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Abstract: Buildings are responsible for around 30 to 40% of the energy demand and greenhouse gas
(GHG) emissions in European countries. Building stock energy models (BSEMs) are an established
method to assess the energy demand and environmental impact of building stocks. Spatial analysis of
building stock energy demand has so far been limited to cases where detailed, building specific data is
available. This paper introduces two approaches of using synthetic building stock energy modelling
(SBSEM) to model spatially distributed synthetic building stocks based on aggregate data. The two
approaches build on different types of data that are implemented and validated for two separate
case studies in Ireland and Austria. The results demonstrate the feasibility of both approaches to
accurately reproduce the spatial distribution of the building stocks of the two cases. Furthermore, the
results demonstrate that by using a SBSEM approach, a spatial analysis for building stock energy
demand can be carried out for cases where no building level data is available and how these results
may be used in energy planning.

Keywords: building stock modelling; spatial building stock modelling; bottom-up model; synthetic
building stock

1. Introduction

Buildings are responsible for around 30 to 40% of the energy demand and greenhouse
gas (GHG) emissions in European countries [1]. Reducing the energy demand of buildings
requires the implementation of targeted energy efficiency and emission reduction measures.
The implementation of measures often falls to local municipalities and cities, which have
to develop plans and strategies for clean energy transitioning to transform their local
buildings stock. This challenging task is impeded by the complexity behind the process of
planning for energy efficiency at scale as well as the implementation of renewable energy
infrastructure, which is further made difficult by the lack of data for the analysis of spatial
energy demand.

Building stock energy models (BSEMs) have long been used to assess the energy
demand and environmental impact of building stocks [2,3], where they have been used
for policy assessment [4–6], analysis of renovation strategies [7,8], and urban energy plan-
ning [9] among other applications. In recent years, the field of urban building energy
modelling (UBEM) especially has become more and more popular, focusing on modelling
the spatial distribution of building energy demand through building-specific BSEMs that
model each building in a city or region individually [9,10]. This development has been
possible through an increase in computational power as well as the widening availability of
building-specific data on building stocks such as 3D city models, building registries and/or
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energy performance certificate data, which enable a spatially differentiated description
of building stocks and their energy demand [11]. However, availability to the required
datasets is also a limiting factor to the widespread use of spatial BSEMs, as access is often
restricted, or certain data is missing completely [9]. Moreover, the underlying datasets are
often faulty, incomplete and fractured, and therefore extensive data processing and clean-
ing is required in order to make use of them in building stock energy analysis [12]. This
makes the application of spatial BSEMs a complex and time-consuming task preventing
their wider application especially in smaller regions where resources for energy demand
assessment are limited.

In this article, we address these issues by further developing the previously established
methodology for synthetic building stock energy modelling (SBSEM) [13] to enable the
modelling of spatially distributed synthetic building stocks. In the absence of detailed
microdata, SBSEM synthetically generates disaggregated data of individual buildings
in building stocks based on aggregate data [13]. It builds upon methodologies for the
generation of disaggregated synthetic populations of individuals and households which
have widespread use in microsimulations and agent-/individual-based models [14]. It has
so far been applied for the modelling of national building stocks, describing the aggregate
distribution in the stock based on synthetically generated buildings [13,15]. This article
expands on this methodology by introducing two approaches for the generation of spatially
distributed synthetic building stocks depending on different levels of data availability with
focus on building energy demand. The aim of the article is therefore to:

• Develop and describe data-adapted approaches for generating spatially distributed
synthetic building stocks that can be used in building stock modelling in data-scarce
circumstances.

• Demonstrate the applications of the developed approaches for spatial synthetic build-
ing stock modelling based on two cases: Dublin (Ireland) and Waidhofen an der Thaya
(Austria).

• Analyse the spatial distribution of energy demand of the building stock of the two
cases based on the application of the approaches.

The following section outlines the approaches for generating spatially distributed
synthetic building stock (Section 2.1), the building stock energy model used to evaluate the
generated stocks (Section 2.2), and the adaptation to the two approaches to the respective
cases (Section 2.3). The results of the generated building stocks and their validation are
presented in Section 3 and discussed in Section 4. In Section 5, we present our conclusions
and give an outlook on future work.

