A. Hagberg et al., 2008; Bauer & Thiele, 2018). Dynamic models are more 
complex than topological and stoichiometric models. They use enzyme capacity data as a 
parameter to simulate or predict dynamic systems under specific conditions. Genome-scale 
metabolic models (GEMs) are useful tools in metabolic engineering that could help us 
understand the metabolism and physiology of an organism (Fang et al., 2020). GEMs provide 
a platform to efficiently integrate genome sequences, experimental data, and other types of 
data (Y. Kim et al., 2020; Rana et al., 2020). In this thesis, we use both stoichiometric and 
kinetic models to study human gut microbiota metabolism. 
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1.2.1 A map of metabolic pathways: Genome-scale metabolic model 

 
Figure 1.3| Genome-scale metabolic models. a) GEM reconstruction. Metabolic genes from the genome 
are annotated, and the information for encoding proteins or enzymes that catalyze metabolic reactions 
were extracted. All reactions in the GEM are connected by shared metabolites and make up a network. b) 
The stoichiometric matrix (S) represents all reactions and metabolites in a GEM. Each reaction is 
represented by assigning the stoichiometric coefficients of the participating metabolites, where negative 
values indicate consumption and positive values indicate production. The fluxes, objects, and bounds can 
be represented as vectors. c) The flux balance analysis (FBA) has been widely used to optimize objective 
functions and predict the fluxes (r). The unit in a GEM is in mmol per gram dry cell weight per hour 
(mmol/gdw/h). The optimization assumes a steady state and all fluxes are constrained by bounds vectors.  

A genome-scale metabolic model (GEM) integrates genes, enzymes, metabolic reactions, and 
metabolites through gene-protein-reaction (GPR) associations (Figure 1.3) (Finley & 
Hatzimanikatis, 2021; Ye et al., 2022). The model serves as a platform for systematic 
metabolic analysis and can describe the complete metabolic transformation of cells. With the 
development of high-throughput and low-cost sequencing technologies, many GEMs have 
been reconstructed for different organisms, including E. coli (Monk et al., 2017), yeast (Lu et 
al., 2019), mouse and humans (H. Wang et al., 2021). These GEMs have many applications, 
such as industrial strain design in metabolic engineering, simulating species interactions, and 
analyzing coupled reaction sets (G. B. Kim et al., 2020; Proffitt et al., 2022). 
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GEM reconstruction. The first step of GEM reconstruction is genome annotation. Based on 
BLAST results and genes’ functions, corresponding enzymes and metabolic reactions are 
collected from databases into a draft model. Some reactions do not have associated genes, 
such as natural exchange reactions and biomass synthesis reactions. These reactions need to 
be added on the basis of the experimental data. The draft model contains "gaps" or missing 
information due to our incomplete understanding of metabolism and genome. These gaps 
need to be added by algorithmics. In order to build a high-quality GEM, a lot of manual work 
is required. Many curations require experimental data and cannot be replaced by automatic 
tools. With the development of sequencing technology, more and more species of GEMs need 
to be constructed. Several automatic and semiautomatic tools, such as Carveme (Machado et 
al., 2018) and ModelSEED (Seaver et al., 2021), have recently been developed. These tools 
allow the construction of draft models based on the genome sequences, thus accelerating the 
reconstruction process. 

1.2.2 Rate and yield 

Rate and yield in production processes are both critical characteristics for evaluating 
industrial strains, and they focus on productivity and efficiency with different criteria (Table 
1.1). Rate measures the speed of product formed and concerns per unit of time. Yield is a 
relative value to measure the efficiency of conversions and is more concerned with the 
amount of substrate consumed. For example, the biomass rate and yield indicate the amount 
of gram dry weight of biomass formed, but the rate is measured in units of time (hour), and 
the yield is measured in units of substrate consumed (g). The rate and yield are not 
independent of each other and usually there is a trade-off between them, such as the ATP 
rate and ATP yield in yeast respiration and fermentation. Respiration generates ATP with a 
high yield and low rate. Oppositely, fermentation has a higher ATP rate but with a lower yield. 

Table 1.1| Comparison of rate and yield. 
 Rate Yield 

Mathematical   𝑟! 𝑟!
𝑟"#  

Units mmol/gDW/h; 
per unit of time 

One (g/g or mmol/mmol); 
per amount of substrate 
consumed 

Description  Productivity / Speed Efficiency of conversions  

Optimization problem  Linear program Linear-fractional program 

Optimization methods FBA opt-yield, FBA*, EFM/EFV+,  
FBA*, fixed substrate uptake rate (fixed 𝑟!) 
EFM/EFV+, not optimization methods (strictly), return a set of pathways. 
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Figure 1.4| Solution space, production envelope, and yield space. a) Feasible solution space of the linear 
problem in a GEM. The solution space is infinite without constraints (grey background). After adding 
constraints for reactions in a GEM, the feasible solution space will also be constrained. If only linear 
constraints existed, the allowable solution space would be a convex polyhedron, indicated by the pink 
background. The optimization is searching for a specific solution in a feasible space. For example, FBA is 
optimizing the objective function indicated by orange. The returned maximum is unique, but the returned 
vector is not unique. For instance, multiple flux distributions (r vector) often result in the same optimal 
objects when maximizing growth. The distributions often contain loops and parsimonious FBA (pFBA) use 
a second optimization to remove loops. The pFBA returns a vector with the same objective values but with 
the lowest sum of fluxes. b) Production envelopes and yield space of acetate-biomass in the core E. coli 
GEM and the locations of optimal acetate and biomass rate pathways. The solution space can be reduced 
to a two-dimensional space. For example, keep the r2 and r3 and get the production envelope of r2 and r3. 
Letting r2 and r3 divide by the substrate flux r1, then get yield space.  

The feasible solution space of reaction flux vectors is a bounded polyhedron in geometry 
Figure 1.4a, and both rate and yield optimization could be considered as searching for the 
optimal pathways in it. If we focus on the variability of two target products, the solution space 
could be present as 2-dimensional production envelopes or yield space. The production 
envelope and the yield space could help us to understand the rate and yield relationships 
between the two products. The difference between the rate and the yield solution space can 
be highlighted. The yield is a property of a pathway and not as flexible as fluxes in our toy 
model. In Figure 1.4b, we map the optimal acetate and biomass rate pathways to the yield 
space based on the flux distributions, and it is clear that the optimal rate pathway cannot 
represent the optimal yield pathway. The rate-optimal pathway is not unique 
(underdetermined system), and the yield might not be unique either.  
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Rate- and yield- optimizations for genome-scale metabolic models (GEMs) are helpful 
methods to help us design strains according to the metabolic flux distributions. Flux-balance 
analysis (FBA) is a fundamental method for optimizing target reactions or predicting flux 
distributions in a steady state. The objective function of FBA usually is the growth rate or 
product rate, and the optimization can be solved by linear programming. FBA is clearly 
maximizing rates in mathematics, and it is also used to solve yield problems by fixing the 
substrate uptake rate in some studies. For example, by fixing substrate uptake rates as 
experimentally observed values or normalizing substrate uptake as one, optimizing the target 
rate is equal to optimizing yield. And there are also other methods to find optimal yield by 
EFM/EFV or linear fractional programming. 

Elementary flux mode and vector (EFM/EFV): EFMs are a set of topologically feasible, non-
decomposable pathways underlying the steady state in models. This set of pathways fully 
characterizes the available metabolic space of a GEM. EFMs are usually used as a structural 
concept to identify interested targets robustness of models and a non-negative linear 
superposition of EFMs could express any feasible results without constraints. EFV is similar to 
EFM but is used to deal with inhomogeneous constraints and can be considered as a catalogue 
of FBA pathways (Klamt et al., 2017). With the existing inhomogeneous constraints, EFV could 
identify disserved pathways under complex conditions. Both EFM and EFV are used to find 
optimal yield or yield space and they performed very well for medium size models. The 
mathematical problem is similar to the enumeration of a polyhedron's corners and edges. 
Some tools like efmtool (Terzer & Stelling, 2008) that is based on double description method 
(DDM) approaches require a huge amount of random-access memory and resources. 
Currently, both EFMs and EFVs limited to small-size or medium-size networks. Some other 
approaches like the lexicographic reverse search (lrs) based motheds have made some 
progress but still no many applications. MATLAB toolbox efmtool and Metatool (von Kamp & 
Schuster, 2006), Python packages efmlrs (Buchner & Zanghellini, 2021) (recommended, 
compatible with cobrapy) and efmtool (python) support EFM and EFV calculations. 
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1.2.3 Metabolic modelling of microbial communities 

 
Figure 1.5| Genome-scale metabolic models for microbial communities. a) Metagenomic data-based 
GEMs reconstruction approaches. From the metagenomic data, species can usually be identified by 16S 
rRNA genes or other marker genes. Based on taxonomic profiles, the specific whole genome sequences 
could be downloaded from public databases such as NCBI. The following step is typical GEM reconstruction. 
Depending on a large number of species, some automatic and semi-automatic tools are generally used. An 
alternative approach is constructing an enzyme-soup model directly from the metagenomic data. b) 
Enzyme-soup model. Assuming that all reactions and metabolites are present in one ‘super-cell-pool’. c) 
Compartmentalization. Compartments separate reactions and metabolites from different species. d) 
Constraints for substrate and objective functions. The specific constraints usually according to the 
taxonomic abundance profiles. The red arrows represent the objective function. In enzyme-soup and 
compartmentalization methods, one lumped objective function is optimized. Some bi-level methods have 
inner and outer objective functions. 

With the increasing availability of high-throughput omics data, an ever increasing number of 
GEMs have been reconstructed by automatic tools. It is now possible to apply GEMs to 
systems of multispecies and communities. Communities GEMs would offer insight into 
metabolic machinery and interactions between species. Several approaches have been 
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developed for different concerns. Depending on research questions, some frequently used 
methods for modeling microbial communities are the enzyme-soup model, 
compartmentalization, pan/core-models, meta-GEMs, separation of species-level and 
community-level objective functions, etc. 

