
Thesis for The Degree of Licentiate of Engineering

Foundations of Information-Flow
Control and Effects

Carlos Tomé Cortiñas

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2022

Foundations of Information-Flow Control and Effects
Carlos Tomé Cortiñas

© Carlos Tomé Cortiñas, 2022

Unit of Information Security
Division of Computing Science
Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2022.

Abstract

In programming language research, information-flow control (IFC) is a tech-
nique for enforcing a variety of security aspects, such as confidentiality of data,
on programs. This Licenciate thesis makes novel contributions to the theory
and foundations of IFC in the following ways: Chapter A presents a new proof
method for showing the usual desired property of noninterference; Chapter B
shows how to securely extend the concurrent IFC language MAC with asynchro-
nous exceptions; and, Chapter C presents a new and simpler language for IFC
with effects based on an explicit separation of pure and effectful computations.

iii

Acknowledgements

First, I would like to thank Alejandro Russo for his supervision. I would also
like to extend my gratitude to my coauthors and collaborators for a fruitful
collaboration, which in particular has resulted in this thesis.

A huge thanks to my former and present colleagues and friends at the
department for providing such a friendly and fun work environment. Thanks
Fabian, Nachi, Irene, Víctor, Abhiroop, Matti, Sandro, Agustín, Elisabet,
Alejandro (el otro), Ivan, Mohammad, Benjamin, Liam, and Robert. If you
feel that I have forgotten you, then your name probably deserves to be in this
list, my apologies.

Special thanks to my friends in Gothenburg, back home in Spain, and the rest
of the world for making life most enjoyable. Thanks Μαρία, Ειρήνη, Antonio,
Duarte, Arturo, Rachele, and the many of you whom I may have forgotten.
Last but not least, I cannot begin to express my thanks to my family for their
unconditional love and support throughout these years. Y gracias a mis padres
Élida y Eduardo por estar siempre ahí.

v

Contents

Abstract iii

Acknowledgements v

Overview

I. Introduction 3
I.1. Information-Flow Control . 3

I.1.1. Security Policies . 4
I.1.2. Security Properties . 5
I.1.3. Enforcement Mechanisms 5

II. Contributions 7

Bibliography 13

Papers

A. Simple Noninterference by Normalization 19
A.1. Introduction . 21
A.2. The λSEC Calculus . 22
A.3. Normal Forms of λSEC . 26
A.4. Normal Forms and Noninterference 29
A.5. From λSEC to Normal Forms . 30

A.5.1. NbE for Simple Types 32
A.5.2. NbE for the Security Monad 34
A.5.3. Preservation of Semantics 36

A.6. Noninterference for λSEC . 36
A.6.1. Special Case of Noninterference 36
A.6.2. General Noninterference Theorem 37
A.6.3. Follow-up Example . 43

A.7. Conclusions and Future Work 44

vii

Contents

Bibliography . 45
Appendices . 50

I. NbE for Sums . 50

B. Securing Asynchronous Exceptions 55
B.1. Introduction . 57
B.2. The MAC IFC Library . 59
B.3. MACasync by Example . 63
B.4. Formal Semantics . 67

B.4.1. Core of MACasync . 67
B.4.2. Synchronization Variables 68
B.4.3. Concurrency . 68

B.5. Asynchronous Exceptions . 71
B.5.1. Masking Exceptions . 73
B.5.2. Concurrency and Synchronization Variables 76
B.5.3. Design Choices and Security 78
B.5.4. Relation to MAC . 80

B.6. Security Guarantees . 80
B.6.1. Term Erasure . 80
B.6.2. Erasure Function . 81
B.6.3. Progress-Sensitive Noninterference 82

B.7. Related Work . 84
B.8. Conclusions and Future Work 87
Bibliography . 88

C. Pure Information-Flow Control with Effects Made Simple 101
C.1. Introduction . 103
C.2. Effect-Free Information-Flow Control 108
C.3. Effectful Information-Flow Control 111

C.3.1. Printing Effects . 112
C.3.2. Global Store Effects . 117
C.3.3. Other Effects, Combination of Effects 122

C.4. Security Guarantees . 122
C.4.1. Noninterference for Printing Effects 125
C.4.2. Noninterference for Global Store Effects 127
C.4.3. Other Security Properties 128

C.5. Implementation . 128
C.5.1. Implementation of λSC 129
C.5.2. Implementation of λPRINT

SC 131
C.5.3. Implementing Existing Libraries for IFC 131

viii

Contents

C.6. Related Work . 134
C.7. Conclusions . 136
Bibliography . 136
Appendices . 143

I. The Language λREC . 143

ix

Overview

I
Introduction

This Licenciate thesis investigates static information-flow control (IFC) on
higher-order programming languages with effects.

I.1. Information-Flow Control

Language-based IFC [SM03] is an approach to security in computing systems
that aims to protect confidentiality and integrity of users’ data at the level
of programming languages. Typically, information-flow control programming
languages track where and how information propagates during the execution of
programs, and enforce that all possible flows of information, within and out of
the program, abide by a given security policy.

Security policies usually consists of a group of principals, i.e. those actors
whose information is at stake, represented by security levels, and a specification
of how information is allowed to flow among them. For example, the principals,
say Alice, Bob and Charlie, could be employees of the same company, and thus,
the security policy would consist of at least three security levels: Alice, Bob
and Charlie. Furthermore, if Alice trusts Bob but not Charlie with her private
data, then the security policy would specify that information is allowed to flow
from Alice to Bob but not from Alice to Charlie.

Programming languages for IFC usually let programmers assign security
levels, from a given security policy, to the different parts of the program that
manipulate users’ data. For example, if the program reads data inputted by
Charlie, then there would be a channel, which programs can use, that has
label Charlie. A sensible question to ask then is: what does it mean for the
program to abide by the security policy? This question is usually answered in
the form of a formal security condition that combines (a subclass of) programs,
certain security policies, and the “execution” semantics of the programming

3

I. Introduction

language, i.e. what do programs compute and what can be observed from their
execution at some security levels. When programs satisfy the security condition
we say that they are secure.

IFC enforcement mechanisms broadly fall in two categories: static, where
programs are analysed before execution, i.e. at compile time, and they are
allowed to run only if they comply with the security policy; and dynamic, where
all programs are executed, but their execution will be aborted or modified at
the point where they, if so, are about to violate the security policy. Additionally
these approaches might be combined to yield hybrid enforcements. Note that
enforcement mechanisms will always over approximate the security property, i.e.
all accepted programs are secure, but will not be complete, i.e. some programs
deemed as “insecure” are in fact secure. Whether a program is secure with
respect to a nontrivial security property is in general undecidable [Ric53].

To summarize, language-based IFC approaches to security consist in

• a framework for specifying security policies;

• a programming language;

• a formal security property expressing what does it mean for programs to
be secure with respect to security policies; and

• an enforcement mechanism that ensures programs comply with security
policies.

In the rest of this section, we describe in more detail some of the points above.

I.1.1. Security Policies
Security policies are commonly formalized using lattices [Den76]. The elements
of a lattice, or security levels, sometimes also called labels, or sensitivities,
are an abstraction over the distinct principals (or sets of), and the relation
specifies the allowed flows of information. Security levels and principals need
not correspond to each other one-to-one; for instance, in the previous example
there would be a security level Alice or Bob, for data belonging to either
Alice or Bob, but this level doesn’t correspond to any of the principals.

In the simplest scenario, the security policy defines two security labels L, for
public, and H, for secret, and the relation states that every flow of information is
allowed except from H to L—i.e. flows to equal or more sensitivity are allowed,
e.g. from public to secret, but flows from more to less sensitivity are forbidden,
e.g. from secret to public. The so-called attacker frequently belongs to the
security level L, i.e. the attacker is modelled as part of the system. In principle,

4

I.1. Information-Flow Control

the attacker can only observe public data, in accordance with the security
policy, however their (malicious) intention is to also observe secret data, which
clearly violates the security policy.

The public-secret situation generalizes to more complex scenarios, i.e. those
with nontrivial security lattices; the attacker belongs to an arbitrary security
level, “public,” and confidential data to another level, “secret,” such that flows
of information from the later to the former are disallowed.

I.1.2. Security Properties

Security properties connect security policies and the execution semantics of
programs. Usually these properties are variations of the classical noninterfer-
ence [GM82] which states that secret data can not influence what attackers
observe from the public outputs of a program:

Definition I.1.1 (Noninterference). A program satisfies noninterference if its
public outputs are independent of its secret inputs.

What constitutes program’s secret inputs and public outputs, and hence
what is the precise statement of noninterference, varies with respect to

• the features of the programming language under consideration, and thus
what behaviour programs can exhibit, e.g. general recursion, printing,
memory references; and

• the observational power of the attackers, i.e. what can they observe from
the execution of programs, e.g. distinguishing termination from divergence,
timing output events, inspecting the intermediate contents of memory.

An approach to formally show that a program satisfies noninterference is
by considering the public outputs that it generates in several executions for
distinct secret input values. If varying the secret input does not affect the public
outputs of the program, that is, the public outputs agree on all executions,
then it must the case that those outputs are truly independent of the secret
inputs, and hence the program is noninterferent.

I.1.3. Enforcement Mechanisms

Enforcement mechanisms can roughly be divided in two categories, static and
dynamic, according to whether the enforcement happens before the execution
of programs, i.e. at compile time, or during their execution, i.e. at runtime.
Other mechanisms, so-called hybrid, combine static and dynamic enforcement.

5

I. Introduction

• Static enforcement mechanisms consists in statically analysing programs
to determine whether all the flows of information are permitted by a
given security policy. Static analysis for IFC appear in several veins,
on the traditional side the static analyser takes a program as input and
outputs whether the program is secure or not. Modern approaches built
the analysis into the programming language by means of a type system,
in the sense, that all well-typed programs are secure.

• Dynamic enforcement mechanisms consists in a runtime monitor that
executes along with programs and halts or modifies the execution of the
program in case some flow of information violates the security policy.

6

II
Contributions

This thesis contributes to the foundations of IFC with effects in two areas:
proof methods for noninterference and IFC languages with effects.

Proof Methods This thesis presents a new method for proving noninterference
for higher-order IFC programming languages. In the literature noninterference
has been typically proved different by appealing to an array of techniques:
term erasure (e.g. [LZ10; RCH08]), logical relations (e.g. [TZ04; BA15]), para-
metricity (e.g. [Alg18]), and adequate denotational semantics (e.g. [Aba+99;
Kav19]). In contrast to these, the method presented in this thesis arises from
the insight that to understand whether programs are secure it is enough to look
at a representative class of them for which noninterference is trivially true, e.g.
programs of certain type are equivalent to a program that does not mention
syntactically a secret input. This thesis uses normalization to obtain the repre-
sentative class of programs, and hence the technique is dubbed noninterference
by normalization.

IFC Languages with Effects Effects are an important feature of practical
programming languages, and hence practical IFC languages should incorporate
them in some form. However one must be careful as effects open new and
unintended channels that can be used to leak secret data to the public.

First, this thesis presents a new design for an extension of MAC [Vas+18], a
concurrent language for static IFC, with asynchronous exceptions. Asynchro-
nous exceptions are a useful feature that permit threads to communicate with
each other and interact with the runtime system. In the IFC setting they allow
thread safe communication among threads that operate with data at different
security levels. As a side-effect, this enables new programming patterns that
would have been insecure in MAC, for instance, speculative execution.

7

II. Contributions

Furthermore, this thesis presents a new approach for designing IFC languages
with effects. Usually, these languages are designed and implemented in a mono-
lithic fashion (e.g. MAC). Although there are plenty effect-free languages for
static IFC in the literature (e.g. [Aba+99; SI08]), when it comes to incorporat-
ing effects it is typically the job of the researcher to modify the type system
just enough so that one can express some interesting secure programs that
perform effects. In this thesis we propose a new mechanism, which a sort of
distributivity construct, that can be used to seamless integrate languages for
effects, for example in the form of graded monads, and the aforementioned
effect-free IFC languages.

Figure II.1 summarizes the specific results included in this thesis, relates
them to the areas mentioned above, and indicates the venues where research
articles have been published.

Foundations of IFC with Effects

Proof Methods

Noninterference
by Normalization

Chapter A

PLAS ’19

IFC Languages with Effects

Asynchronous
Exceptions

Chapter B

CSF ’20

Distributivity

Chapter C

under
submission

Figure II.1.: Thesis’ contributions overview

In the rest of this chapter, we describe the articles that compose this thesis
in more detail.

Simple Noninterference by Normalization
Carlos Tomé Cortiñas and Nachiappan Valliappan

The main contribution of this paper consists in a novel proof technique for
proving noninterference. This technique exploits the insight that to reason
about information-flow properties of a programming language, it is not necessary

8

to consider all possible programs, where programs might be arbitrarily complex,
but that it is enough to consider a smaller (and simpler) class that in some
sense represents all of them.

Based on this idea, this paper presents a new proof of noninterference for
a static IFC calculus based on a terminating fragment of the calculus that
formalizes the Haskell IFC library SecLib [RCH08]. The calculus is a simply-
typed λ-calculus (STLC) extended with unit, product, and sum types, and a
family of monads for each security level. The simpler class of programs, from
which a noninterference property follows rather directly, is characterized as the
normal forms of a standard equational theory which includes, among others, β,
η and δ equations for monadic types.

Specifically, the paper describes in detail i) the class of normal forms ii) a pro-
cedure, based on NbE, for obtaining normal forms for arbitrary terms iii) a proof
that indeed normal forms faithfully represent classes of equivalent terms, and
iv) a proof of noninterference based on analysing the normal forms. The results
in this paper have been mechanized in the proof assistant Agda [Abe+05].

Statement of Contributions This paper was coauthored with Nachiappan Val-
liappan. Both Nachiappan and Carlos contributed equally to the formalization,
the Agda mechanization, and the writing of the paper.

This paper was published in the Proceedings of the 14th ACM SIGSAC
Workshop on Programming Languages and Analysis for Security, CCS 2019,
London, United Kingdom, November 11-15, 2019 [TV19]. A reformatted version
appears as Chapter A of this thesis.

Securing Asynchronous Exceptions
Carlos Tomé Cortiñas, Marco Vassena, and Alejandro Russo

This paper explores how to extend a concurrent language for static IFC, in
this case based on MAC [Vas+18], with asynchronous exceptions.

Asynchronous exceptions, sometimes called interrupts, are a useful language
feature that enables different threads of execution to communicate and interact
with each other and the runtime system. The naive combination of asyn-
chronous exceptions with existing features of IFC languages (e.g. concurrency
and synchronization variables) can, in principle, open up new possibilities of
information leakage.

The main contribution of this paper is to show how to securely incorporate
asynchronous exceptions to concurrent MAC. For that, the paper presents an

9

II. Contributions

extension to the syntax of MAC with new primitives that i) permit threads
to refer to other threads, a feature that is not available in concurrent MAC,
and ii) permit threads to send asynchronous exceptions to other threads in the
system. This paper further present an operational semantics for this extension of
MAC, inspired by the work on asynchronous exceptions in Haskell [Mar+01].
In this paper it is also proved that the resulting language satisfies a strong
notion of security, namely progress-sensitive noninterference (PSNI). The results
in this paper have been mechanized in the proof assistant Agda.

Statement of Contributions This paper was coauthored with Marco Vassena
and Alejandro Russo. Carlos suggested the idea of studying asynchronous
exceptions in the context of IFC. Carlos devised the calculus and its formal
semantics, and mechanized them along with the security guarantees in Agda.
Carlos wrote the technical sections of the paper.

This paper was published in the 33rd IEEE Computer Security Foundations
Symposium, CSF 2020, Boston, MA, USA, June 22-26, 2020 [TVR20]. A
reformatted version appears as Chapter B of this thesis.

Pure Information-Flow Control with Effects Made Simple
Carlos Tomé Cortiñas and Alejandro Russo

The main contribution of this paper is a novel primitive distr that permit us
to extend existing languages for effect-free IFC (e.g. DCC [Aba+99], λSC [SI08])
with effects in a principled manner.

To evidence this, this paper describes a number of extensions of the sealing
calculus (SC) [SI08] with different forms of effects, e.g. printing or global store.
These extensions consist on combining naively SC with a graded monad for
effects, which tracks fine-grainedly concrete effects, and the primitive distr. In
this paper it is also proved that the resulting languages from these extensions
are secure, i.e. they satisfy suitable versions of termination-insensitive nonin-
terference (TINI). This paper also presents an implementation of this idea as
a proof-of-concept library in Haskell. The results in this paper have been
partially mechanized in the proof assistant Agda.

Statement of Contributions This paper was coauthored with Alejandro
Russo. Carlos devised the idea of splitting effect-free and effectful IFC. Carlos
formalized and mechanized the calculi presented in the paper. Carlos wrote
most of the paper.

10

This paper is under submission. The latest version of the manuscript appears
as Chapter C of this thesis.

11

Bibliography

[Aba+99] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke.
“A Core Calculus of Dependency”. In: POPL ’99, Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Antonio, TX, USA, January 20-
22, 1999. Ed. by Andrew W. Appel and Alex Aiken. ACM, 1999,
pp. 147–160. doi: 10.1145/292540.292555. url: https://doi.
org/10.1145/292540.292555 (cit. on pp. 7, 8, 10).

[Abe+05] Andreas Abel, Guillaume Allais, Jesper Cockx, Nils Anders Daniels-
son, Philipp Hausmann, Fredrik Nordvall Forsberg, Ulf Norell,
Víctor López Juan, Andrés Sicard-Ramírez, and Andrea Vezzosi.
Agda 2. 2005–. url: https://wiki.portal.chalmers.se/agda/
pmwiki.php (cit. on p. 9).

[Alg18] Maximilian Algehed. “A Perspective on the Dependency Core
Calculus”. In: Proceedings of the 13th Workshop on Programming
Languages and Analysis for Security, PLAS@CCS 2018, Toronto,
ON, Canada, October 15-19, 2018. Ed. by Mário S. Alvim and
Stéphanie Delaune. ACM, 2018, pp. 24–28. doi: 10.1145/3264820.
3264823. url: https://doi.org/10.1145/3264820.3264823
(cit. on p. 7).

[BA15] William J. Bowman and Amal Ahmed. “Noninterference for free”.
In: Proceedings of the 20th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1-3, 2015. Ed. by Kathleen Fisher and John H.
Reppy. ACM, 2015, pp. 101–113. doi: 10.1145/2784731.2784733.
url: https://doi.org/10.1145/2784731.2784733 (cit. on p. 7).

[Den76] Dorothy E. Denning. “A Lattice Model of Secure Information Flow”.
In: Commun. ACM 19.5 (1976), pp. 236–243. doi: 10.1145/360051.
360056. url: https://doi.org/10.1145/360051.360056 (cit. on
p. 4).

13

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/3264820.3264823
https://doi.org/10.1145/3264820.3264823
https://doi.org/10.1145/3264820.3264823
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056

Bibliography

[GM82] Joseph A. Goguen and José Meseguer. “Security Policies and Secu-
rity Models”. In: 1982 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, April 26-28, 1982. IEEE Computer Society,
1982, pp. 11–20. doi: 10.1109/SP.1982.10014. url: https:
//doi.org/10.1109/SP.1982.10014 (cit. on p. 5).