2. Materials and Methods

The methodology for synthetic spatial building stock modelling can be broken down
into two steps similar to the methodology for synthetic building stock modelling as pro-
posed by [13]: (1) building stock dataset generation and (2) building stock energy demand
assessment (see Figure 1). The synthetic building stock generation is based on different
data sources that include (aggregated) data on the structure and spatial distribution of the
building stock (e.g., from building registries or census data), data on the distribution of
building characteristics in the stock (e.g., from building typology, building standards and
survey studies) and data on usage-relevant parameters of the building (e.g., from building
standards and survey studies). This data is the basis for the synthetic building stock data
generation process that generates a spatially distributed synthetic building stock dataset.
The generated synthetic building stock is then fed into a building stock energy model (see
Section 2.2), which is used to model the energy demand of the individual synthetically
generated buildings. The model simulation result can then be aggregated and analysed
according to its spatial distribution and distribution within the stock. All data processing
and modelling steps in this paper are implemented in python using public libraries such as
numpy, pandas, scipy, geopandas and shapely.
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Figure 1. Synthetic spatial building stock modelling for spatial energy demand analysis.

2.1. Building Stock Dataset Generation

The building stock dataset generation process can be adjusted depending on the data
availability (see Figure 2). In the common building-specific BSEM approach, building-
specific microdata (e.g., from building registries, Energy Performance Certificates (EPC)
databases and/or 3D city models) is the basis of the modelling approach, which relies on
merging, cleaning and processing the different datasets as well as further characterizing
the individual buildings based on generic or archetypical data to generate the complete
building stock dataset. If this building-specific data is either missing or only available for
a sample dataset that may or may not be spatially distributed, the two proposed SBSEM
approaches can be used to generate the complete building stock dataset: (1) Sample-based
SBSEM or (2) Sample-free SBSEM. Both the terminology and methodology used for these
two approaches are based on the respective methods to generate synthetic populations of
individuals and households [16]. As the name suggests, the sample-based approach (see
Section 2.1.1) relies on the use of a sample dataset of individual buildings. This sample data
is used as a basis for the stock generation and is spatially distributed based on aggregate
datasets describing the spatial distribution of the stock, for example using methods such
as iterative proportional updating [17]. In contrast, the sample-free SBSEM approach (see
Section 2.1.2) does not rely on a sample micro-dataset but instead uses data describing
the distribution (and correlation between) of different attributes in the building stock to
synthetically reconstruct the building stock. The adaptation of these methodologies from
spatially distributed populations to building stocks as proposed in this paper follow the
same methodological steps as the method for synthetic building stock modelling defined
by [13] (see Figure 2):

1. Building stock initialization: The first step initializes the synthetic building stock
resulting in a dataset of individual building records that are spatially distributed. The
generated datasets resemble the real building stock both in its structure (e.g., building
type, size and age) and spatial distribution. The spatial resolution is determined by
the available data and maybe be down to grid-cells or statistical areas;

2. Building characterization: The second step further characterizes the individual build-
ings in the synthetic building stock and enriches the dataset by adding different at-
tributes required for building stock energy modelling. These may include estimating
the building geometry, assigning heating and ventilation systems and energy-relevant
parameters (e.g., U-values). This may include stochastically assigning attributes based
on distributions or assigning data based on archetype data;
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3. Updating building characteristics: The third step updates individual building charac-
teristics to better represent the current state of the stock (e.g., in terms of current U
-values) to account for past retrofits and other alterations. This step may be unneces-
sary in case the data used for step 2 is up to date.
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Figure 2. Overview over different approaches for a spatial synthetic building stock dataset generation
compared to the common building-specific approach.

Steps 2 and 3 work the same between the different methodologies as they are concerned
with further characterizing and updating the building characteristics needed for building
stock energy modelling of the individual buildings in the initialized synthetic building
stock. The extent to which these two steps are necessary depends on the datasets used
for step 1. It may be, for example, that in case of a sample-based approach, the sample
data is complete enough to cover all or most of the building characteristics required, in
which case both steps 2 and 3 can be omitted or be replaced by a simple data formatting
step that converts the sample data structure into the data structure of the BSEM used to
assess the building stock energy demand. As the different approaches do not differ in steps
2 and 3 of the methodology and these steps are described in detail in [13], the following
two subchapters are limited to the description of step 1 of the two approaches.

2.1.1. Sample-Based SBSEM

The sample-based SBSEM approach is based on the Iterative Proportional Updating
(IPU) approach to generate synthetic populations developed by Ye et al. [17]. Other sample-
based approaches exist but following the example of [16], we used the approach developed
by Ye et al. as a basis as in contrast to other approaches it can match the aggregated
distribution of both individuals and households simultaneously [16], a feature that is
also useful for synthetic building stocks when trying to match distributions on both the
building and dwelling level. This approach synthetically reconstructs a population based
on a sample of individuals that are grouped into households and data describing the
aggregated spatial distribution of households and individuals [16]. The method then
spatially distributes the individuals and households in the sample based on the aggregate
data, matching the distribution of both individuals and households simultaneously [16].
The same approach can be applied for buildings to spatially distribute the building sample



Energies 2022, 15, 6738 5 of 18

and match the spatial distribution of buildings and building usages (e.g., dwellings) and
thereby synthetically reconstruct the spatially distributed building stock.