Enzyme-soup approach is the simplest method to evaluate the potential metabolic capacity 
of a community. Meta-genome models are built by the enzyme-soup approach, as shown in 
Figure 1.5a and 1.5b. The model is built by annotating all the genetic material in an 
environmental sample. The model contains many individual organisms’ genomes and 
reactions. Model reactions are compiled into a single stoichiometric matrix and usually have 
one objective function for the community. This approach focuses on environment-community 
interactions; it does not provide species-species interactions and cross-species metabolic 
exchanges (Abubucker et al., 2012; Henry et al., 2016) . 

Compartmentalized models are developed to predict cross-species metabolic exchanges and 
species-species interactions. Each species model is compartmentalized and maintains all 
metabolic capacity. This approach usually creates a new environmental compartment to let 
species share external metabolites and medium. The S matrices are combined into a “meta-
stoichiometric matrix”. The objective function could be bi-level, species objects, and an 
umped community object. The relative abundance of microbes in the community is a vital 
evaluation indicator for metagenomic data and is usually used as a constraint. The constraints 
are used to limit substrate distributions of the community members or formulate a weighted 
linear combination of the biomass reactions (Shoaie et al., 2013; Shoaie & Nielsen, 2014; 
Stolyar et al., 2007) . 

Pan/core models are used to analyze the genome characteristics and phenotypic diversity 
among different strains of a species. It is a collection of GEMs for single microorganisms and 
can be further developed into enzyme-soup models or compartmentalized models (Y. Kim et 
al., 2020; G. Li et al., 2019; Lu et al., 2021). 
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1.3. Dynamic modeling and Cybernetic models  

Cybernetic modeling is a dynamic modeling approach that incorporates control strategies for 
optimal investment of intracellular resources. The hypothesis is based on the fact that 
microorganisms can regulate the synthesis and activity of enzymes as a survival mechanism 
for cells when encountering environmental perturbations. Different from regular kinetic 
modeling, this framework introduced two key regulatory variables (u and v) that were derived 
based upon two laws (the matching law and proportional law) to regulate the “key” enzymes 
that were responsible for the uptake of different substrates. The models can describe not 
only the dynamic behavior of microbes in mixed carbon substrate environments but also the 
multi-species coculture relationship between biomass and products among multi-species.  

1.3.1 Mitigating “traffic congestion” in metabolism: cybernetic Approach 

In 1942, Monod observed the phenomenon of "diauxic" growth, in which the bacteria prefer 
to recruit glucose as carbon sources rather than xylose (Monod, 1942). When all glucose had 
been nearly consumed, the bacteria began to utilize other carbon sources, such as xylose. In 
this context, many researchers have tried to explain these phenomena rationally with 
scientific laws linking cause and effect. As one of the outstanding hypotheses, Monod thinks 
that the enzymes responsible for glucose uptake should be synthesized before those for 
xylose (Monod, 1978). Based on this clue, Doraiswami Ramkrishna and his group were led to 
postulate that the organism must make frugal use of its resources for enzyme synthesis and 
tried to describe "diauxic" growth using a mathematical framework (Ramkrishna, 1983). They 
believe that the regulatory phenomena cooperated with a cybernetic system that could 
regulate the resources for enzyme synthesis to conform to their hypothesis. Here the word 
"cybernetic" is derived from the Greek "χυβερτησ" which means steersman approach. The 
term was defined as the science of "control and communication in the animal and machine" 
by Norbert Wiener (Wiener, 1965). Within this framework, microorganisms were considered 
to have an optimal control strategy toward their survival goal, i.e., the maximization of growth 
under different substrates environments. The simple explanation of this theory is that if we 
consider that there are "key" enzymes responsible for the uptake of different carbon sources, 
such as glucose and xylose, the "diauxic" growth phenomenon can be considered as a wise 
resource investment for the synthesis of different "key" enzymes through their optimal 
regulation strategy (Monod, 1942). Based on the assumption that the microorganisms will 
drive metabolism through the optimal investment of their resources, control of enzyme 
synthesis and activity as survival mechanistic, the development focuses on dynamic modeling 
and has excellent achievement, especially under environments with multiple complementary 
substrates (Narang et al., 1997; Ramakrishna et al., 1996). The idea of regulatory processes is 
also unique from other kinetic modeling or other dynamic modeling. In the cybernetic model 
framework, a microorganism cell could be considered a combination of a series of machines 
(Ramkrishna & Song, 2018). The components of such adaptive machinery within the cell can 
be referred to Figure 1.6.  
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Figure 1.6| The cell in a cybernetic view. The cell of a microorganism could be viewed as a combination of 
machines. Adaptive machinery (external and internal states adaptive), permanent machinery (permanent 
reactions for growth), and regulators (control the resources). The bold orange lines are recourses flow, 
from the substrate to growth or production. The dashed lines in pink are adaptive or regulatory processes. 
The key enzymes respond for different substrate uptake, and the key enzymes also require synthesis 
reactions that are regulated by the resources and regulators. The regulator can adapt to external and 
internal states, as well as to optimization criteria. 

1.3.2 The development of cybernetic modeling 

The motivation of the cybernetic modeling approach is aimed to describe the "diauxic" 
growth phenomenon of bacteria that prefer to utilize glucose instead of xylose (Monod, 1978, 
1942). After a lot of combinations of substrate experiment observations, some researchers 
believe that the cell response is under navigation toward a survival goal. After three decades 
of development, the following researchers believe that cybernetics refers to “the art of 
steering a system toward a goal” (Ramkrishna & Song, 2018). Based on the assumption that 
microorganisms will drive their metabolic behavior through the optimal investment of cellular 
resources, i.e., control of enzyme synthesis and activity, modeling development focusing on 
dynamic modeling has achieved some significant progress, especially in modeling complex 
environments with multiple complementary substrates (Song et al., 2011; Song & 
Ramkrishna, 2013). 
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Figure 1.7| Schematic description of the traditional lumped kinetic model, lumped hybrid cybernetic 
models (L-HCM) and hybrid cybernetic models (HCM). The traditional lumped kinetic model has no 
regulations. L-HCM incorporated enzyme regulation and lumped all pathways from the same substrate to 
production into one pathway. The model is helpful for complex media that contain more than three carbon 
sources. The HCM retains more representative pathways from EFMs, which means there will be more key 
enzymes and more parameters than L-HCM. 

Regulatory processes make it distinct from other kinetic modeling or other dynamic modeling. 
Ramkrishna developed a mathematical framework in 1982 that fixed the number of resources 
used to synthesize enzymes from different carbon sources (Ramkrishna, 1983). The theory via 
integrating regulation of the resource investment has described many diauxic behaviors for 
several substrate combinations. After years of improvement, Straight (1991) tried to apply 
the theory to metabolic networks to describe metabolic performance with complementary 
substrates (Straight & Ramkrishna, 1991). Ramakrishna (1996) refined Straight's work and 
formulated a cybernetic model using a simple network (Narang et al., 1997). And Varner 
published some papers to apply cybernetic modeling on more extensive networks and Young 
(2005) further extended to large networks by developing elementary modes method, called 
hybrid cybernetic models (HCM), with a fresh approach to the derivation of cybernetic laws 
(Young, 2005). With the expansion of metabolite networks and the knowledge of molecular 
details, this framework has some derivative methods for processing large metabolic 
networks, such as lumped hybrid cybernetic model (Song & Ramkrishna, 2010). The models 
can accurately simulate and describe microorganisms' dynamic behavior and even predict 
product formations. In 2008, Kim differentiated the intracellular and the cellular variables, 
which made get variables essayer and possible for genome-scale networks (J. Kim et al., 
2008).  

Cybernetic models adopted some advantages of lumped kinetic model, which sampled the 
internal cell process, and extended some regulation machineries. Two outstanding types of 
cybernetic models are lumped hybrid cybernetic model (L-HCM) (Song & Ramkrishna, 2010) 

a| Lumped kinetic model
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and hybrid cybernetic models (HCM) (J. Kim et al., 2008). Complex models introducing 
enzymatic parameters for each reaction are not presented here because they are not feasible 
within current computational resources and knowledge. The difference between the lumped 
kinetic model, L-HCM and HCM is shown in Figure 1.7.  

1.3.3 Cybernetic variables and cybernetic laws 

Cybernetic variables: As we have mentioned above, cybernetic models could regulate 
enzyme synthesis and enzyme activities, but how to regulate? As shown in Figure 1.8, the 
cybernetic model introduced two cybernetic variables, where u controls the enzyme synthesis 
and v controls enzyme activities.  

 
Figure 1.8| The regulation machinery via cybernetic variables. The cybernetic variable represents the 
percentage of resources allocated. The 𝑢#  controls the synthesis of key enzymes and v controls the 
activities of enzymes.  

The 𝑢!  is the fractional allocation of resources for synthesizing 𝑒! , and 𝑣!  is the fractional 
allocation of resources for the activity of 𝑒!. Therefore, the actual rate of enzyme synthesis of 
enzyme will be regulated by 𝑢!: 

𝑟"! 	𝑢! 	, (0 ≤ 	𝑢! ≤ 1)&	(-	𝑢! = 1)	 

And as defined, the 𝑢! 	is a fraction, should less than or equal to 1, and sum to 1. Similar with 
	𝑣!, the actual rate of activity of enzyme: 

𝑟! 	𝑣! 	, (0 ≤ 	𝑣! ≤ 1) 

Resources 

Substrate 
S1 S2 S3

Key Enzymes
e1 e2 e3

Regulator

External
state

Growth

Internal
state

Optimization
criteria

Products

Synthesis 

u2u1

Substrate 1

Substrate 2
Products 2

Products 1

Growth

e 1

e 2

Activities

v2v1



 

 18 

The 	𝑣!  should less than or equal to 1, but not necessarily sum to 1. Because the resources for 
enzyme synthesis process are competitive, but enzyme activity is not strictly competition. In 
other words, all parallel enzyme activities can be maximized, but synthesis cannot be. For 
example, the total growth rate: 

-𝑟! 	𝑣! 	 , (0 ≤ 	𝑣! ≤ 1) 

Here all the 	𝑣!  could be 1, which means all the enzymes for growth are maximally activated. 
But not all the 	𝑢!	can be 1, because the sum of resources for the synthesis is 1, which are 
competing with each other for cellular resources. 

