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ABSTRACT

Change point detection becomes increasingly important because it can support data analysis by providing labels
to the data in an unsupervised manner. In the context of process data analytics, change points in the time series of
process variables may have an important indication about the process operation. For example, in a batch process,
the change points can correspond to the operations and phases defined by the batch recipe. Hence identifying
change points can assist labelling the time series data. Various unsupervised algorithms have been developed for
change point detection, including the optimisation approach which minimises a cost function with certain penalties
to search for the change points. The Bayesian approach is another, which uses Bayesian statistics to calculate the
posterior probability of a specific sample being a change point. The paper investigates how the two approaches
for change point detection can be applied to process data analytics. In addition, a new type of cost function using
Tikhonov regularisation is proposed for the optimisation approach to reduce irrelevant change points caused by
randomness in the data. The novelty lies in using regularisation-based cost functions to handle ill-posed problems
of noisy data. The results demonstrate that change point detection is useful for process data analytics because change
points can produce data segments corresponding to different operating modes or varying conditions, which will be
useful for other machine learning tasks.

KEYWORDS
Change point detection; unsupervised machine learning; optimisation; Bayesian statistics; Tikhonov regularisation

1 Introduction

In process industries, the operating conditions of a process can change from time to time due
to various reasons, such as the change of the scheduled production or the demand of the market.
Nevertheless, many of the changes in the operating conditions are not explicitly recorded by the process
historian; sometimes such information about the changes is indirectly stored by a combination of the
alarm and event and the time trends of process variables. It may be possible for process experts to label
the multiple modes or phases in the process manually; however the effort required will be enormous

http://dx.doi.org/10.32604/cmes.2022.019764
mailto:rebeccagedda@outlook.com


1738 CMES, 2023, vol.134, no.3

especially when the dataset is large. Therefore, an automated, unsupervised solution that can divide a
large dataset into segments that correspond to different operating conditions is of interest and value
to the industrial application.

The topic of Change point detection (CPD) has become more and more relevant as time series
datasets increase in size and often contain repeated patterns. In the context of process data analytics,
change points in the time series of process variables may have important indications about the process
operation. For example, in a batch process, the change points can correspond to the operations and
phases defined by the batch recipe. Identifying change points can assist labelling of the time series
data. To detect the change points, a number of algorithms have been developed based on various
principles, with application areas such as sensor signals, financial data or traffic modelling. Reference
[1–7] The principles differ in solution exactness due to computational complexity and in formulating
a cost function which determines how the change points are defined.

The first work on change point detection was done by Page [5,6] where piecewise identically
distributed datasets were studied. The objective was to identify various features in the independent
and non-overlapping segments. The mathematical background of change point detection can be found
in work by Basseville et al. [8]. Examples of the features can be each data segment’s mean, variance,
and distribution function. Detection of change points can either be done in real-time or in retrospect,
and for a single signal or in multiple dimensions. The real time approach is generally known as online
detection, while the retrospective approach is known as offline detection. This paper is based on offline
detection, meaning all data is available for the entire time interval under investigation. Many CPD
algorithms are generalised for usage on multi-dimensional data [7] whereas one-dimensional data can
be seen as a special case. This paper focuses on one-dimensional time dependent data, where results are
more intuitive and common in real world settings. Another important assumption in CPD algorithms
is whether the total number of change points in a dataset is known beforehand. This work assumes
that the number of change points is not known.

Recent research on change point detection is presented in [9,10]. Various CPD methods have been
applied to a vast spread of areas, stretching from sensor signals [2] to natural language processing [11].
Some CPD methods have also been implemented for financial analysis [3] and network systems [4],
where the algorithms are able to detect changes in the underlying setting. Change point detection has
also been applied to chemical processes [1], where the change points in the mean of the data from
chemical processes are considered to represent the changed quality of production. This illustrates the
usability of change point detection and shows the need for domain expert knowledge to confirm that
the algorithms make correct predictions.

The current work is based on numerical testing of two approaches for CPD: the optimisation
approach, with and without regularisation, and the Bayesian approach. Both approaches are tested
on real world data from a multi-phase flow facility. These approaches are developed and studied
separately in previous studies [7,12]. Performance comparison and the evaluation of both approaches’
computational efficiency form this work’s foundation. In extension to the existing work, presented
in [7], new cost functions based on regularisation can be implemented. Some examples where
regularisation techniques are used in machine learning algorithms are presented in [13–15]. For the
Bayesian approach, the work by Fearnhead [12] describes the mathematics behind the algorithm. These
two approaches have been studied separately and this work aims to compare the predictions made by
the two approaches in a specific setting of a real world example. The methods presented by van Den
Burg et al. [16] are used for numerical comparison, along with metrics specified by Truong et al. [7].
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Using the same real world example, the paper also focuses on how regularised cost functions can
improve change point detection compared to the performance of common change point detection
algorithms. The contributions of the paper include the following:

1. Study of regularised cost functions for CPD that can handle the ill-posed problem in noisy
datasets.

2. Application of various CPD algorithms to a dataset from a multi-phase process to demonstrate
that CPD algorithms can identify the changes in the operating mode and label the data.

3. Numerical verification of improvement in the performance of CPD using regularised cost
functions when applied to real-life, noisy data.

This work is structured as follows: first the appropriate notation and definitions are introduced.
Then, the two approaches for unsupervised CPD are derived separately in Section 2 along with the
metrics used for comparison. In this section, the background theory of the completeness for ill-posed
problems along with the proposed regularised cost functions are also introduced. The real life dataset,
the testing procedure and the results of the experiment are presented in Section 3. A discussion is held
in Section 4 and a summary of findings and conclusions are given in Section 5.

2 Background

In this section we provide the background knowledge for the two unsupervised CPD approaches.
The section first presents the notations and definitions used in the paper, followed by the introduction
to the optimisation-based CPD approach. Several elements of the optimisation approach, such as the
problem formulation, the cost function and the search method, are also presented and the common
cost functions are defined. The need of regularisation for CPD is discussed along with the proposed
regularised cost functions. Then the Bayesian CPD approach is derived from Bayes’ formula using the
same notations. It is demonstrated that, although the formulations of the two CPD approaches are
different, the results obtained by both methods are similar, enabling the performance evaluation and
comparison. Finally, the metrics used for evaluating the performance of change point detection are
introduced.