[Kav19] G. A. Kavvos. “Modalities, cohesion, and information flow”. In:
Proc. ACM Program. Lang. 3.POPL (2019), 20:1–20:29. doi: 10.
1145/3290333. url: https://doi.org/10.1145/3290333 (cit. on
p. 7).

[LZ10] Peng Li and Steve Zdancewic. “Arrows for secure information
flow”. In: Theor. Comput. Sci. 411.19 (2010), pp. 1974–1994. doi:
10.1016/j.tcs.2010.01.025. url: https://doi.org/10.1016/
j.tcs.2010.01.025 (cit. on p. 7).

[Mar+01] Simon Marlow, Simon L. Peyton Jones, Andrew Moran, and John
H. Reppy. “Asynchronous Exceptions in Haskell”. In: Proceedings
of the 2001 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Snowbird, Utah, USA, June
20-22, 2001. Ed. by Michael Burke and Mary Lou Soffa. ACM,
2001, pp. 274–285. doi: 10.1145/378795.378858. url: https:
//doi.org/10.1145/378795.378858 (cit. on p. 10).

[RCH08] Alejandro Russo, Koen Claessen, and John Hughes. “A library for
light-weight information-flow security in haskell”. In: Proceedings
of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008,
Victoria, BC, Canada, 25 September 2008. Ed. by Andy Gill. ACM,
2008, pp. 13–24. doi: 10.1145/1411286.1411289. url: https:
//doi.org/10.1145/1411286.1411289 (cit. on pp. 7, 9).

[Ric53] H. G. Rice. “Classes of recursively enumerable sets and their deci-
sion problems”. In: Trans. Amer. Math. Soc. 74 (1953), pp. 358–366.
issn: 0002-9947. doi: 10.2307/1990888. url: https://doi.org/
10.2307/1990888 (cit. on p. 4).

[SI08] Naokata Shikuma and Atsushi Igarashi. “Proving Noninterference
by a Fully Complete Translation to the Simply Typed Lambda-
Calculus”. In: Log. Methods Comput. Sci. 4.3 (2008). doi: 10.2168/
LMCS-4(3:10)2008. url: https://doi.org/10.2168/LMCS-4(3:
10)2008 (cit. on pp. 8, 10).

14

https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333
https://doi.org/10.1016/j.tcs.2010.01.025
https://doi.org/10.1016/j.tcs.2010.01.025
https://doi.org/10.1016/j.tcs.2010.01.025
https://doi.org/10.1145/378795.378858
https://doi.org/10.1145/378795.378858
https://doi.org/10.1145/378795.378858
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.2307/1990888
https://doi.org/10.2307/1990888
https://doi.org/10.2307/1990888
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008

[SM03] Andrei Sabelfeld and Andrew C. Myers. “Language-based informa-
tion-flow security”. In: IEEE J. Sel. Areas Commun. 21.1 (2003),
pp. 5–19. doi: 10.1109/JSAC.2002.806121. url: https://doi.
org/10.1109/JSAC.2002.806121 (cit. on p. 3).

[TV19] Carlos Tomé Cortiñas and Nachiappan Valliappan. “Simple Non-
interference by Normalization”. In: Proceedings of the 14th ACM
SIGSAC Workshop on Programming Languages and Analysis for
Security, CCS 2019, London, United Kingdom, November 11-15,
2019. Ed. by Piotr Mardziel and Niki Vazou. ACM, 2019, pp. 61–72.
doi: 10.1145/3338504.3357342. url: https://doi.org/10.
1145/3338504.3357342 (cit. on p. 9).

[TVR20] Carlos Tomé Cortiñas, Marco Vassena, and Alejandro Russo. “Secur-
ing Asynchronous Exceptions”. In: 33rd IEEE Computer Security
Foundations Symposium, CSF 2020, Boston, MA, USA, June 22-
26, 2020. IEEE, 2020, pp. 214–229. doi: 10.1109/CSF49147.2020.
00023. url: https://doi.org/10.1109/CSF49147.2020.00023
(cit. on p. 10).

[TZ04] Stephen Tse and Steve Zdancewic. “Translating dependency into
parametricity”. In: Proceedings of the Ninth ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2004, Snow
Bird, UT, USA, September 19-21, 2004. Ed. by Chris Okasaki and
Kathleen Fisher. ACM, 2004, pp. 115–125. doi: 10.1145/1016850.
1016868. url: https://doi.org/10.1145/1016850.1016868
(cit. on p. 7).

[Vas+18] Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye.
“MAC A verified static information-flow control library”. In: Jour-
nal of Logical and Algebraic Methods in Programming 95 (2018),
pp. 148–180. issn: 2352-2208. doi: https://doi.org/10.1016/
j.jlamp.2017.12.003. url: https://www.sciencedirect.com/
science/article/pii/S235222081730069X (cit. on pp. 7, 9).

15

https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1109/CSF49147.2020.00023
https://doi.org/10.1109/CSF49147.2020.00023
https://doi.org/10.1109/CSF49147.2020.00023
https://doi.org/10.1145/1016850.1016868
https://doi.org/10.1145/1016850.1016868
https://doi.org/10.1145/1016850.1016868
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://www.sciencedirect.com/science/article/pii/S235222081730069X
https://www.sciencedirect.com/science/article/pii/S235222081730069X

Papers

A
Simple Noninterference by
Normalization

Carlos Tomé Cortiñas and Nachiappan Valliappan

Proceedings of the 14th ACM SIGSAC Workshop on Programming
Languages and Analysis for Security, CCS 2019, London, United

Kingdom, November 11-15, 2019

Abstract Information-flow control (IFC) languages ensure programs preserve the
confidentiality of sensitive data. Noninterference, the desired security property of
such languages, states that public outputs of programs must not depend on sensitive
inputs. In this paper, we show that noninterference can be proved using normalization.
Unlike arbitrary terms, normal forms of programs are well-principled and obey useful
syntactic properties—hence enabling a simpler proof of noninterference. Since our
proof is syntax-directed, it offers an appealing alternative to traditional semantic based
techniques to prove noninterference.
In particular, we prove noninterference for a static IFC calculus, based on Haskell’s
SecLib library, using normalization. Our proof follows by straightforward induction
on the structure of normal forms. We implement normalization using normalization by
evaluation and prove that the generated normal forms preserve semantics. Our results
have been verified in the Agda proof assistant.

19

A.1. Introduction

A.1. Introduction
Information-flow control (IFC) is a security mechanism which guarantees confi-
dentiality of sensitive data by controlling how information is allowed to flow
in a program. The guarantee that programs secured by an IFC system do
not leak sensitive data is often proved using a property called noninterference.
Noninterference ensures that an observer authorized to view the output of a
program (pessimistically called the attacker) cannot infer any sensitive data
handled by it. For example, suppose that the type IntH denotes a secret integer
and BoolL denotes a public Boolean. Now consider a program f with the
following type:

f : IntH → BoolL

For this program, noninterference ensures that f outputs the same Boolean for
any given integer.

To prove noninterference, we must show that the public output of a pro-
gram is not affected by varying the secret input. This has been achieved
using many techniques including term erasure based on dynamic operational
semantics [LZ10; RCH08; Ste+11; VR16], denotational semantics [Aba+99;
Kav19], and parametricity [TZ04; BA15; Alg18]. In this paper, we show that
noninterference can also be proved by normalizing programs using the static or
residualising semantics [Lin05] of the language.

If a program returns the same output for any given input, it must be the
case that it does not depend on the input to compute the output. Thus proving
noninterference for a program which receives a secret input and produces a
public output, amounts to showing that the program behaves like a constant
program. For example, proving noninterference for the program f consists of
showing that it is equivalent to either λ x . true or λ x . false; it is immediately
apparent that these functions do not depend on the secret input x. But how
can we prove this for any arbitrary definition of f ?

The program f may have been defined as the simple function λ x .(not false)
or perhaps the more complex function λ x . ((λ y .snd (x , y)) true). Observe,
however, that both these programs can be normalized to the equivalent function
λ x . true. In general, although terms in the language may be arbitrarily
complex, their normal forms (such as λ x . true) are not. They are simpler, thus
well-suited for showing noninterference.

The key idea in this paper is to normalize terms, and prove noninterference
by simple structural induction on their normal forms. To illustrate this, we
prove noninterference for a static IFC calculus, which we shall call λSEC, based
on Haskell’s SecLib library by Russo, Claessen, and Hughes We present the

21

A. Simple Noninterference by Normalization

typing rules and static semantics for λSEC by extending Moggi’s computational
metalanguage [Mog91] (Section A.2). We identify normal forms of λSEC, and
establish syntactic properties about a normal form’s dependency on its input
(Section A.3). Using these properties, we show that the normal forms of program
f are λ x . true or λ x . false—as expected (Section A.4).

To prove noninterference for all terms using normal forms, we implement
normalization for λSEC using normalization by evaluation (NbE) [BS91] and
prove that it preserves the static semantics (Section A.5). Using normalization,
we prove noninterference for program f and further generalize this proof to
all terms in λSEC (Section A.6)—including, for example, a program which
operates on both secret and public values such as BoolL × BoolH → BoolL ×
BoolH. Finally, we conclude by discussing related work and future directions
(Section A.7).

Unlike earlier proofs, our proof shows that noninterference is an inherent
property of the normal forms of λSEC. Since the proof is primarily type and
syntax-directed, it provides an appealing alternative to typical semantics based
proof techniques. All the main theorems in this paper have been mechanized
in the proof assistant Agda.1

A.2. The λSEC Calculus

In this section we present λSEC, a static IFC calculus that we shall use as the
basis for our proof of noninterference. It models the pure and terminating
fragment of the IFC library SecLib2 for Haskell, and is an extension of the
calculus developed by Russo, Claessen, and Hughes [RCH08] with sum types.
SecLib is a lightweight implementation of static IFC which allows programmers
to incorporate untrusted third-party code into their applications while ensuring
that it does not leak sensitive data. Below, we recall the public interface (API)
of SecLib:

data S (l :: Lattice) a
return :: a → S l a
(≫=) :: S l a → (a → S l b) → S l b
up :: lL ⊑ lH ⇒ S lL a → S lH a

Similar to other static IFC libraries in Haskell such as LIO [Ste+11] or
MAC [Vas+18], SecLib’s security guarantees rely on exposing the API to the

1https://github.com/carlostome/ni-nbe
2https://hackage.haskell.org/package/seclib

22

https://hackage.haskell.org/package/seclib

A.2. The λSEC Calculus

programmer while hiding the underlying implementation. Programs written
against the API and the safe parts of the language [Ter+12] are guaranteed
to be secure-by-construction; the library enforces security statically through
types. As an example, suppose that we have the two-point security lattice (see
[Den76]) {L, H} where the only disallowed flow is from secret (H) to public (L),
denoted H ̸⊑ L. The following program written using the SecLib API is
well-typed and—intuitively—secure:

example :: S L Bool → S H Bool
example p = up (p ≫= λ b → return (not b))

The function example negates the Bool that it receives as input and upgrades
its security level from public to secret. On the other hand, had the program
tried to downgrade the secret input to public—clearly violating the policy of the
security lattice—the typechecker would have rejected the program as ill-typed.

The Calculus λSEC is a simply typed λ-calculus (STLC) with a base (uninter-
preted) type, unit type, product and sum types, and a security monad type
for every security level in a set of labels (denoted by Label). The set of labels
may be a lattice, but our development only requires it to be a preorder on the
relation ⊑. Throughout the rest of this paper, we use the labels lL and lH and
refer to them as public and secret, although they represent levels in an arbitrary
security lattice such that lH ̸⊑ lL. Figure A.1 defines the syntax of terms, types
and contexts of λSEC.

Label l , lH , lL
Context Γ ∆ Σ ::= ∅ | Γ , x : τ

Type τ τ1 τ2 ::= τ1 ⇒ τ2 | ι | ()
| τ1 + τ2 | τ1 × τ2
| S l τ

Term t s u ::= x | λ x . t | t s | ()
| < t , s > | fst t | snd t
| left t | right t
| case t (left x1 → s) (right x2 → u)
| return t | let x = t in u | up t

Figure A.1.: The λSEC calculus

23

A. Simple Noninterference by Normalization

Γ ⊢ t : τ

Return
Γ ⊢ t : τ

Γ ⊢ return t : S l τ

Up
Γ ⊢ t : S lL τ lL ⊑ lH

Γ ⊢ up t : S lH τ

Let
Γ ⊢ t : S l τ1 Γ , x : τ1 ⊢ s : S l τ2

Γ ⊢ let x = t in s : S l τ2

Figure A.2.: Type system of λSEC (excerpts)

In addition to the standard introduction and elimination constructs for unit,
products and sums in STLC, λSEC uses the constructs return, let and up for the
security monad S l τ , which mirrors S from SecLib. Note that our presentation
favours let, as in Moggi [Mog89], over the Haskell bind (≫=), although both
presentations are equivalent—i.e. t ≫= λ x .u can be encoded as let x = t in u.

The typing rules for return and let, shown in Figure A.2, ensure that compu-
tations over labelled values in the security monad S l τ do not leak sensitive
data. The construct return allows the programmer to tag a value of type τ with
security label l; and bind enforces that sequences of computations over labelled
values stay at the same security level.

Further, the calculus models the up combinator in SecLib as the construct
up. Its purpose is to relabel computations to higher security levels. The rule
Up, shown in Figure A.2, statically enforces that information can only flow
from lL to lH in agreement with the security policy lL ⊑ lH. The rest of the
typing rules for λSEC are standard [Pie02], and thus omitted here. For a full
account we refer the reader to our Agda formalization.

For completeness, the function example from earlier can be encoded in the
λSEC calculus as follows:3

example = λ s .up (let b = s in return (not b))

Static Semantics The static semantics of λSEC is defined as a set of equations
relating terms of the same type typed under the same environment. The equa-
tions characterize pairs of λSEC terms that are equivalent based on β-reduction,
η-expansion and other monadic operations. We present the equations for return

3In λSEC, the type Bool is encoded as () + () with false = left () and true = right ().

24

A.2. The λSEC Calculus

and let constructs of the monadic type S (à la Moggi [Mog91]) in Figure A.3,
and further extend this with equations for the up primitive in Figure A.4. The
remaining equations—including β and η rules for other types, and permutation
rules for commuting case conversions—are fairly standard [Lin05; AS19], and
can be found in the Agda formalization. As customary, we use the nota-
tion t1 [x/t2] for capture-avoiding substitution of the term t2 for variable x in
term t1.

Γ ⊢ t1 ≈ t2 : τ

β-S
Γ ⊢ t1 : τ Γ , x : τ ⊢ t2 : S l τ

Γ ⊢ let x = (return t1) in t2 ≈ t2 [x/t1] : S l τ

η-S
Γ ⊢ t : S l τ

Γ ⊢ t ≈ let x = t in (return x) : S l τ

γ-S
Γ ⊢ t1 : S l τ1 Γ , x : τ1 ⊢ t2 : S l τ2 Γ , x : τ1 , y : τ2 ⊢ t3 : S l τ3

Γ ⊢ let x = (let y = t1 in t2) in t3 ≈ let y = t1 in (let x = t2 in t3) : S l τ3

Figure A.3.: Static semantics of λSEC (return and let)

The up primitive induces equations regarding its interaction with itself and
other constructs in the security monad. In Figure A.4, we make the auxiliary
condition of up and the label of return explicit using subscripts for better clarity.
These equations can be understood as follows:

• Rule δ1-S. applying up over let is equivalent to distributing it over the
subterms of let.

• Rule δ2-S. applying up on an term labelled as return t is equivalent to
relabelling t with the final label.

• Rule δtrans-S. applying up twice is equivalent to applying it once using
the transitivity of the relation ⊑.

• Rule δrefl-S. applying up using the reflexive relation l ⊑ l is equivalent
to not applying it.

25

A. Simple Noninterference by Normalization

Γ ⊢ t1 ≈ t2 : τ

δ1-S
Γ ⊢ t : S lL τ1 Γ , x : τ1 ⊢ u : S lL τ2 p : lL ⊑ lH

Γ ⊢ upp (let x = t in u) ≈ let x = (upp t) in (upp u) : S lH τ

δ2-S
Γ ⊢ t : τ p : lL ⊑ lH

Γ ⊢ upp (returnL t) ≈ returnH t : S lH τ

δtrans-S
Γ ⊢ t : S lL τ p : lL ⊑ lM q : lM ⊑ lH r = trans-⊑ p q

Γ ⊢ upq (upp t) ≈ upr t : S lH τ

δrefl-S
Γ ⊢ t : S l τ p : l ⊑ l

Γ ⊢ upp t ≈ t : S l τ

Figure A.4.: Static semantics of λSEC (up)

A.3. Normal Forms of λSEC

As discussed in Section A.1, our proof of noninterference utilizes syntactic
properties of normal forms, and hence relies on normalizing terms in the
language. Normal forms are a restricted subset of terms in the λSEC calculus
which intuitively corresponds to terms that cannot be normalized further. The
syntax of normal forms is defined using two well-typed interdependent syntactic
categories: neutral forms as Γ ⊢ne t : τ (Figure A.5) and normal forms as
Γ ⊢nf t : τ (Figure A.6). Neutral forms are a special case of normal forms
which depend entirely on the typing context (e.g. a variable).

Since the definition of neutral and normal forms are merely a syntactic
restriction over terms, they can be embedded back into terms of λSEC using a
quotation function ⌜ n ⌝. This embedding can be implemented for neutrals and
normal forms by simply mapping them to their term counterparts.

Neutral Forms The neutral forms are terms which are characterized by a
property called neutrality, which is stated as follows:

Property A.3.1 (Neutrality). For a given neutral form of type Γ ⊢ne τ ,

26

A.3. Normal Forms of λSEC

Γ ⊢ne t : τ

Var
x : τ ∈ Γ

Γ ⊢ne x : τ

App
Γ ⊢ne t : τ1 ⇒ τ2 Γ ⊢nf s : τ1

Γ ⊢ne t s : τ2

Fst
Γ ⊢ne t : τ1 × τ2

Γ ⊢ne fst t : τ1

Snd
Γ ⊢ne t : τ1 × τ2

Γ ⊢ne snd t : τ2

Figure A.5.: Neutral forms

neutrality states that the type τ must occur as a subformula of a type in the
context Γ.

For instance, given a neutral form Γ ⊢ne n : Bool, neutrality states that the
type Bool must occur as a subformula of some type in the typing context Γ.
An example of such a context is Γ = [x : () ⇒ Bool , y : S lH ι]. The notion
of a subformula, originally defined for logical propositional formulas in proof
theory [TS00], can also be defined for types as follows:

Definition A.3.1 (Subformula). For some types τ , τ1 and τ2; a subformula of
a type is defined as:

• τ is a subformula of τ

• τ is a subformula of τ1 ⊗ τ2 if τ is a subformula of τ1 or τ is a subformula
of τ2, where ⊗ denotes the binary type operators × , + and ⇒.