The 	𝑢!	 incorporates regulatory action of repression and induction and the 	𝑣!  incorporates 
inhibition and activation. In the next two sections, the mathematic desecrations of 𝑢!𝑎𝑛𝑑	𝑣!  
will be introduced, as can be derived based on two cybernetic laws, i.e., the matching law and 
the proportional law. 

Matching Law: Mathematical expressions should be based on real-world phenomenon. 
Before introducing the cybernetic laws, we will introduce how the cybernetic variables 
regulate the recourses. At first the variables 	𝑢!	 controlled how much resource could be used 
to synthesis specific enzyme.  

That means the investment of 𝑢!  is the resource, and the return is the amount of enzyme 𝑒!. 
According to the law of diminishing marginal utility and limited resources,  

Max	𝑇𝑜𝑡𝑎𝑙	𝑒𝑛𝑧𝑦𝑚𝑒𝑠	 =-𝑒!(𝑟!)	 

s. t. :	𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠	𝑅 =-𝑟! 

Furthermore, the 𝑝!  as return-on-investment for resource allocated to the 𝑖$% enzyme, which 
is linear with the amount of enzyme. The resource investment is linear with the amount of 
enzyme and return obtained: 

&"
'"
= &#

'#
= &$

'$
= &%

'%
 & ("

'"
= (#

'#
= ($

'$
= (&

'&
 

Therefore, the mathematical definition of 𝑢!, the Matching Law: 

𝑢! =
𝑟!
∑ 𝑟))

=
𝑝!
∑ 𝑝))

	(0 ≤ 	𝑢! ≤ 1)&	(- 	𝑢! = 1)	 

Proportional Law: Compared with Matching Law, Proportional Law is more complex, the 
postulates should be clear here. 
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Postulate 1: The activity of an enzyme that supports the fastest partially regulated reaction is 
promoted to the utmost. In other words, if the 𝑖 th reaction has the fastest partially controlled 
rate, 𝑣!  is set equal to unity. 

Postulate 2: The activity of an enzyme supporting a reaction, which has a partially controlled 
rate lower than the maximum, is proportional to its rate. 

Based on the two postulates, 𝑣 is proportional to the fastest reaction rate: 

𝑣! = 𝜆	𝑟! 

This proportionality combined with constraints determine the bound on 𝜆: 

0 ≤ 𝑣! ≤ 1 ⇒ 0 ≤ 𝜆 ≤ 1	𝑜𝑟	𝜆 ≤
1

max	(𝑟))
	 

The actual rate of reaction as we mentioned: 

- 𝑟! 	𝑣!
)

, (0 ≤ 	𝑣! ≤ 1) 

Combine the three equations: 

- 𝑟! 	𝑣!
)

	⇒ 	𝜆- 𝑟!*
)

≤	
1

max	(𝑟))
	- 𝑟)*

)
, (0 ≤ 	𝑣! ≤ 1) 

The maximum reaction rate is when: 

𝜆 =
1

max	(𝑟))
 

And then the	𝑣!  math definition by Proportional Law: 

𝑣! =
𝑟!

max	(𝑟))
 

The proportional law is concerned with allosteric and covalent regulatory controls that 
modulate relative enzyme activities. Enzyme activities are properties of the enzyme itself; the 
regulation is not strict competition as enzyme synthesis. And the investment in signals (𝑠!) is 
NOT linear with the return on activity (𝑎!). Here, the relative activity of an enzyme means 
activity relative to its maximum value. And the regulation seems like signal regulates, not 
recourses itself. So, the sum of 𝑣! 	could more than 1. 
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1.3.4 Rate equation and mass balances of cybernetic models 

Basic Model formulation: To introduce the cybernetic model, the assumed variables x should 
contain metabolites, enzymes and growth. The vector x describes the state of the metabolic 
system at any instant, which contains vector m, the concentration vector of metabolites, c is 
biomass concentration, e is the vector of enzyme concentration, x vector y was given by: 
Where the vector of metabolites m is further decomposed into extracellular (𝐦𝐞𝐱 ) and 
intracellular metabolites (𝐦𝐢𝐧).  

𝐱 = K
𝐦
𝐞
𝑐
M, 𝐦 = N

𝐦𝐞𝐱
𝐦𝐢𝐧

O 

For most network models like GEMs, the c could be considered as the biomass, and the 
enzyme synthesis reactions network is considered to be excluded from the network. The key 
enzyme could be a combination of enzymes or a pseudo enzyme. Since the system needs to 
consider two-parts mass balance: metabolites balance and enzyme balance. 

Mass balance: After defining the variable of vector x, all the dx/dt could be described. Mass 
balances for extracellular intracellular metabolites 𝐦𝐢𝐧 . Sometimes the intracellular 
metabolites are under a pseudo-steady state, the concentration will not change, 

𝑑𝐦𝐢𝐧

𝑑𝑡
= 𝐒𝐢𝐧 ∙ 𝐫 − 𝜇 ∙ 𝐦𝐢𝐧 = 𝟎 (1.1) 

For extracellular metabolites concentration (𝐦𝐞𝐱): 

𝑑𝐦𝐞𝐱

𝑑𝑡
= 𝐒𝐞𝐱 ∙ 𝐙 ∙ 𝐝𝐢𝐚𝐠(𝐯) ∙ 𝐫 ∙ 𝑐	 (1.2) 

In equation (1.3), the 𝐦𝐞𝐱  (shape: nmets) is a vector of extracellular metabolites 
concentrations; the 𝐒𝐞𝐱 (shape: nmets * nrxns) is the stoichiometric matrix of GEMs extracellular 
parts; the Z is the (shape: nrxns * npaths) stoichiometric matrix of pathways and extracellular 
metabolites, the pathways could be EFMs or EFVs or opt yield FBA pathways; the 𝐝𝐢𝐚𝐠(𝐯) is 
a diagonalization v (shape: npaths), v is the vector of the cybernetic control variables that 
regulate the enzyme activities that will defend by equation (1.11); the r (shape: npaths) is the 
vector of exchange fluxes from corresponding pathways; 𝑐 is the biomass concentration per 
unit volume. Here the results of 𝐒𝐞𝐱 ∙ 𝐙  could be normalized with substrates. All the 
extracellular metabolites concentration related to the pathway yield from 𝐒𝐞𝐱 ∙ 𝐙, rate r is 
regulated by cybernetic control variables (v). All metabolites’ concentrations are treated by 
per c relating to unit biomass. For some detailed small systems (three - five reactions), the Z 
could be ignored. 
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Enzyme balance: The rate of enzyme synthesis is related to the available resources and 
substrate concentration. Employing a Michaelis–Menten type of kinetic expression for the 
inductive rate of enzyme synthesis, an enzyme balance within the cell becomes feasible, as 
shown below (victor of e or variable e). 

𝑑𝐞
𝑑𝑡

= 𝛂 + 𝐝𝐢𝐚𝐠(𝐮) ∙ 𝐫𝐄 − (𝐝𝐢𝐚𝐠(𝛃) + 𝜇) ∙ 𝐞	 (1.3) 

𝑑𝑒
𝑑𝑡 = 𝛼 +

𝑘&𝑠
(𝐾 + 𝑠) 𝑢 − (𝛽 + 𝜇) ∙ 𝑒 

In the equation (1.3), represent the enzyme (𝐞) (npaths), mass fraction of the enzyme in the 
biomass. 𝛂 (npaths) denotes the vector of the constitutive rate of enzyme synthesis; while 𝐫𝐄 
represents the maximum enzyme synthesis rate which inductive the synthesis of the enzyme 
occurs without limitation of the resources. The 𝐝𝐢𝐚𝐠(𝐮) is a diagonalization u (npaths), u is a 
vector of the cybernetic control variables that regulate the enzyme synthesis, which 
represents the limitation of resources, that will be defined by equation (1.10); 𝛃 (npaths), the 
vector is degradation rate, 𝜇 ∙ 𝐞 is the dilution rate by growth, In the equation (1.4), 𝜇 is the 
specific growth rate. 

Kinetic and rate describing: Rates of pathways and enzyme synthesis and growth could be 
defended by the fowling equations: 

𝑑𝑐
𝑑𝑡
= 𝜇 ∙ 𝑐	 (1.4) 

𝑟! = 𝑘012! ∙ 𝑒!'&3 ∙
𝑠)

g𝐾!) + 𝑠)h
	 (1.5) 

𝑟"! = 𝑘&! ∙
𝑠)

g𝐾!) + 𝑠)h
	 (1.6) 

𝜇 = 𝐡 ∙ 𝐫				𝑜𝑟					𝜇 = 𝐡 ∙ 𝐒𝐢𝐧 ∙ 𝐫 (1.7) 

Equations (5) and (6) are the Michaelis–Menten type of kinetic expression of rates of 
pathways maximized rate and enzyme synthesis. Here the i is the index of pathways, j is the 
index of substrates, different pathways could consume different substrates; where the 𝑘012!  
is the reaction rate constant (g/gDW/h); 𝐾!)𝑎𝑛𝑑  𝑘&!  are the Michaelis–Menten constant 
(g/L); 𝑠)  denotes the substrate concentration; 𝐡 is the matrix to find the biomass-related 
pathways and sum the biomass produce rate. The 𝑒!'&3 	is the relative enzyme, which could be 
described by the following equations:  

𝑒!'&3 ≡
𝑒!

𝑒!012
	 (1.8) 

𝑒!012 =
𝛼! + 𝑘&!
𝛽! + 𝜇!012

	 (1.9) 
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These two equations are under the condition of maximized enzyme level, which are related 
to enzyme balance described in equation (1.3). When left-hand side to zero and u = 1, the 
maximum enzyme level can be established as equation (1.9). Finally, formulation of matching 
law and proportional law to specify the cybernetic control variables as follows 

𝑢! =
𝑝!
∑ 𝑝)4

	 (1.10) 

𝑣! =
𝑝!

maxg𝑝)h
	 (1.11) 

where the variable 𝑣!  and 𝑢!  are bounded between 0 and 1, signifies regulation 1 of enzyme 
activity and synthesis through allosteric control. Here the p is the return on investment: 

𝑝! = 𝑓51'678!𝑟! 	 (1.12) 

Here 𝑓51'678!  is the number of carbon atoms of substrate through the i pathways. For now, 
all the formulation of the cybernetic model is completed. 
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1.4. Aim and Scope 

 
Figure 1.9| The aim and scope of this thesis. 