The IPU methodology requires two different input datasets: (1) a microdata sample
of individual building records and (2) an aggregated dataset describing the spatial distri-
bution of the building stock. The sample data should describe both the building and the
corresponding building usage, such as dwellings or non-residential usages, in individual
tables linked through a common identifier (e.g., a unique building id), which identifies
which building usage corresponds to which building. The dataset describing the spatial
distribution should include aggregated distributions of attributes of either the building
and/or the building usages (e.g., number of buildings per building type, construction
period, etc.). The spatial resolution of the data can range from different municipalities or
climate regions to grid cells or statistical areas depending on the scope and scale of the
building stock to be generated.

These datasets are used as an input to the IPU algorithm, which generates the spatially
distributed building stock by first adjusting the weights for both buildings and building
usages in the sample for each area in the aggregated dataset using a standard Iterative
Proportional Fitting (IPF) procedure [17]. The IPF procedure adapts the weights in the
sample until the marginal totals along different dimensions (e.g., building type, construction
period, etc.) are equal or approach the aggregate distribution per area [18]. The procedure
then generates the synthetic building stock by randomly sampling from the sample based
on the adjusted weights. The whole process is repeated for each of the different areas
in the aggregate data to complete the initialization of the synthetic building stock. This
initialization can be repeated multiple times, choosing the dataset with the best fit with
the aggregate data in order to improve the fit of the synthetically created building stock.
However, depending on the size and spatial resolution of the synthetic building stock
as well as the computational power of the computer used, this may take a long time to
compute, hence there is a trade-off between improving the fit of the resulting synthetic
building stock dataset and the computational time required. The resulting dataset of
spatially distributed buildings can then be further characterized based on steps 2 and 3 of
the methodology (see Section 2.1).

2.1.2. Sample-Free SBSEM

The sample-free SBSEM approach is based on the methodology for the generation of
synthetic populations developed by [19]. As the name suggests, this approach does not
rely on a microdata set but instead uses more aggregated data describing the structure and
composition of the stock. This approach synthetically reconstructs a population based on
aggregate data describing the structure and spatial distribution of households and individ-
uals in the population. This is achieved by iteratively generating the population dataset
household by household based on the probabilities and constraints in the composition of
households given in the aggregate data. The adaptation of the approach for spatial building
stock modelling follows a similar methodology to the approach outlined in [13] for the
generation of national synthetic building stocks. However, the spatial distribution of the
stock is given as an additional constraint and attributed to the initialization of the stock.

The sample-free approach for the SBSEM requires two different input datasets: (1) ag-
gregate dataset(s) describing the structure of the building stock, and (2) aggregate dataset(s)
describing the spatial distribution of the building stock. The structural data should describe
the distribution of both the buildings and the building usages (e.g., dwellings, workplaces)
in the stock according to different attributes (building type, construction type, etc.) and,
more importantly, how these attributes correlate with each other (e.g., number of buildings
per building type and construction period). This data is used to generate tables defining
the conditional probability of different building attributes (e.g., probability of construction
period based on building type, etc.). The dataset describing the spatial distribution can
look much the same as in the sample-based approach and here serves as constraints to the
generation of the synthetic building stock. It may also be the case that attributes on the
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spatial resolution of the stock are included in the aggregated structural data, for example
when using a coarser spatial resolution such as municipalities or larger statistical areas. In
this case, this additional dataset can be omitted and the information in the structural data
used directly.

Based on this data, the synthetic building stock can be initialized one by one. This
is done by first iteratively assigning different building characteristics and defining the
corresponding building usages and attributes to the building by random sampling charac-
teristics from the aggregate data. After each defined building characteristic, it is checked
if a building corresponding to that attribute is allowed based on the constraints for that
area. If so, the building is assigned to that area and the process moves on to assigning
the corresponding building usage(s) (e.g., one or more dwellings) in a similar manner by
sampling from aggregate data and checking if the building usage characteristic exists in the
constraints. If the building is completed successfully with all characteristics fulfilling the
constraining data, then the weights in the constraints and the aggregate data are updated
based on the defined building (i.e., by reducing the weights corresponding to the defined
building attributes) and the next building is generated. However, if after adding a charac-
teristic the constraints are not met (e.g., no building of a certain size exists in this area), then
the process is stopped and a new attempt to define the building is started. This iteration is
continued until either the building is completed successfully, or a fixed limit of iterations is
reached, at which point the constraint in question is disregarded and the last value is kept,
or a default option is assigned (e.g., the most common value for a certain characteristic).
This might especially be the case when defining the last buildings in a certain area or for the
whole building stock, therefore, are buildings assigned one at a time for each area rather
than completing an entire area and then moving on to the next. This also ensures that
potential errors in assigning buildings might be spread over the entire area and are not
depending on the order in which they are assigned.