2.1 Notation and Definition
Let us now introduce the notations used in the work. Fig. 1 shows multiple change points

(τ0, τ1, . . . , τK+1) and the segments (S1, S2, . . . , SK+1), defined by the change points, and is an example of
a univariate time-series dataset. Since the CPD approaches are unsupervised and do not require prior
knowledge about the true change points, the target is to identify the time stamps τ0 to τK+1 given the
time series.

Figure 1: Illustration of used notation. In the figure, we see how K intermediate change points are
present on a time interval t ∈ [0, T ], where we note that τ0 and τK+1 are synthetic change points

Throughout the work we are working in the time domain [0, T ] ⊂ N which is discretised with
ti ∈ [0, T ], i = 0, 1, . . . , n. The signal value at time ti is given by yti := y(ti). The time points are
equidistant, meaning ti+1 = ti + dt, with dt = T

n−1
, ∀i. A set of K change points is denoted by T
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and is a subset of time indices {1, 2, . . . , n}. The individual change points are indicated as τj, with
j ∈ {0, 1, . . . , K, K + 1}, where τ0 = 0 and τK+1 = T . With this definition the first and the final time
point being implicit change points, we have K intermediate change points (|T | = |{τ1, . . . , τK}| = K).
A segment of the signal from a to b is denoted as ya:b, where y0:T means the entire signal. With the
introduced notation for change points, the segment Sj between change points τj−1 and τj is defined as
Sj := [τj−1, τj], |Sj| = τj − τj−1. Sj is the j-th non-overlapping segment in the signal, j ∈ {1, . . . , K + 1},
see Fig. 1. Note that the definition for Sj does not hold for j = 0, since this is the first change point.

As the goal is to identify whether a change has occurred in the signal, a proper definition of
the term change point is needed along with clarification of change point detection. Change point
detection is closely related to change point estimation (also known as change point mining, see [17,18]).
According to Aminikhanghahi and Cook [19], change point estimation tries to model and interpret
known changes in time series, while change point detection tries to identify whether a change has
occurred [19]. This illustrates that we will not focus on the change points’ characteristics, but rather if
a change point exists or not.

One challenge is identifying the number of change points in a given time series. A CPD algorithm
is expected to detect enough change points whilst not over-fitting the data. If the number of change
points is known beforehand the problem is merely the best fit problem. On the other hand, if the
number of change points is not known, the problem can be seen as an optimisation problem with a
penalty term for every added change point, or as enforcing a threshold when we are certain enough
that a change point exists. It is evident that we need clear definitions of change points in order to detect
them. The definitions for change point and change point detection are defined below and will be used
throughout this work.

Definition 2.1 (Change point). A change point represents a transition between different states in
a signal or dataset. If two consecutive segments ytl :ti and yti ,tm , tl < ti < tm, l, i, m = 0, . . . , n have
a distinct change in features or if yti is a local extreme point (i.e., minimum or maximum1), then,
τj = ti, j = 0, 1, . . . , K, K + 1 is a change point between the two segments.

We note that the meaning of a distinct change in this definition is different for different CPD
methods, and it is discussed in detail in Section 3. In the context of process data analytics, some change
points are of interest for domain experts but may not follow Definition 1, hence difficult to identify.
These change points are referred to as domain specific change points and are defined below.

Definition 2.2 (Change point, domain specific). For some process data, a change point is where a
phase in the process starts or ends. These points can be indicated in the data, or be the points in the
process of specific interest without a general change in data features.

Finally, we give one more definition of CPD for the case of available information about the
probability distribution of a stochastic process.

Definition 2.3 (Change point detection). Identification of timestamps when the probability
distribution of a stochastic process or time series segment changes. This concerns detecting whether
or not a change has occurred, or whether several changes might have occurred, and identifying the
timestamps of any such changes.

2.2 Optimisation Approach
Solving the task of identifying change points in a time series can be done by formulating

as an optimisation problem. A detailed presentation of the framework is given in the work by

1If f (x∗) ≤ f (x) or f (x∗) ≥ f (x) for all x in X within distance ε of x∗, then x∗ is a local extreme point.
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Truonga et al. [7], while only a brief description is presented here. The purpose is to identify all
the change points, without detecting fallacious ones. Therefore, the problem is formulated as an
optimisation problem, where we strive to minimise the cost of segments and penalty per added
change point. We need this penalty since we do not know how many change points will be presented.
Mathematically, the non-regularised optimisation problem is formulated as

min
T

V (T ) + pen (T ) = min
T

K∑
j=1

c
(

yτj :τj+1

)
+ β|T |, (1)

while the regularised analogy is

min
T

V (T ) + pen (T ) + reg (T ) = min
T

K∑
j=1

c
(

yτj :τj+1

)
+ β|T | + γ [T ] . (2)

Here, V(T ) represents a cost function, pen(T ) is a linear penalty function with constant β and
reg(T ) is a regularisation term in the appropriate norm in the time space [0,T ] with the regularisation
parameter γ .

To solve the optimisation problem (1), we need to combine three components: the search method,
the cost function and the penalty term. Fig. 2 shows a schematic view of how the search method,
cost function and penalty term create components of a CPD algorithm. Numerous combinations of
components can be chosen for the problem (1). Fig. 2 also illustrates which methods will be studied in
this work. The two methods for search directions and cost functions are presented in separate sections,
while the choice of penalty function is kept brief. A common choice of penalty function is a linear
penalty, which means each added change point τj corresponds to a penalty of β. A summary of other
combinations are presented in Table 2 in the work by Truonga et al. [7].

Figure 2: Illustration of the components used in the optimisation approach for change point detection.
The focus of the paper is the cost function with regularisation

2.2.1 Search Direction

The search method poses a trade-off between accuracy and computational complexity. In CPD
there are two main approaches used for this, optimal and approximate, see Fig. 2. The problem
formulated in Eq. (1) should be solved for an unknown K, where the penalty function can be chosen
as a constant function, pen(·) = β. The search method used for this special case is known as Pruned
Exact Linear Time (abbreviated PELT) and implements a pruning rule. The pruning rule states that
for two indices s and t, s < t < T , if the following condition holds[

min
T

V(T , y0:s) + β|T |
]

+ c(ys:t) ≥
[
min

T
V(T , y0:t) + β|T |

]
, (3)
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then s cannot be the last change point. Intuitively, the algorithm compares if it is beneficial to add
another change point between s and t. If the cost of a segment ys:t is greater than the cost of two
separated segments ys:τ , yτ+1:t and the additional penalty β, then there is a change point τ present
between indices s and t. The PELT-algorithm is presented in Algorithm 1 in [20], and has a time
complexity O(T) [7]. A drawback of this algorithm is that it can become computationally expensive
for large datasets with many time stamps t.

