
Adaptive bone re-modelling for optimization of porous structural
components

Downloaded from: https://research.chalmers.se, 2024-04-10 14:03 UTC

Citation for the original published paper (version of record):
Olsson, J., Ander, M., Williams, C. (2022). Adaptive bone re-modelling for optimization of porous
structural components. Proceedings of the IASS Annual Symposium 2022 and APCS 2022

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Proceedings of the IASS Annual Symposium 2022 and APCS 2022
Innovation·Sustainability·Legacy

19-–22 September 2022, Beijing, China

Adaptive bone re-modelling for optimization of
porous structural components

Jens OLSSON∗, Mats ANDERab, Chris J. K. WILLIAMSb

∗ Department of Architecture and Civil Engineering
Chalmers University of Technology

412 58 Gothenburg, Sweden
jens.olsson@chalmers.se

a Chalmers University of Technology, Dep. of Industrial and Material Science
b Chalmers University of Technology, Dep. of Architecture and Civil Engineering

Abstract

This paper presents a speculative application of adaptive bone-remodelling to generate porous
structures for building components using a numerical meshless method. We hypothesize that
such porous structures could then be 3d printed to achieve light weight and material efficient
building components. The meshless model is built up with particles that are connected by
arms to their neighbours withing a distance called a horizon. The re-modelling adaption is then
base on the ration of arms strain over average arm strain which is mapped to a third order
polynomial function and used to scale the arm stiffness in a way that mimics the resorption and
densification of bone tissue. The method is shown to work rather well in the recreation of the
structural patterns found in cross section of a femur bone. The translation to a geometry which
can be manufactured with additive techniques is not tackled specifically and suggest a direction
for further work.

Keywords: Meshless methods, bone re-modelling, structural design, optimisation, porous structures.

1 Introduction

Computational tools in architecture and engineering aim to support the designer with infor-
mation that can be used to guide the distribution of matter in the formation of spaces and
structures. Since the early days of computational design, the range of application has broadened
from structural design, energy calculations to manufacturing and even space planing. Recent
development of computational power has broaden the scope for digital models from detailed
simulations of small material constituents to digital twins of entire cities. Although the appli-
cation of computation to the simulation of material behaviour, flow of wind in a city planning
context or the movement people may seem completely different, the underlying mathematics
can be quiet similar. The work presented in this paper is part of a broad exploration of digital
tools within the Digital Twin Cities Centre project at Chalmers university of technology [1],
looking specifically at the interplay between design and structural analysis.
In this paper we strive to present a simple mathematical model that can be used to guide place-
ment of material in a structural engineering design situation. The results form the simulation
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can also be interpreted quiet literally in the design of porous structures. Although the transla-
tion from a meshless model (consisting of the particles and arms) into a 3D form, is not dealt
with specifically in this paper.
The proposed method builds on the simplest form of a meshless method where the continuum
domain is discretised using particles that are interconnected with spring-like elements that will
be referred to as arms. The stiffness of the arms are varied based on the principles found in Bone
re-modelling so that more strained areas become stiffer and less strained areas are weakened.
A range of methods have been proposed to enable a similar material guidance in structural
design. Among which, various forms of topology optimisation [2], different forms of truss opti-
misation, as exemplified in [3] base on the interior point method, in [4] based on graphical rules,
and in [5] applied in real structural design situations.

1.1 Bone re-modelling

Bone tissue has been found to reconfigure its structural morphology as a response to external
stimuli. This process which today is referred to as adaptive bone-remodelling was first discovered
by Wolff in 1892 [6] and postulated in what is called Wolff’s law which say that

In a mature bone where the general form is established, the bone elements place or
displace themselves, and decrease or increase their mass, in response to the mechan-
ical demands imposed on them.

A diverse set of mathematical models have since been proposed to recreate the bone growth
behaviour that is observed in nature. The models are typically based on mechanical stimuli
derived from measures of strain, stress or energy and the ‘adaptive elasticity’ model based on
the measure of strain energy density (SED) by Huiskes [7] has gained notable popularity in
this field of research. An overview for the use of the SED methods is given in [8]. Adaptive
bone re-modelling has been applied to model screw implants and the in-growth of bone into
implant cavities [9]. A study from 2000 approach the modelling of internal bone structure of
a proximal femur as an optimisation process [10], and others have explored the similarities of
bone re-modelling and topology optimisation [11]. The first use of meshless methods to simulate
adaptive bone re-modelling was published in [12].