The aim of this thesis is to explore, simulate, and predict the gut microbial ecosystem and the 
relationship between gut microbes and humans, as shown in Figure 1.9a. Due to the 
complexity of the gut microbial system, it is a challenge to describe the behaviors of the gut 
microbes by one type of model. We have divided our studies into two aspects: from the aspect 
of modeling methods (as mentioned in the introduction section), steady-states and dynamic-
based modeling will be engaged; from the aspect of modeling subjects, single species to 
complex community will be addressed. 

The scope matrix of this study is shown in the Figure 1.9b, modeling human gut microbiota 
from steady states to dynamics systems, from single species to community systems.  
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There are three parts in this thesis: 

Part1, Steady states modeling for single species by L. reuteri GEMs (Paper I & II): in this part, 
we reconstruct GEMs for L. reuteri ATCC PTA 6475 and 35 other L. reuteri strains from three 
types of hosts. We systematically investigate the metabolic features of L. reuteri ATCC PTA 
6475 and the metabolic versatility of L. reuteri. After that, we explore the mechanisms 
underlying the effect of L. reuteri ATCC PTA 6475 on bone metabolism and identify factors 
important for a good response to the probiotic. 

Part2, Exploration of dynamic modeling by a cybernetic model (Paper III): in this part, we 
develop a hybrid cybernetic model strategy that can be applied to genome-scale metabolic 
models, we also illustrate the strategy by both single species and communities. 

Part3, Steady states modeling for microbiota communities (Paper IV & V): in this part, we 
reconstructed communities GEMs for T2D cohorts and investigated T2D-related gut microbial 
signatures by machine learning. We also developed a python package for fast reconstruction 
of metabolic networks and analysis of the structure and properties of the networks. 
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2. Part I (Paper I & II): GEMs for L. reuteri and the effect on human 
metabolism 

 

Related Papers: 

Paper I: Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri 

Paper II: One-year supplementation with Lactobacillus reuteri ATCC PTA 6475 counteracts a 
degradation of gut microbiota in older women with low bone mineral density 

 

Limosilactobacillus reuteri ATCC PTA 6475 (earlier known as Lactobacillus reuteri) is a perfect 
candidate for our study because it is a well-studied strain with both laboratory and clinical 
data. It has been identified as a probiotic and a member of the human gut microbiota. Some 
studies have confirmed the beneficial effects of orally administered L. reuteri ATCC PTA 6475, 
such as preventing bone loss. It is widely used in the market as a dietary supplement. Its 
health benefits may be due, in part, to the production of beneficial metabolites. To study its 
metabolic capacities, L. reuteri ATCC PTA 6475 GEM has been constructed. Considering the 
strain-specific effects and genetic diversity of L. reuteri strains, we were interested to study 
the metabolic versatility of these strains. Finally, we present alterations in the gut microbiota 
of order women with good or poor responses to orally administered L. reuteri ATCC PTA 6475.  
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2.1. Reconstruction and characteristics of L. reuteri ATCC PTA 6475 GEM 

 
Figure 2.1| Reconstruction and characteristics of L. reuteri ATCC PTA 6475 GEM. a) Templated-based GEM 
reconstruction pipeline. To generate the draft models, the iNF517 was employed as the main template 
GEM. Ortholog genes and reactions and extracted based on bidirectional best hits (BBHs). More reactions 
were added to the draft model from LbReuteri, iML1515 and iBT721 also based on BBHs. The exchange 
and transport reactions were added from the templates according to the transporter annotations and 
corresponding medium composition. The gap-filling was performed by COBRApy and the iNF517 used as 
template model. During the simulation and validation, GEM was also manually curated based on 
experimental data. b) GEM genes COG functional distribution. C, energy production and conversion; G, 
carbohydrate transport and metabolism; E, amino acid transport and metabolism; F, nucleotide transport 
and metabolism; H, coenzyme transport and metabolism; I, lipid transport and metabolism; P, inorganic 
ion transport and metabolism; Q, secondary metabolites biosynthesis, transport and catabolism; J, 
translation, ribosomal structure and biogenesis; K, transcription; L, replication, recombination and repair; 
D, cell cycle control, cell division, chromosome partitioning; V, defense mechanisms; T, signal transduction 
mechanisms; M, cell wall/membrane/envelope biogenesis; N, cell motility; O, posttranslational 
modification, protein turnover, chaperones; R, general function prediction only; S, function unknown. *, 
no COG categories. c) Growth rate simulation and comparison with experimental data. The experimental 
data for each dataset is shown in orange, and the prediction is shown in dark blue. 

The genome sequences of L. reuteri ATCC PTA 6475 are sequenced by BioGaia, and the 
annotation yielded 2,019 protein-encoding genes. On the basis of the sequence, GEM 
reconstruction applied a template-based approach, as shown in Figure 2.1a. The initial draft 
model is reconstructed on the basis of the template model iNF517. The other three template 
models were also applied to integrate extra biochemical reactions into the draft model and 
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generated draft 2. After incorporating exchange reactions and transport reactions to enable 
nutrient uptake and by-product secretion, the gap-filling was performed for growth. Many 
manual curations were performed to remove potential errors in reactions or metabolites. 
Altogether, the final GEM of L. reuteri ATCC PTA 6475 includes 869 reactions and 713 
metabolites with intracellular and extracellular components. 30.8 % of the genome and a total 
of 623 genes were associated with the reactions, and 584 of them were associated with COG 
categories (Figure 2.1b). The experimental growth rates we collected are 0.751 ± 0.03 h-1 with 
glycerol supplementation and 0.623 ± 0.04 h-1 without glycerol, both are close to the values 
predicted by the GEM.  

2.2. Comparison with other lactic acid bacteria GEMs 

Table 2.1| Model characteristics of iHL622 and comparison with template GEMs 
Model iHL622 iNF517 LbReuteri iBT721 iML1515 

Organism L. reuteri ATCC 
PTA 6475 

L.lactis 
MG1363 

L. reuteri  
JCM 1112 

L. plantarum 
WCFS1 

E. coli  
MG1655 

Genes  2,019 2,339 1,943 3,063 4,243 
    Included  622(31%) 516(22%) 530(27%) 724(24%) 1,516(36%) 
Reactions 869 754 714 778 2,712 
  Common with iHL622  869 483 531 392 509 
  With GPRa  709(82%) 541(72%) 606(85%) 528(68%) 2,266(86%) 
    Internal 644 530 507 538 1,548 
    Transport 122 119 123 127 833 
    Exchange 103 105 84 113 331 
Metabolites 713 650 660 662 1,877 
  Unique 605 545 561 549 1,071 
Biomass consistency 1.00 0.83 -b -b 1.00 
MEMOTE Score 80% 60% 57% 38% 68% 
a Gene-Protein-Reaction Associations 
b Not applicable 

After GEM reconstruction, we compared our GEM with other published other lactic acid 
bacteria GEMs (and template models). As shown in Table 2.1 and Figure 2.2a, there are 392 
to 531 common reactions and 155 unique reactions in iHL622 (our GEM). In addition, iHL622 
contained 31% more genes than the other three lactic acid bacteria templates models and up 
to 82% reactions in iHL622 associated with enzymes and genes. To evaluate model quality, 
MEMOTE was used for quality control.  MEMOTE reports that iHL622 has the highest quality 
scores compared to other GEMs. In addition, iHL622 was used to predict the growth capability 
of L. reuteri ATCC PTA 6475 using amino acid as nitrogen sources (Figure 2.2c). Previous 
studies have shown that L. reuteri strains have the capacities to synthesize lactate, acetate, 
ethanol (Spinler et al., 2008), histamine, folate (Santos et al., 2008), cobalamin (Santos et al., 
2007, 2008, 2009), 1-propanol (Siebert & Wendisch, 2015; Sriramulu et al., 2008; Walther & 
François, 2016) and 1,3-propanediol (Mishra et al., 2012), which may be related to the 
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probiotic effects of L. reuteri. As shown in Figure 2.2b, we explored the iHL622's ability to 
synthesize these products and production of all these metabolites can be correctly predicted 
by iHL622. 

 
Figure 2.2| Comparison with template GEMs and evaluation with experimental data. a) The venn diagram 
of common and unique reactions in the four lactic acid bacterium models. iHL622 is the GEM of L. reuteri 
ATCC PTA 6475 in this study, iNF517, LbReuteri and iBT721 are the GEMs of L. lactis MG1363, L. reuteri JCM 
1112 and L. plantarum WCFS1 separately. b) The predictions of representative metabolites. Eight products 
of lactate, acetate, ethanol, cobalamin, histamine, 1-propanol, folate and 1,3-propanediol) were simulated. 
The first row shows the experimental data of L. reuteri, and the remaining rows show the model results. 
The produce is shown in dark blue, and no productions are shown in grey. c) Growth capability under amino 
acid omitted medium. The first row shows the experimental data of L. reuteri, and the remaining rows 
show the model results. Growth is shown in blue, and no growth is shown in grey. 

a b

c
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2.3. Characteristics of core- and pan-GEMs of 35 L. reuteri strains from different 
hosts  

 
Figure 2.3| GEMs characteristics comparison of 35 L. reuteri strains. a) GEMs characteristics and Genome 
size. These 35 L. reuteri strains are isolated from three groups of hosts: herbivore, omnivore, and 
sourdough. Strains were sorted in descending order of genome size in each group. b,c,d) Upset plot of 
genes, reactions and metabolites between three groups. The total height of the bar indicates the union 
size of the corresponding group in the horizontal coordinate. In the final bar plotted, specific is considered 
as only appearing in one group, common is considered as appearing in all groups and appearing in two 
(between one and all) groups is considered dispensable. The sizes of common, dispensable and specific 
from all combinations were plotted. 