An alternative approach is to use an approximate search direction algorithm to reduce complexity.
To reduce the number of performed calculations, an approximate search direction can be used,
where partial detection is common. There are multiple options available to approximate the search
direction; some are studied by Troung et al. [7]. This paper focuses on one approach, the window
based approximation. A frequently used technique is the Window-sliding algorithm (denoted as WIN-
algorithm), when the algorithm returns an estimated change point in each iteration. Similar to the
concept used in the PELT-algorithm, the value of the cost function between segments is compared.
This is known as the discrepancy between segments and is defined as

Disc(yt−w:t, yt:t+w) = c(yt−w:t+w) − (c(yt−w:t) + c(yt:t+w)), (4)

where w is defined as half of the window width. Intuitively, this is merely the reduced cost of adding
a change point at t in the middle of the window. The discrepancy is calculated for all w ≤ t ≤ T − w.
When all calculations are done, the peaks of the discrepancy values are selected as the most profitable
change points. The algorithm is provided in Algorithm 2 in [20]. There are other approximate search
directions, which are not covered in this work, presented by Trounga et al. [7]. For this work, the
PELT-algorithm is used for the optimal approach and the WIN-algorithm is used for the approximate
approach.

2.2.2 Common Cost Functions

The cost function can decide which feature changes are detected in the data. In other words,
the cost function measures the homogeneity. There are two approaches for defining a cost function:
parametric and non-parametric. The respective approaches assume either that there is an underlying
distribution in the data, or that there is no distribution in the data. This work focuses on the parametric
cost functions, for three sub-techniques illustrated in Fig. 2. The three techniques, maximum likelihood
estimation, linear regression and regularisation, are introduced in later sections with corresponding
cost function definitions.

Maximum Likelihood Estimation (MLE) is a powerful tool with a wide application area in
statistics. MLE finds the values of the model parameters that maximise the likelihood function f (y|θ)

over the parameter space � such that MLE(y) = maxθ∈� f (y|θ), where y is observed data and θ ∈ � is a
vector of parameters. In the setting of change point detection, we assume the samples are independent
random variables, linked to the distribution of a segment. This means that for all t ∈ [0, T ], the sample

yt ∼
K∑

j=0

f
(·|θj

)
1

(
τj < t < τj+1

)
, (5)

where θj is a segment specific parameter for the distribution. The function 1(·) is the delta function
δ([τj, τj+1]), and is equal to one if sample yt belongs to segment j, otherwise zero. The function f (·|θj) in
(5) represents the likelihood function for the distribution with parameter θj. Then the MLE(yt) reads:
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MLE (yt) = max
θj∈�

K∑
j=0

f
(·|θj

)
1

(
τj < t < τj+1

)
(6)

where θj is segment specific parameter for the distribution. Using MLE(yt) we can estimate the segment
parameters θj, which are the features in the data that change at the change points. If the distribution
family of f is known and the sum of costs, V in (1) or (2), is equal to the negative log-likelihood of
f , then MLE is equivalent to change point detection. Generally, the distribution f is not known, and
therefore the cost function cannot be defined as the negative log-likelihood of f .

In some datasets, we can assume the segments to follow a Gaussian distribution, with parameters
mean and variance. More precisely, if f is a Gaussian distribution, the MLE for expected value (which
is the distribution mean) is the sample mean. If we want to identify a shift in the mean between
segments, but where the variance is constant, the cost function can be defined as the quadratic error
between a sample and the MLE of the mean. For a sample yt and the segment mean ya:b the cost
function is defined as

cL2 (ya:b) :=
b∑

t=a+1

||yt − ya:b||2
2, (7)

where the norm ‖ · ‖2 is the usual L2-norm defined for any vector v ∈ R
n as

‖v‖2 := √
(v1)2 + (v2)2 + · · · + (vn)2. (8)

The cost function (7) can be simplified for uni-variate signals to

cL2 (ya:b) :=
b∑

t=a+1

(
yt − ya:b

)2
(9)

which is equal to the MLE variance times length of the segment. More explicitly, for the presumed
Gaussian distribution f the MLE of the segment variance σ̂ 2

a:b is calculated as σ̂ 2
a:b = cL2(ya:b)

b−a
, using the

MLE of the segment mean, ya:b. This estimated variance σ̃ 2
a:b times the number of samples in the segment

is used as the cost function for a segment ya:b. This cost function is appropriate for piecewise constant
signals, shown in Fig. 1, where the sample mean ya:b is the main parameter that changes. We note that
this formulation mainly focuses on changes in the mean, and the cost is given by the magnitude of the
variance of the segment around this mean. A similar formulation can be given in the L1-norm,

cL1 (ya:b) :=
b∑

t=a+1

|yt − ỹa:b|, (10)

where we find the least absolute deviation from the median ỹa:b of the segment. Similar to the cost
function in Eq. (7), the cost is calculated as the aggregated deviation from the median for all samples
in ya:b. This uses the MLE of the deviation in the segment, compared to the MLE estimation of the
variance used in (7). Again, the function mainly identifies changes in the median, as long as the
absolute deviation is smaller than the change in median between segments.

An extension of the cost function (7) can be made to account for changes in the variance. The
empirical covariance matrix 
̂ can be calculated for a segment from a to b. The cost functions for
multi- and uni-variate signals are defined by (11) and (12), correspondingly, as
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cNormal (ya:b) := (b − a) log det 
̂a:b +
b∑

t=a+1

(
yt − ya:b

)′

̂−1

a:b

(
yt − ya:b

)
, (11)

cNormal (ya:b) := (b − a) log σ̂ 2
a:b + 1

σ̂ 2
a:b

b∑
t=a+1

(
yt − ya:b

)2
, (12)

where σ̂a:b is the empirical variance of segment ya:b. A transposed vector is denoted with a prime. For
the uni-variate case, we note that

c
 (ya:b) = (b − a) log σ̂ 2
a:b + σ̂ −2

a:b cL2
(ya:b) , (13)

which clearly is an extension of Eq. (7). This cost function is appropriate for segments that follow
Gaussian distributions, where both the mean and variance parameters change between segments.