2.2. Building Stock Energy Demand Assessment

The building stock energy demand assessment is done based on a previously de-
veloped and applied BSEM [8,13,20]. The BSEM has an integrated energy and impact
assessment model, which is used to model the energy demand of each building in the
generated dataset. The energy calculation is based on a hierarchical structure, calculating
the energy demand according to different system boundaries (useful energy, final energy,
delivered final energy, primary energy and GHG emissions) and differentiates the calcu-
lated energy demand and GHG emissions for different energy services (i.e., space heating,
hot water, ventilation, appliances, lighting and auxiliary building services (e.g., pumps,
etc.)). The useful energy demand for space heating is based on a monthly steady-state
energy balance based on the norm ISO EN 52016-1 [21]. In this study we focused on the
analysis of the heat demand (both space heating and hot water) of the generated building
stocks and did not assess the energy demand for other energy services.

2.3. Validation

In order to validate the generated synthetic building stocks and estimate the fitting
accuracy, we used the measure of Proportion of Good Prediction (PGP), a standard measure
for validating the accuracy of synthetically generated datasets [16] (see Equation (1)). The
PGP estimates the proportion of good predictions between the observed (O) and estimated
(E) distribution in the building stock (or subset of the building stock). O and E describe the
distribution of the number of buildings or dwellings in a given subset of the building stock
across different dimensions (e.g., building type, construction period, size, etc.). The PGP is
calculated based on building the ratio of the number of misclassified buildings over the
total number of buildings in the subset. In Equation (1), the ratio is multiplied by 0.5 in
order to avoid counting each misclassified building twice. The closer the PGP is to one, the
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better the generated building stock matches the observed distribution of attributes in the
input data for a given region.

PGP = 1− 1
2

(
∑

p
k=1|Ok − Ek|

∑
p
k=1 Ok

)
(1)

2.4. Cases

The two approaches to SBSEM were each applied in a respective case study in order to
synthetically reconstruct the building stock and model and assess the spatial distribution
of the building stock energy demand; the sample-based approach to model the residential
building stocks of Dublin (Ireland) and the sample-free approach to model the complete
building stock of Waidhofen an der Thaya (Austria). The data and specific processes
applied in these cases are further explained in the following subsections.

2.4.1. Dublin (Ireland)

The Dublin Region, the capital city of Ireland, has a total population of 1.3 million
and encompasses four local authority areas; Dublin City, Dún Laoghaire-Rathdown, Fingal
and South Dublin, which together span an area of 92,200 hectares. The Dublin Region
is projected to grow to a population of over 1.6 million by 2036 [22]. In [23], the existing
building stock in Dublin is an inefficient and aging stock, this means that the majority of
existing buildings in the Dublin Region will need to undergo energy efficiency upgrades or
retrofits. Ireland’s Long Term Renovation Strategy suggests that, by 2050, it is expected
that more than 1.5 million buildings in Ireland will need to be retrofitted [24]. Ireland has
committed to radically decarbonising its energy system by 2050 and to making substantial
progress within the next decade. Ireland’s heating sector faces huge challenges in terms
of decarbonization—the main sources of energy in the Dublin Region can be attributed to
natural gas and electricity, with the key use being for space and water heating.

The sample-based SBSEM approach was applied to model the residential building
stock of the Dublin Region. The approach builds upon the data from the national census [25],
which gives the spatial distribution of the building stock according to statistical areas (called
small area) and the national EPC database BER [26], which serves as a sample for this
approach, see Table 1. As both data sources were on the level of individual dwellings and
did not give an indication on which dwellings were in the same building, each dwelling
was modelled as its own building. This simplification was feasible as most dwellings were
in single-dwelling buildings (about 85% of the stock).

Table 1. Overview input data for Dublin.

Nr. Dataset Description Spatial Resolution Attributes Source

1 Census of
Population

Dataset describing the spatial
distribution of dwellings per

statistical area (small area)
Small area

Number of dwellings per
construction period,

building type and energy
carrier for heating

[25]

2

National building
energy rating

(BER) Research
Tool

Energy performance
certificate database of Ireland
containing data on dwellings
with an energy performance

certificate

Postcode

Postcode, building type,
construction year, floor

area, component surface
area, component-U-values,

heating and hot water
systems, ventilation type

[26]

Building Stock Initialization

Before the building stock can be initialized, the different input data first had to be
cleaned and pre-processed. For the BER data, in some cases key data such as the U-values
of components are missing, in which case these incomplete records were removed from
the sample, reducing the total number of records from 270,439 to 239,231. The BER data
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and the census data use slightly different classifications for building types (e.g., the BER
data includes different types of row houses, while the census data does not). These two
classifications, therefore, needed to be aligned as well as the construction year in the
BER data matched to the construction period classification in the Census data for the IPU
algorithm to work.