Previous studies show that L. reuteri strains have metabolic diversity at the genome level and 
L. reuteri species from different ecological origins are closely associated with their living 
environment and genomic diversity (Oh et al., 2010; Yu et al., 2018). Considering the strain-
specific effects and genetic diversity of L. reuteri strains, we were interested to study the 
metabolic versatility of these strains. Here we analyzed metabolism diversity of L. reuteri by 
GEMs. The genome sequences of 35 L. reuteri strains used for GEMs reconstruction were 
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collected from NCBI. Based on their corresponding host, these 35 strains can be classified into 
three distinct groups: herbivore, omnivore, and sourdough. The distribution is 16, 15, and 
four strains into the three groups respectively. The genome size and GEM characteristics are 
shown in Figure 2.3a. The genome size is 2058.3 ± 222.9 CDS, GEMs reactions counts is 919.8 
± 35.0 and metabolites counts is 811.0 ± 25.7. Reactions are linked with 567.1 ± 35.6 encoding 
genes in GEMs. The results show that the GEMs size is weakly correlated with genome size, 
the genome size is sorted in descending order while none of the model characteristics 
correspond to this order (Figure 2.3a). We further compared the differences in reactions and 
metabolites between the groups. The comparison shows that only appearing in one group is 
considered specific, appearing in all groups is considered common and appearing in two 
(between one and all) groups is considered dispensable. Previous comparative genomic 
analysis shown in Figure 2.3b and model comparison shown Figure 2.3c and 2.3d. There are 
host-specific genes in different groups. In our GEMs, there are 7.8% specific reactions and 
5.5% specific metabolites correspondingly 74.8% common reactions and 83.7% common 
metabolites. The percentage of specific genes is more than specific model reactions and 
metabolites, while the common percentage is opposite, low correlation suggests that many 
of the differences in the genome are not inherited to GEMs.  

2.4. The effects of L. reuteri ATCC PTA 6475 intake on older women with low 
bone mineral density 

After comparing different L. reuteri strains GEMs, we studied the effects of L. reuteri ATCC 
PTA 6475 intake on older women with low bone mineral density. In this study, 20 elderly 
women were selected to receive a one-year supplement of L. reuteri ATCC PTA 647 (Figure 
2.4). ten women with a good response (GR group) and ten women with a poor response (PR 
group). Serum and fecal samples were collected from older women at baseline and 12 
months. After one year, the results show that L. reuteri ATCC PTA 6475 supplementation can 
potentially prevent a deterioration of the gut microbiota and inflammatory status in elderly 
women with low bone mineral density. As shown in Figure 2.4d, probiotic intake prevents 
bone loss in the GR group: the relative change in the total volumetric bone mineral density 
(vBMD) of the tibia showed an increase in the GR group (0.39 ± 0.77) compared to the PR 
group (-2.22 ± 0.58; P < 0.001 by the t-test) and a decrease in the level of total volumetric 
BMD of the tibia was observed in the PR group at 12 months (P < 0.05). The ultrasensitive c-
reactive protein (usCRP) showed a significantly reduced level in the GR group at 12 months (P 
< 0.05). Furthermore, three species are shown to be differential at baseline, including 
Streptococcus australis, Lactobacillus antri, and the Lachnospiraceae bacterium 4_1_37FAA. 
Four species were identified to be differential at 12 months, including Prevotella buccae, 
Clostridium acetobutylicum, Bacteroides sp. 2_1_56FAA, and Acidaminococcus fermentans. 
The differences in the endogenous baseline microbiota might be important for a good 
response to the probiotic intake. The results suggest that L. reuteri ATCC PTA 6475 
supplementation has the potential to prevent a deterioration of the gut microbiota and 
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inflammatory status in elderly women with low bone mineral density, which might have 
beneficial effects on bone metabolism. 

 
Figure 2.4| The experimental design and alterations in the gut microbial composition. a) Women with a 
good response (GR group, n=10) and with a poor response (PR group, n=10) were selected. Serum samples 
and fecal samples were collected from the older women at baseline and 12 months. b) Relative change in 
total tibial volume BMD in the GR and PR groups after one year of treatment. The box plot shows the upper 
quartile, median, and lower quartile. c) The heat map on the left shows a logarithmic transformation of the 
mean abundance of the different species in the GR and PR groups at baseline and at 12 months. The gray 
color on the right heatmap indicates the P value of the comparative analysis; ‘*’ indicates P < 0.05; ‘**’ 
indicates P < 0.01. d) Comparison of characteristics of the GR and PR groups at baseline and 12 months. 
Note: Mean ± SD. Nonnormally distributed variables are presented as medians with an interquartile range. 
The t-test or Wilcoxon test were used as appropriate. ‘*’ and ‘#’ indicates a significant difference (P < 0.05) 
between baseline and 12 months in the GR and PR groups, respectively. P a and P b values are from 
comparisons between the GR and PR groups at baseline and 12 months, respectively. The significant 
differences (P < 0.05) are highlighted in bold. vBMD: volumetric bone mineral density; usCRP: ultrasensitive 
c-reactive protein. 
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3. Part II (Paper III): Cybernetic modeling for microbial communities 

 
Related Papers: 

Paper III: Modeling the metabolic dynamics at the genome-scale by optimized yield analysis 

To simulate dynamic systems, we performed the cybernetic model approach, which 
integrates enzyme synthesis and activity regulation. Cybernetic models have been widely 
applied in bioreaction engineering. The advantage of cybernetic models is that they do not 
require a lot of experimental data, which is important for gut microbiota modeling. However, 
we also found some limitations when we tried the traditional hybrid cybernetic modeling 
(HCM) strategy. In this section, we explain these limitations and present new HCM strategy 
to simulate metabolic dynamics at the genome-scale.  

3.1. Hybrid cybernetic modeling strategy and its limitations 

 
Figure 2.5| The overview of L. reuteri cybernetic model and compare with GEMs. a) The simulation of L. 
reuteri growth and metabolism with cybernetic modeling approach, the orange dots indicate experimental 
data, and the blue lines indicate cybernetic model simulation. b) Comparison of L. reuteri GEM and L. reuteri 
cybernetic model. 
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Based on the model constructed in the previous section, we constructed a cybernetic model 
and it performs well (Figure 2.5a). As shown in Figure 2.5b, the model needs to be simplified 
into 30 reactions, which means that we lose a lot of information. And the reason for model 
reduction is to calculate the EFMs and further to obtain the yield space. There are two types 
of methods to obtain the yield space from GEMs. One is to calculate all feasible pathways in 
a network like elementary flux modes (EFMs) and elementary flux vectors (EFVs). The other 
type of method is to identify the boundaries of the yield space by yield optimization. 
Generally, the second method can save computing sources for complex models because of 
few pathways for calculation and focus on the boundaries of the yield space. 

Due to the high computational demand for calculating EFMs, applying the HCM approach on 
conventional genome-scale metabolic models is still a challenge. The number of EFMs is 
exponentially growing with the number of reactions in a network, and this is therefore a 
bottleneck for applying the HCM approach at the genome-scale directly (Vilkhovoy et al., 
2016). According to the metabolic yield analysis (MYA) by Song and Ramkrishna, EFMs provide 
a master yield space and convex hull for pathways selection, and selected pathways’ yield 
values are located on the boundaries of the yield space (Song & Ramkrishna, 2009). Therefore, 
to fill the gap between GEMs and HCMs without EFMs, alternative approaches should be able 
to obtain yield spaces from GEMs. Some studies have attempted to replace the EFMs in the 
HCM approach by EFVs or FBA modes (Ahamed et al., 2021; Vilkhovoy et al., 2016). EFVs are 
alternatives to EFMs but can account for inhomogeneous constraints (Klamt et al., 2017, 
2018; Müller & Regensburger, 2016). Under inhomogeneous constraints, the EFVs can 
provide a theoretically correct yield space that is better than EFM. Although EFVs are more 
reliable for computing the yield space, the computational demand is still high (Ahamed et al., 
2021). FBA modes cannot provide a complete yield space because they optimize the output 
rate of target metabolites, not yield (Klamt et al., 2018; Vilkhovoy et al., 2016). Therefore, 
algorithms for yield optimization need to be developed. 



Part II 

 35 

3.2. Opt-yield-FBA and HCM strategy 

 
Figure 2.6| Opt-yield FBA mathematical description and pseudo-codes and illustrations. a) The objective 
function is a linear form with a temp value of 𝑌$%&!. The initial 𝑌$%&! = 𝑌'() and the object is looking for 
a larger 𝑌$%&! until finding the maximum yield. All the processes subject to steady-state (𝑺 ∙ 𝒓 = 0) capacity 
and irreversibility (𝑟*+ ≤ 𝑟 ≤ 𝑟,+), and the substrate should be absorbed (𝑟" > 0). b) pseudo-codes of opt-
yield FBA. c) The approximate solution of the optimal yield. Objective functions of 𝒓𝒑 − 𝑌$%&! ∙ 𝒓𝒔 meaning 
for yield optimization.  

To obtain the yield space from GEMs, we developed a method to optimize the yield. The 
optimal yield solution is calculated by a series of iterations of the FBA. In each iteration, an 
assumed yield is defined as 𝑌$&0( and the optimized objective function (𝑟( − 𝑌$&0( ∙ 𝑟9) is set 
as the differences between 𝑟( and the product of 𝑌$&0( and 𝑟9. The initial value of 𝑌$&0( is 
𝑌:;< , which is the yield value when rate optimized by FBA. The return of each iteration is a 
vector of flux distribution that updates 𝑌$&0(  for the next iteration. The iterations will be 
terminated when the optimization return zero and the maximum yield is found. In Figure 2.6c, 
is the relationships of the substrate uptake rate (𝑟9) and the production rate (𝑟(). The maximal 
𝑟( value from FBA is shown as a green dot and the maximal yield is shown with an orange dot 
or line. The max(r) and max(y) points do not overlap and the maximal 𝑌 requires multi optimal 
calculations. The objective function of 𝑟( − 𝑌$&0( ∙ 𝑟9 is shown by the blue line and text.  
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Figure 2.7| The HCM strategy and comparison with the traditional HCM. The HCM strategy in this study 
(top part) and the traditional HCM strategy (bottom part). In our HCM strategy, the yield space is calculated 
by the opt-yield-FBA from a complete GEM. All yield values of pathways from opt-yield-FBA are located on 
the boundaries of the yield space. The traditional HCM strategy processes small or medium size models 
and calculates EFMs to obtain the yield space. The yield values of EFMs are located both on the boundaries 
of space and inside of the yield space. The pathways from opt-yield-FBA or EFMs provide the master yield 
space for pathways selection by MYA and convex hull. Experimental data can be used to further select the 
active pathway. The HCM method can be applied based on the selected pathways.  