If segments in the signal follow a linear trend, a linear regression model can be fitted to the different
segments. At change points, the linear trends in the respective segment changes abruptly. In contrast
to the assumption formulated in (5), the assumption for linear regression models is formulated as

yt = xT
t β + εt = β0

j + βj xt + εt, ∀t, τj < t < τj+1 (14)

with the intercept β0
j and coefficient βj dependent on segment j = {0, . . . , K + 1}. The noise for each

sample is given by εt, which is assumed to be normally distributed with zero mean. Having only one
covariate xt, the model fitting is known as a simple linear regression model, which constitutes an
intercept and a coefficient for the covariate. The intercept β0

j and coefficient βj are unknown and each
segment is presumed to have an underlying linear regression model. A simple minimisation problem
for the cost function which uses the simple linear regression is defined as

cLinReg (ya:b) := min
β∈Rp

b∑
t=a+1

(
yt −

(
β0

j + βxt

))2
, (15)

where we use a single covariate xt. The cost is given by the error between the simple linear regression
and the samples, and is known as the model squared residual.

If we use previous samples [yt−1, yt−2, . . . , yt−p] as covariates, we have an autoregressive model. In
this work, this is limited to four lags (p = 4), meaning the covariate at t = ti is defined as the vector
x̃ti = [

yti−1, yti−2, yti−3, yti−4

]
. Similar to Eq. (15), we can define a cost function as

cAR (ya:b) := min
β∈Rp

b∑
t=a+1

||yt − (β0 + βx̃t) ||2
2, (16)

where x̃t is a collection of p lagged samples of yt. This formulation can detect changes in models applied
to non-stationary processes.

2.2.3 Ill-Posedness of CPD with Noisy Data

In this section, we show that the solution of the CPD problem with noisy data is an ill-posed
problem; thus, regularisation should be used to get an approximate solution to this problem. In order
to understand ill-posed nature of CPD problem with noisy data, let us introduce definitions of classical
and conditional well-posed problems, illustrated in Figs. 3 and 4. The notion of the classical correctness
is sometimes called Correctness by Hadamard [21].
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Figure 3: Illustration of classical correctness, see Definition 4

Figure 4: Illustration of conditional correctness, see Definition 5

Definition 2.4 (Classical well-posed problem). Let B1 and B2 be two Banach spaces. Let G ⊆ B1 be
an open set and F : G → B2 be an operator. Consider the equation

F(x) = y, x ∈ G. (17)

The symbols x and y in this section represent two general variables and are different from
the symbols x and y elsewhere in paper. The problem of solution of Eq. (17) is called well-posed
by Hadamard, or simply well-posed, or classically well-posed if the following three conditions are
satisfied:

1. For any y ∈ B2 there exists a solution x = x(y) of Eq. (17) (existence theorem).

2. This solution is unique (uniqueness theorem).

3. The solution x(y) depends continuously on y. In other words, the inverse operator F−1 : B2 →
B1 is continuous.

If Eq. (17) does not satisfy to at least one of these three conditions, then the problem (17) is
called ill-posed. The problem setting studied in this paper does not satisfy all the above points. Fig. 3
illustrates the definition of classical correctness. Let us now consider the problem (17) when the right
hand side is a result of measurements and thus, is given with a noise of level δ. We say that the right
hand side of equation

F(x) = y, x ∈ G. (18)

is given with an error of the level δ > 0 (small) if ||y∗ − y||B2
≤ δ, where y∗ is the exact value. The

problem (18) can represent the non-regularised form of CPD as well if we associate with x the change
point and with y the noisy data corresponding to this change point.
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Clearly, if we want to solve the problem (18) with noisy data y, the solution of this problem will be
ill-posed in the sense of Hadamard, where our noisy data does not guarantee existence of the solution
and makes the operator F−1 not continuous. In order to develop mathematical methods for solution of
ill-posed problems Tikhonov has developed regularisation theory starting with the first work on this
subject [22]. First, he introduced the definition of a conditionally well-posed problem on the set G.

Definition 2.5 (Conditionally well-posed on the set). Let B1 and B2 be two Banach spaces. Let
G ⊂ B1 be an a priori chosen set of the form G = G1, where G1 is an open set in B1. Let F : G → B2

be a continuous operator. Suppose that ||y∗ − yδ||B2
≤ δ. Here y∗ is the ideal noiseless data, yδ is noisy

data. The problem (18) is called conditionally well-posed on the set G, or well-posed by Tikhonov on
the set G if the following three conditions are satisfied:

1. It is a priori known that there exists an ideal solution x∗ = x∗ (y∗) ∈ G of this problem for the
ideal noiseless data y∗.

2. The operator F : G → B2 is one-to-one.

3. The inverse operator F−1 is continuous on the set F (G).

Fig. 4 illustrates the definition of conditional correctness. Thus, the concept of Tikhonov’s consists
of the following three conditions we should consider when we solve the ill-posed problem with noisy
data:

1. A priori assumption that there exists an ideal exact solution x∗ of Eq. (18) for an ideal noiseless
data y∗.

2. A priori choice of the correctness set G. In other words, we should a priori choose the set of
admissible parameters for solution x.

3. If we want to develop a stable numerical method for the solution of the problem (18), one
should:

• Assume that there exists a family {yδ} of right hand sides of Eq. (18), where δ > 0 is the level of
the error in the data with ||y∗ − yδ||B2

≤ δ.

• One should construct a family of approximate solutions {xδ} of Eq. (18), where xδ corresponds
to yδ.

• The family {xδ} should be such that

lim
δ→0+

||xδ − x∗|| = 0.

In order to satisfy this conception Tikhonov introduced the notion of a regularisation operator
for the solution of Eq. (18).

Definition 2.6 (Regularisation operator). Let Rγ : Kδ0
(y∗) → G be a continuous operator depending

on the regularisation parameter γ > 0. The operator Rγ is called the regularisation operator for

F (x) = y (19)

if there exists a function γ (δ) defined for δ ∈ (0, δ0) such that

lim
δ→0

∣∣∣∣Rγ (δ) (yδ) − x∗∣∣∣∣
B1

= 0.
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Thus, to find approximate solution of the problem (19) with noisy data y, Tikhonov proposed
minimise the following regularisation functional Jγ (x) ,

Jγ (x) = 1
2
||F(x) − y||2

B2
+ γ

2
ψ (x) , (20)

Jγ : G → R,

where γ = γ (δ) > 0 is a small regularisation parameter and γ

2
ψ (x) is the regularisation term.

There can be a lot of different regularisation procedures for the solution of the same ill-posed
problem [23–25], different methods for choosing the regularisation parameter γ [26–30] and a lot of
different regularisation terms. Main popular regularisation terms are [26]

• γ

2
‖x‖p

Lp , 1 ≤ p ≤ 2

• γ

2
‖x‖TV , TV means total variation, ‖x‖TV = ∫

G
‖∇x‖2dx

• γ

2
‖x‖BV , BV means bounded variation, a real-valued function whose TV is bounded (finite).