Once the data was preprepared it was fed into the IPU algorithm to generate the
spatially distributed building stock for the residential building stock of Dublin, by spatially
distributing the sample BER data to the small area level based on the attributes, building
type, building age and main energy carrier contained in the census data [25]. We used an
existing implementation of the IPU algorithm based on [27], which was adapted to work
with buildings instead of households and people. The BER data contains information on
which postcode in Dublin the building is located in, therefore the generation was carried
out for each postcode individually using the respective records in the BER data as a sample.
The generation was repeated 100 times and each iteration was evaluated based on the PGP
(see Equation (1)). Based on this, the version with the best fit was taken for each area. The
aim of the repletion was to reduce the errors due to the stochastic nature of the method
applied and a repletion of 100 times was found to yield stable results (i.e., no significant
deviations in the PGP of the resulting synthetic building stock).

Building Stock Characterization

The building characterization step largely consists of converting the BER data into
the data structure of the applied SBSEM [13], as most of the necessary building attributes
such as the building geometry, component U-values, heating and ventilation systems are
contained in the BER data. Missing data mainly consists of the building usage related data
such as indoor temperature, number of occupants or hot water usage. These attributes
were estimated based on standard user data contained in the BSEM [13,15]. The BER data
was assumed to be up to date, which is why no additional building updating step was
performed.

2.4.2. Waidhofen an der Thaya (Austria)

The region Thayaland comprises 15 municipalities of the Waidhofen an der Thaya dis-
trict and is located in the north-west of Lower Austria. The cadastral area is 66,910 hectares
with 43,433 hectares of agricultural area and 19,694 ha of forest. Contrary to the trend in
Lower Austria, the population of the area of Thayaland is declining down from 28,607
in 1991 to around 25,682 in 2020. The rural structure in the region shows high biomass
potential, which is already partially used in numerous heating systems. The proportion of
biomass used in the region to cover the heating demand is around 45%, which is almost
equivalent to the oil and gas share with 21% and 25% respectively. The remaining share is
covered by electricity (8%) and others (coal, solar). Moreover, there are already numerous
district heating systems in the region that use regionally available resources. Particularly
noteworthy are 20 biomass heating plants for supplying entire towns or districts as well as
6 biogas plants producing between 100 and 500 kWel [28,29].

The sample-free SBSEM approach was applied to model the residential building stock
of Waidhofen an der Thaya (Austria). The approach builds upon the data from the national
building and dwelling registry [30], which gives the spatial distribution of the building
stock and data from the national census [31] beside data on the structure and composition
of the stock (see Table 2). The data is complemented with data from survey data of sample
buildings as well as regional data sources in the area [28], which serve as a basis for
the building characterization step. The sample dataset from the survey is, however, not
comprehensive enough to be able to be used in a sample-based approach.
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Table 2. Overview input data for Waidhofen.

Nr. Dataset Description Dataset Spatial Resolution Attributes Source

1

Building and
dwelling

registry–grid
250 m

Dataset describing the
spatial distribution of

number of buildings and
dwellings

250 × 250 raster grid

Number of buildings per building
type, construction period, size

and number of dwellings
Number of dwellings per size and

number of rooms

[30]

2

Register-based
Census

2011-Housing
Census

Dataset describing the
composition and structure

of the building and dwelling
stock

Entire region

Number of buildings per building
type, construction period, size

and number of dwellings
Number of dwellings per size and

number of rooms

[31]

3 Survey study Overview study of building
stock in Waidhofen Municipality

Building type, construction year,
U-value and heating system

distribution
[28]

Building Stock Initialization

As in the Dublin case, here the different input data first also had to be cleaned and
pre-processed. Even though both the spatial data as well as the census data came from the
same data provider, each of them have slightly different classifications for certain attributes
such as the building size or construction period categories, which needed to be aligned
by aggregating them to a common classification. The original categorization in the census
data was kept, however, as this was used to characterize the buildings and dwellings. The
aggregated common classification was purely used to spatially distribute the buildings.

Once the data was pre-processed, the building stock was initialized building by
building based on the approach described in Section 2.1.2 defining one building for each
area in the spatial distribution at a time. Each building was described firstly by defining
the building level characteristics (building type, construction period, number of dwellings
and building size class) based on the probability defined in the aggregated data. Each new
attribute was assigned based on the conditional probability of the previously assigned
attributes. Each of the interval class attributes (e.g., the construction period, such as 1920–
1944) were interpolated to obtain a numerical value. For open-ended class intervals (e.g.,
10+ dwellings), which are not delimited on both sides, an exponential distribution was
assumed.