1.2 Meshless methods

Smoothed Particle Hydrodynamics (SPH) was introduced by Gingold and Monaghan in 1977
and is usually referred to as the first meshless method [13]. It was developed for modelling of
astrophysics phenomena but has been widely adopted in modelling of fluids for complex flow
situations, including fluid structure interaction. The grid free nature of SPH makes it suitable for
modelling of large deformations, for example in the context of rock mechanics and geoengineering
but also in manufacturing related processes that involve large deformation of solids, for example
extrusion and forging of metals.
Peridynamics is another meshless method that was introduce in 1999 for the simulation of
fracture [14]. The continuum domain is discretised by a set of particles which are connected to
their neighbours through a set of arms spanning a distance which is called the horizon. Since
the arms reach further than their immediate neighbours, it is just like SPH referred to as non-
local method, and is therefor an appropriate approach for modelling of stress concentrations and
progressive fracture.
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2 Model setup

Several strategies can be used to set up a particle model for analysis. The fundamental problem
concerns populating a domain in 2D or 3D with particles and structuring the data in a way to
enable performance efficient calculations. A strategy also need to be chosen for how to define
the domain of interest, preferably in a way that enables efficient point inclusion calculations.
For the 2D case, a polyline can be used to define the material body, and the point inclusion
calculations can be carried out using a line intersection principle. Given a point that is located
within the bounding box ([Xmin, Xmax], [Ymin, Ymax]) of a container polyline, a horizontal line is
drawn from the point to the maximum x-vaule of the bounding box. If the line intersects with
the polyline at an odd number of instances, the point lies inside the polyline.
For the 3D case, a volumetric mesh of tetrahedral elements can be used to define the object.
The inclusion of a point inside the elements of the volume mesh can be done by reformulating
the coordinates for the point in the barycentric coordinates for each tetrahedron. If and only if
all the barycentric coordinates (x1, x2, x3, x4) > 0, the point lays inside the tetrahedral element.
Each point is then tested for the appropriate proximal tetrahedral elements to conclude inclusion
or exclusion in the object.

Figure 1: Setup of a 2D femur with the particle arrangement and boundary conditions to the left
and the resulting network of arms to the right. A particle a within the horizon ha for α = 5.5
is highlighted in the selected region.

Using said strategies for domain definition and point inclusion calculation, a regular grid of parti-
cles can be generated by discritising the bounding box ([Xmin, Xmax], [Ymin, Ymax], [Zmin, Zmax])
of the object with a spacing (∆x,∆y,∆z). The bounding box is furthermore divide into a grid
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of zones, which can be seen in Figure 1. Each particle is associated to a zone index, which
can be calculated from the coordinates of the particle, the zone step size and the bounding box
size. Such zone indexing are standard procedure in particle simulations with SPH och discrete
particle models.
To simplify the setup we may assume that all the particles a have the same size which is
calculated by dividing the area of the whole object with the number of particles. From the
particle area, the particle radius ra can be retrieved, assuming that the particles are circular.
The horizon ha for a particle is then calculated from ha = raα, where α is a parameter of choice.
The next step of the setup involves the option to introduce noise in the particle distribution
through a type of shaking procedure. The algorithm which is used in this paper for that purpose
can be found in [15] section 10.2. Following the introduction of noise, the particle setup is
established and the arms need to be created. This is done by connecting each particle a with
all the neighbouring particles b within the horizon of a.

3 A simple meshless model

The simplest form of a meshless method consists of particles that are interconnected with spring-
like arms as described in section 2 and shown in Figure 1. For the same setup of particles a
variety of phenomena can be modelled based on the introduction of different particle interaction
conditions or force laws. In this context a simple linear elastic material will be modelled where
the arm force is based on the strain of the arms and the arm stiffness.

Figure 2: Two particles in their initial position a0,b0 and deformed position a,b respectively.

The arm strain ϵab is calculated from

ϵab =
Lab − Lab

0

Lab
0

, (1)

where Lab is the deformed length of the arm and Lab
0 is the initial arm length. The arm-force

Tab is then calculate from

Tab = ϵab
S

Lab
0

, (2)

where S is the arm stiffness. The total force on a particle a surrounded by n number of neighbours
then becomes

fa =
b=n∑
b

ϵab
S

Lab
0

qab + g, (3)

where fa is a vector with the force components in [N], qab is the unit direction vector from
particle a to particle b calculated from qab = (b− a) / |b− a|, and g is the body load vector in
[N]. From this a simple starting point, more elaborate mechanical properties can be introduced
in the formulation of the arm-force, to capture more complicated phenomena. One such example
is shown with the modelling of fracture in [15], where the arm-force is based on the concept of
force flux density enabling spontaneous fracture for a material with an arbitrary Poisson’s ratio.