• γ

2
‖x‖H1

• γ

2

(‖x‖L1 + ‖x‖2
L2

)
• γ

2
‖x‖H1,2

• Combination of γ

2
‖x‖H1 and γ

2
‖x‖L2

• Specific choices appearing in analysing of big data using machine learning [13,31].

2.2.4 Regularised Cost Functions

As was discussed in the previous section, by adding a regularisation to Eq. (15) we transform ill-
posed CPD with noisy data into conditionally well-posed problem. Thus, we can better handle the
noisy data. The regularisation term is dependent on the model parameters β and a regularisation
parameter γ , where γ can be estimated or chosen as a constant (γ > 0). If γ = 0, we get the
ordinary linear regression model, presented in Eq. (15). The use of regularisation has been studied
widely, where the approach can provide a theoretical, numerical or iterative solution for ill-posed
problems [25,27,30]. Tikhonov’s regularisation has been used when solving inverse problems [21,24]
and in machine learning for classification and pattern recognition, see details and analysis of different
regularisation methods in [13–15,32]. In this work we study Ridge and Lasso regularisation which are
standard approaches of Tikhonov regularisation [33,34].

The first regularisation approach which is studied in this work is the Ridge regression,

cRidge (ya:b) := min
β∈Rp

b∑
t=a+1

(yt − (β0 + βxt))
2 + γ

p∑
j=1

||βj||2
2, (21)

where the regularisation term is the aggregated squared L2-norm of the model coefficients. If the L2-
norm is exchanged for the L1-norm we get Lasso regularisation. The cost functions is defined

cLasso (ya:b) := min
β∈Rp

b∑
t=a+1

(yt − (β0 + βxt))
2 + γ

p∑
j=1

|βj| (22)

where γ is the previously described regularisation parameter. Note that this parameter can be the
same as the parameter in the Ridge regression (21) but these are not necessarily equal. In all of our



1748 CMES, 2023, vol.134, no.3

computations we empirically set γ = 1. The study of how to choose the optimal value for gamma is
the topic of future research.

2.3 Bayesian Approach
In contrast to the optimisation approach, the Bayesian approach is based on Bayes’ probability

theorem, where the maximum probabilities are identified. It is based on the Bayesian principle of
calculating a posterior distribution of a time stamp being a change point, given a prior and a likelihood
function. From this posterior distribution, we can identify the points which are most likely to be change
points. The upcoming section will briefly go through the theory behind the Bayesian approach. For
more details and proofs of the used Theorem, the reader is directed to the work by Fearnhead [12].
The section is formulated as a derivation of the sought after posterior distribution for the change
points. Using two probabilistic quantities P and Q, we can rewrite Bayes’ formula to a problem
specific formulation which gives the posterior probability of a change point τ . Finally, we combine
the individual posterior distribution to get a joint distribution for all possible change points.

In our case, we wish to predict the probability of a change point τ given the data y1:n. The principle
behind the Bayesian approach lies in the probabilistic relationship formulated by Bayes in 1763 [35] as

Pr (A|B) = Pr(A, B)

Pr(B)
= Pr(B|A)Pr(A)

Pr(B)
, (23)

which can be reformulated in terms of CPD problem. A posterior probability distribution for a change
point τ given the data can be expressed as

Pr (τ |y1:n) = Pr(τ , y1:n)

Pr(y1:n)
= Pr(y1:τ |τ)Pr(yτ+1:n|τ)Pr(τ )

Pr(y1:n)
, (24)

where Pr(y1:τ |τ) and Pr(yτ+1:n|τ) are the likelihood of segments before and after the given change point
τ , respectively. The prior distribution Pr(τ ) indicates the probability of a potential change point τ

existing and y1:n represents the entirety of the signal. Using the (MAP) we identify the most probable
timestamps of being change points. Expressing MAP(y) in logarithmic terms, we get

max
τ∈[0:n]

log Pr(τ |y1:n) = max
τ∈[0:n]

[log Pr(y1:τ |τ) + log Pr(yτ+1:n|τ) + log Pr(τ ) − log Pr(y1:n)]. (25)

Similarly to Fearnhead [12], we will define two functions P and Q which are used for calculations in
the Bayesian approach. First, we define the probability of a segment P(t, s), given two entries belonging
to the same segment

P (t, s) = Pr
(
yt:s|t, s ∈ Sj

) =
∫ s∏

i=t

f
(
yi|θSj

)
π

(
θSj

)
dθSj , (26)

where f is the probability density function of entry yt belonging to a segment Sj with parameter θSj . We
note that this function has similarities used in the optimisation approach, namely in Eq. (5), where we
assume a distribution for each segment. In this work, this likelihood will be the Gaussian observation
log-likelihood function, but other function choices can be made. Note that π(θSj) is the prior for the
parameters of segment Sj. The discrete intervals [t, s], t ≤ s make P an upper triangular matrix which
elements are probabilities for segments yt:s. Note that this probability is independent of the number of
true change points K.

The second function, Q, indicates the probability of a final segment yt:n starting at time ti given a
change point at previous time step, ti−1. This probability is affected by the number of change points K,
and also which of the change points that is located at time ti−1. Since we do not know the exact number
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of change points K, we use a generic variable k, and perform calculations for all possible values of K.
The recurrent function is defined as

Q(k)

j (i) = Pr(yi:n|τj = i − 1, k)

=
n−k+j∑

s=i

P (t, s) Q(k)

j+1 (s + 1) πk

(
τj = i − 1|τj+1 = s

)
, (27)

Q(k)(1) = Pr(y1:n|k)

=
n−k∑
s=1

P (1, s) Q(k)

1 (s + 1) , (28)

where Q(k)(1) is the first time step and is a special case of Q(k)

j (i). The time index is indicated with
i ∈ [2, . . . , n]. The assumed number of change points is denoted k ∈ {1, . . . , n−1}, where j ∈ {1, . . . , k}
indicates which of the k assumed change points we are currently at. The prior πk is based on the
distance between change points, naturally dependent on k. This prior can be any point process, where
the simplest example is the constant prior with probability p = 1/n, where n is the number of samples.
Other examples include the negative binomial and Poisson distribution. Note that the prior should be
a point process since we have discrete time steps. The first time step is defined as an altered function
in (28). The result from this recursion is saved in an array of length n. A derivation and proof for this
function Q are provided by Fearnhead in Theorem 1 [12]. When calculating the sums in Eqs. (27)–(28),
the terms on the right hand side contribute to the function value. We use the same truncation rule as
expressed in the work by Fearnhead [12], where ε = 10−10 is used as a truncation threshold.