Based on opt-yield-FBA, the new HCM strategy can avoid the calculation difficulties 
associated with identifying EFMs. By maximizing and minimizing a single target product, a 
range of yield values can be determined. For pairs of target products, the yields space can 
also be calculated by sampling. As shown in Figure 2.7, after obtaining the maximum and 
minimum yield values of Y1 (Y1max, Y1min, X-axis), any values between Y1min and Y1max can be 
sampled as constraints to optimize the Y2 (Y-axis). After calculating the maximum and 
minimum yield values of Y2 in different sampled intervals from Y1max and Y1min, the yield space 
of Y1 and Y2 can be obtained. In comparison to EFM or EFV, opt-yield-FBA allows direct access 
to yield space. Since FBA usually processes the model through linear programming, the opt-
yield-FBA algorithm can be implemented by the FBA framework and is compatible with most 
current modeling tools or solvers such as COBRApy. With the replacement of EFMs by opt-
yield-FBA, the HCM strategy makes it possible to process complex GEMs directly and apply 
the HCMs approach to describe metabolic dynamic GEMs.  
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3.3. The application of HCB at the small scale 

 
Figure 2.8| The HCM strategy applied on a reduced E. coli metabolic network. a) Overview of the receded 
E. coli network, which contains 12 reactions and 14 metabolites. GLC (glucose), G6P (glucose 6-phosphate), 
T3P (fructose 1,6-biphosphate), PEP (phosphoenolpyruvate), PYR (pyruvate), AcCoA (acetyl coenzyme-A), 
SUC (succinate), FOR (formate), ACT (acetate), LAC (lactate), ETH (ethanol), B (biomass), CO2 and H2. b) The 
yield distributions are calculated by EFMs and opt-yield-FBA for acetate, ethanol, lactate, succinate, and 
formate. The grey dot indicates the pathway generated by opt-yield-FBA, most of them located on the 
boundaries. The blue ‘+’ marker indicates the extreme point of opt-yield FBA pathways, and the dashed 
line indicates the convex hull of the yield space. The orange ‘x’ marker indicates the pathway by EFMs. c) 
Simulation of biomass and metabolic dynamics under anaerobic conditions. The dot indicates experimental 
data, and the lines are obtained from the simulation. 

We firstly applied the HCM strategy on a reduced E. coli metabolic network under anaerobic 
conditions (J. Kim et al., 2008). This small-scale network contains 12 internal reactions and 19 
metabolites (J. Kim et al., 2008). The main metabolic pathways under anaerobic conditions 
are shown in Figure 2.8a, which include one substrate (glucose), five internal metabolites, 
and eight products. The cybernetic model simulates seven external metabolites, including 
glucose, succinate, formate, acetate, lactate, ethanol, and biomass. The first step in the 
strategy is to calculate the yield space. The biomass yield is defined as the flux of biomass 
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divided by the flux of glucose consumption, written as 𝑌6!70199 =
𝑟6!70199 𝑟=>?@ABCr . The 

biomass yield range was calculated by opt-yield-FBA. For each biomass yield interval value, 
we set the biomass yield as a constraint of the model, and search for the minimum and 
maximum acetate yield (𝑌15 .). We obtained 22 pathways for each target metabolite and 
selected 38 pathways at extreme points to cover the five complete yield spaces. In 
comparison with the yield space of EFM, the yield space of opt-yield-FBA has the same shape 
as the yield space of EFM. The parameters were estimated by the least squares method and 
experimental data. Finally, the cybernetic model simulation shows a good agreement with 
the experimental observations. 

3.4. The performance is robust for the medium scale network 

 
Figure 2.9| The HCM strategy applied on a E. coli core metabolic model. a, b) Yield spaces of acetate, 
ethanol, lactate, succinate, and formate. Calculated by EFMs, EFVs, and opt-yield-FBA. The X-axis indicates 
the biomass yields, and the Y-axis indicates the product yields. The dots and markers indicate the 
distribution of the yield values, and the line indicates the convex hull in a yield space. The colors orange, 
blue, and pink correspond to the EFM, EFV, and opt-yield-FBA respectively. The yield space of the EFVs is 
considered a theoretically correct result. The yield space from opt-yield-FBA is the same as that of EFVs. 
EFMs have a larger yield space because inhomogeneous constraints in the model are not considered. c) 
The simulation of fermentation. The dots denote the experimental observations, while the lines denote 
the simulation of the cybernetic model.  
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To compare the yield space of opt-yield-FBA and other methods. The E. coli core GEM under 
aerobic conditions was calculated. The GEM containing 95 reactions and 60 metabolites (Orth 
et al., 2010) and calculated 100,273 EFMs and 95,106 EFVs. We also calculated the pairwise 
yield space of five metabolites and biomass by opt-yield-FBA, and 110 opt-yield-FBA pathways 
were generated. The E. coli core model contains many such constraints like minimal maintain 
energy bounds and the FEVs could consider inhomogeneous constraints better than EFMs. 
Therefore, the yield space from EFVs is considered as a theoretically correct result which is 
smaller than that from EFMs. The difference between the EFMs yield space (orange lines in 
Figure 2.9 a and b) and the EFVs yield space (blue lines) may be related to the inhomogeneous 
constraints. The pathways from opt-yield-FBA are significantly less than the other two 
methods and are mainly located at the boundaries of the yield space. The yield space of opt-
yield-FBA is almost the same as the EFVs’ with 99.888% ± 0.098% and 100% similarity in the 
convex hull area and parameters. The results show that the yield space of opt-yield-FBA is 
similar to the correct yield space of EFV. There are 110 pathways from opt-yield-FBA could 
represent the same yield space of 95,106 EFVs and a more accurate yield space of 100,273 
EFMs. Finally, we identified five active pathways using experimental data to construct a 
cybernetic model to simulate metabolic dynamics under aerobic conditions (Varma & Palsson, 
1994).  
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3.5. The metabolic dynamics prediction at the genome scale 

 
Figure 2.10| Cybernetic modeling for the E. coli iML1515 model. a) The yield space of acetate, ethanol, 
lactate, succinate, and formate. The X-axis indicates the biomass yields, and the Y-axis indicates the product 
yields. The dots and markers indicate the yield distribution of the pathways, and the lines indicate the yield 
space. The grey dots are all pathways generated by opt-yield-FBA and the red stars indicate experimental 
data. The orange and blue lines are convex hulls which covering complete and 99% yield spaces. The pink 
line indicates the convex hull of active pathways identified by MYA with experimental data. b) The 
cybernetic model simulation is under anaerobic conditions. The dots indicate experimental observations 
and the lines indicate simulations of cybernetic models. 

To evaluate the performance in full-size GEMs, we applied opt-yield-FBA on E. coli iML1515, 
which contains 1,515 genes, 2,719 reactions, and 1,192 metabolites (Monk et al., 2017). In 
this case, the calculation of EFMs or EFVs is challenging due to the large computational 
demand. The opt-yield-FBA is an FBA based method and can be used to calculate iML1515 
yield space of succinate, formate, acetate, lactate, and ethanol (Figure 2.10a). There are 220 
pathways generated in total. A following convex hull yield analysis was used to reduce the 
number of pathways and 37 pathways were selected to represent the five pairwise yield 
spaces. We also calculated a set of pathways that covers 99% of the volume of the original 
convex hull (orange line and * in Figure 2.10a). Based on the experimental data (red stars in 
Figure 2.10a) (J. Kim et al., 2008), we identified the final active pathways by MYA (red lines 
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and ‘x’ in Figure 2.10a), these are a minimal set of pathways that could cover the experimental 
yield. We collected the experimental data of six metabolites and biomass concentrations 
under anaerobic conditions. After estimation of the parameters, the cybernetic model was 
used to simulate dynamic conditions as shown in Figure 2.10b. All metabolites concentration 
simulations agree with experimental data, especially formate degradation.  

3.6. The simulation of multi- species interactions 

 
Figure 2.11| HCM strategy for three yeast species interactions. a-c) The simulation of monoculture 
including Saccharomyces cerevisiae, Pichia stipites and Kluyveromyces marxianus. Both the biomass (log 
g/L) and metabolites concentrations (g/L) were shown. d) Simulation of two species coculture of S. 
cerevisiae and P. stipites. e) The simulation of two species co-culture of P. stipites and K. marxianus. f) The 
prediction of three species co-culture. The dots denote the experimental observations, while the lines 
denote results generated by the cybernetic model simulation. 

To evaluate our modeling approach in multi-species fermentation, we tested multi-species 
models to test whether our method can be used to simulate the dynamics of microbial 
consortia. The first case includes a system consisting of three yeast, Saccharomyces 
cerevisiae, Pichia stipites, and Kluyveromyces marxianus (Geng et al., 2012). This simple 
system was simulated by a reduced model by the traditional HCM, and we performed our 
HCM strategy with a complete yeast GEM (Geng et al., 2012; Lu et al., 2019). These three 
yeast species have similar fermentation characteristics and most interspecific relationships 
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are competitive to absorb the same carbon source (Rouhollah et al., 2007). For simplicity, we 
used the same GEM for the three species, and the GEM were adopted from the Yeast8 model, 
which contains 3,989 reactions and 2,693metabolites (Lu et al., 2019). 88 pathways were first 
identified to provide the master yield spaces and after the convex hull yield analysis, 17 
pathways were selected to cover 99% of the master yield space. We identified different sets 
of active pathways for the three species using MYA with different fermentation data. For S. 
cerevisiae mono-culture, nine active pathways are selected to cover the experimental yield 
space; for P. stipites 10 active pathways were selected, and 10 active pathways were selected 
for K. marxianus. We estimated a set of the parameters that could simulate the mono- culture 
and two species co-culture. Next the same parameters were used to predict three-species co-
cultures. Because the experimental date only observed the total biomass, for the culture of 
muti species, the biomass of different species was assumed to be the same.  