4



Proceedings of the IASS Annual Symposium 2022 and APCS 2022
Innovation·Sustainability·Legacy

3.1 Adaptive stiffness

The stiffness adaptation is achieved by scaling the stiffness for the arms, and the scale factor is
driven by the ratio of arm strain over average arm strain. The average arm strain k is calculated
though a summation of all the arm strain divided by the number of arms n such that

k =
i=n∑
i=0

ϵi
n
. (4)

The stiffness scale factor β is derived with inspiration from bone re-modelling principles where
different parts of the bone structure are either in resorption, in densification or in a type of
dormant mode. The typical stimuli-densification graph from bone re-modelling is approximated
here with a function δ, which is based on a third order polynomial, as shown in Figure 3.
Two additional polynomials are also included, to exemplify how the width of the plateau and
the steepness of densification and resorption can be altered by just changing the order of the
polynomial. The stiffness scale factor β is calculated from

βab = 1 + δ(ϵab, k), (5)

where δ is defined as

δab =
(ϵab

k
− 1

)3
, (6)

which can be seen in Figure 3. In order to slow down the growth of stiffness and to allow the
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Figure 3: Three different equations that can be used to modify the stiffness of the arms based on
the strain over average strain ratio. The third order polynomial represented by the continuous
curve has been used for the examples in section 4.

model to find and adapt to new load paths, the δ component is incremented iteratively, and
multiplied with a scaling damping factor γ. The introduction of γ also becomes an opportunity
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to control the rate of resorption and densification to ensure stability and convergence. The
incremental formulation of δ, following the time stepping in section 3.2, thus becomes

δtab = δt−∆t
ab + γ

(
ϵtab
k

− 1

)3

, (7)

assuming that δab = 0 at t = 0. The scale damping γ is defined as

γ =

0.0005 if,
ϵab
k

> 1 ,

0.001 if,
ϵab
k

< 1 ,
(8)

resulting in a slower densification and faster resorption. Additional limit conditions on the total
stiffness scaling factor can be applied such that βmin ≤ βab ≤ βmax. Where βmin is typically
1/100 if βmax = 100. The values for γ, βmin, βmax will need some tailoring for each specific
problem depending on the overall stiffness in the structure, the loading rate etc. The arm force
from Eq.(2) is then updated to become

Tab = βabϵab
S

L0
. (9)

The total force on a particle a surrounded by n number of neighbours as shown in in Eq.(3)
then becomes

fa =
b=n∑
b=0

βabϵab
S

Lab
0

qab + g. (10)

3.2 Solver procedure

In order to solve Eq.(10) for a specific particle model an explicit time integration scheme can be
used to calculate the acceleration, velocity and displacements by stepping through time. The
stiffness scaling is then initiated once the modelled has reached a convergent force distribution.
The procedure starts with an initial undeformed geometry at time t = 0 and initial velocities
equal to zero at time t = −∆t/2. A time step ∆t is chosen, the displacements are then evaluated
at t = 0, t = ∆t, t = 2∆t... and the velocities are evaluated at the half steps t = −∆t/2,
t = ∆t/2, t = 3∆t/2... The time stepping follows the ‘leapfrog’ technique, which is somewhat
simpler than Verlet integration[16], and after N cycles the amount of time t that has passed is
t = N∆t. At each cycle the strain is calculated from Eq.(1), δab from Eq.(7), βab from Eq.(5)
and the total force on a particle fa from Eq.(10). The acceleration of the particle is calculated
by dividing the total force on the particle by its fictitious mass such that

At
a =

f ta
mt

a

, (11)

where the fictitious mass mt
a is calculated from the accumulated arm stiffness such that,

mt
a =

b=n∑
b=0

βt
ab

S

L0
qt
ab. (12)

The velocity at the next half step is calculated using,

Vt+∆t/2
a = cVt−∆t/2

a +∆tAt
a, (13)
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where a carry over factor c is introduced as fictitious damping of the velocity from previous
iteration. The optimal value is chosen empirically, with typical values in the range 0.99 to 0.999.
It should be noted that if we wanted to model viscous damping accurately then we would set
c = 1 and we would need to estimate Vt

a in order to include the damping force term in At
a. The

new displaced position for a particle is then calculated from the previous position Xt
a and the

velocity from Eq.(13) using
Xt+∆t

a = Xt
a +∆tVt+∆t/2

a . (14)

This is the end of the cycle and the time is the incremented to,

t = t+∆t, (15)

and the procedure repeated.