The type Bool occurs as a subformula in the typing context [()⇒ Bool , S lH ι]
since the type Bool is a subformula of the type () ⇒ Bool. Note, however,
that the type ι does not occur as a subformula in this context since ι is not a
subformula of the type S lH ι by the above definition.

Normal Forms Intuitively, normal forms of type Γ ⊢nf τ are characterized as
terms of type Γ ⊢ τ that cannot be reduced further using the static semantics.
Precisely, a normal form is a term obtained by systematically applying the
equations defined by the relation ≈ in a specific order to a given term. We leave
the exact order of applying the equations unspecified since we only require that
there exists a normal form for every term—we prove this later in Section A.5.

27

A. Simple Noninterference by Normalization

Γ ⊢nf t : τ

Unit

Γ ⊢nf () : ()

Lam
Γ , x : τ1 ⊢nf t : τ2

Γ ⊢nf λ x . t : τ1 ⇒ τ2

Base
Γ ⊢ne t : ι

Γ ⊢nf t : ι

Ret
Γ ⊢nf t : τ

Γ ⊢nf return t : S l τ

LetUp
lL ⊑ lH Γ ⊢ne t : S lL τ1 Γ , x : τ1 ⊢nf s : S lH τ2

Γ ⊢nf let↑ x = t in s : S lH τ2

Left
Γ ⊢nf t : τ1

Γ ⊢nf left t : τ1 + τ2

Right
Γ ⊢nf t : τ2

Γ ⊢nf right t : τ1 + τ2

Case
Γ ⊢ne t : τ1 + τ2 Γ , x1 : τ1 ⊢nf t1 : τ Γ , x2 : τ2 ⊢nf t2 : τ

Γ ⊢nf case t (left x1 → t1) (right x2 → t2) : τ

Figure A.6.: Normal forms

28

A.4. Normal Forms and Noninterference

The normal forms in Figure A.6 extend the β-short η-long forms in simply-
typed λ-calculus (STLC) [BCF04; AS19] with return and let↑. Note that, unlike
neutrals, arbitrary normal forms do not obey neutrality since they may also
construct values which do not occur in the context. For example, the normal
form left () (which denotes the value false) of type ∅ ⊢nf Bool constructs a
value of the type Bool in the empty context ∅.

The reader may have noticed that the let↑ construct in normal forms does
not directly resemble a term, and hence it is not immediately obvious how it
should be quoted. Normal forms constructed by let↑ can be quoted by first
applying up to the quotation of the neutral and then using let. The reason let↑
represents both let and up in the normal forms is to prevent reducibility of the
normal forms. Had we added up separately to normal forms, then this may
trigger further reductions. For example, the term up (return ()) can be reduced
further to the term return (). Disallowing up-terms directly in normal forms
removes the possibility of this reduction in normal forms. Similarly, adding up
to neutral forms is also equally worse since it breaks neutrality.

The syntactic characterization of neutral and normal forms provides us with
useful properties in the proof of noninterference. For example, there cannot
exist a neutral of type ∅ ⊢ne τ for any type τ . By neutrality, if such a neutral
form exists, then τ must be a subformula of the empty context ∅, but this is
impossible! Similarly, the η-long form of normal forms guarantee that a normal
form of a function type must begin with either a λ or case—hence reducing
the number of possible cases in our proof. In the next section, we utilize these
properties to show that the program f (from earlier) behaves as a constant.

A.4. Normal Forms and Noninterference

The program f : IntH → BoolL from Section A.1 can be generalized in λSEC as
a term4 ∅ ⊢ f : S lH τ ⇒ S lL Bool marking the secret input and public output
through the security monad. Noninterference for this term—which Russo,
Claessen, and Hughes [RCH08] refer to as a “noninterference-like” property
for λSEC—states that given two levels lL (public) and lH (secret) such that the
flow of information from secret to public is disallowed as lH ̸⊑ lL; for any two
possibly different secrets s1 and s2, applying f to s1 is equivalent to applying it
to s2. In other words, it states that varying the secret input must not interfere
with the public output.

As explained before, for ∅ ⊢ f : S lH τ ⇒ S lL Bool to satisfy noninterference,
4
λSEC does not have polymorphic types, in this case τ represents an arbitrary but concrete
type, for instance unit ().

29

A. Simple Noninterference by Normalization

it must be equivalent to the constant function whose body is return true or
return false independent of the input. For an arbitrary program f it is not
possible to conclude so just from case analysis—as programs may be fairly
complex—however, for normal forms of the same type it is possible. In the
Lemma below, we materialize this intuition:

Lemma A.4.1 (Normal forms of f are constant). For any normal form ∅ ⊢nf
f : S lH τ ⇒ S lL Bool, either f ≡ λ x .(return true) or f ≡ λ x .(return false)

Note that the equality relation ≡ denotes syntactic (or propositional) equality,
which means that the normal forms on both sides must be syntactically identical.
The proof follows by direct case analysis on the normal forms of type ∅ ⊢nf
f : S lH τ ⇒ S lL Bool:

Proof of Lemma A.4.1. Upon closer inspection of the normal forms of λSEC (Fig-
ure A.6), the reader may notice that at function type ∅ ⊢nf S lH τ ⇒ S lL Bool
there exists only two possibilities: a case or a λ construct. The former, can
be easily dismissed by neutrality because it requires the scrutinee—a neutral
form of sum type τ1 + τ2—to appear in the empty context. In the latter
case, the λ construct extends typing context of the body with the type of the
argument, and thus refines the normal form to have the shape λ x . where
∅ , x : S lH τ ⊢nf : S lL Bool.

Considering the normal forms of type ∅ , x : S lH τ ⊢nf S lL Bool, we realize
that there are only three possible candidates: the case construct again, the
monadic return or let. As before, case is discharged because it requires the
scrutinee of sum type to occur in the context ∅ , x : S lH τ . Analogously, the
monadic let with a neutral term of type S lL τ , expects this type to occur in
the same context—but it does not, since S lL τ is not a subformula of S lH τ .
The remaining case, return, can be further refined, where the only possibilities
leave us with λ x .(return true) or λ x .(return false).

In order to show that noninterference holds for arbitrary programs of type ∅ ⊢
f : S lH τ ⇒ S lL Bool using this lemma, we must link the behaviour of a program
with that of its normal form. In the next section we develop the necessary
normalization machinery and later complete the proof of noninterference in
Section A.6.

A.5. From λSEC to Normal Forms
The goal of this section is to implement a normalization algorithm that bridges
the gap between terms and their normal forms. For this purpose, we employ

30

A.5. From λSEC to Normal Forms

Normalization by Evaluation (NbE).
Normalization based on rewriting techniques [Pie02] perform syntactic trans-

formations of a term to produce a normal form. NbE, on the other hand,
normalizes a term by evaluating it in a host language, and then extracting a
normal form from the (semantic) value in the host language. Evaluation of
a term is implemented by an interpreter function eval, and the extraction of
normal forms, called reification, is implemented by an inverse function reify.
Normalization is implemented as a function from terms to normal forms by
composing these functions:

norm : (Γ ⊢ τ) → (Γ ⊢nf τ)
norm t = reify (eval t)

The function eval and reify have the following types in the host language:

eval : (Γ ⊢ τ) → (J Γ K → J τ K)
reify : (J Γ K → J τ K) → (Γ ⊢nf τ)

In these types, the function J K interprets types and contexts in λSEC as types
in the host language. That is, the type J τ K denotes the interpretation of the
(λSEC) type τ in the host language, and similarly for J Γ K. On the other hand,
the function J Γ K → J τ K—a function between the interpretations in the host
language—denotes the interpretation of the term Γ ⊢ τ .

The advantages of using NbE over a rewrite system are two-fold: first, it
serves as an actual implementation of the normalization algorithm; second, and
most importantly, when implemented in a proof system like Agda, it makes
normalization amenable to formal reasoning. For example, since Agda ensures
that all functions are total, we are assured that a normal form must exist for
every term in λSEC. Similarly, we also get a proof that normalization terminates
for free since Agda ensures that all functions are terminating.

We implement the functions eval and reify for terms in λSEC using Agda as the
host language. Note that, however, the implementation of our algorithm—and
NbE in general—is not specific to Agda. It may also be implemented in other
programming languages such as Haskell [DRR01] or Standard ML [BCF04].

In the remainder of this section, we will denote the typing derivations Γ ⊢nf τ
and Γ ⊢ne τ as Nf τ and Ne τ respectively. We leave the context Γ implicit to
avoid the clutter caused by contexts and their weakenings [AHS95; McB18].
Similarly, we will represent variables of type τ ∈ Γ as Var τ , leaving Γ implicit.
Although we use de Bruijn indices in the actual implementation of variables, we
will continue to use named variables here to ease presentation. We encourage
the curious reader to see the formalization in Agda for further details.

31

A. Simple Noninterference by Normalization

A.5.1. NbE for Simple Types
To begin with, we implement evaluation and reification for the types ι, (), ×
and ⇒. The implementation for sums is more technical, and hence deferred to
Appendix I. Note that the implementation of NbE for simple types is entirely
standard [AHS95; BCF04]. Their interpretation as Agda types is defined as
follows:

J ι K = Nf ι
J () K = ⊤
J τ1 × τ2 K = J τ1 K × J τ2 K
J τ1 ⇒ τ2 K = J τ1 K → J τ2 K

The types (), × and ⇒ are simply interpreted as their counterparts in Agda.
For the base type ι, however, we cannot provide a counterpart in Agda since
we do not know anything about this type. Instead, since the type ι is not
constructed or eliminated by any specific construct in λSEC, we simply require a
normal form as an evidence for producing a value of type ι—and thus interpret
it as Nf ι.

Typing contexts map variables to types, and hence their interpretation is
an execution environment (or equivalently, a semantic substitution) defined
like-wise:

J ∅ K = ∅
J Γ , x : τ1 K = J Γ K [Var τ1 7→ J τ1 K]

For example, a value γ which inhabits the interpretation J Γ K denotes the
execution environment for evaluating a term typed in the context Γ.

Given these definitions, evaluation is implemented as a straightforward
interpreter function:

eval x γ = lookup x γ
eval () γ = tt
eval (fst t) γ = π1 (eval t γ)
eval (snd t) γ = π2 (eval t γ)
eval (< t1 , t2 >) γ = (eval t1 γ , eval t2 γ)
eval (λ x . t) γ = λ v → eval t (γ [x 7→ v])
eval (t s) γ = (eval t γ) (eval s γ)

Note that γ is an execution environment for the term’s context; lookup, π1 and
π2 are Agda functions; and tt is the constructor of the unit type ⊤. For the
case of λ x . t, evaluation is expected to return an equivalent semantic function.

32

A.5. From λSEC to Normal Forms

We compute the body of this function by evaluating the body term t using
the substitution γ extended with a mapping which assigns the value v to the
variable x—denoted γ [x 7→ v].

Reification, on the other hand, is implemented using two helper functions
reflect and reifyVal. The function reflect converts neutral forms to semantic
values, while the dual function reifyVal converts semantic values to normal
forms. These functions are implemented as follows:

reifyVal : J τ K → Nf τ
reifyVal {ι} n = n
reifyVal {()} tt = ()
reifyVal {τ1 × τ2} p =

< reifyVal {τ1} (π1 p) , reifyVal {τ2} (π1 p) >
reifyVal {τ1 ⇒ τ2} f =

λ x . reifyVal {τ2} (f (reflect {τ1} x)) | fresh x

reflect : Ne τ → J τ K
reflect {ι} n = n
reflect {()} n = tt
reflect {τ1 × τ2} n =

(reflect {τ1} (fst n) , reflect {τ2} (snd n))
reflect {τ1 ⇒ τ2} n =

λ v → reflect {τ2} (n (reifyVal {τ1} v))

Note that the argument inside the braces { } denotes an implicit parameter,
which is the type of the corresponding neutral/value argument of reflect/reifyVal
here.

Reflection is implemented by performing a type-directed translation of neutral
forms to semantic values by induction on types. The interpretation of types,
defined earlier, guides our implementation. For example, reflection of a neutral
with a function type must produce a function value since the type ⇒ is
interpreted as an Agda function. For this purpose, we are given the argument
value in the semantics and it remains to construct a function body of the
appropriate type. We produce the body of this function by recursively reflecting
a neutral application of the function and (the reification of) the argument value.
The function reifyVal is also implemented in a similar fashion by induction on
types.

To implement reification, recollect that the argument to reify is a function
that results from partially applying the eval function with a term. If the term
has type Γ ⊢ τ , then the argument, say f , must have the type J Γ K → J τ K.

33

A. Simple Noninterference by Normalization

Thus, to apply f , we need an execution environment of the type J Γ K. This
environment can be generated by simply reflecting the variables in the context
as follows:

genEnv : (Γ : Ctx) → J Γ K
genEnv ∅ = ∅
genEnv (Γ , x : τ) = genEnv Γ [x 7→ reflect x]

Finally, we can now implement reify as follows:

reify {Γ} f = let γ = genEnv Γ in reifyVal (f γ)

We generate an environment γ to apply the semantic function f , and then
convert the resulting semantic value to a normal form by applying reifyVal.

A.5.2. NbE for the Security Monad

To interpret a type S l τ , we need a semantic counterpart in the host language
which is also a monad. Suppose that we define such a monad as an inductive
data type T parameterized by a label l and some type a (which would be
J τ K in this case). Evidently this monad must allow the implementation of the
semantic counterparts of the terms return, let and up in λSEC as follows:

return : a → T l a
bind : T l a → (a → T l b) → T l b
up : (lL ⊑ lH) → T lL a → T lH a

To satisfy this specification, we define the data type T in Agda with the
following constructors:

Return
x : a

return x : T l a

BindN
p : lL ⊑ lH n : Ne S lL τ f : Var τ → T lH a

bindNe p n f : T lH a

The constructor return returns a semantic value in the monad, while bindNe
registers a binding of a neutral to monadic value. These constructors are the
semantic equivalent of return and let↑ in the normal forms, respectively. The
constructor bindNe is more general than the required function bind in order to
allow the definition of up, which is defined by induction as follows:

up p (return v) =
return v

34

A.5. From λSEC to Normal Forms

up p (bindNe q n f) =
bindNe (trans q p) n (λ x → up p (f x))

To understand this implementation, suppose that p : lM ⊑ lH for some labels lM
and lH. A monadic value of type T lM a which is constructed by a return can
be simply relabelled to T lH a since return can be used to construct a monadic
value on any label. For the case of bindNe q n f , we have that q : lL ⊑ lM and
n : Ne S lL τ1, hence lL ⊑ lH by transitivity, and we may simply use bindNe
to register n and recursively apply up on the continuation f to produce the
desired result of type T lH a.

Using the type T in the host language, we may now interpret the monad in
λSEC as follows:

J S l τ K = T l J τ K

Having mirrored the monadic primitives in λSEC using semantic counterparts,
evaluation is rather simple:

eval (return t) γ = return (eval t γ)
eval (up p t) γ = up p (eval t γ)
eval (let x = t in s) γ =

bind (eval t γ) (λ v → eval s (γ [x 7→ v]))

For implementing reflection, we can use bindNe to register a neutral binding
and recursively reflect the given variable:

reflect {S l τ } n =
bindNe refl n (λ x → return (reflect {τ } x))

Since we do not need to increase the sensitivity of the neutral to bind it here,
we simply provide the “reflexive flow” refl : l ⊑ l.

The function reifyVal, on the other hand, is rather straightforward since the
constructors of T are essentially semantic counterparts of the normal forms,
and can hence be translated to it:

reifyVal {S l τ } (return v) =
return (reifyVal {τ } v)

reifyVal {S l τ } (bindNe {p} n f) =
let↑ {p} x = n in reifyVal {τ } (f x)

35

A. Simple Noninterference by Normalization

A.5.3. Preservation of Semantics

To prove that normalization preserves static semantics of λSEC, we must show
that the normal form of term is equivalent to the term. Since normal forms and
terms belong to different syntactic categories, we must first quote normal forms
to state this relationship using the term equivalence relation≈. This property,
called consistency of normal forms, is stated as follows:

Theorem A.5.1 (Consistency of normal forms). For any term Γ ⊢ t : τ we
have that Γ ⊢ t ≈ ⌜ norm t ⌝ : τ

An attempt to prove consistency by induction on the terms or types fails
quickly since the induction principle alone is not strong enough to prove this
theorem. To solve this issue we must establish a notion of equivalence between a
term and its interpretation using logical relations [Plo80]. Using these relations,
we can prove that evaluation is consistent by showing that it is related to
applying a substitution in the syntax. Following this, we can also prove the
consistency of reification by showing that reifying a value related to a term,
yields a normal form which is equivalent to the term when quoted. The
consistency of evaluation and reification yields the proof of consistency for
normal forms.

This proof follows the style of the consistency proof of NbE for STLC using
Kripke logical relations by Coquand [Coq93]. As is the case for sums, NbE for
the security monad uses an inductively defined data type to implement the
semantic monad. Hence, we are able to leverage the proof techniques used to
prove the consistency of NbE for sums [VR19] to prove the same for the security
monad. We skip the details of the proof here, but encourage the curious reader
to see the Agda mechanization of this theorem.

A.6. Noninterference for λSEC

After developing the necessary machinery to normalize terms in the calculus,
we are ready to state and prove noninterference for λSEC. First, we complete
the proof of noninterference for the program f from Section A.4.

A.6.1. Special Case of Noninterference

Theorem A.6.1 (Noninterference for f). Given security levels lL and lH such
that lH ̸⊑ lL and a function ∅ ⊢ f : S lH τ ⇒ S lL Bool then ∀ s1 s2 : S lH τ .
f s1 ≈ f s2

36

A.6. Noninterference for λSEC

The proof of Theorem A.6.1 relies upon two key ingredients: Lemma A.4.1
(Section A.4), which characterizes the shape of the normal forms of f ; and
consistency of normal forms, Theorem A.5.1 (Section A.5.3), which links the
semantics of f with that of its normal forms.

Proof of Theorem A.6.1. To show that a function ∅ ⊢ f : S lH τ ⇒ S lL Bool
is equivalent when applied to two different secret inputs s1 and s2, first, we
instantiate Lemma A.4.1 with the normal form of f , denoted by norm f . In
this manner, we obtain that the normal forms of f are exactly the constant
function that returns true or false wrapped in the return. In the former case,
by correctness of normalization we have that f ≈ ⌜ norm f ⌝ ≈ λ x . return true.
By β-reduction and congruence of term-level function application, we have that
∀ t. (λ x . return true) t ≈ return true. Therefore, f s1 ≈ f s2. The case when
norm f ≡ λ x . return false follows a similar argument.

The noninterference property proven above characterizes what it means for a
concrete class of programs, i.e. those of type ∅ ⊢ f : S lH τ ⇒ S lL Bool, to be
secure: the attacker cannot even learn one bit of the secret from using program
f . Albeit interesting, this property does not scale to more complex programs;
for instance if the function f was typed in a non empty context the proof of the
above lemma would not hold. The rest of this section is dedicated to generalize
and prove noninterference from the program f to arbitrary programs written in
λSEC. As will become clear, normal forms of λSEC play a crucial role towards
proving noninterference.