 
Figure 2.12| The simulation of human gut microbial consortia with three members. a-c) The simulation 
of single species mono-culture of Roseburia intestinalis (R.i), Faecalibacterium prausnitzii (F.p), and Blautia 
hydrogenotrophica (B.h) d-f) The simulation of two species co-cultures. g) The simulation of three species 
co-cultures. The dots denote the experimental measurements, while the lines denote model simulations. 
Both the cells count (upper part), and metabolites concentrations (mM, lower part) are shown. 

To validate the ability of our strategy to simulate gut microbial dynamics, a synthetic 
community of three species was selected (D’hoe et al., 2018). These three species co-cultures 
including representative gut microbial species Roseburia intestinalis L1-82, Faecalibacterium 
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prausnitzii A2-165 and Blautia hydrogenotrophica S5a33 (D’hoe et al., 2018). All three species 
are capable of using fructose as the main carbon source. B. hydrogenotrophica is an acetate 
producer and formate consumer, while R. intestinalis and F. prausnitzii are acetate 
consumers. The B. hydrogenotrophica GEM contains 1,719 reactions and 1,195 metabolites; 
the F. prausnitzii GEM contains 1,358 reactions and 989 metabolites; the R. intestinalis GEM 
contains 1,724 reactions and 1,215 metabolites. Because the three species have different 
substrate usage, the production yields were generated based on different substrates and 
different rates. All the yield calculations and pathways selection considered fructose as the 
carbon source, and acetate or formate as an alternative carbon source accordingly. After 
analyzing the convex hull yield, we finally selected 4, 5, and 5 active pathways for B. 
hydrogenotrophica, R. intestinalis, and F. prausnitzii separately. 

First, the model parameters were estimated using mono-culture experimental data, and then 
applied to predict two species and three species co-cultures. For mono-cultures, shown in 
Figure 2.12, the concentration of all biomass and most metabolites agrees well with the 
experimental data, but some mismatches were identified for the mono-culture of F. 
prausnitzii (Figure 2.12b) where the acetate concentration was not well simulated. For two 
species co-cultures, shown in Figure 2.12d-f, parts of biomass and metabolites concentration 
agree well with experimental data. The relationship between R. intestinalis and F. prausnitzii 
is competition and their dual-culture simulation in Figure 2.12 was better than the other two 
dual-culture in Figure 2.12e and Figure 2.12f. For three species co-cultures, shown in Figure 
2.12g-h, two different states are obtained, which may be due to dependency on the initial 
species abundance. Model simulations for different data are basically the same and are not 
sensitive to the initial abundance of species. Even though the model does not fit quantitatively 
to all the experimental data, some species and metabolites are matching the experimental 
data or at least trends for the three species culture simulations such as mono-culture and R. 
intestinalis and F. prausnitzii dual-culture. We tried to improve model performance by 
integrating different experimental data sets to estimate the parameters.  
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Table 2.2| Number of pathways in different models 

GEMs Reactions Metabolites EFM/EFV Opt-Yield-
FBA Convex hull 

Active 
path/final 
path 

Receded E. coli 12 19 8/- 110 38 6 

E. coli core  95 60 100,273/ 
95,106 110 37 5 

iML1515 2,712 1,192 -/-1 210 
20 (99% 
convex 
hull) 

8 

Yeast  
S. cerevisiae 3989 2693 -/-1 88 17 (99%) 9 

P. stipitis 3989 2693 -/-1 88 17 (99%) 10 
K. marxianus 3989 2693 -/-1 88 17 (99%) 10 
B. 
hydrogenotrophica 1,719 1,195 -/-1 132 14 (99%) 4 
F prausnitzii 1,358 989 -/-1 132 22 (99%) 5 
R. intestinalis 1,724 1,215 -/-1 132 16 (99%) 5 

1 -: EFMs/EFVs cannot be calculated. 

EFMs and EFVs face challenges when processing large-scale models with many 
inhomogeneous constraints, requiring extensive computational resources to perform a large 
number of pathway calculations. The opt-yield-FBA can be an alternative of EFMs in the HCM 
approach because it can obtain yield space using GEMs with lower computational demands. 
As shown in Table 2.2, opt-yield-FBA calculated 110 pathways for the E. coli core model, while 
EFMs and EFVs calculated ~100,000 pathways.  
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4. Part III (Paper IV & V): GEMs and metabolic networks for 
community 

 

Related Papers: 

Paper IV: Metagenomic analysis of type 2 diabetes datasets identifies cross-cohort microbial 
and metabolic signatures 

Paper V: The metabolic network inference framework for shotgun metagenomics 

 

Type 2 diabetes mellitus (T2D) is a multi-factor disease and one of the fastest increasing 
diseases. To identify microbial and metabolic features associated with T2D, we performed a 
systematic analysis of four published metagenomic studies. A total of 1,779 metagenomic 
shotgun sequencing (MGS) files of individuals with different glycemic status were analyzed. 
We construct genome-scale metabolic models (GEMs) for microbial species and 
corresponding communities. We simulated the metabolic capability of these communities, 
such as the fluxes of producing SCFAs and amino acids. Using machine learning, several SCFAs 
producing bacterial species and metabolic reactions were consistently identified to be 
associated with T2D status across studies.  

Due to the complexity of community modeling, we developed the Analyzer for Metabolic 
Networks (AMN) toolbox for reconstructing and analyzing the metabolic networks form MGS. 
Unlike GEMs, topological metabolic networks are simpler and suitable for rapid 
reconstruction to provide the metabolic capacity of samples. The AMN tool is a Python 
package that helps users quickly reconstruct metabolic networks, analyze the structure and 
properties of networks. 
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4.1. GEMs for type 2 diabetes microbiota communities 

 
Figure 2.13| The workflow of integrating machine learning with genome-scale metabolic models (GEMs) 
of the gut microbiota.  

The whole workflow of this section is illustrated in Figure 2.13. We performed a systematical 
analysis of the published gut metagenomic data, using machine learning and community level 
metabolic models. 1,779 MGS datasets from four previous studies were collected, consisting 
of 848 normal glucose tolerance (NGT), 571 prediabetes (Pre-DM) and 360 individuals with 
T2D. A standardized bioinformatics pipeline is used to extract microbial features, including 
functional characteristics and taxonomy. To simulate the metabolic capacity of microbial 
communities, we constructed 827 GEMs for gut microbial species and 1,779 community-level 
GEMs for all individuals. Furthermore, we devised different decision tree-based machine 
learning models to predict the status of T2D, based on the microbial compositional and 
metabolic features of the gut microbiota as well as potential confounding factors. By using 
machine learning integrated with community level metabolic models, we identified a number 
of bacterial species and metabolic reactions that produce SCFAs. The importance of bacterial 
species and metabolic responses in predicting T2D status has kept consistent across studies. 
However, classification models based on gut microbial features have limited performance in 
distinguishing T2D from NGT in independent cohorts, suggesting that specific microbial-based 
models should be developed for certain types of cohorts. 
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Figure 2.14| Reconstruction and characteristics of GEMs. a) The species GEM reconstruction pipeline 
based on the MetaCyc database. b) Characteristics of species GEMs, counts distributions of reactions, 
metabolites, genes, and gaps reactions of species GEMs. All species are divided into five categories, gram-
positive, gram-negative, bacteria that missing gram information, archaea and eukaryotes. c) Growth rate 
of species GEMs, Most GEMs have completed metabolic functions. d) The pipeline for the construction of 
community GEMs by creating different compartments to separate intercellular metabolites and allow 
extracellular metabolites to be transported between species. The overall biomass μ was set as the 
weighted combination of the biomasses μi of all species GEMs. The relative abundances of species ai were 
used as coefficients for the biomass of each species. For the simulation, the community-level metabolic 
network is defined as a stoichiometric coefficient matrix S, which combines the stoichiometric coefficient 
matrixes Si of all species. pFBA is used to simulate metabolic fluxes at a steady state when maximizing an 
objective function under given condition. 

To investigate the potential metabolic capabilities of the identified species in the gut 
microbiota composition, we first constructed genome-scale metabolic models of 827 
individual species, which include 456 gram-positive species, 331 gram-negative species, 30 
bacteria with missing gram information, eight archaea and two eukaryotes. All the individual 
species GEMs were constructed by a semiautomatic pipeline based on the MetaCyc database. 
The distributions of reactions, metabolites, genes and gap reactions of all species GEMs are 
shown in Figure 2.14. After adding 86.25 ± 38.24 gap reactions, all species GEMs could grow 
under the dGMM+LAB medium, which is a mixture of the defined gut microbiota medium 
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(GMM) and the LAB medium, where the gut organisms could grow more than in other 
mediums. Furthermore, we construct community-level metabolic models of individual gut 
microbiota by considering each microbial GEM as one component of the entire metabolic 
model. Additionally, the overall biomass reaction of the community-level metabolic model 
was set as the weighted combination of the biomasses of all species GEMs, where the species 
abundance was used as the coefficients for each species biomass.  

We first simulated the potential production capacity of some representative metabolites, 
such as SCFAs (lactic and acetic acids) and ethanol, in each community-level metabolic model 
by optimizing the biosynthesis of metabolites. In addition, we calculated the flux distribution 
under the maximization of biomass growth for the community level metabolic model by 
performing pFBA. From community level metabolic models, we also counted the reactions in 
different MetaCyc pathways, and the proportion of the counted reactions to all reactions in 
one MetaCyc pathway could present the completeness of the pathway. The sum of the 
exchange reaction fluxes, and the internal reaction fluxes that appeared in different species 
compartments was used as the final characteristic. Through simulation analysis of 
community-level metabolic models, we obtained the metabolic features, that allow for 
providing insight into metabolism or interrelationships in T2D-associated gut microbiota.  
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Figure 2.15| Training and testing dataset process and classification model for T2D state prediction based 
on gut microbial features. a) The pooled data from the four included studies was split into two parts, 
including 70% training dataset and 30% testing dataset. b) using species abundances. Performance of the 
predictive models validated on the testing dataset when pooling all data from the four included studies. c) 
KO profiles. d) the simulated reaction fluxes of the gut microbial community. e) The concatenated features 
of species, KOs and fluxes. The models were trained using three decision tree-based ML methods, including 
the light gradient boosting machine (LightGBM), extreme gradient boosting decision trees (XGBoost) and 
random forest (RF), as well as were adjusted by covariates age, Body mass index (BMI), ethnicity and gender. 