Based on this data, the synthetic building stock can be initialized one by one. This is
done by iteratively assigning first different building characteristics and defining the corre-
sponding building usages (both for residential and non-residential usages) and attributes
to the building by random sampling characteristics from the aggregate data. After each
defined building characteristic, it is checked if a building corresponding to that attribute is
allowed based on the constraints for that area. If so, the building is assigned to that area
and the process moves on to assigning the corresponding building usage(s) (e.g., one or
more dwellings) similarly by sampling from aggregate data and checking if the building
usage characteristic exists in the constraints. In the case of non-residential buildings, the
building usage is assumed to correspond to the respective building type (e.g., hotel usage
in hotel buildings, etc.). If the building is completed successfully with all characteristics
fulfilling the constraining data, then the weights in the constraints and the aggregate data
are updated based on the defined building (i.e., by reducing the weights corresponding
to the defined building attributes) and the next building is generated. However, if after
adding a characteristic the constraints are not met (e.g., no dwellings of a certain size in
this area), then the process is stopped and a new attempt to define the building is started.
This iteration is continued until either the building is completed successfully, or a fixed
limit of iterations is reached, at which point the constraint in question is disregarded and
the last value is kept, or a default option is assigned (e.g., the most common value for a
certain characteristic). This might especially be the case when defining the last buildings in



Energies 2022, 15, 6738 10 of 18

a certain area or for the whole building stock, therefore, are buildings assigned one at a time
for each area rather than completing an entire area and then moving on to the next. This
also ensures that potential errors in assigning buildings might be spread over the entire
area and not be clustered in individual areas. Similar to the sample-based approach, the
generation was repeated 100 times from which the stock with the best fit was according to
the highest PGP (see Equation (1)) in order to reduce the error due to the stochastic nature
of the methodology.

Building Stock Characterization

The building characterization step fills in the remaining building attributes not in-
cluded in the building and dwelling registry. This includes the building geometry, com-
ponent U-values, heating and ventilation systems as well as the building usage related
data such as indoor temperature, number of occupants or hot water usage. The building
geometry is estimated by first estimating the area of the building footprint by dividing
the total floor area by the number of floors. The building geometry can then be estimated
based on calculated footprint, the number of floors and generic data such as the window
to all ratio, aspect ratio and the floor height, which are estimated based on the building
type and construction year of the building from data contained in the BSEM [13,15] as well
as from [28]. A detailed description of the process can be found in [13]. The U-values of
the different components are then estimated based on construction year and building type
based on the data from [28]. The building usage-related data such as indoor temperature,
number of occupants or hot water usage are estimated based on standard user data [13,15].
Lastly, each building is randomly assigned a heating system based on distribution in the
stock based on the building type and location according to data from [28]. The system
efficiency of the assigned heating system is then estimated from the generic data contained
in the BSEM [13,15]. The data from [28] was assumed to be up to date, which is why no
additional building updating step was performed.

3. Results
3.1. Validation

Figure 3 shows the spatial distribution of the achieved PGP (see Equation (1)) across
the two case study areas. The PGP for each area in each case is calculated by comparing the
observed and predicted distribution across different attributes. Due to different structure
and content of the data used in the two cases, the PGP is calculated using the distributions
across different attributes. In the case of Dublin, the PGP is calculated by comparing
the distribution across the attributes building type, construction period and main energy
carrier. In the case of the building stock of Waidhofen an der Thaya, the comparison is made
across the attributes on both the building (building type, construction period, building
size, number of dwellings) and building usage level (number of rooms and dwelling size).
In both cases, the generated synthetic building stock matched the reference data well as
highlighted by the high PGP overall. Figure 4 shows the distribution of PGP for each area,
which shows the overall good fit for both cases.
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Figure 3. Spatial distribution of the PGP for Dublin (left) and Waidhofen an der Thaya (right).

However, Figure 4 indicates a significantly larger share of areas with a lower PGP
and also a lower median value for the Waidhofen case study compared to the Dublin case.
This may be due to the larger number of reference data points for calculating the PGP as
well as the significantly lower number of buildings per area in Waidhofen compared to the
Dublin case. Both of these aspects make the generation of the synthetic building stock more
complex and therefore harder to match the distribution in the reference data.
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3.2. Distribution of Energy Demand
3.2.1. Dublin

Figure 5 provides an overview of the spatial distribution of the heat demand of the
Dublin building stock as well as an overview of the energy carrier distribution. At the city
core, the overview shows an area with low density, which corresponds to a commercially
dominated area with very little residential usage. This core is surrounded by areas with
relatively higher heat demand densities around the centre and lower densities in the
surrounding areas.