A.6.2. General Noninterference Theorem
In order to discuss general noninterference for λSEC, we must first specify
what are the secret (lH) inputs of a program and its public (lL) output with
respect to an attacker at level lL. The attacker can only learn information of a
program by running it with different secret inputs and then observing its public
output. Because the attacker can only observe outputs at their security level,
we restrict the security condition to only consider programs where outputs are
fully observable, i.e. transparent and ground, to the attacker.

Definition A.6.1 (Transparent type).

• () is transparent at any level l.

• ι is transparent at any level l.

• τ1 ⇒ τ2 is transparent at l iff τ2 is transparent at l.

37

A. Simple Noninterference by Normalization

• τ1 + τ2 is transparent at l iff τ1 and τ2 are transparent at l.

• τ1 × τ2 is transparent at l iff τ1 and τ2 are transparent at l.

• S l ′ τ is transparent at l iff l ′ ⊑ l and τ is transparent at l.

Definition A.6.2 (Ground type).

• () is ground.

• ι is ground.

• τ1 + τ2 is ground iff τ1 and τ2 are ground.

• τ1 × τ2 is ground iff τ1 and τ2 are ground.

• S l τ is ground iff τ is ground.

A type τ is transparent at security level lL if the type does not include the
security monad type over a higher security level lH. A ground type, on the other
hand, is a first order type, i.e. a type that does not contain a function type.
These simplifying restrictions over the output type of a program allow us to
state a generic noninterference property over terms and perform induction on
the normal forms.

These restrictions do not hinder the generality of our security condition:
a program producing a partially public output, for instance of product type
S lL Bool × S lH Bool, can be transformed to produce a fully public output by
applying the snd projection. We return to this example later at the end of the
section. Also note that previous work on proving noninterference for static IFC
languages [Aba+99; MI04] impose similar restrictions.

Departing from the traditional view of programs as closed terms, i.e. terms
without free variables, in the λSEC calculus we consider all terms for which
a typing derivation exists. This includes terms that contain free variables—
unknowns—typed by the context, which we identify as the program inputs.
Note that open terms are more general since they can always be closed as a
function by abstracting over the free variables.

Now, we state what it means for a context to be secret at level l. These
definitions, dubbed l-sensitivity, force the types appearing in the context to be
at least as sensitive as l.

Definition A.6.3 (Context sensitivity).
A context Γ is l-sensitive if and only if for all types τ ∈ Γ, τ is l-sensitive. A

type τ is l-sensitive, on the other hand, if and only if:

38

A.6. Noninterference for λSEC

• τ is the function type τ1 ⇒ τ2 and τ2 is l-sensitive.

• τ is the product type τ1 × τ2 and τ1 and τ2 are l-sensitive.

• τ is the monadic type S l ′ τ1 and l ⊑ l ′.
Next, we define substitutions5, which lay at the core of β-reduction rules in

the λSEC calculus. Substitutions map free variables in a term to other terms
possibly typed in a different context.

Substitution σ ::= σ∅ | σ [x 7→ t]

Γ ⊢sub σ : ∆

(25)
Γ ⊢sub σ : ∆ Γ ⊢ t : τ

Γ ⊢sub σ [x 7→ t] : ∆ , x : τ

(26)

Γ ⊢sub σ∅ : ∅

Figure A.7.: Substitutions for λSEC

A substitution is either empty, σ∅, or is the substitution σ extended with a
new mapping from the variable x : τ to term t. We denote t [σ] the application
of substitution σ to term t. Its definition is standard by induction on the term
structure, thus we omit it here and refer the reader to the Agda formalization.

Substitutions, in general, provide a mix of terms of secret and public type to
fill the variables in the context Γ of a program. However, for noninterference
we need to fix the public part of the substitution and allow the secret part
to vary. We do so by splitting a substitution σ into the composition of a
public substitution, Γ ⊢sub σlL : ∆, that fixes the public inputs, and a secret
substitution ∆ ⊢sub σlH : Σ, that restricts ∆ to be lH-sensitive. The composition
of both, denoted Γ ⊢sub (σlL ; σlH) : Σ, maps variables in context Γ to terms
typed in Σ: first, σlL maps variables from Γ to terms in ∆, subsequently, σlH
maps variables in ∆ to terms typed in Σ. Below, we state lL-equivalence of
substitutions:
Definition A.6.4 (Low equivalence of substitutions).

Two substitutions σ1 and σ2 are lL-equivalent , written σ1 ≈lL σ2, if and
only if for all lH such that lH ̸⊑ lL, there exists a public substitution σlL , and
two secret substitutions σ1

lH and σ2
lH , such that σ1 ≡ σlL ; σ1

lH and σ2 ≡ σlL ; σ2
lH

5In Section A.2 we purposely left capture-avoiding substitutions underspecified, we amend
that here.

39

A. Simple Noninterference by Normalization

Informally, noninterference for λSEC states that applying two low equivalent
substitutions to an arbitrary term whose type is ground and transparent yields
two equivalent programs. As previously explained, intuitively a program satisfies
such property if it is equivalent to a constant program: i.e. a program where the
output does not depend on the input—in this case the variables in the typing
context. As in Section A.4, instead of defining and proving this on arbitrary
terms, we achieve this using normal forms.

Constant Terms and Normal Forms We prove the noninterference theorem
by showing that terms of a type at level lL, typed in a lH-sensitive context, must
be constant. We achieve this in turn by showing that the normal forms of such
terms are constant. Below, we state when a term is constant:

Definition A.6.5 (Constant term).
A term Γ ⊢ t : τ is said to be constant if, for any two substitutions σ1 and

σ2, we have that t [σ1] ≈ t [σ2].

Similarly, we must define what it means for a normal form to be constant.
However, we cannot state this for normal forms directly using substitutions
since the result of applying a substitution to a normal form may not be a normal
form. For example, the result of substituting the variable x in the normal form
x : ι⇒ ι , y : ι ⊢nf x y : ι by the identity function is not a normal form—and
cannot be derived syntactically as a normal form using ⊢nf . Instead, we lean
on the shape of the context to state the property.

If a normal form Γ ⊢nf n : τ is constant, then there must exist a syntactically
identical derivation ∅ ⊢nf n′ : τ such that n ≡ n′. However, since n and n′

are typed in different contexts, Γ and ∅, it is not possible to compare them
for syntactic equality. We solve this problem by renaming the normal form
n′ to add as many variables as mentioned in context Γ. The signature of the
renaming function is the following:

ren : {Γ ⩽ ∆} → (Γ ⊢nf τ) → (∆ ⊢nf τ)

The relation ⩽ between contexts Γ and ∆ indicates that the variables appearing
in ∆ are at least those present in Γ. This relation, called weakening, is defined
as follows:

• ∅ ⩽ ∅

• If Γ ⩽ ∆, then Γ ⩽ ∆ , x : τ

• If Γ ⩽ ∆, then Γ , x : τ ⩽ ∆ , x : τ

40

A.6. Noninterference for λSEC

The function ren can be defined by simple induction on the derivation of the
normal forms. Note that terms can also be renamed in the same fashion.

Definition A.6.6 (Constant normal form). A normal form Γ ⊢nf n : τ is
constant if there exists a normal form ∅ ⊢nf n′ : τ such that ren (n′) ≡ n.

Further, we need a lemma showing that if a term is constant, then so is its
normal form.

Lemma A.6.1 (Constant plumbing lemma). If the normal form n of a term
Γ ⊢ t : τ is constant, then so is t.

The proof follows by induction on the normal forms:

Proof of Lemma A.6.1. If n is constant, then there must exist a normal form
∅ ⊢nf n′ : τ such that ren (n′) ≡ n. Let the quotation of this normal form
⌜ n′ ⌝ be some term ∅ ⊢ t ′ : τ . Recall from earlier that terms can also be
renamed, hence we have ren (t ′) ≈ ren (⌜ n′ ⌝) by correctness of n′. Since it
can be shown that ren (⌜ n′ ⌝) ≡ ⌜ ren (n′) ⌝, we have that ren (⌜ n′ ⌝) ≡ ⌜ n ⌝,
and by correctness of n, we also have ren (t ′) ≈ t — (1).

A substitution σ maps free variables in a term to terms. The empty substi-
tution, denoted σ∅, is the unique substitution, such that ∆ ⊢ t ′ [σ∅] : τ for
any ∆. That is, applying the empty substitution simply renames the term. We
can show that t ′ [σ∅] ≡ ren (t ′), and hence, by (1), we have t ′ [σ∅] ≈ t — (2).
Since σ∅ renames a term typed in the empty context, we can show that for any
substitution σ, we have (t ′ [σ∅]) [σ] ≈ t ′ [σ∅]. Because σ∅ is also unique,
for any two substitutions σ1 and σ2, we have (t ′ [σ∅]) [σ1] ≈ (t ′ [σ∅]) [σ2]
by transitivity of ≈ . As a result, from (2), we achieve the desired result,
t [σ1] ≈ t [σ2], therefore t must be constant.

The key insight of our noninterference proof is reflected in the following
lemma which shows how normal forms of λSEC typed in a sensitive context
are either constant or the flow between the security level of the context and
the output type is permitted. Below we include the proof to showcase how it
follows by straightforward induction on the shape of the normal forms.

Lemma A.6.2 (Normal forms do not leak). Given a normal form Γ ⊢nf n : τ ,
where the context Γ is li-sensitive, and τ is a ground and transparent type at
level lo, then either n is constant or li ⊑ lo.

Proof. By induction on the structure of the normal form n. Note that λ and
case normal forms need not be considered since the preconditions ensure that
τ cannot be a function type (dismisses λ), and Γ cannot contain a variable of a
sum type (dismisses case).

41

A. Simple Noninterference by Normalization

• Case 1 (Γ ⊢nf () : ()). The normal form () is constant.

• Case 2 (Γ ⊢nf n : ι). In this case, we are given the neutral n by the [Base]
rule in Figure A.6. It can be shown by induction that for all neutrals of
type Γ ⊢ne τ , if Γ is li-sensitive and τ is transparent at lo, then li ⊑ lo.
Hence, n gives us that li ⊑ lo.

• Case 3 (Γ ⊢nf return n : S l τ). By applying the induction hypothesis
on the normal form n, we have that n is either constant or li ⊑ lo. In
the latter case, we are done since we already have li ⊑ lo. In the former
case, there exists a normal form n′ such that ren (n′) ≡ n. By congruence
of the relation ≡, we get that return (ren (n′)) ≡ return n. Note that the
function ren is defined as ren (return n′) ≡ return (ren n′), and hence by
transitivity of ≡, we have that
ren (return (n′)) ≡ return n. Thus, the normal form return n is also
constant.

• Case 4 (Γ ⊢nf let↑ x = n in m : S l2 τ2). For this case, we have a neutral
Γ ⊢ne n : S l1 τ1 such that l1 ⊑ l2, by the [LetUp] rule in Figure A.6.
Similar to case 2, we have that li ⊑ l1 from the neutral n. Hence, li ⊑ l2
by transitivity of the relation ⊑. Additionally, since S l2 τ is transparent
at lo, it must be the case that l2 ⊑ lo by definition of transparency.
Therefore, once again by transitivity, we have li ⊑ lo.

• Case 5 (Γ ⊢nf left n : τ1 + τ2). Similar to return.

• Case 6 (Γ ⊢nf right n : τ1 + τ2). Similar to return.

The last step to noninterference is an ancillary lemma which shows that
terms typed in lH-sensitive contexts are constant:

Lemma A.6.3. Given a term Γ ⊢ t : τ , where the context Γ is lH-sensitive,
and τ is a ground type transparent at lL. If lH ̸⊑ lL, then t is constant.

The proof follows from Lemmas A.6.2 and A.6.1.
Finally, we are ready to formally state and prove the noninterference property

for programs written in λSEC, which effectively demonstrates that programs do
not leak sensitive information. The proof follows from the previous lemmas,
which characterize the behaviour of programs by the syntactic properties of
their normal forms.

42

A.6. Noninterference for λSEC

Theorem A.6.2 (Noninterference for λSEC). Given security levels lL and lH
such that lH ̸⊑ lL; an attacker at level lL; two lL-equivalent substitutions σ1 and
σ2 such that σ1 ≈lL σ2; and a type τ that is ground and transparent at lL; then
for any term Γ ⊢ t : τ we have that t [σ1] ≈ t [σ2].

Proof of Theorem A.6.2. Low equivalence of substitutions σ1 ≈lL σ2 gives that
σ1 = σlL ; σ1

lH and σ2 = σlL ; σ2
lH . After applying the public substitution

σlL to the term Γ ⊢ t : τ , we are left with a term typed in a lH-sensitive
context ∆, ∆ ⊢ t [σlL] : τ . By Lemma A.6.3, t [σlL] is constant which
means that (t [σlL]) [σ1

lH] ≈ (t [σlL]) [σ2
lH]. By readjusting substitutions

using composition we obtain t ([σlL ; σ1
lH]) ≈ t ([σlL ; σ2

lH]), which yields
t [σ1] ≈ t [σ2].

A.6.3. Follow-up Example

To conclude this section, we briefly show how to instantiate the theorem of nonin-
terference for λSEC for programs of type ∅ ⊢ t : S lL Bool × S lH Bool⇒ S lL Bool
× S lH Bool, which are the recurring example for explaining noninterference in
the literature [RCH08; BA15]. Adapted to the notion of noninterference based
on substitutions, the corollary we aim to prove is the following:

Corollary A.6.1 (Noninterference for t). Given security levels lL and lH such
that lH ̸⊑ lL and a program x : S lL Bool × S lH Bool ⊢ t : S lL Bool × S lH Bool
then ∀ p : S lL Bool , s1 s2 : S lH Bool. we have that t [x 7→ (p , s1)] ≈
t [x 7→ (p , s2)].

Because the main noninterference theorem requires the output to be fully
observable by the attacker, we transform t to the desired shape by applying
the snd projection. This is justified because the first component of the output
is protected at level lH, which the attacker cannot observe. Below we prove
noninterference for x : S lL Bool × S lH Bool ⊢ snd t : S lH Bool:

Proof of Corollary A.6.1. To apply Theorem A.6.2 we have to show that both
substitutions are low equivalent, [x 7→ (p , s1)] ≈lL [x 7→ (p , s2)] The
key idea is that the substitution [x 7→ (p , s1)] can be decomposed into a
public substitution σlL ≡ [x 7→ (p , y)] and two different secret substitutions
where each replaces the variable y by a different secret, σ1

lH ≡ [y 7→ s1] and
σ2

lH ≡ [y 7→ s2]. Now, the proof follows directly from Theorem A.6.2.

43

A. Simple Noninterference by Normalization

A.7. Conclusions and Future Work

In this paper we have presented a novel proof of noninterference for the λSEC

calculus (based on Haskell’s IFC library SecLib) using normalization. The
simplicity of the proof relies upon the normal forms of the calculus, which as
opposed to arbitrary terms, are well-principled. To obtain normal forms from
terms, we have implemented normalization using NbE, and shown that normal
forms obey useful syntactic properties such as neutrality and βη-long form.
Most of the auxiliary lemmas and definitions towards proving noninterference
build on these properties. Because normal forms are well-principled, many
cases of the proofs follow directly by structural induction.

An important difference between our work and previous proofs based on term
erasure is that our proof utilizes the static semantics of the language instead of
the dynamic semantics. Specifically, our proof of noninterference is not tied
to any particular evaluation strategy, such as call-by-name or call-by-value,
assuming the strategy is adequate with respect to the static semantics.

Perhaps the closest to our line of work is the proof of noninterference by
Miyamoto and Igarashi [MI04] for a modal lambda calculus using normalization.
The main novelty of our proof is that it works for standard extensions of the
simply typed lambda calculus and does not change the typing rules of the
underlying calculus (as presented and implemented by Russo, Claessen, and
Hughes [RCH08]). This makes our proof technique applicable even in the pres-
ence of other useful normalization-preserving extensions of STLC. For example,
it should be possible to extend our proof for λSEC further with exceptions and
other computational effects (à la Moggi [Mog89]) since our security monad is
already an instance of this. Moreover, our proof relies on syntactic properties
of normal forms in an open typing context since normalization is based on the
static semantics of the language.

In this work we have only considered a calculus which models terminating
computations. This opens up a question of whether our proof technique is
applicable to languages which support general recursion, where computations
need not necessarily terminate. The extensibility of this technique to recursion
relies directly upon the choice of static semantics for normalizing recursion.
For example, it may be possible to extend the proof for λSEC with a fixpoint
combinator by treating it as an uninterpreted constant during normalization.
That is, it may be sufficient to normalize the body of the function by ignoring
the recursive application, because if the body does not leak a secret, then its
recursive call must not either. Since complete normalization is not strictly
needed for our purposes, we believe that our technique can also be extended to
general recursion.

44

Bibliography

Our NbE implementation for λSEC extends NbE for Moggi’s computational
metalanguage [Fil01; Lin05] with a family of monads parameterized by a
preordered set of labels. This resembles the parameterization of monads by
effects specified by a preordered monoid, also known as graded monads [WT03;
OP14], and thus indicates the extensibility of our NbE algorithm to calculi
with graded monads. It would be interesting to see if our proof technique can
be used to prove noninterference for static enforcement of IFC using graded
monads.

Using static semantics means that our work lays a foundation for static
analysis of noninterference-like security properties. This opens up a plethora of
exciting opportunities for future work. For example, one possibility would be to
use type-directed partial evaluation [Dan98] to simplify programs and inspect
the resulting programs to verify if they violate security properties. Another
arena would be the extension of our proof to more expressive IFC calculi such
as dependency core calculus (DCC) or MAC [Vas+18]. The main challenge
here would be to identify the appropriate static semantics of the language, as
they may not always have been designed with one in mind.

Acknowledgements
We thank Alejandro Russo, Fabian Ruch, Sandro Stucki and Maximilian Alge-
hed for the insightful discussions on normalization and noninterference. We
would also like to thank Irene Lobo Valbuena, Claudio Agustin Mista and
the anonymous reviewers at PLAS’19 for their comments on earlier drafts of
this paper. This work was funded by the Swedish Foundation for Strategic
Research (SSF) under the projects WebSec (Ref. RIT17-0011) and Octopi (Ref.
RIT17-0023).

Bibliography
[Aba+99] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke.

“A Core Calculus of Dependency”. In: POPL ’99, Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Antonio, TX, USA, January 20-
22, 1999. Ed. by Andrew W. Appel and Alex Aiken. ACM, 1999,
pp. 147–160. doi: 10.1145/292540.292555. url: https://doi.
org/10.1145/292540.292555 (cit. on pp. 21, 38).

45

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555

A. Simple Noninterference by Normalization

[AHS95] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher.
“Categorical Reconstruction of a Reduction Free Normalization
Proof”. In: Category Theory and Computer Science, 6th Interna-
tional Conference, CTCS ’95, Cambridge, UK, August 7-11, 1995,
Proceedings. Ed. by David H. Pitt, David E. Rydeheard, and Pe-
ter T. Johnstone. Vol. 953. Lecture Notes in Computer Science.
Springer, 1995, pp. 182–199. doi: 10.1007/3-540-60164-3_27.
url: https://doi.org/10.1007/3-540-60164-3%5C_27 (cit. on
pp. 31, 32).