All samples were split into two parts, 70% training dataset and 30% testing dataset. The 
prediction models discriminating the NGT and the T2D are first trained and evaluated by five-
fold cross-validation, and then applied to predict the T2D state of a new sample in the test 
dataset. Predictive models adjusted for variables such as gender, age, and BMI had better 
classification performance for NGT and T2D identification in most cases compared to 
classifiers that did not adjust for covariates. It is strongly suggestive that confounding factors 
should be considered when studying the gut microbiota related to diabetic disease.  
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Figure 2.16| Important microbial features to distinguish NGT from T2D. a) The top 30 important microbial 
species. b) The top 30 important reaction fluxes. They were identified by training a random forest model 
based on the pooled data with adjustment by covariates age, BMI, ethnicity and gender. 

The important microbial features in the classification were evaluated and ranked by the 
metric of mean decrease in Gini impurity (Figure 2.16). Age and BMI are considered the two 
most important factors in the classification of NGT and T2D, which may be significantly 
correlated with T2D and confound the relationship between gut microbiota and T2D. 
Faecalibacterium prausnitzii, three species of Roseburia (Roseburia intestinalis, Roseburia 
hominis, Roseburia inulinivorans), three species of Bacteroides (Bacteroides uniformis, 
Bacteroides caccae and Bacteroides vulgatus) and two species of Ruminococcus 
(Ruminococcus bromii, Ruminococcus lactaris) were identified as important for prediction of 
T2D status, which in agreement with previous studies. Part of them have been suggested to 
be butyrate-producing microbial species that have a beneficial effect on T2D. When using the 
pooled reaction fluxes, age, BMI, gender and ethnicity to train the model for predicting T2D 
risk. butyrate-producing related reactions were identified to be important for prediction of 
T2D status, such as NADK1 (NAD kinase GTP catalyzed by NAD kinase 1), ALAabcpp (L-alanine 
transport via ABC system), RXN-15200 (involved in L-phenylalanine biosynthesis III pathway), 
two reactions LYSINE-23-AMINOMUTASERXN and 4.3.1.14-RXN (involved in L-lysine 
fermentation to acetate and butyrate), and BUTCT (catalyzed by the acetyl-CoA: butyrate-
CoA transferase), GHMT2r (catalyzed by glycine hydroxymethyltransferase). Therefore, ML 
combined with community-level metabolic models has the potential to enable the 
identification of novel gut microbial signatures associated with T2D.  
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4.2. The metabolic network inference framework for shotgun metagenomics 

 
Figure 2.17| The implementation of Analyzer for Metabolic Networks (AMN) and results of the infant 
data set. a) Diagram of the pipeline. The AMN generates networks from our reference network, which is 
based on the KEGG database. After analysis and calculation, the results will be saved as local files or 
dashboard reports. The results demonstrate and visualize network structure, characteristics, pathways, 
clustering, etc. b) Diagram of networks. The ANM generates two types of networks; one is an enzyme-
centric network and the other is a metabolite-centric network. The former uses enzymes as nodes and 
metabolites as edges, and the latter is the opposite. All subsequent analyses are performed in parallel on 
both networks. c) Diagram of the infant dataset. The data set contains four groups (born, four-month, 12-
month, and mother groups) and 98 samples in each group. d) Diagram of PCA (for metabolites networks). 
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Preliminary check of the data for discrepancies. e) Features of the networks. Network properties such as 
the number of nodes and common nodes in four groups can be shown. f) Consensus matrix of the NMF 
results. For the metabolite abundances data, AMN estimated rank-6 to be the best rank and plotted the 
consensus matrix after 10,000 runs. g) Classification of data and abundance of selected features. The 
dynamics from the initial metabolic group (born, four-month, 12-month, and mother groups) to NMF 
predicted groups (met_G_1-6). The heatmap shows the NMF selected feature metabolites and their 
abundance. h) Networks of selected metabolites. Users can select nodes according to their requirements 
or NMF analysis. 

In this section, we developed an effective tool to rapidly build metabolic networks and analyze 
microbiome data. The Analyzer for Metabolic Networks (AMN) toolbox is a Python 
programming language-based package. AMN provides both the command line and a graphical 
interface for constructing and analyzing metabolic networks. AMN can generate two types of 
directed and weighted networks; one is an enzyme-centric network and the other is a 
metabolite-centric network. The enzyme-centric network uses enzymes as nodes and 
metabolites as edges, and the metabolite-centric network uses metabolites as nodes and 
enzymes as edges. Both networks come from reference networks based on the KEGG 
database. Local figures or dashboard reports will visualize network structures and properties. 
On the interactive dashboard, users can display any property according to their requirements. 
To implement our package, we introduced a shotgun metagenomic dataset of infants and 
their mothers with four groups and 98 samples in each group. Data diagrams and principal 
component analysis (PCA) can be found in Figure 2.17. The number of metabolites is 
increasing from the baby_0 group to the baby_12 group, and the baby_0 group contains less 
coverage of common nodes. Nonnegative matrix factorization (NMF) and clustering analysis 
also be applied to investigate potential features and classification. The AMN could estimate 
the best rank for NMF and select key features and samples. Their consensus matrices that 
help to show and measure the stability of the clusters can be plotted.  
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5. Conclusions  

In this thesis, I focus on modeling gut microbiota for steady state and dynamic systems, from 
single species to communities. Through modeling, I studied the metabolism of gut microbiota 
and its impact on human health. 

In the first part (Paper I &II), I focused on L. reuteri, reconstructed a GEM of L. reuteri ATCC 
PTA 6475 to simulate the metabolic capabilities and growth rates under different media. I 
further reconstructed core and pan- GEMs of 35 L. reuteri strains to study their metabolism 
diversity. All the GEMs provided a reliable basis to investigate the metabolism of L. reuteri in 
detail and their potential benefits on host health. Furthermore, I investigated the effects of L. 
reuteri on bone metabolism with limited clinical data. The results indicated that 
supplementation with L. reuteri ATCC PTA 6475 could have beneficial effects on bone 
metabolism. 

In the second part (Paper III), I attempted to model the dynamic behaviors of gut microbes 
and developed a methodology to link GEM and HCM. The new HCM strategy with the yield 
analysis algorithm (opt-yield-FBA) can simulate metabolic dynamics at the genome-scale. The 
opt-yield-FBA is an FBA based method that can calculate optimal yield solutions and yield 
space for GEMs. Finally, I illustrated the strategy to simulate the dynamics of microbial 
communities. 

In the third part (Paper IV &V), I reconstructed the models of microbial communities for the 
T2D cohort and simulated their metabolic capabilities. By integrating machine learning with 
metabolic modeling, a number of SCFAs producing bacterial species and metabolic reactions 
were consistently identified to be associated with T2D status. I further developed a toolbox 
for reconstructing metabolic networks and analyzing the structure and properties of 
networks. A shotgun metagenomic dataset of infants was analyzed as a case study for 
implementation. 

In conclusion, this thesis has achieved most of our aims. We successfully modeled the gut 
microbiota under steady and dynamic states, simulated its behaviors, and explored the 
relationships with human health. At the same time, our modeling of the dynamics of microbial 
communities still needs to be improved. How to apply the dynamic model to communities 
and enhance the robustness of the model is what we need to do afterward. 
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6. Future perspectives  

 
Figure 2.18| Model and reality. 

How far apart are model and reality? I don't know, but I believe the models are approaching 
reality. In my own opinion, I believe that biological systems are one of the most complex 
systems in the world. Before accumulating enough knowledge, we just try to learn from this 
complex system in a crude way. A model is an essential tool to learn from the world and helps 
us simulate and approach reality. It is also an induction of the available data to explore the 
mechanism behind the phenomenon.  

This thesis is an attempt to explore the metabolic modeling of gut microbes and there remain 
topics to be explored.  

The quantity and quality of GEMs. Depending on the research questions, some studies 
continuously improve the quality of a single species GEM and train the model with more 
experimental data, for instance, yeast and E. coli GEMs. Some studies construct a large 
number of models based on limited experimental data and ignore the quality of a single 
model. How to keep the balance between quality and quantity is what needs to be considered 
for gut microbiota modeling. The GEM method comes from systems biology and metabolic 
engineering. Some industrial strains have a lot of experimental data to support their GEMs 
and form a design-test-learning cycle. To improve the model's ability, some studies have 
integrated more information in GEMs, such as transcriptome, proteome, and enzyme data. 
These experimental data-based experiences may hardly help us to improve the quality of all 
individual GEMs in the microbial community. However, we can first focus on the quality of a 
few representative strains of GEMs and establish a design-test-learn cycle. There are 

Model 1 Model 2

Reality
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challenges and opportunities in the development of modeling tools, quality control, and 
format standardization for modeling a large number of species. 

The purpose of modeling is to reveal mechanisms or find correlations. For revealing 
mechanisms, interaction models within humans should be considered; for prediction, black-
box models such as machine learning help us locate important features from lots of data. 

In dynamic system modeling, there is still a long way to go. Kinetic models with complete 
enzyme data are trustworthy but are limited by computational power. Some studies reduce 
the model to limit the number of parameters and avoid overfitting. In the meantime, the 
simplification of metabolism limits the usage of the model in specific situations. Giving the 
parameters a defined biological meaning and a mechanism and verifying them from the 
experimental data is a way to keep the balance between overfitting and the number of 
parameters.  
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“When it comes to reading galley proofs, I always feel reminded of an awful sight once seen 

in a prisoner-of-war camp: a man slowly and deliberately eating his own vomit” 

--Konrad Lorenz, 1973 Nobel Prize in Physiology or Medicine 

 
Thanks for reading to the end 