Using functions P and Q, the posterior distribution Pr(τj|τj−1, y1:n, k) for change point τj, given the
previous change point τj−1, the data y1:n and number of change points, can be calculated. Using Eq. (24)
along with the expressions for P and Q, we can formulate the posterior distribution for change point
τj as

Pr(τj|τj−1, y1:n, k) =

= Pr(yτj−1+1:τj |τj−1 + 1, τj ∈ Sj)Pr(yτj+1:n|τj, k)πk(τj−1|τj)

Pr(yτj−1:n|τj−1, k)

= P(τj−1 + 1, τj)Q
(k)

j (τj + 1)πk(τj−1|τj)

Q(k)

j−1(τj−1)
, (29)

where

Pr (τ1|y1:n, k) = P(1, τ1)Q(k)(τ1 + 1)πk(τ1)

Q(k)(1)
. (30)

Here, πk is the probability of τj based on the distance to τj−1. This posterior distribution indicates
the probability of change point τj occurring in each possible time step ti ∈ [1, n − 1]. The formulas in
(29) and (30) can be applied for each possible number of change points, where k can range from 1 to
n−1. Therefore, this posterior distribution is calculated for every available number of change points k.

The final step in the Bayesian approach is to combine the conditional probabilities for each
individual change point (seen in Eq. (29)) to get the joint distribution for all available change points.
The joint probability is calculated as



1750 CMES, 2023, vol.134, no.3

Pr (τ1, τ2, . . . , τn−1|y1:n) =
(

n−1∏
j=2

Pr
(
τj|τj−1, y1:n, k

))
Pr (τ1|y1:n, k) , (31)

where the first change point τ1 has a different probability formulation due to not having any previous
change point. This joint probability can be used to identify the most likely change points. Examples of
calculated posterior distributions are found in Appendix A [20], where we see the varying probability
of being a change point for each sample in the dataset. A sampling method can be used to draw samples
from the joint posterior distribution, where we are interested in the points that are most likely to be
change points. This means that we can identify the peaks in the posterior distribution, above a set
confidence level. This is explained further in Section 3.2. In our computations, we use the python
function find_peaks [36] to identify the posterior distribution’s extreme points (local maximums).
These local maximums are taken as the change points.

2.4 Methods of Error Estimation
In this section, the used metrics for evaluating the performance of the CPD algorithms are

presented. The metrics has previously been used to compare the performance of change point detection
algorithms [7,19], where a selection of metrics has been chosen to cover the general performance. We
first differentiate between the true change points and the estimated ones. The true change points are
denoted by T ∗ = {τ ∗

0 , . . . , τ ∗
K+1} while T̂ = {

τ̂0, . . . , τ̂K+1

}
indicate estimations. Similarly, the number

of true change points is indicated K∗ while K̂ represents the number of predicted points.

The most straight forward measure is to compare the number of predictions with the true number
of change points. This is know as the Annotation error, and is defined as

AE := |K̂ − K∗|, (32)

where K̂ is the estimated and K∗ the true change points. This does not indicate how precise the
estimations are, but can indicate if the model is over- or under-fitted.

Another similarity metric of interest is the Rand Index (RI) [7]. Compared to the previous distance
metrics, the rand index gives the similarity between two segmentations as a percentage of agreement.
This metric is commonly used to compare clustering algorithms. To calculate the index, we need
to define two additional sets which indicate whether two samples are grouped together by a given
segmentation or if they are not grouped together. These sets are defined by Truonga et al. [7] as

GR(T ) := {(s, t), 1 ≤ s < t ≤ T : s and t belong to the same segment in T },
NGR(T ) := {(s, t), 1 ≤ s < t ≤ T : s and t belong to different segments in T },
where T is some segmentation for a time interval [1,T ]. Using these definitions, the rand index is
calculated as

RI
(
T̂ , T ∗

)
:=

|GR
(
T̂

)
∩ GR (T ∗) | + |NGR

(
T̂

)
∩ NGR (T ∗) |

T (T − 1)
, (33)

which gives the number of agreements divided by possible combinations.

To better understand how well the predictions match the actual change points, one can use the
measure called the meantime error which calculates the meantime between each prediction to the
closest actual change point. The meantime should also be considered jointly with the dataset because
the same magnitude of meantime error can indicate different things in different datasets. For real-life
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time series data, the meantime error should be recorded in units of time, such as seconds, in order to
make the results intuitive for the user to interpret. The meantime is calculated as

MT
(
T̂ , T ∗

)
=

∑K̂

j=1 minτ∗∈T ∗ |̂τj − τ ∗|
K̂

. (34)

A drawback of this measure is that it focuses on the predicted points. If there are fewer predictions
than actual change points, the meantime might be lower if the predictions are in proximity of some
of the actual change points but not all. Note that the meantime is calculated from the prediction and
does not necessarily map the prediction to corresponding true change point, only the closest one.

Two of the most common metrics of accuracy in predictions are precision and recall. These metrics
give a percentage of how well the predictions reflect the true values. The precision metric is the fraction
of correctly identified predictions over the total number of predictions, while the recall metric compares
the number of identified true change points over the total number of true change points. These metrics
can be expressed as

precision =
|TP

(
T̂ , T ∗

)
|

|T̂ | , recall =
|TP

(
T̂ , T ∗

)
|

|T ∗| , (35)

where TP represents the number of true positives between the estimations T̂ and true change points

T ∗. Mathematically, TP is defined as TP
(
T̂ , T ∗

)
=

{
τ ∗ ∈ T ∗|τ̂ ∈ T̂ : |τ ∗ − τ̂ | < ε

}
, where ε is some

chosen threshold. The threshold gives the radius of acceptance, meaning the acceptable number of time
steps which can differ between prediction and true value. The two metrics (35) can be incorporated into
a combined metric, known as the F-score. The metric F1-score uses the harmonic mean of the precision
and recall and is applied in this work. As reviewed in this section, the metrics measure the similarity
between the predicted change points and the actual change points from various perspectives. Hence
this work adopt all of them to give a comprehensive evaluation of the performance of CPD algorithms.

3 Results

This section presents numerical examples illustrating the performance comparison of methods
discussed in the paper. First, we describe the real-life dataset together with testing procedure. Next,
several numerical examples demonstrate performance of CPD methods.