Overall, the heat demand in Dublin is gas dominated with 74% of the overall demand
being covered by natural gas, followed by oil and electricity. The areas with higher heat
demand density in the city centre are all gas-dominated as can be seen in Figure 5, while the
surrounding areas show larger share of oil and electric heating, particularly in the northern
areas. The higher energy demand densities in the gas-dominated areas would make them
feasible for the development of district heating solutions as part of a decarbonization
strategy, as there is a larger cluster of areas with a heat demand density of more than
500 MWh/ha, which makes them suitable for the development of such networks. This
cluster might be even larger if the non-residential stock were included. Figure 6 shows that
34% of the areas fall into this category, which corresponds to about 21% of the floor area in
Dublin. The remaining 66% of areas most likely will require other solutions for renewable
heating such as heat pumps or an increase in wood-based heating systems, which might be
more suitable.
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Figure 5. Spatial distribution of the heat demand density per small area (left) and energy carrier
distribution related to the required heat demand per postcode (right) in Dublin.
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3.2.2. Waidhofen

Figure 7 gives an overview of the spatial distribution of the heat demand of the
building stock in Waidhofen an der Thaya as well as an overview of the distribution
of energy carriers used to cover the heat demand in the different municipalities in the
area. Compared to the Dublin area, this is a rural-dominated region, which is seen by the
comparatively lower heat demand densities in this region as well as large empty space in
the spatial distribution of the heat demand shown in Figure 7. That said, some areas with
higher heat demand densities exist, which constitute the larger population centres in the
region. However, none of the areas exceeds a density of 500 MWh/ha (see also Figure 8).
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Figure 7. Spatial distribution of the heat demand density per grid cell (left) and energy carrier
distribution related to the required heat demand per municipality (right) in Waidhofen.
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Overall, the heat demand in Waidhofen is dominated by wood (and other biomass)
making up about 49% of the heat demand, followed by oil and natural gas, each making
up about 15% and 17%. Despite the relatively low heat demand densities, several small-
scale district heating networks exist in the region [28] totalling about 9% of the modelled
heat demand. However, Figure 8 shows that the majority of areas fall in areas with a
heat demand density of well below 300 MWh/ha, making district heating not a viable
option in the vast majority of the region. In these regions, continued use of wood and
other biomass and expansion of other solutions for renewable heating such as heat pumps
in combination with solar collectors or solar cells might be more suitable to replace the
remaining fossil-fuel-based heating systems in the region.

4. Discussion

In this article, two approaches for the synthetic generation of spatially distributed
building stocks were presented and implemented in two different countries and contexts
(city and region) with different available datasets. The described approaches improved the
existing building stock modelling approaches by enabling a detailed analysis of the spatial
distribution of building stocks and their energy demand even in cases where building-
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level data was unavailable or incomplete. In comparison with a building-specific BSEM
approach, the SBSEM approach did not rely on a complete building-specific dataset to
function but worked also in cases where only a sample or no building-specific data was
available. Therefore, an SBSEM approach is more flexible in its application as it mainly
builds upon aggregate data that is ubiquitously available. Moreover, the approach gives
more flexibility in what kind of data can be used as different datasets and data sources can
be combined.

Because SBSEM approaches use a more simplified representation of a building that is
at least partially synthetically reconstructed, the synthetic data is often cleaner and more
uniform compared to building-specific BSEMs. This makes it easier to handle compared
to more complex building-level data, which is often incomplete or faulty and therefore
requires extensive data cleaning and processing before it can be used in a BSEM. Because
of that process, certain buildings may have to be filtered out due to a lack of information
(e.g., not all buildings have an energy performance certificate that forms the basis of the
analysis) or faulty data, which affects the completeness of the output. This is not the case
in the synthetic approaches presented in this paper as they work based on the aggregated
stock data, which can be assumed to encompass the complete building stock and hence the
output can be assumed to represent the complete building stock as well.

As SBSEM approaches build upon data that is publicly available, they may be more
quickly deployed in a new region compared to a building-specific approach as no sensitive
data is used that may need to be specially sourced or may otherwise be restricted in its
use (e.g., limitations on what data can be published). This is especially true if an SBSEM
has already been developed for a region with a similar data structure, e.g., a region in the
same country. This makes these approaches especially suitable for more rural areas, such as
the Waidhofen case described in this paper, where both the resources and data for spatial
energy demand analysis are often more scarce compared to urban centres.