[Alg18] Maximilian Algehed. “A Perspective on the Dependency Core
Calculus”. In: Proceedings of the 13th Workshop on Programming
Languages and Analysis for Security, PLAS@CCS 2018, Toronto,
ON, Canada, October 15-19, 2018. Ed. by Mário S. Alvim and
Stéphanie Delaune. ACM, 2018, pp. 24–28. doi: 10.1145/3264820.
3264823. url: https://doi.org/10.1145/3264820.3264823
(cit. on p. 21).

[AS19] Andreas Abel and Christian Sattler. “Normalization by Evaluation
for Call-By-Push-Value and Polarized Lambda Calculus”. In: Pro-
ceedings of the 21st International Symposium on Principles and
Practice of Programming Languages, PPDP 2019, Porto, Portu-
gal, October 7-9, 2019. Ed. by Ekaterina Komendantskaya. ACM,
2019, 3:1–3:12. doi: 10.1145/3354166.3354168. url: https:
//doi.org/10.1145/3354166.3354168 (cit. on pp. 25, 29, 51).

[BA15] William J. Bowman and Amal Ahmed. “Noninterference for free”.
In: Proceedings of the 20th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1-3, 2015. Ed. by Kathleen Fisher and John H.
Reppy. ACM, 2015, pp. 101–113. doi: 10.1145/2784731.2784733.
url: https://doi.org/10.1145/2784731.2784733 (cit. on
pp. 21, 43).

[BCF04] Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. “Ex-
tensional normalisation and type-directed partial evaluation for
typed lambda calculus with sums”. In: Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2004, Venice, Italy, January 14-16, 2004.
Ed. by Neil D. Jones and Xavier Leroy. ACM, 2004, pp. 64–76.
doi: 10.1145/964001.964007. url: https://doi.org/10.1145/
964001.964007 (cit. on pp. 29, 31, 32).

46

https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.1007/3-540-60164-3%5C_27
https://doi.org/10.1145/3264820.3264823
https://doi.org/10.1145/3264820.3264823
https://doi.org/10.1145/3264820.3264823
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/964001.964007
https://doi.org/10.1145/964001.964007
https://doi.org/10.1145/964001.964007

Bibliography

[BS91] Ulrich Berger and Helmut Schwichtenberg. “An Inverse of the
Evaluation Functional for Typed lambda-calculus”. In: Proceedings
of the Sixth Annual Symposium on Logic in Computer Science
(LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991. IEEE
Computer Society, 1991, pp. 203–211. doi: 10.1109/LICS.1991.
151645. url: https://doi.org/10.1109/LICS.1991.151645
(cit. on p. 22).

[Coq93] Catarina Coquand. “From Semantics to Rules: A Machine Assisted
Analysis”. In: Computer Science Logic, 7th Workshop, CSL ’93,
Swansea, United Kingdom, September 13-17, 1993, Selected Papers.
Ed. by Egon Börger, Yuri Gurevich, and Karl Meinke. Vol. 832.
Lecture Notes in Computer Science. Springer, 1993, pp. 91–105.
doi: 10.1007/BFb0049326. url: https://doi.org/10.1007/
BFb0049326 (cit. on p. 36).

[Dan98] Olivier Danvy. “Type-Directed Partial Evaluation”. In: Partial
Evaluation - Practice and Theory, DIKU 1998 International Sum-
mer School, Copenhagen, Denmark, June 29 - July 10, 1998. Ed. by
John Hatcliff, Torben Æ. Mogensen, and Peter Thiemann. Vol. 1706.
Lecture Notes in Computer Science. Springer, 1998, pp. 367–411.
doi: 10.1007/3-540-47018-2_16. url: https://doi.org/10.
1007/3-540-47018-2%5C_16 (cit. on p. 45).

[Den76] Dorothy E. Denning. “A Lattice Model of Secure Information Flow”.
In: Commun. ACM 19.5 (1976), pp. 236–243. doi: 10.1145/360051.
360056. url: https://doi.org/10.1145/360051.360056 (cit. on
p. 23).

[DRR01] Olivier Danvy, Morten Rhiger, and Kristoffer Høgsbro Rose. “Nor-
malization by evaluation with typed abstract syntax”. In: J. Funct.
Program. 11.6 (2001), pp. 673–680. doi: 10.1017/S0956796801004166.
url: https://doi.org/10.1017/S0956796801004166 (cit. on
p. 31).

[Fil01] Andrzej Filinski. “Normalization by Evaluation for the Compu-
tational Lambda-Calculus”. In: Typed Lambda Calculi and Ap-
plications, 5th International Conference, TLCA 2001, Krakow,
Poland, May 2-5, 2001, Proceedings. Ed. by Samson Abramsky.
Vol. 2044. Lecture Notes in Computer Science. Springer, 2001,
pp. 151–165. doi: 10.1007/3-540-45413-6_15. url: https:
//doi.org/10.1007/3-540-45413-6%5C_15 (cit. on p. 45).

47

https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/BFb0049326
https://doi.org/10.1007/BFb0049326
https://doi.org/10.1007/BFb0049326
https://doi.org/10.1007/3-540-47018-2_16
https://doi.org/10.1007/3-540-47018-2%5C_16
https://doi.org/10.1007/3-540-47018-2%5C_16
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1017/S0956796801004166
https://doi.org/10.1017/S0956796801004166
https://doi.org/10.1007/3-540-45413-6_15
https://doi.org/10.1007/3-540-45413-6%5C_15
https://doi.org/10.1007/3-540-45413-6%5C_15

A. Simple Noninterference by Normalization

[Kav19] G. A. Kavvos. “Modalities, cohesion, and information flow”. In:
Proc. ACM Program. Lang. 3.POPL (2019), 20:1–20:29. doi: 10.
1145/3290333. url: https://doi.org/10.1145/3290333 (cit. on
p. 21).

[Lin05] Sam Lindley. “Normalisation by evaluation in the compilation of
typed functional programming languages”. PhD thesis. University of
Edinburgh, UK, 2005. url: https://hdl.handle.net/1842/778
(cit. on pp. 21, 25, 45).

[LZ10] Peng Li and Steve Zdancewic. “Arrows for secure information
flow”. In: Theor. Comput. Sci. 411.19 (2010), pp. 1974–1994. doi:
10.1016/j.tcs.2010.01.025. url: https://doi.org/10.1016/
j.tcs.2010.01.025 (cit. on p. 21).

[McB18] Conor McBride. “Everybody’s Got To Be Somewhere”. In: Proceed-
ings of the 7th Workshop on Mathematically Structured Functional
Programming, MSFP@FSCD 2018, Oxford, UK, 8th July 2018.
Ed. by Robert Atkey and Sam Lindley. Vol. 275. EPTCS. 2018,
pp. 53–69. doi: 10.4204/EPTCS.275.6. url: https://doi.org/
10.4204/EPTCS.275.6 (cit. on p. 31).

[MI04] Kenji Miyamoto and Atsushi Igarashi. “A modal foundation for
secure information flow”. In: In Proceedings of IEEE Foundations
of Computer Security (FCS). 2004, pp. 187–203 (cit. on pp. 38, 44).

[Mog89] Eugenio Moggi. “Computational Lambda-Calculus and Monads”.
In: Proceedings of the Fourth Annual Symposium on Logic in Com-
puter Science (LICS ’89), Pacific Grove, California, USA, June 5-8,
1989. IEEE Computer Society, 1989, pp. 14–23. doi: 10.1109/LICS.
1989.39155. url: https://doi.org/10.1109/LICS.1989.39155
(cit. on pp. 24, 44).

[Mog91] Eugenio Moggi. “Notions of Computation and Monads”. In: Inf.
Comput. 93.1 (1991), pp. 55–92. doi: 10.1016/0890-5401(91)
90052- 4. url: https://doi.org/10.1016/0890- 5401(91)
90052-4 (cit. on pp. 22, 25).

[OP14] Dominic A. Orchard and Tomas Petricek. “Embedding effect sys-
tems in Haskell”. In: Proceedings of the 2014 ACM SIGPLAN
symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014.
Ed. by Wouter Swierstra. ACM, 2014, pp. 13–24. doi: 10.1145/
2633357.2633368. url: https://doi.org/10.1145/2633357.
2633368 (cit. on p. 45).

48

https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333
https://hdl.handle.net/1842/778
https://doi.org/10.1016/j.tcs.2010.01.025
https://doi.org/10.1016/j.tcs.2010.01.025
https://doi.org/10.1016/j.tcs.2010.01.025
https://doi.org/10.4204/EPTCS.275.6
https://doi.org/10.4204/EPTCS.275.6
https://doi.org/10.4204/EPTCS.275.6
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1145/2633357.2633368

Bibliography

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press,
2002. isbn: 978-0-262-16209-8 (cit. on pp. 24, 31).

[Plo80] Gordon D. Plotkin. “Lambda-definability in the full type hierarchy”.
In: To H. B. Curry: essays on combinatory logic, lambda calculus
and formalism. Academic Press, London-New York, 1980, pp. 363–
373 (cit. on p. 36).

[RCH08] Alejandro Russo, Koen Claessen, and John Hughes. “A library for
light-weight information-flow security in haskell”. In: Proceedings
of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008,
Victoria, BC, Canada, 25 September 2008. Ed. by Andy Gill. ACM,
2008, pp. 13–24. doi: 10.1145/1411286.1411289. url: https:
//doi.org/10.1145/1411286.1411289 (cit. on pp. 21, 22, 29, 43,
44).

[Ste+11] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Maz-
ières. “Flexible dynamic information flow control in Haskell”. In:
Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, Has-
kell 2011, Tokyo, Japan, 22 September 2011. Ed. by Koen Claessen.
ACM, 2011, pp. 95–106. doi: 10.1145/2034675.2034688. url:
https://doi.org/10.1145/2034675.2034688 (cit. on pp. 21,
22).

[Ter+12] David Terei, Simon Marlow, Simon L. Peyton Jones, and David
Mazières. “Safe haskell”. In: Proceedings of the 5th ACM SIGPLAN
Symposium on Haskell, Haskell 2012, Copenhagen, Denmark, 13
September 2012. Ed. by Janis Voigtländer. ACM, 2012, pp. 137–
148. doi: 10.1145/2364506.2364524. url: https://doi.org/10.
1145/2364506.2364524 (cit. on p. 23).

[TS00] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic proof
theory, Second Edition. Vol. 43. Cambridge tracts in theoretical
computer science. Cambridge University Press, 2000. isbn: 978-0-
521-77911-1 (cit. on p. 27).

[TV19] Carlos Tomé Cortiñas and Nachiappan Valliappan. “Simple Non-
interference by Normalization”. In: Proceedings of the 14th ACM
SIGSAC Workshop on Programming Languages and Analysis for
Security, CCS 2019, London, United Kingdom, November 11-15,
2019. Ed. by Piotr Mardziel and Niki Vazou. ACM, 2019, pp. 61–72.
doi: 10.1145/3338504.3357342. url: https://doi.org/10.
1145/3338504.3357342 (cit. on p. 19).

49

https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/2364506.2364524
https://doi.org/10.1145/2364506.2364524
https://doi.org/10.1145/2364506.2364524
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3338504.3357342

A. Simple Noninterference by Normalization

[TZ04] Stephen Tse and Steve Zdancewic. “Translating dependency into
parametricity”. In: Proceedings of the Ninth ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2004, Snow
Bird, UT, USA, September 19-21, 2004. Ed. by Chris Okasaki and
Kathleen Fisher. ACM, 2004, pp. 115–125. doi: 10.1145/1016850.
1016868. url: https://doi.org/10.1145/1016850.1016868
(cit. on p. 21).

[Vas+18] Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye.
“MAC A verified static information-flow control library”. In: Jour-
nal of Logical and Algebraic Methods in Programming 95 (2018),
pp. 148–180. issn: 2352-2208. doi: https://doi.org/10.1016/
j.jlamp.2017.12.003. url: https://www.sciencedirect.com/
science/article/pii/S235222081730069X (cit. on pp. 22, 45).

[VR16] Marco Vassena and Alejandro Russo. “On Formalizing Information-
Flow Control Libraries”. In: Proceedings of the 2016 ACM Workshop
on Programming Languages and Analysis for Security, PLAS@CCS
2016, Vienna, Austria, October 24, 2016. Ed. by Toby C. Murray
and Deian Stefan. ACM, 2016, pp. 15–28. doi: 10.1145/2993600.
2993608. url: https://doi.org/10.1145/2993600.2993608
(cit. on p. 21).

[VR19] Nachiappan Valliappan and Alejandro Russo. “Exponential Elimi-
nation for Bicartesian Closed Categorical Combinators”. In: Pro-
ceedings of the 21st International Symposium on Principles and
Practice of Programming Languages, PPDP 2019, Porto, Portu-
gal, October 7-9, 2019. Ed. by Ekaterina Komendantskaya. ACM,
2019, 20:1–20:13. doi: 10.1145/3354166.3354185. url: https:
//doi.org/10.1145/3354166.3354185 (cit. on p. 36).

[WT03] Philip Wadler and Peter Thiemann. “The marriage of effects and
monads”. In: ACM Trans. Comput. Log. 4.1 (2003), pp. 1–32. doi:
10.1145/601775.601776. url: https://doi.org/10.1145/
601775.601776 (cit. on p. 45).

Appendices
I. NbE for Sums

It is tempting to interpret sums component-wise like products and functions as:
J τ1 + τ2 K = J τ1 K ⊎ J τ2 K. However, this interpretation makes it impossible
to implement reflection faithfully: should the reflection of a variable x : τ1 + τ2

50

https://doi.org/10.1145/1016850.1016868
https://doi.org/10.1145/1016850.1016868
https://doi.org/10.1145/1016850.1016868
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://www.sciencedirect.com/science/article/pii/S235222081730069X
https://www.sciencedirect.com/science/article/pii/S235222081730069X
https://doi.org/10.1145/2993600.2993608
https://doi.org/10.1145/2993600.2993608
https://doi.org/10.1145/2993600.2993608
https://doi.org/10.1145/3354166.3354185
https://doi.org/10.1145/3354166.3354185
https://doi.org/10.1145/3354166.3354185
https://doi.org/10.1145/601775.601776
https://doi.org/10.1145/601775.601776
https://doi.org/10.1145/601775.601776

Appendices

be a semantic value of type J τ1 K (left injection) or J τ2 K (right injection)? We
cannot make this decision since the value which substitutes x may be either
of these cases. The standard solution to this issue is to interpret sums using
decision trees [AS19]. A decision tree allows us to defer this decision until more
information is available about the injection of the actual value.

As in the previous case for the monadic type T , a decision tree can be defined
as an inductive data type D parameterized by some type interpretation a with
the following constructors:

Leaf
x : a

leaf x : D a

Branch
n : Ne (τ1 + τ2) f : Var τ1 → D a g : Var τ2 → D a

branch n f g : D a

The leaf constructor constructs a leaf of the tree from a semantic value, while
the branch constructor constructs a tree which represents a suspended decision
over the value of a sum type. The branch constructor is the semantic equivalent
of case in normal forms.

Decision trees allow us to model semantic sum values, and hence allow the
interpretation of the sum type as follows:

J τ1 + τ2 K = D (J τ1 K ⊎ J τ2 K)

We interpret a sum type (in λSEC) as a decision tree which contains a value of
the sum type (in Agda).

As an example, the term false of type Bool, implemented as left (), will be
interpreted as a decision tree leaf (inj1 tt) of type D J Bool K since we know the
exact injection. The Agda constructor inj1 denotes the left injection in Agda,
and inj2 the right injection. For a variable x of type Bool, however, we cannot
interpret it as a leaf since we don’t know the actual injection that may substitute
it. Instead, it is interpreted as a decision tree by branching over the possible
values as branch x (λ → leaf (inj1 tt)) (λ → leaf (inj2 tt))6—which
intuitively represents the following tree:

x : Bool

false true

In light of this interpretation of sums, the implementation of evaluation
for injections is straightforward since we only need to wrap the appropriate
injection inside a leaf:

6We ignore the argument (as λ) here since it has the uninteresting type ()

51

A. Simple Noninterference by Normalization

eval (left t) γ = leaf (inj1 (eval t γ))
eval (right t) γ = leaf (inj2 (eval t γ))

For evaluating case however, we must first implement a decision procedure since
case is used to make a choice over sums.

To make a decision over a tree of type D J τ K, we need a function
mkDec : D J τ K → J τ K. It can be implemented by induction on the
type τ using monadic functions fmap and join on trees, which can in turn be
implemented by straightforward structural induction on the tree. Additionally,
we will also need a function which converts a decision over normal forms to a
normal form: convert : D (Nf τ) → Nf τ . The implementation of this function
is made possible by the fact that branch resembles case in normal forms, and
can hence be translated to it. We skip the implementation of these functions
here, but encourage the reader to see the Agda implementation.

Using these definitions, we can now complete evaluation as follows:

eval (case t (left x1 → t1) (right x2 → t2)) γ =
mkDec (fmap match (eval t γ))
where

match : (J τ1 K ⊎ J τ2 K) → J τ K
match (inj1 v) = eval t1 (γ [x1 7→ v])
match (inj2 v) = eval t2 (γ [x2 7→ v])

We first evaluate the term t of type τ1 + τ2 to obtain a tree of type D (J τ1 K ⊎
J τ2 K). Then, we map the function match which eliminates the sum inside the
decision tree to J τ K, to produce a tree of type D J τ K. Finally, we run the
decision procedure mkDec on the resulting decision tree to produce the desired
value of type J τ K.

Reflection for a neutral of a sum type can now be implemented using branch
as follows:

reflect {τ1 + τ2} n =
branch n

(leaf (λ x1 → inj1 (reflect {τ1} x1)))
(leaf (λ x2 → inj2 (reflect {τ2} x2)))

As discussed earlier, we construct the decision tree for neutral n using branch.
The subtrees represent all possible semantic values of n and are constructed by
reflecting the variables x1 and x2.

The function reifyVal, on the other hand, is implemented similar to evaluation
by eliminating the sum value inside the decision tree into normal forms as
follows:

52

Appendices

reifyVal {τ1 + τ2} tr = convert (fmap matchNf tr)
where

matchNf : (J τ1 K + J τ2 K) → Nf (τ1 + τ2)
matchNf (inj1 x) = left (reifyVal {τ1} x)
matchNf (inj2 y) = right (reifyVal {τ2} y)

With this function, we have completed the implementation of NbE for sums.