3.1 PRONTO Dataset
Multiphase flow processes are frequently seen in industries, when two or more substances, such as

water, air and oil, are mixed or interact with each other. Different flow rates of the multiphase flows
and different ratios between these flows will result in different flow regimes and the process is hence
operated in different operating modes. An example is the PRONTO benchmark dataset, available via
Zendo [37], and an illustration of the facility is seen in Fig. 5. The dataset is collected from a multiphase
flow rig. In the described process, air and water are pressurised respectively, where the pressurised mix
travels upwards to a separator located at an altitude. A detailed description of the process can be found
in [38].
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Figure 5: Illustration of the multi-flow facility for generating the PRONTO dataset [38]. The shaded
areas indicate the air and water flows that are studied in this paper

Since the varying flow rates can result in varying flow regimes, we focus on the process variables
of the flow rates. The signals are sampled with the same sampling rate and can be examined
simultaneously, but will be treated individually in this work. The CPD approaches are applied to four
process variables, including two flow rates of the inlet air denoted by Air In 1, Air In 2 and two flow
rates of the inlet water represented as Water In 1 and Water In 2, visualised in Fig. 6. The figure shows
these four signals, where the different operating modes are marked with alternating grey shades in the
background.

We take these changes in the operating mode as the true change points and they are used for
evaluating the CPD algorithms. The operating modes were recorded during the experiment and always
corresponded to the change in the water and air flow rates. However, due to human errors some change
points were missing at the end of the experiment (after around the 13,000-th sample).

We observe a range of typical behaviours in the time series data, such as piecewise constant
segments, exponential decay and change in variance. One can see that the changes in the flow rates will
result in the changes in the operating mode. On the other hand, such changes in operating mode may
not always be recorded during the process operation and then not always available for process data
analysis. Therefore, the change points in the data will be a good indicator of changes in the operating
mode if the CPD approaches can detect the change points accurately.
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Figure 6: The process variables Air In 1, Air In 2, Water In 1 and Water In 2 described in [38]. The
segments of different operating modes are indicated with alternating grey regions, and sixteen change
points are present on the boarder between segments

3.2 Testing Procedure
Both CPD approaches introduced in Section 2 are tested on the PRONTO dataset. To make

predictions with the Python package RUPTURES [39], first one needs to specify the algorithm with
search direction and cost function. In addition to this, the penalty level should also to be specified.
The value of the perfect penalty β in Eq. (1) is not known a priori, therefore, multiple predictions are
done for various penalty values β ∈ N ∪ {0}. If β = 0 the algorithm receives no penalty when adding
a change point, and the algorithm can add as many change points as necessary to minimise the cost
functions. Predictions are made using all cost functions, where both PELT and WIN are used, and the
time stamps of the detected change points are saved.

Using the concepts derived in Section 2.3 we can calculate posterior distribution with probabilities
for each time step being a change point. Due to the algorithm being computationally heavy, the reso-
lution of the data is reduced in the real dataset by PRONTO using Piecewise Aggregate Approximation
(PAA) [40]. The function aggregates the values of a window to an average value. The used window size
is 20 samples. Generally, to conclude a posterior distribution, sampling is used to create a collection
of time stamps which in this case represents the change points. In essence, we want to create a sample
of the most probable change points, without unnecessary duplicates. To draw this type of samples of
change points from the posterior distribution, the function find_peaks in the Python package SciPy
[36] is used. The function identifies the peaks in a dataset using two parameters: threshold which
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the peak value should exceed, and distance which indicates the minimum distance between peaks.
The threshold is set to 0.2, where we require a certainty level of at least 20%. The distance is set
to 10 time steps to prevent duplicate values. We note that this is not necessarily a proper sampling
methodology, and other approaches can be used instead. An alternative sampling method is provided
in Fearnhead [12].

All signals are normalised and handled individually such that CPD is applied to each variable
for searching change points in univariate signals and the relation between the variables is neglected.
The change points are then aggregated to get the combined change points on the entire dataset. The
detected change points are compared against the real changes in the operating modes. The metrics
provided in Section 2.4 are calculated and saved for each prediction. When enough tests have been
performed in terms of penalty values, the results are saved to an external file. The values of the metrics
are used to select the best prediction of change points. Our goal is to minimise the annotation error
and meantime, and at the same time maximise the F1-score and the rand index.

3.3 Numerical Results
Given the different search directions and cost functions presented in Sections 2.2.1 and 2.2.2,

respectively, we can presume that different setups will identify different features and hence differ in
predicting of change points. We can also assume that the Bayesian approach, presented in Section 2.3,
will not necessarily give the same predictions as the optimisation approach. We note that all algorithms
predict the intermediate change points T = {τ1, . . . , τK} along with one artificial change point τK+1 :=
n. This artificial change point is based on definition and is used when the predictions are compared
with respect to created segments, an example being RandIndex. This section presents the results of the
two approaches on the real-world dataset.

The result of change point detection by CPD approaches is visualised in Fig. 7. The figure also
visualises the time series data from four process signals and the real operating modes. The cost
functions are selected to represent the different types of cost functions; maximum likelihood, linear
regression and the introduced regularised cost functions. Table 1 shows the predictions obtained
using WIN. To calculate the precision and recall, the margin 1% of the number of samples are used,
equivalent to 144 s in error is accepted as an accurate indication. The cost functions cNormal and cLasso

predict 17 change points and have the lowest absolute error, where these algorithms also have the
highest meantime. The smallest meantime is obtained by cL2 and cL1, which predict fewer points. The
cost functions cL2 and cL1 have the highest F1-scores of 59.3% and 64.1% respectively and rand index
of 96.4% and 97.2%, respectively. The highest precision is obtained using cL2 while the recall is lower
at 50%. In the top image of Fig. 7 we see a comparison of the predictions made by cL1, cAR and cRidge.
We see similarities in the predictions made by cL1 and cRidge and other predictions made by cAR. We can
also note that, due to the linear model structure chosen for the cost function, some algorithms detect
two change points when an exponential trend appears; one change point is in the steep part and the
other when the trend stabilises. An example can be seen around the 10k-th sample in Fig. 6.