3.3 Boundary conditions

Compared to classical continuum mechanics and the Finite element method (FEM), the setup of
the boundary condition for a meshless method works a bit different. Since meshless methods are
typically non-local methods (the particles are connected to more then just the closest neighbours)
the boundary conditions should be applied to a layer of particles with a depth that is at least
as large as the largest horizon in that area. Whereas the natural boundary condition if FEM
is a traction force, the boundary force in peridynamics is a force density applied at some depth
beyond the surface layer. Similarly, displacement boundary conditions are prescribed within a
layer of finite thickness under the surface [17].

4 Results

In this section the results from a set of different applications are presented. The fist case is the
classical femur model which is a standard simulation in bone re-modelling research. The second
case is a 3D version of the femur and finally a 2D application for a structural frame is presented.
The implementation is done using C++ and the visualisation is done with OpenGL.

4.1 Femur 2D

The 2D cross section of a femur bone as shown in Figure 1 is populated with 4986 particles
resulting in 137427 arms when the particles are connected with their neighbours for α = 5.5.
The load is applied on top of the femoral head pointing in the direction of the arrows in Figure
1 to mimic the load transfer form the pelvis to the femur for a standing person. The shaft of the
femur is furthermore locked in place as illustrated in Figure 1. The distribution of compression
and tension in femur prior to the stiffness scaling can be seen in Figure 4a, and the total strain
on the particles can be seen in Figure 4b. The distribution of stiffness scaling β for the femur
can be seen in Figure 5.
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(a) Arm force Tab (b) Particle strain

Figure 4: Analysis results for the 2D femur from prior to stiffness scaling. The tension and
compression force follows the expected distribution from a bending situation.

Figure 5: The 2D femur bone where the arms colored by the stiffness scale factor βab. Black
arms are stiff and white arms a weak.
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4.2 Femur 3D

The second example is an extension of the 2D bone in section 4.1 to 3D. A scanned femur
is approximated with a volume mesh and populated with 23852 particles, where barycentric
coordinates are used for inclusion calculations as described in section 2. The bone is locked at
the base of the shaft with a depth larger than the largest particle horizon. An incremental load
is applied to the top of the bone to mimic the weight of a standing person. For α = 4.5 each
particles is connected to an average of 76 neighbours and the total number of arms are 1816662.

Figure 6: Setup of the femur bone model in 3D with two elevations and a top view.

(a) Arm force Tab (b) Particle strain

Figure 7: Analysis results for the 3D femur prior to stiffness scaling. The compression and
tension is concentrated to the outer most fibres as expected in a bending situation.
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Figure 8: Three sections through the femur bone where the arms are colored by the stiffness
scaling factor β. A large scale factor is black and a small scale factor is white. 5% of the least
strained arms (which would have been white) have been removed in the visualisation so that
the other arms appear more clearly.

4.3 Structural frame

A structural frame in 2D which is exerted to a uniform distributed load case is modelled using
24840 particles and 675939 arms, for α = 5.5. Figure 9 show the setup and Figure 10 the results
from the analysis prior to the stiffness scaling. The results from the stiffness scaling is illustrated
in Figure 11 where two different stiffness adaptations are run, one for βmax = 5 and one for
βmax = 25. The example serves to illustrate how the limits on β has an effect on the results.
A smaller βmax range mimics a weaker material and a smaller βmin results in more removed
material.

Figure 9: A 2D frame which is locked with moment connections at the base and loaded with an
evenly distributed load along the top.
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(a) Arm force Tab (b) Particle strain

Figure 10: Results form analysis prior to stiffness scaling illustrated as tension and compression
force in the arms and strain for the particles.

(a) βmax = 25 (b) βmax = 5

Figure 11: The 2D frame where the arms are coloured by the stiffness scale factor β. The left
figure have a larger βmax compared to the right figure, which can be seen to effect the results
with thicker dense areas in figure b).

5 Discussion and Conclusions

The present study exemplified a the use of a simple meshless method for guidance of material
placement in structural components and/or creation of patterns for distribution of material
density and porosity. The femur bone examples accumulate stiffness in the expected regions with
promising results in both 2D and 3D. The frame example also indicate a reasonable behaviour
and exemplify how the the change in βmax has an impact on the thickness of the more dens
areas as one would expect. The presented approach is based on relative values of stiffness and
force but real material properties could be implemented in future work. A translation from the
meshless analysis results and printable 3D geometry also need to be developed for construction
of porous components.
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