53

B
Securing Asynchronous Exceptions

Carlos Tomé Cortiñas, Marco Vassena, and Alejandro Russo

33rd IEEE Computer Security Foundations Symposium, CSF 2020,
Boston, MA, USA, June 22-26, 2020

Abstract Language-based information-flow control (IFC) techniques often rely on
special purpose, ad hoc primitives to address different covert channels that originate
in the runtime system, beyond the scope of language constructs. Since these piecemeal
solutions may not compose securely, there is a need for a unified mechanism to control
covert channels. As a first step towards this goal, we argue for the design of a general
interface that allows programs to safely interact with the runtime system and the
available computing resources. To coordinate the communication between programs
and the runtime system, we propose the use of asynchronous exceptions (interrupts),
which, to the best of our knowledge, have not been considered before in the context
of IFC languages. Since asynchronous exceptions can be raised at any point during
execution—often due to the occurrence of an external event—threads must temporarily
mask them out when manipulating locks and shared data structures to avoid deadlocks
and, therefore, breaking program invariants. Crucially, the naive combination of
asynchronous exceptions with existing features of IFC languages (e.g. concurrency and
synchronization variables) may open up new possibilities of information leakage. In this
paper, we present MACasync, a concurrent, statically enforced IFC language that, as
a novelty, features asynchronous exceptions. We show how asynchronous exceptions
easily enable (out of the box) useful programming patterns like speculative execution
and some degree of resource management. We prove that programs in MACasync
satisfy progress-sensitive noninterference and mechanize our formal claims in the Agda
proof assistant.

55

B.1. Introduction

B.1. Introduction

Information-flow control (IFC) [SM03] is a promising approach for preserving
confidentiality of data. It tracks how data of different sensitivity levels (e.g. pub-
lic or sensitive) flows within a program, and raises alarms when confidentiality
might be at stake. This technology has been previously used to secure operating
systems (e.g. [Zel+06; Van+07]), web browsers (e.g. [Ste+14; Yip+09]), and
several programming languages (e.g. [Hed+14; Mye+06; RCH08]).

Most language-based approaches for IFC reason about constructions found
in programs (e.g. variables, branches, and data structures), while often ignoring
aspects of runtime systems which might create covert channels (e.g. [BR13;
PA17; Vas+19]) capable of producing leaks, e.g. through caches, parallelism,
resource usage, etc. To deal with this problem, researchers have proposed
security-aware runtime system designs [Vas+19; PA19]. However, building
runtime systems is a major endeavour and these proposals have yet to be
implemented. A more lightweight approach to securing runtime systems re-
lies on special-purpose language constructs that coordinate the execution of
programs with different components of the runtime—e.g. the garbage collec-
tor [PA17], the scheduler [RS06], timeouts [RS09], lazy evaluation [VBR17]
and caches [Fer+18].1 While a step in the right direction, designing ad hoc
constructs every time that some coordination with the runtime system is needed
feels rather unsatisfactory—an observation that has also been made outside
the security arena [Li+07; Siv+16; FF04]. In fact, implementing hooks in an
existing runtime system requires specific knowledge of its internals and consid-
erable expertise. Even worse, the composition of piecemeal security solutions
may weaken or even break the security guarantees of the runtime system as a
whole. These issues suggest the need for a unified mechanism to close covert
channels in the runtime system. As a first step towards this goal, we believe
that runtime systems should expose a general IFC-aware interface that allow
IFC languages to systematically control and secure components of the runtime
system. How should programs coordinate with the runtime system through
this interface?

In the 70s, Unix-like operating systems conceived signals as a limited form
of inter process communication (IPC).2 Signals are no more than asynchronous
notifications sent to processes in order to notify them of the occurrence of
events, where the origin of signals is either the kernel or other processes.
Furthermore, when receiving a signal, process execution can be interrupted

1In this last case, we are abusing the term runtime to denote “the rest of the system.”
2https://standards.ieee.org/content/ieee-standards/en/standard/1003_1-2017.html

57

https://standards.ieee.org/content/ieee-standards/en/standard/1003_1-2017.html

B. Securing Asynchronous Exceptions

during any nonatomic instruction—and if the process has previously registered
a signal handler, then that routine gets executed. If we think of the kernel
as “the runtime” and of processes as our “programs”, signals are exactly the
mechanism needed to implement the interface that we need! In fact, and
generally speaking, the idea of OS-signals have been already internalized by
programming languages in the form of asynchronous exceptions.

Asynchronous exceptions are raised as a result of external events and can
occur at any point of the program. As a result, they are considered so difficult
to master that many languages (e.g. Python [FM02] and Java [Ora20]) either
restrict or completely forbid programmers from using them. The main reason
is that interrupting a program at any point might break, for instance, a
datastructure invariant or result in holding a lock indefinitely—and it is not
that clear how to get out of such situation.

Despite not being widely adopted in its full expressive power, asynchronous
exceptions enable very useful programming patterns: speculative execution (i.e.
a thread can spawn a child thread and later decide that it does not need the
result and kill it), timeouts, and resource management.

Our Contributions

In this work, we present MACasync, a Haskell IFC library that extends the
concurrent version of MAC [Rus15; Vas+18] with asynchronous exception. We
formally prove progress-sensitive noninterference (PSNI) [HS12] for MACasync
and provide mechanized proofs in Agda [Abe+05] of all our claims as sup-
plementary material to this work. We believe that the extension presented in
this paper and its formal security guarantees extend to other Haskell IFC
libraries (e.g. LIO [Ste+11b]).

The semantics for asynchronous exceptions in MACasync is inspired by
how asynchronous exception are modelled in Haskell [Mar+01]—where a
mechanism of masking/unmasking marks regions of code where asynchronous
exceptions can be safely raised. However, allowing untrusted code to mask ex-
ceptions arbitrarily poses other security risks. For example, a rouge thread could
abuse the masking mechanism to exhaust all available computing resources and
starve other threads in the system without the risk of being terminated. To
avoid that, we propose a fine-grained (selective) masking/unmasking mechanism
instead of the traditional all-or-nothing approaches, which disable all asyn-
chronous exceptions inside handlers [Rep90; GM84]. Furthermore, in contrast
with [Mar+01], our design forbids raising multiple exceptions at the same time,
which, we believe, can too easily disrupt programs in unpredictable ways. While
an exception is raised, our language does not raise incoming exceptions, which

58

B.2. The MAC IFC Library

are, instead, stored in a queue of pending exceptions and raised only when the
current one has been handled.

From the security perspective, asynchronous exceptions follow the no write-
down security check for IFC: when throwing an asynchronous exception, the
security level of the source thread should flow to the security level of the
recipient. The caveats are, however, in the formalization of masking/unmasking
mechanisms and the noninterference proof. For example, it is important for
security that asynchronous exception are deterministically inserted into the
queue of pending exceptions. We utilize term erasure as the proof technique
and leverage double-step erasure to deal with the complexity of our semantics
(i.e. concurrency, synchronization variables and asynchronous exceptions), like
in previous existing work (e.g. [Vas+18; Vas+16; VR16]).

In summary, our list of contributions includes:

• An extension to MAC, called MACasync, to handle IFC-aware asyn-
chronous exceptions in the presence of concurrency.

• Formal semantics, enforcement, and progress-insensitive noninterference
guarantees for MACasync.

• Mechanized proofs of all our claims in approximately 3,000 lines of Agda.3

• We showcase MACasync and the new programming patterns enabled
by asynchronous exceptions with two examples, in which we implement
secure versions of (i) a speculative execution combinator, and (ii) a
load-balancing controller for sensitive worker threads, respectively.

To the best of our knowledge, this work is the first account for asynchronous
exceptions in concurrent IFC-systems. The rest of the paper is organized as
follows. In Section B.2, we revisit MAC’s API. Section B.3 presents MACasync
by example. In Section B.4, we extend MAC’s semantics to track asynchronous
exceptions. In Section B.5, we introduce asynchronous exceptions and the
masking/unmasking mechanisms. Section B.6 presents our security guarantees.
Section B.7 describes related work and Section B.8 concludes.

B.2. The MAC IFC Library

To help readers get familiar with the MAC IFC library [Rus15], we give a brief
overview of its API and programming model.

3Available at https://bitbucket.org/carlostome/mac-async.

59

https://bitbucket.org/carlostome/mac-async

B. Securing Asynchronous Exceptions

-- Abstract types
data Labeled l τ
data MAC l τ

-- Monadic structure for computations
instance Monad (MAC l)

-- Core operations
label :: lL ⊑ lH ⇒ τ → MAC lL (Labeled lH τ)
unlabel :: lL ⊑ lH ⇒ Labeled lL τ → MAC lH τ

Figure B.1.: Core API for MAC

Security Lattice The information flow policies enforced by MAC are specified
by a security lattice [Den76], which defines a partial order between security
levels (labels). These labels represent the sensitivity of program inputs and
outputs and the order between them dictates which flows of information are
allowed in a program. For example, the classic two-point lattice L = ({L, H},⊑)
classifies data as either public (L) or secret (H) and only prohibits sending
secret inputs into public outputs, i.e. H ̸⊑ L. In MAC, the security lattice
is embedded in Haskell using standard features of the type system [Rus15].
In particular, each security label is represented by an abstract datatype and
valid flows of information (the ⊑ relation between labels) are encoded using
typeclass constructs—see Figure B.1.

Security Types MAC enforces security statically by means of special types
annotated with security labels. The abstract type Labeled l τ associates label l
with data of type τ . For example, pwd :: Labeled H String is a secret string and
score :: Labeled L Int is a public integer. The abstract type MAC l τ represents
a side-effectful computation that manipulates data labelled with l and whose
result has type τ . MAC provides a monadic interface to help programmers
write secure code. The basic primitives of the interface are return and bind
(written as the infix operator >>=). Primitive return :: τ → MAC l τ creates a
computation that simply returns a value of type τ without causing side-effects.
Primitive (>>=) :: MAC l τ1 → (τ1 → MAC l τ2) → MAC l τ2 chains two
computations (at the same security level l) together, in a sequence. Specifically,
program m >>= f takes the result obtained by executing m and binds it to
function f , which produces the rest of the computation. Our examples use
do-notation, Haskell syntactic sugar for monadic computations. For instance,

60

B.2. The MAC IFC Library

we write do x ← m; return (x + 1) for the program m >>= λx → return (x + 1),
which increments by one the result returned by m.

Flows of Information In order to enforce information flow policies, MAC
regulates the interaction between MAC computations and Labeled data. Com-
putations cannot write and read labelled data directly, but must use special
functions label and unlabel (Figure B.1). These functions create and read
labelled data as long as these operations comply with specific security rules,
known as no write-down and no read-up [BL96]. Intuitively, function label
writes some data into a fresh, lH-labelled value as long as the decision to do
so depends on less sensitive data, i.e. the computation is labelled with lL such
that lL ⊑ lH. (To help readers, we use subscripts in metavariables lL and lH to
indicate that lL ⊑ lH). Dually, function unlabel allows lH-labelled computations
to read data from lower security levels, i.e. data labelled with lL such that
lL ⊑ lH. In the type signatures of these functions, the precondition lL ⊑ lH is
a typeclass constraint, which must be statically satisfied when type checking
programs. As a result, programs that attempt to leak secret data, e.g. via im-
plicit flows, are ill-typed and rejected by the compiler. In particular, programs
cannot branch on secret H-labelled data directly, but must use unlabel first
to extract its content. Once unlabelled, secret data can only be manipulated
within a computation labelled with H thanks to the type of unlabel and bind.
Then, trying to use function label to create public L-labelled data triggers a
type error that represents a violation of the no write-down rule. Specifically,
an attempt to create public data from within a secret context generates an
unsatisfiable type constraint H ⊑ L, arising from the use of label.

MAC incorporates other kinds of resources (e.g. references and network
sockets) in a similar way. Resources are encapsulated in labelled resources
handlers and the API exposed to labelled computations is designed so that the
read and write side-effects of each operation respect the no read-up and no
write-down rules.

Concurrency Extending IFC languages with concurrency is a delicate task
because threads provide attackers with new means to leak data. For example,
the possibility of executing computations concurrently magnifies the bandwidth
of the termination covert channel [Ste+12]. This channel enables brute force
attacks in which threads try to guess the secret and enter into a loop to suppress
public outputs if they succeed. Even worse, the combination of concurrency and
shared resources can introduce subtle internal-timing channels [SV98]. This
covert channel is exploited by attacks that influence the (public) outcome of data

61

B. Securing Asynchronous Exceptions

fork :: lL ⊑ lH ⇒ MAC lH ()→ MAC lL ()
data MVar l τ
newMVar :: lL ⊑ lH ⇒ τ → MAC lL (MVar lH τ)
putMVar :: MVar l τ → τ → MAC l ()
takeMVar :: MVar l τ → MAC l τ

Figure B.2.: Concurrent API for MAC

races with secret data [BR13; Ste+12]. To support concurrency securely, MAC:
(i) decouples computations that manipulate secret data from computations that
can generate public outputs, and (ii) prevents threads (labelled computations)
from affecting data races between threads at lower security levels. Primitive
fork (Figure B.2) allows a lL-labelled computation to fork a thread at a higher
security level, i.e. labelled with lH such that lL ⊑ lH. Intuitively, forking
constitutes a write operation and thus the type of fork enforces the no write-
down rule. MAC does not implements threads directly, but relies on Haskell
green (lightweight user-level) threads. These threads are managed by the GHC
runtime system running a round-robin scheduler, which is compatible with the
security guarantees of MAC [VR16; Vas+18].

Synchronization Variables MAC supports shared mutable state in the form of
synchronization variables, following the style of Concurrent Haskell [JGF96].
The abstract type MVar l τ (Figure B.2) represents a synchronization variable
that can be either empty or full with a value of type τ at security level
l. Threads can create and atomically access synchronization variables with
functions newMVar , putMVar and takeMVar . Function newMVar creates a
synchronization variable initially full with the given value. (Like label and fork,
function newMVar performs a write side-effect, thus its type signature has a
similar security check). Functions putMVar and takeMVar allow threads to
write and read shared variables synchronously. In particular, these functions
block threads trying to read or write variables in the wrong “state”. For example,
function putMVar writes a value into an empty variable and blocks the thread
if the variable is full. Dually, function takeMVar empties a full variable and
returns its content and blocks the caller otherwise. Notice that putMVar and
takeMVar perform both read and write side-effects: they must always read
the variable to determine whether the caller should be blocked. Then, the no
read-up and no write-down security rules imply that these functions are secure

62

B.3. MACasync by Example

only when they operate within the same security level, i.e. both the variable
and the computation are labelled with l [Rus15].

B.3. MACasync by Example
Asynchronous exceptions enable useful programming patterns that, to our
knowledge, cannot be coded securely in any existing IFC language. We illustrate
some of these idioms in MACasync, which extends MAC with three new
primitives throwTo, mask (unmask), and catch. These primitives allow threads
to (1) send signals to threads at higher security levels by throwing exceptions
asynchronously, (2) suppress (enable) exceptions in specific regions of code,
and (3) react to exceptions by running their corresponding exception handler,
respectively.

Example B.3.1 (Speculative execution). Imagine two implementations of the
same algorithm whose performance depends on the input. Instead of settling for
one, we could run both concurrently and just return the output of the first that
finishes. At that point the thread computing the other algorithm may be killed
since its result is no longer necessary. We can implement such a combinator for
speculative execution in MACasync using asynchronous exceptions. First, we
declare Kill :: Exception as a new exception, and define kill t, a function that
sends exception Kill asynchronously to the thread identified by t.4

1 data Exception = Kill | ...
2 kill t = throwTo t Kill

Then, we define the combinator speculate, which receives two computations c1
and c2 to run speculatively.

3 speculate :: MAC l a → MAC l a → MAC l a
4 speculate c1 c2 = do
5 m ← newEmptyMVar
6 t1 ← fork (c1 >>= putMVar m)
7 t2 ← fork (c2 >>= putMVar m)
8 r ← takeMVar m
9 kill t1; kill t2

10 return r

The combinator creates an empty synchronization variable m (line 5) and forks
two threads (6–7), which run computations c1 and c2 concurrently and then

4In MACasync, primitive fork returns the identifier of the child thread to the parent.

63

B. Securing Asynchronous Exceptions

write the result to m. When the combinator reads variable m (8), it blocks
until either thread terminates and fills it with the result. When this happens,
the combinator resumes, kills the children threads (one may still be running)
(9), and returns the result (10).

Example B.3.2 (Thread pool). This example presents the code of a controller
thread that maintains a pool of worker threads to perform computations on
a stream of incoming (sensitive) inputs. In this scheme, the controller thread
manages the worker threads in the pool by reacting to asynchronous exceptions
sent by other (public and secret) threads in the system. For example, when some
secret input becomes available, a thread can send an exception InputH secret
to the controller thread, which extracts the secret data and forwards it to the
first available worker thread to process it. Similarly, when the thread pool is
no longer needed, it can be deallocated by sending the exception Kill to the
controller, which then kills each worker thread in the pool. In the same way,
the controller could be programmed to react to specific exceptions and carry
out even more tasks (e.g. dynamically resizing the thread pool).

To set up this scheme, a thread calls function initTP (Figure B.3) to initialize
the thread pool and start the controller thread. Function initTP n f allocates
an empty synchronization variable m (line 6), forks a pool of n worker threads
executing function f (line 7), collects their identifiers ts, and passes it to the
controller thread (line 8). As new input becomes available, the controller writes
it to the shared variable m, which is then read by one of the workers and its
content processed via function f (line 11). To avoid getting killed in the middle of
a computation, worker threads mask exception Kill while processing data, thus
ensuring that they always complete on-going computations without aborting
prematurely. It may seem erroneous to mask also instruction takeMVar : can
this cause a worker thread to block indefinitely waiting for new input? No, in
Concurrent Haskell, and MACasync, operations that can block indefinitely
(like takeMVar) are interruptible, i.e. they can receive and raise asynchronous
exceptions even in masked blocks [Mar+01].

Function controller ts m implements a controller thread for the thread pool
ts sharing variable m. As long as it receives no exception, the controller
thread simply waits on an always-empty synchronization variable via wait
(line 15). When the thread receives an exception, it resumes and executes the
corresponding code in the list of exception handlers. In particular, when new
secret input becomes available (InputH secret), it opens the secret (line 19) and
writes it to variable m (line 20), so that the worker threads can process it.
Notice that if variable m is full at this point, then some previous input is still
waiting to be processed (all workers threads are busy) and the controller just

64

B.3. MACasync by Example

1 type Data = ...

2 data Exception = Kill | Inputl (Labeled l Data) | ...
3 type Size = Int
4 initTP :: Size → (Data → MAC H ())→ MAC L (TId H)
5 initTP n f = do
6 m ← newEmptyMVar
7 ts ← forM [1 . . n] (λ → fork (worker f m))
8 fork (controller ts m)
9 worker :: (Data → MAC H ())→ MVar H Data → MAC H ()

10 worker f m = do
11 mask [Kill] (takeMVar m >>= f)
12 worker f m
13 controller :: [TId H]→ MVar H Data → MAC H ()
14 controller ts m =
15 let wait = newEmptyMVar >>= takeMVar in
16 catch wait
17 [(InputH secret,
18 mask [InputH, Kill]
19 (do s← unlabel secret
20 putMVar m s
21 unmask [InputH, Kill] (controller ts m)))
22 , (Kill,
23 mask [InputH, Kill] (forM ts kill))]

Figure B.3.: Thread pool example

waits on the variable. As soon as a worker thread completes, it empties the
variable containing the pending input, and the controller resumes by writing
the variable; then it continues to wait for further exceptions. To avoid dropping
any input, the controller thread masks exceptions Kill and InputH (line 18)
while processing requests. For example, if exceptions were not properly masked
in that block of code, the controller could receive an exception, e.g. Kill, which
would terminate the thread while trying to feed the last input received to the
workers. Once done, the controller unmasks the exceptions again (line 21) and
continues to wait for new input. After receiving and eventually raising the
exception Kill, the controller thread propagates it to all the workers in the pool
(line 23) and then terminates. Also in this case, the controller thread masks the

65

B. Securing Asynchronous Exceptions

other exceptions, which could otherwise prematurely terminate the controller
and leave some of the worker threads alive.