In the bottom image, we see predictions made by cL2, cAR and cRidge when PELT is used. The
predictions’ evaluation metrics are given in Table 2. We can note the generally high rand indices and
F1-scores, with the exception of cNormal. Most cost functions predict 17 change points, and have a lower
meantime compared to the values in Table 1. The smallest meantime of 95.8 time steps is obtained
by cAR and the largest meantime by cNormal. The highest F1-score of 66.7% and rand index of 95.4% is
obtained by cRidge. In the bottom image of Fig. 7 we see that cL2, cLinReg and cRidge give similar predictions
and correspond to many of the true change points.
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Figure 7: Results for the PRONTO dataset, using various cost functions. The different operating modes
are visualised in the background as shaded intervals. Predicted change points are seen in coloured
points, which are time points and do not have a value

Table 1: Prediction results for PRONTO dataset [37] using the optimisation approach, where the search
method WIN is used. Each cost function indicated the best possible penalty level β defined in (1), along
with respective obtained scores

Cost Regularised Penalty K AE MT Precision Recall F1 RI
function Yes/No β [s] [s] [%] [%] [%] [%]

cL2 No 3 12 5 67.9 72.7 50.0 59.3 96.4
cL1 No 6 16 1 88.6 66.7 62.5 64.1 97.2
cNormal No 300 17 0 841.1 37.5 37.5 37.5 91.2
cLinReg No 6 16 1 194.0 60.0 56.3 58.1 92.9
cAR No 0.0015 15 2 144.8 50.0 43.8 46.7 96.5
cRidge Yes 100 16 1 144.7 54.4 50.0 51.6 95.7
cLasso Yes 100 17 0 135.9 50.0 50.0 50.0 95.8
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Table 2: Prediction results for PRONTO dataset [37] using the optimisation approach, where the search
method PELT is used. Each cost function indicated the best possible penalty level β defined in (1),
along with respective obtained scores

Cost Regularised Penalty K AE MT Precision Recall F1 RI
function Yes/No β [s] [s] [%] [%] [%] [%]

cL2 No 150 16 1 191.9 66.7 62.5 64.5 96.4
cL1 No 250 16 1 266.9 66.7 62.5 64.5 95.9
cNormal No 4500 23 6 294.8 54.5 75.0 63.2 96.1
cLinReg No 150 20 3 151.0 63.2 75.0 68.6 97.3
cAR No 0.02 22 5 343.4 38.1 50.0 43.2 91.6
cRidge Yes 250 17 0 102.1 56.3 56.3 56.3 96.4
cLasso Yes 250 17 0 99.9 56.3 56.3 56.3 96.4

Fig. 7 also shows predictions obtained by the Bayesian method. The method predicts 21 change
points, which gives an absolute error AE = 4. The meantime of the predictions is 448.9 s. The precision
and recall are 65.0% and 81.3%, respectively, which gives an F1-score of 72.2%. The rand index is
96.0%.

4 Discussion and Future Work

In the previous sections, the two CPD approaches are reviewed and applied to the PRONTO
benchmark dataset and the detected change points are compared against the real changes in the
dataset. We have demonstrated that CPD can be executed on real life data to generate useful insights
that may facilitate the analysis. In this section, the results and the implication are discussed and several
potential directions are given towards further development and application of CPD for process data
analytics.

A natural extension of the work is to conduct the study with other search methods for the
optimisation approach and the study can be conducted with other search methods for the optimisation
approach and other CPD algorithms to be used as benchmarks. For example, more results on
numerically simulated datasets can be found in [20]. When the change points have been identified, the
corresponding timestamps can be used to create segments in the data. The segments can correspond
to phases in the process, which in turn can be relevant to compare to detect variations in the process
phases. Alternatively, change points can indicate anomalies in the process variable signals. This
underlines the usability of change point detection in terms of data processing.

Datasets tend to increase in size, and a relevant topic is the suitability for large amounts of
data. The two approaches studied in the present work are suitable for datasets with different sizes.
The optimisation approach can employ various combinations of cost functions and search directions
and the search direction is the major impact factor for the computational complexity. This paper
studied two search directions, where the optimal search direction PELT generally gives more accurate
predictions. The approximate search direction has a lower computational complexity and can handle
larger datasets in a reasonable amount of time. The window size for the WIN algorithm is a tuning
parameter that needs to be adjusted accordingly; hence it requires further investigation. On the
other hand, the PELT algorithm is computationally heavy, and accurate concerning search direction.
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Therefore, additional steps, such as down sampling the data, may be necessary when applying PELT
to large datasets. The Bayesian approach is also computationally heavy since the posterior distribution
needs to be calculated for every time stamp. Nevertheless, the posterior distribution used for identifying
the change points only needs to be calculated once and multiple samples of change points can be
drawn from the distribution. To conclude, the two CPD approaches may perform differently on larger
datasets while having their own merits.

Real data generally have noise, which can affect the predicted change points. For the optimisation
approach, some of the common cost functions tend to be sensitive to noise, while the proposed
regularised cost functions are less sensitive. It is also noted that the model based cost functions are
more sensitive to changes in the shape of the signal than to changes in the values, making model based
cost functions more generalisable and less sensitive to noise. Similarly, the Bayesian approach is not too
sensitive to noise and can handle value changes in a similar way as the model based cost functions. This
indicates that both approaches are compatible with real-world datasets and the optimisation approach
demands a suitable cost function to make accurate predictions. Some segments in the PRONTO
dataset follow an exponential decay, where some cost functions give indicate two change points in these
segments, one at the start of the decay and one where the decay has subsided. In this dataset, we see a
change point at the beginning of the exponential decay and not when it has subsided. It is important
to select a cost function that handles these segments appropriately to give accurate predictions.

In industrial practice, process experts are often able to provide useful feedback and insights about
the operating status of a process. Hence a future direction of applying CPD to process data analytics
will be to incorporate the feedback of process experts. For example, it may be interesting to incorporate
such information as the prior for the Bayesian approach. This paper has not studied the possibility of
user interaction, but suggests it as a topic for future work.

5 Summary

This paper demonstrated how change point detection is relevant for analysing process data,
particularly, when the operating condition in the process varies a lot and the corresponding labels
are unavailable. Two unsupervised algorithms for change point detection, namely the optimisation
approach and the Bayesian approach, are studied and applied to a real-life benchmark dataset. We
also illustrated why the optimisation problem of CPD is an ill-posed problem when there is noise in
the data and proposed a new type of cost function, using Tikhonov regularisation, for the optimisation
approach. Based on the results of the real-life dataset, the paper investigated how the features influence
the performance of CPD approaches in the data. The results of CPD on the dataset verified that
CPD can detect change points that correspond to the changes in the process and these change points
can be considered as labels for data segmentation for further analysis. The proposed regularised cost
functions were compared against non-regularised cost functions. It has been shown that, when applied
to the real-life dataset with noise, regularised cost functions can achieve better performance of CPD
than non-regularised cost functions.
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