The quality of the generated synthetic building stock, and with it the obtained results
from an SBSEM, still heavily depend on the quality of the input data. While additional
data can be added through the building characterization step, the representativeness of
the spatial distribution is limited to what is available in the base dataset. Hence, if data
on the spatial distribution of key attributes is missing, this data cannot be replaced with
more aggregate data, while at the same time still giving a reliable output on the spatial
distribution of the energy demand. For example, if data on the spatial distribution of
installed heating systems is missing, an analysis of the spatial distribution of the energy
demand according to different energy carriers is not feasible. Therefore, the level of detail
in the spatial analysis is limited to the spatial aggregation of the input data (e.g., statistical
areas or grid cells). Moreover, in contrast to building-specific BSEMs, the finest level of
detail in spatial aggregation (i.e., the building scale) is missing in SBSEMs as buildings are
not referenced to a specific location but rather to a specific area (e.g., grid cell).

Moreover, both approaches for the SBSEM presented in this paper make use of stochas-
tic methods to spatially distribute and characterize buildings. Hence, some errors and
deviations in the composition and spatial distribution of the synthetic building stock com-
pared to the input data may occur as shown in the validation of the case study results.
However, this error can be minimized by repeating the stock generation multiple times and
choosing the best fitting result as was done in this study.

The validation of the generated building stocks for the two cases shows, that both
approaches can adequately reproduce the spatial distribution and structure of the original
building stock reflected in the high PGP in both cases. The primary difference stems from
the structure of the data used as a basis for the stock generation (i.e., the use of a sample or
not). This inherent difference between the two approaches also comes with some differences
in the applicability and characteristics of the generated stock.

The use of a sample has the advantage of using “real” building data as a basis of
the analysis, which increases the reliability of the modelled results on the building level.
However, the generated synthetic building stock is also limited through that sample.
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Especially, in cases where only a sample of a limited number of buildings is available, the
generated building stock might not cover the full heterogeneity of buildings in the stock
and rare cases of buildings might be missing in the sample. This might also impact the
stock generation process using the IPU algorithm as the distribution of the sample depends
on having access to a representative sample of buildings.

In contrast, the sample-free approach is not bound by these limitations and can also
cover special cases, which may not be covered in a sample. This might make it easier for the
sample-free approach to match the boundary conditions more closely, especially in areas
with only a few buildings. However, as buildings are generated by randomly combining
different building characteristics, the approach might also yield unrealistic combinations of
building attributes in some cases, especially if reliable data on the combination of building
characteristics is unavailable [13].

5. Conclusions

This paper presented two alternative approaches for spatial building stock energy
demand analysis for cases where building-specific geo-referenced data is not available or
not complete enough to model individual buildings. The two approaches were differenti-
ated based on two common situations of data availability of building stock energy data:
(1) where a sample of building-level data is available, and (2) where no sample is available.
Both methods synthetically generate a spatially distributed building stock that can be used
to analyse the spatial distribution of the energy demand of building stocks. The proposed
approaches were applied to two different cases, Dublin and Waidhofen an der Thaya, and
validated based on their ability to reconstruct the spatial distribution of the building stock
for these cases. Both showed a good ability in reconstructing the spatial distribution of the
stock and the choice of which approach to take, which therefore primarily depended on the
data availability of the case in question.

The results of the two case studies demonstrated how by using a synthetic building
stock modelling approach, a spatial analysis for building stock energy demand could be
carried out for cases where no building level data is available. The case studies showed
how the obtained results could be used for energy planning. As a next step, the estimated
spatial distribution of heat demand should be matched with an assessment of renewable
energy sources such as heat sources for local district heating as well as assess the feasibility
of other renewable heating systems such as heat pumps and/or wood-based heating.

The spatial analysis of building stock energy demand using synthetic building stocks
comes with many challenges, as outlined in this paper, and lays the groundwork for future
work. A possible next step could be to combine the synthetic building stock with a synthetic
population to improve the assessment of occupant behaviour on energy demand as well as
enable assessments of the socio-economic impact of energy demand and potential measures
to reduce energy demand or climate impact. For that purpose, the static model presented
in this paper could be expanded with a dynamic model of the development of the spatial
energy demand. Here, agent-based methodologies as presented in [15] could be a possible
way forward. Lastly, although the method was designed to be applied in cases where data
availability is poor, it can be used for a quick assessment of the demand distribution. The
quality of the generated synthetic building stock depends on the quality of the input data
and, if data on the spatial distribution of key attributes is missing, then the differences in the
distribution of these attributes can also not be reconstructed in the generated synthetic stock.
Hence, data on the spatial distribution of building attributes as well as the distribution
of the combination of building attributes would help to improve the quality of synthetic
spatial building stocks.
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