The example, however, has a catch! Primitive putMVar may also block the
controller indefinitely like takeMVar , and thus may likewise be interrupted and
raise an exception, even if that exception is masked. As a result, the controller
thread could also be interrupted on line 20 and drop the current input. To fix
the program, we introduce the combinator retry killed m ss, which repeatedly
attempts to fill variable m with the inputs pending in list ss while handling
other exceptions.

24 retry :: Bool → [TId H]→ MVar H Data
25 → [Data]→ MAC H ()
26 retry killed ts m [] =
27 if killed then forM ts kill; exit else return ()
28 retry killed m (s : ss) =
29 catch (putMVar m s)
30 [(InputH secret,
31 do s′ ← unlabel secret
32 if killed
33 then retry killed ts m (s : ss)
34 else retry killed ts m ((s : ss) ++ [s′])
35 , (Kill, retry True ts m (s : ss))]

If further inputs are received while executing retry, the function appends them
to list ss to avoid dropping them, and thus ensuring that they will eventually be
delivered to the workers. If the controller receives exception Kill while retrying,
the Boolean flag killed is switched on and further inputs are discarded. In this
case, when all the inputs received before Kill are dispatched, the controller
kills the worker threads and terminates with exit (line 27)—the function retry
assumes exceptions Input H and Kill are masked so this operation will not be
interrupted. In conclusion, to repair the code of controller , we simply replace
putMVar m s (line 20) with retry False ts m [s].

Even though relatively simple, these examples cannot be coded in IFC
languages without support for asynchronous communication like MAC. In
these languages, synchronous primitives (e.g. MVar) must be restricted to
operate within a single security level for security reasons, as explained in
Section B.2 and Vassena, Russo, Buiras, and Waye [Vas+18]. For instance,
if only synchronous communication was available, then the controller thread
from our second example could not receive commands from public (L-labelled)

66

B.4. Formal Semantics

threads.5

B.4. Formal Semantics

B.4.1. Core of MACasync

From a security perspective, the interaction between synchronization vari-
ables, asynchronous exceptions, and exception masking is a delicate matter.
MACasync implements these primitives on top of those provided by Con-
current Haskell, whose runtime is not designed with security in mind. For
example, the fact that a thread may be able to resume another by sending an
asynchronous exception [Mar+01] (as explained in the second example above)
may introduce subtle internal timing covert channels that weaken the security
guarantees of MAC. To rule that out, we extend the small-step semantics of
MAC from Vassena, Russo, Buiras, and Waye [Vas+18] with asynchronous
exceptions and perform a rigorous, comprehensive security analysis of the whole
language.

The core of MACasync is the standard call-by-name λ-calculus with Boolean
and unit type (Figure B.4). We specify the side-effect free semantics of the
core λ-calculus (e.g. function abstraction, application) as a small-step reduction
relation, t1 ⇝ t2, which denotes that term t1 reduces in one step to t2. These
reduction rules are standard and we completely omit them in this presentation.

Types: τ ::= () | Bool | τ1 → τ2
Values: v ::= () | True | False | λx.t
Terms: t ::= t1 t2 | if t then t1 else t2 | v

Figure B.4.: Core syntax

The defining feature of MACasync is the security monad MAC , which
encapsulates computations that may produce side-effects. Figure B.5 specifies
the syntax and part of the semantics for the side-effectful constructs of the
language. The small-step relation t1 −→ t2 denotes a single sequential step
that brings term t1 of type MAC l τ to t2.

Rule (Unlabel1) reduces term unlabel t1 to unlabel t2 by evaluating the
argument through a pure semantics step t1 ⇝ t2. When the argument is

5In MAC, a public thread could technically communicate asynchronously with a secret
thread by updating a secret, mutable reference. However, these labelled references would
inevitably introduce serious data races and thus do not represent a viable alternative.

67

B. Securing Asynchronous Exceptions

evaluated, rule (Unlabel2) extracts the content of the labelled value and
returns it in the security monad.

Types: τ ::= · · · | MAC l τ | Labeled l τ
Values: v ::= · · · | Labeled t | return t
Terms: t ::= · · · | label t | unlabel t | t1 >>= t2

(Unlabel1)
t1 ⇝ t2

unlabel t1 −−−→ unlabel t2

(Unlabel2)
unlabel (Labeled t) −−−→ return t

Figure B.5.: Syntax and semantics of MACasync (excerpts)

B.4.2. Synchronization Variables
Figure B.6 extends MACasync with synchronization variables. The store Σ is
partitioned by label into separate memory segments S , each consisting of a list
of memory cells c, which can be either full with a term (L t M) or empty (⊗). A
value MVar l n denotes a synchronization variable that refers to the n-th cell of
the l-labelled memory segment in the store.6

In rule (New), primitive newMVar l t allocates a new memory cell containing
term t in the l-labelled segment of the store, at fresh address n = |Σ(l)|,
i.e. Σ[(l, n) 7→ L t M], and returns the corresponding synchronization variable
MVar l n. Term putMVar l t1 t2 writes term t2 into the empty cell pointed by
the synchronization variable t1. To do that, rule (Put1) starts evaluating the
variable t1 through a pure semantics step t1 ⇝ t ′

1. When the variable is fully
evaluated, e.g. MVar l n, rule (Put2) takes over and writes the given term t in
the cell identified by (l, n), i.e. Σ[(l, n) 7→ L t M]. Notice that the term steps only
if the cell in the store Σ is initially empty, i.e. (l, n) 7→ ⊗ ∈ Σ. If the cell is
full, the term cannot be reduced by any other rule of the semantics and gets
stuck, capturing the intended blocking behaviour of synchronization variables.
We omit the rules for takeMVar , which follow a similar pattern [Vas+18].

B.4.3. Concurrency
Unlike previous concurrent incarnations of MAC, threads in MACasync can
communicate with each other by sending signals in the form of asynchronous

6Some terms in the calculus carry a label annotation that is inferred from its type. For
example, the label l in MVar l n comes from its type MVar l τ .

68

B.4. Formal Semantics

Store: Σ ∈ Label → Memory
Memory: S ::= [] | c : S
Cell: c ::=⊗ | L t M
Addresses: n ∈ N
Types: τ ::= · · · | MVar l τ
Values: v ::= · · · | MVar l n
Terms: t ::= · · · | newMVar l t | takeMVar t

| putMVar t1 t2

(New)
n = |Σ(l)|

Σ, newMVar l t −−−→ Σ[(l, n) 7→ L t M], return (MVar l n)

(Put1)
t1 ⇝ t ′

1
Σ, putMVar t1 t2 −−−→ Σ, putMVar t ′

1 t2

(Put2)
(l, n) 7→ ⊗ ∈ Σ Σ′ = Σ[(l, n) 7→ L t M]

Σ, putMVar (MVar l n) t −−−→ Σ′, return ()

Figure B.6.: Syntax and semantics for synchronization variables

exceptions. To enable this form of communication, the runtime system assigns
a unique thread identifier to each thread of the system. Thread identifiers
are opaque to avoid leaking secret data through the number of threads in the
system, and labelled to prevent sensitive threads from sending exceptions to
threads at lower security levels. MACasync incorporates thread identifiers
with values TId l n of the new primitive type TId l, whose label l represents
the static security level of the thread identified by n. Thread identifiers are
also unforgeable and only generated automatically by the runtime system each
time a new thread is forked.

fork :: lL ⊑ lH ⇒ MAC lH ()→ MAC lL (TId lH)

Figure B.7 extends the sequential calculus of MACasync with concurrency
primitives. To simplify our security analysis, term fork l t is annotated with
the security label l of thread t of type MAC l (). Similarly to Vassena, Russo,
Buiras, and Waye [Vas+18], we decorate the sequential reduction relation from

69

B. Securing Asynchronous Exceptions

above with events, which inform the top-level scheduler of the execution of
sequential commands that have global effects. For example, event forkl(t)
indicates that thread t at security level l has been forked and event step
denotes an uninteresting (silent) sequential step. Later, we extend the category
of events to keep track of asynchronous exceptions as well. Sequential steps
are also parameterized by a thread id map ϕ, which represents a source of fresh
thread identifiers for each security level. The use of this map is exemplified by
rule (Fork). Whenever a new thread is forked, e.g. fork l t, we use the label
annotation l to generate a fresh identifier n = ϕ(l), which is then returned in
the monad wrapped in the constructor of thread identifiers, i.e. TId l n.

Events: e ::= step | forkl(t)
Thread Id: n ∈ N
Thread Id Map ϕ ∈ Label → Thread Id
Types: τ ::= · · · | TId l
Values: v ::= · · · | TId l n
Terms: t ::= · · · | fork l t

(Fork)
n = ϕ(l)

Σ, fork l t forkl(t)−−−−−→ϕ Σ, return (TId l n)

Figure B.7.: Syntax and semantics of fork

Figure B.8 introduces the top-level semantics relation that formalizes how
concurrent configurations evolve. Concurrent configurations are pairs ⟨Σ, Θ⟩
consisting of the concurrent store Σ and a map of thread pools Θ. The thread
pool map Θ maps each label of the lattice to the list of threads Ts at that
security level, currently in the system. Each rule of the concurrent semantics
constructs the source of fresh thread identifiers ϕ from the thread pool map Θ
of the initial configuration by means of the function nextId(Θ) = λl.|Θ(l)|.

A concurrent step l, n ⊢ c1 ↪→ c2 indicates that configuration c1 steps
to c2, while running the thread identified (l, n), i.e. the n-th thread of the
l-labelled thread pool. The particular scheduler used to determine which
thread runs at every step is not very relevant for our discussion, therefore
we omit it in our semantics. It suffices to say that the security guarantees of
MACasync carry over for a wide range of deterministic schedulers [Vas+18] (as
witnessed by our mechanized proofs) and include the Round Robin scheduler
adopted in Concurrent Haskell. The concurrent rules rely on sequential

70

B.5. Asynchronous Exceptions

Configuration: C ::= ⟨Σ, Θ⟩
Thread Pool Map: Θ ∈ Label → Thread Pool
Thread Pool: Ts ::= [] | (th, Ts)
Thread State: th ::= t

(Seq)

ϕ = nextId(Θ) Σ1, t1
step−−−→ϕ Σ2, t2

l, n ⊢ ⟨Σ1, Θ[(l, n) 7→ t1]⟩ ↪→ ⟨Σ2, Θ[(l, n) 7→ t2]⟩

(Fork)
ϕ = nextId(Θ1)

n′ = ϕ(l′) Θ2 = Θ1[(l, n) 7→ t2] Σ, t1
forkl′ (t)−−−−−→ϕ Σ, t2

l, n ⊢ ⟨Σ, Θ1[(l, n) 7→ t1]⟩ ↪→ ⟨Σ, Θ2[(l′, n′) 7→ t]⟩

Figure B.8.: Syntax and semantics of concurrent MACasync

events to determine which step to take. For example, rule (Seq) extracts the
running thread from the thread pool, i.e. Θ[(l, n) 7→ t1], which steps silently,
i.e. generating event step, and thus the rule only reinserts the thread term in
the thread pool, i.e. Θ[(l, n) 7→ t2]. In contrast, event forkl′(t) in rule (Fork)
indicates that the running thread has forked, therefore the rule reinserts the
parent thread in the pool, i.e. Θ2 = Θ1[(l, n) 7→ t2], and also adds its child at the
corresponding security level l′ and fresh index n′ = ϕ(l′), i.e. Θ2[(l′, n′) 7→ t].

B.5. Asynchronous Exceptions

MACasync supports sending and handling asynchronous exceptions by means
of two new primitives throwTo and catch, see Figure B.9. Primitive throwTo t ξ
raises the exception ξ of abstract type χ asynchronously in the thread with
identifier t. Intuitively, this operation constitutes a write effect, therefore
MACasync restricts its API according to the no write-down rule to enforce
security. To this end, the API ensures that the security label of the receiver
thread (lH) is at least as sensitive as the label of the sender (lL) through the type
constraint lL ⊑ lH. Once delivered and raised, asynchronous exceptions behave
like synchronous exceptions. They disrupt the execution of the receiving thread
in the usual way, with the exception bubbling up in the code of the thread
and, if uncaught, eventually crashing it. Threads can recover from exceptions

71

B. Securing Asynchronous Exceptions

by wrapping regions of code in a catch block. The same mechanism, allows
threads to react to asynchronous signals by handling exceptions appropriately.
Primitive catch t hs takes as a parameter a computation t and a list containing
pairs of exceptions and handlers. Then, if an exception ξ is raised during the
execution of t, the handler corresponding to the first exception matching ξ in
the list hs, if there is one, gets executed.

throwTo :: lL ⊑ lH ⇒ TId lH → χ→ MAC lL ()
catch :: MAC l τ → [(χ, MAC l τ)]→ MAC l τ

Figure B.9.: MACasync API for asynchronous exceptions

Figure B.10 extends the calculus with value raise ξ, which indicates that the
computation is in an exceptional state, and a new event throwl(ξ, n), which
instructs the runtime to deliver exception ξ to the thread identified by (l, n). To
model how asynchronous exceptions propagate precisely, we add new rules both
to the sequential and concurrent semantics. Rule (ThrowTo1) evaluates the
thread identifier in term throwTo t1 ξ, which reduces to throwTo t2 ξ through
the pure step t1 ⇝ t2. (For simplicity, our model assumes that exceptions
are already evaluated in terms, thus the rules do not need to reduce them).
When the thread identifier is fully evaluated, i.e. it is of the form TId l n, rule
(ThrowTo2) generates event throwl(ξ, n) and returns unit. The rule reflects
the nonblocking behaviour of throwTo, which always succeeds as soon as the
thread identifier is evaluated and regardless of the state of the receiving thread.
This design decision has important security implications that we discuss further
in Section B.5.3. Rule (Catch1) executes the computation t1 in term catch t1 hs.
If during the execution of t1 the computation receives some exception ξ, and
the exception propagates up to the exception handler, then the term reduces to
catch (raise ξ) hs and rules (Catchξ1) and (Catchξ2) determine whether the
exception gets handled or not. In these rules, function first(hs, ξ) searches for
a handler corresponding to exception ξ in the list hs. To do so, the function
traverses the list of exception-handler pairs hs left-to-right until it finds a pair
whose left component is equal to exception ξ. If a handler for that exception
is in the list, i.e. h = first(hs, ξ), then (Catchξ1) passes control to it. If no
handler matches the exception, i.e. ∅ = first(hs, ξ), then rule (Catchξ2) simply
propagates the exception.

72

B.5. Asynchronous Exceptions

Exceptions: ξ
Events: e ::= · · · | throwl(ξ, n)
Values: v ::= · · · | raise ξ
Handlers: hs ::= [] | (ξ, t) : hs
Terms: t ::= · · · | throwTo t ξ | catch t hs

(ThrowTo1)
t1 ⇝ t2

Σ, throwTo t1 ξ
step−−−→ϕ Σ, throwTo t2 ξ

(ThrowTo2)

Σ, throwTo (TId l n) ξ
throwl(ξ,n)−−−−−−−→ϕ Σ, return ()

(Catch1)
Σ1, t1

e−→ϕ Σ2, t2

Σ1, catch t1 hs e−→ϕ Σ2, catch t2 hs

(Catchξ1)
h = first(hs, ξ)

Σ, catch (raise ξ) hs step−−−→ϕ Σ, h

(Catchξ2)
∅ = first(hs, ξ)

Σ, catch (raise ξ) hs step−−−→ϕ Σ, raise ξ

Figure B.10.: Syntax and semantics for asynchronous exceptions

B.5.1. Masking Exceptions

Asynchronous exceptions are typically sent in response to external events such
as user interrupts and exceeding resource limits. These exceptions can disrupt
threads unpredictably, at any moment during their execution, and end up
breaking code invariants and leaving shared data structures in an inconsistent
state. For example, an incoming exception may crash a thread inside a critical
section and cause it to hold a lock indefinitely, without the possibility of cleaning
up. Therefore, writing robust code in the presence of asynchronous exceptions
requires a mechanism to temporarily suppress exceptions in critical sections
that must not be interrupted. Inspired by Marlow, Jones, Moran, and Reppy
[Mar+01], MACasync sports two scoped combinators, mask and unamsk, to

73

B. Securing Asynchronous Exceptions

disable and enable specific exceptions in a given code region, respectively.7

mask :: χ→ MAC l τ → MAC l τ
unmask :: χ→ MAC l τ → MAC l τ

Intuitively, primitive mask ξ t runs computation t with exceptions ξ disabled.
If such an exception is received during the execution of t, the exception is
not dropped, but stored in a buffer of pending exceptions ξs and raised once
the execution goes past the mask instruction. Term unmask ξ t works the
other way around and enables exceptions ξ while executing t. In general,
whether an exception received by a thread should be raised immediately or tem-
porarily suppressed depends on the masking context of the thread. Intuitively,
the masking context at each execution point depends on the (nested) mask
and unmask instructions crossed up to that point. For instance, if program
unmask ξ (mask ξ′ t) receives exception ξ while executing t, and if ξ ̸≡ ξ′ and
t does not contain any mask ξ instruction, then the exception gets raised, i.e.
unmask ξ (mask ξ′ (· · · raise ξ · · ·)).

Figure B.11 presents the sequential semantics of mask and unmask. The
masking context M is a map from exceptions to Booleans, representing a
bit vector that indicates which exceptions can be raised in the reduction
steps. To keep track of exceptions, the sequential relation carries the list of
pending exceptions ξs, on the left, and the list of remaining exceptions ξ′

s on
the right of the arrow. Further, the arrow is annotated with the masking
context of the thread (M). Rules (Mask) and (Unmask) modify the masking
context accordingly via functions mask(M , ξ) = λξ′.ξ ≡ ξ′ ∨ M (ξ′) and
unmask(M , ξ) (analogous). In particular, the rules reduce term mask ξ t
(respectively unmask ξ t) by executing term t with modified mask M2 obtained
from disabling (enabling) exception ξ in the current mask M1, i.e. M2 =
mask(M1, ξ) (M2 = unmask(M1, ξ)). When a nested, masked computation has
completed, either successfully (return t) or not (raise ξ′), rules (Mask1) and
(Maskξ) simply propagate the result.

The masking context M and the list of pending exceptions ξs determine
whether any exception in the list should be raised or not. To reflect that, we need
to adapt the semantics rules for most constructs of the calculus. Figure B.12
shows the modifications for the monadic bind (>>=). (The rules for the other
constructs are modified in a similar way, we refer the reader to the Agda
mechanization for details).

7Even though these primitives take only a single exception as an argument, they are equivalent
to the multi-exception variants used in Section B.3, i.e. mask [ξ1, ξ2] t behaves exactly
like mask ξ1 (mask ξ2 t).

74

B.5. Asynchronous Exceptions

Mask: M ∈ χ→ Bool
Terms: t ::= · · · | mask ξ t | unmask ξ t
Exception list: ξs ::= [] | (ξ : ξs)

(Mask)
M2 = mask(M1, ξ) Σ1, t1, ξs

e−→(ϕ,M2) Σ2, t2 ξ′
s

Σ1, mask ξ t1, ξs
e−→(ϕ,M1) Σ2, mask ξ t2, ξ′

s

(Unmask)
M2 = unmask(M1, ξ) Σ1, t1, ξs

e−→(ϕ,M2) Σ2, t2, ξ′
s

Σ1, unmask ξ t1, ξs
e−→(ϕ,M1) Σ2, unmask ξ t2, ξ′

s

(Mask1)

Σ, mask ξ (return t), ξs
step−−−→(ϕ,M) Σ, return t, ξs

(Maskξ)

Σ, mask ξ (raise ξ′), ξs
step−−−→(ϕ,M) Σ, raise ξ′, ξs

Figure B.11.: Syntax and semantics of mask (unmask is similar)

First, we define function unmaskedξ′
s
(M , ξs), which extracts from the list of

pending exceptions ξs the first exception ξ that is unmasked in M , i.e. such
that ¬ M (ξ), The function walks down the list recursively and accumulates the
exceptions ξ that are masked in M , i.e. such that M (ξ), in the list ξ′

s, which is
then returned together with the rest of the list ξs, when an unmasked exception
is found. If all the exceptions in the list are masked, the function simply returns
∅.

unmaskedξ′
s
(M , ξs) =

∅ if ξs = []
(ξ, ξ′

s ++ ξ′′
s) if ξs = ξ : ξ′′

s and ¬ M (ξ)
unmasked(ξ′

s++[ξ])(M , ξ′′
s) if ξs = ξ : ξ′′

s and M (ξ)

In the elimination rules of the semantics, we apply function unmasked[](M , ξs)
to determine whether a pending exception should be raised. For example, if all
exceptions are masked, i.e. unmasked[](M , ξs) = ∅, then rule (Bind2) steps as
usual. In contrast, if an unmasked exception is pending, i.e. unmasked[](M , ξs) =

75

B. Securing Asynchronous Exceptions

(Bind-Raise)
unmasked[](M , ξs) = (ξ, ξ′

s)

Σ, return t1 >>= t2, ξs
step−−−→(ϕ,M) Σ, raise ξ, ξ′

s

(Bind2)
unmasked[](M , ξs) = ∅

Σ, return t1 >>= t2, ξs
step−−−→(ϕ,M) Σ, t2 t1, ξs

(Bindξ)

Σ, raise ξ >>= t, ξs
step−−−→(ϕ,M) Σ, raise ξ, ξs

Figure B.12.: Masking semantics of bind (>>=)

(ξ, ξ′
s), rule (Bind-Raise) raises it, i.e. raise ξ, and the thread steps with buffer

ξ′
s where exception ξ has been removed.
Once raised, exceptions propagate unconditionally via rule (Bindξ), i.e. no

further exceptions are raised until the current one is handled.

B.5.2. Concurrency and Synchronization Variables

The modifications needed for supporting asynchronous exceptions in the con-
current semantics are minimal. Figure B.14 extends the thread state th with
the list of pending exceptions ξs and the initial masking context M . When
a thread forks, the child thread inherits the masking context of the parent
thread and runs with an initially empty list of exceptions. New rule (Throw)
processes event throwl′(ξ, n′) by delivering exception ξ to the thread (t, ξ′

s, M ′)
identified by (l′, n′). Since exceptions are processed in the same order as they
are delivered, the rule inserts ξ at the end of the buffer ξ′

s, i.e. ξ′
s ++ [ξ].

Next, we introduce new rules that capture precisely the interaction between
synchronization variables and asynchronous exceptions. As we explained be-
fore, Concurrent Haskell by design allows specific blocking operations to be
interrupted by asynchronous exceptions, even if they are masked [Mar+01].
Therefore, our semantics resumes threads stuck on synchronization variables if
any exception is pending. The rules in Figure B.13 formalize this requirement for
primitive takeMVar , the rules for putMVar are symmetric. Rule (Take1) cov-
ers the case where no unmasked exception is pending, i.e. unmasked[](M , ξs) = ∅,
and the thread can step because the variable is full, i.e. (l, n) 7→ L t M ∈ Σ, and

76

B.5. Asynchronous Exceptions

(Take1)
(l, n) 7→ L t M ∈ Σ unmasked[](M , ξs) = ∅ Σ′ = Σ[(l, n) 7→ ⊗]

Σ, takeMVar (MVar l n), ξs
step−−−→(ϕ,M) Σ′, return t, ξs

(Take-Raise-Unmasked)
(l, n) 7→ c ∈ Σ unmasked[](M , ξs) = (ξ, ξ′

s)

Σ, takeMVar (MVar l n), ξs
step−−−→(ϕ,M) Σ, raise ξ, ξ′

s

(Take-Raise-Masked)
(l, n) 7→ ⊗ ∈ Σ unmasked[](M , ξs) = ∅ ξs = ξ : ξ′

s

Σ, takeMVar (MVar l n), ξs
step−−−→(ϕ,M) Σ, raise ξ, ξ′

s

Figure B.13.: Synchronization variables and exceptions

Thread: th ::= (t, ξs, M)

(Throw)

ϕ = nextId(Θ1) Σ, t1, ξs
throwl′ (ξ,n′)−−−−−−−−→(ϕ,M) Σ, t2, ξs

Θ2 = Θ1[(l, n) 7→ (t2, ξs, M)] (l′, n′) 7→ (t, ξ′
s, M ′) ∈ Θ2

l, n ⊢ ⟨Σ, Θ1[(l, n) 7→ (t1, ξs, M)]⟩ ↪→ ⟨Σ, Θ2[(l′, n′) 7→ (t, ξ′
s ++ [ξ], M ′)]⟩

Figure B.14.: Extended concurrent semantics for asynchronous exceptions

thus the rule returns its content t and empties the variable, i.e. Σ[(l, n) 7→ ⊗].
On the other hand, in rule (Take-Raise-Unmasked), an unmasked exception
is pending, i.e. unmasked[](M , ξs) = (ξ, ξ′

s), thus, regardless of the variable
being full or empty, i.e. (l, n) 7→ c ∈ Σ, the rule aborts the computa-
tion and raises the exception ξ without modifying the store. Lastly, in rule
(Take-Raise-Masked), the variable is empty, i.e. (l, n) 7→ ⊗ ∈ Σ, and
the thread should block and get stuck. However, an exception ξ is pending
in the buffer ξs, i.e. ξs = ξ : ξ′

s, therefore—regardless of the masking context
M—the thread is resumed by raising exception ξ. In the rule, the condition
unmasked[](M , ξs) = ∅ reveals that the pending exception that gets raised is
masked and ensures that the semantics is deterministic. Without this premise,
a thread with both unmasked and masked exceptions pending in its buffer could

77

B. Securing Asynchronous Exceptions

either step via rule (Take-Raise-Unmasked) and raise the first unmasked
exception, or via rule (Take-Raise-Masked) and raise the first masked excep-
tion. The condition above removes the nondeterminism: if both masked and
unmasked exceptions are pending, the first unmasked exception is raised via
rule (Take-Raise-Unmasked).

B.5.3. Design Choices and Security

In this part we motivate some of the design choices that are key to the security
guarantees of MACasync and that, we believe, can help programmers to write
code that is more robust to asynchronous exceptions.

API of throwTo The type of throwTo (Figure B.9) restricts how threads are
permitted to communicate asynchronously with each other to enforce security.
Imagine an unrestricted version of throwTo called throwToleaky, which—in
clear violation of the no write-down security rule—allows secret threads to
send exceptions to public threads. If MACasync exposed this leaky primitive,
then an attacker could exploit it to leak secret data to a public thread through
classic implicit flows attacks:

do tidL ← forkL (do catch loop [(ξ, printL 1)])
← forkH (do s← unlabel secret

if s then throwToleaky tidL ξ
else return ())

The code above forks two threads, a public thread that waits for an asynchronous
exception in a loop, and a secret thread that branches on secret data and sends
an exception to the public thread in one branch. Since the secret thread sends
an exception to the public thread only when the secret is true, the attacker
can easily learn its value by simply monitoring the public output of the public
thread, which prints 1 only when an exception is raised. MACasync rejects
such attacks by statically enforcing the no write-down rule in the API of
throwTo, which would make the code above ill-typed.

Asynchronous throwTo In MACasync, primitive throwTo is itself an asyn-
chronous operation. As rule (ThrowTo2) in Figure B.10 shows, primitive
throwTo always returns immediately, without waiting for the receiver thread
to raise the exception. This design choice follows a previous line of work on
asynchronous exceptions for Haskell [Mar+01], where the authors argue that
the asynchronous semantics is easier to implement. Maybe surprisingly, the

78

B.5. Asynchronous Exceptions

current implementation of Concurrent Haskell with asynchronous exception
in the GHC runtime provides only a synchronous version of throwTo.8 Would
MACasync be secure with a synchronous primitive throwTosync? No, unfor-
tunately the possibility of two threads synchronizing by throwing exceptions
opens a new covert channel. Consider the following example, where throwTosync

has synchronous semantics, i.e. throwTosync blocks the sender thread until the
exception is raised in the receiver thread.

do tidH ← forkH (do s← unlabel secret
if s then mask ξ loop else loop)

no_ops
throwTosync tidH ξ
printL 0

In the code above, the main public thread forks a secret thread, which branches
on secret data and in one branch enters the masked block mask ξ loop. After
waiting for a sufficient amount of time through no_ops, the public thread sends
exception ξ synchronously to the secret thread. If the secret thread is looping
in the masked block, the exception ξ will never be raised, causing the public
thread to block forever on throwTosync and thus suppressing the final public
output printL 0. Then, the attacker can learn the value of the secret by simply
observing (the lack of) the output 0 on the public channel.

As discussed in Section B.2 for MVar , synchronous communication primitives
perform both read and write side-effects, therefore throwTosync cannot operate
securely between threads at different security levels. Even though Concurrent
Haskell provides only the equivalent of throwTosync, we can still derive
a secure asynchronous implementation for throwTo by internally forking an
isolated thread that calls the unsafe throwTosync, i.e. we define throwTo t ξ as
fork (throwTosync t ξ ≫ return ()).

Reliable Exception Delivery In MACasync, threads store the received excep-
tions in the buffer where they remain until raised. Importantly, the exceptions
are raised following the order in which they have been delivered, thus enabling
threads to react to signals in the same order as they arise. Even though multi-
ple exceptions can be pending in the buffer, our semantics ensures that new
exceptions are not raised while the thread is in an exceptional state. This choice
eliminates, by design, the risk of multiple simultaneous exceptions disrupting
critical code in unpredictable ways. Once handled via the matching exception

8https://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Exception.
html#v:throwTo

79

https://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Exception.html#v:throwTo
https://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Exception.html#v:throwTo

B. Securing Asynchronous Exceptions

handler, the code resumes normal execution and any other pending exception
may be raised. This ensures that all remaining exceptions, if not masked, will
eventually be raised.

B.5.4. Relation to MAC

MACasync extends MAC with asynchronous exceptions [Vas+18]. MAC
features exception-handling primitives and classic exceptions, but these operate
within individual threads and are intended to signal and recover from exceptional
conditions arising only internally, due to the current state of the computa-
tion. Asynchronous exceptions are more expressive than regular exceptions. In
addition to signaling (external) exceptional conditions, they enable a flexible
signal-based communication mechanism. In MAC, threads can communicate
with each other only synchronously and indirectly, through synchronization
variables. Though possible, this communication mechanism is too cumbersome
to use as it would require programmers to establish an appropriate commu-
nication protocol and change their code heavily, for example to ensure that
all threads that need communicating share the same synchronization variable.
Even worse, communication in this style is limited between threads at the same
security level. In contrast, threads in MACasync can communicate directly,
by sending exceptions to the identifier of the intended receiver thread, and also
to threads at a different, more sensitive security level. MACasync leverages
the mechanization of MAC in its security proofs. Modelling the semantics of
asynchronous exceptions presented in this paper required substantial changes to
the existing artifact. These changes include extending the syntax and semantics
of the previous model with our new primitives, as well as carefully adapting the
existing semantics rules to capture the semantics of interruptible exceptions.

B.6. Security Guarantees
This section shows that MACasync satisfies progress-sensitive noninterference
(PSNI). We begin by describing our proof technique based on term erasure.
Then, we present two lemmas that are key to the progress-sensitive guarantees
of the calculus and sketch the noninterference proof. We refer the interested
reader to the Agda mechanization for detailed proofs.

B.6.1. Term Erasure

Term erasure is a widely used technique to prove noninterference properties
of information-flow control (IFC) languages (e.g. [LZ10; Ste+11b; Ste+12;

80

B.6. Security Guarantees

t t ′

εlA(t) εlA(t ′)

εlA εlA

Figure B.15.: Single-step simulation

Heu+15; BVR15; VR16; Vas+18]). The technique takes its name from the
erasure function, which removes secret data syntactically from program terms.
To this end, the erasure function, written εlA(t), rewrites the subterms of t
above the attacker’s security level lA to special term •, which only reduces to
itself. Once this function is defined, the technique relies on establishing a core
property, a simulation between the execution of terms (and later configurations
as well) and their erased counterpart. The simulation diagram in Figure B.15
illustrates this property for pure terms. The diagram shows that erasing the
confidential parts of term t and then reducing the erased term εlA(t) along the
orange path leads to the same term εlA(t ′) obtained along the blue path by first
stepping from term t to term t ′ and then applying erasure, i.e. the diagram
commutes. Intuitively, if term t leaked while stepping to t ′, then some data
above security level lA would remain in the erased term εlA(t ′), but it would be
erased along the other path, in which t is first erased and then reduced, and
thus the diagram would not commute.

B.6.2. Erasure Function

We define the erasure function for terms in Figure B.16. Since the sensitivity of
many terms is determined by their type, the definition of the erasure function
is type driven, i.e. we write εlA(t :: τ) for the erasure of term t of type τ .
(We omit the type of the term when it is irrelevant). Ground values are
unaffected by the erasure function, e.g. εlA(()) = (), and most terms are erased
homomorphically, e.g. εlA(t1 t2) = εlA(t1) εlA(t2). The content of secret labelled
values is removed, i.e. εlA(Labeled t::Labeled l t) = Labeled • if l ̸⊑ lA, or erased
homomorphically otherwise, i.e. εlA(Labeled t :: Labeled l t) = Labeled εlA(t : τ)
if l ⊑ lA. Notice that terms of type MAC l τ (e.g. mask, unmask) are also
erased homomorphically, despite the fact that the computation may be sensitive,
i.e. even if l ̸⊑ lA. (The special erasure for primitive throwTo is explained
below). Should not erasure rewrite these constructs to • ? Intuitively, these
terms represent a description of a sensitive computation, which cannot leak
data until it is inserted in a sequential configuration and executed. Since these

81

B. Securing Asynchronous Exceptions

terms can only execute when fetched from a thread pool, it is then sufficient to
erase thread pools appropriately.

We define the erasure function for configurations, stores, thread pools, and
thread states in Figure B.17. Configurations are erased component-wise, i.e.
εlA(⟨Σ, Θ⟩) = ⟨εlA(Σ), εlA(Θ)⟩. Thread pools Θ containing secret threads are
entirely removed by the erasure function, i.e. εlA(Θ)(l) = • if l ̸⊑ lA, while those
containing thread pools are erased homomorphically, i.e. εlA(Θ)(l) = εlA(Θ(l))
if l ⊑ lA, where εlA([]) = [] and εlA(th, Ts) = (εlA(th), εlA(Ts)). (The erasure
function for memory stores and segments is similar). When some secret thread
gets scheduled from an erased thread pool •, a dummy thread (•, [], λ .False)
runs instead and simply loops. However, rewriting secret thread pools to • can
disrupt operations involving thread identifiers. For example, an erased public
thread using primitive throwTo to communicate with a secret thread gets stuck,
since rule (Throw) would try to deliver an exception into thread pool •. To
recover from this situation, we apply the two-step erasure technique [VR16].
This technique rewrites problematic terms, e.g. throwTo, to special, •-annotated
erased terms added to the calculus, i.e. throwTo•. The semantics of these new
terms is then defined precisely to re-establish the core simulation property
fundamental for security (Figure B.15). For example, term throwTo• t ξ reduces
just like throwTo in rules (ThrowTo1) and (ThrowTo2), thus respecting the
simulation property of the sequential semantics. However, instead of generating
a regular event throwlH(ξ, n), which would get the concurrent configuration
stuck in rule (Throw), it generates a new event throw•lH(ξ). Similarly, this
event is handled by a new rule of the concurrent semantics, which simply drops
the exception (no thread labelled lH ̸⊑ lA can receive it), thus completing the
simulation diagram of the concurrent step (Throw).

B.6.3. Progress-Sensitive Noninterference
The proof of progress-sensitive noninterference (PSNI) builds on two key prop-
erties of the concurrent relation: deterministic reduction and erased simulation.

Lemma B.6.1 (Deterministic Reduction). If c1 ↪→ c2 and c1 ↪→ c3, then
c2 ≡ c3.

The symbol ≡ above denotes syntactic equality up to α-renaming, in our
mechanized proofs we use De Bruijn indexes and syntactic equality. Determin-
ism of the concurrent semantics is important for security, because it eliminates
scheduler refinement attacks [RS06].

The second lemma that we prove relates the reduction step of a thread in the
concurrent semantics with the corresponding erased thread. If the security level

82

B.6. Security Guarantees

εlA(()) = ()
εlA(t1 t2) = εlA(t1) εlA(t2)
εlA(Labeled t :: Labeled l t)

=
{

Labeled εlA(t) if lH ⊑ lA

Labeled • otherwise
εlA(mask ξ t) = mask ξ εlA(t)
εlA(unmask ξ t) = unmask ξ εlA(t)
εlA(throwTo (t :: TId lH) ξ :: MAC lL ())

=
{

throwTo εlA(t) ξ if lH ⊑ lA

throwTo• εlA(t) ξ otherwise

Figure B.16.: Erasure of terms (excerpts)

l of the thread is below the level of the attacker, i.e. l ⊑ lA, then we construct
a simulation diagram similar to that of Figure B.15, but for concurrent steps.
Instead, if the security level of the thread is not observable by the attacker, i.e.
l ̸⊑ lA, then the configurations before and after the step are indistinguishable to
the attacker. This indistinguishability relation is called lA-equivalence, written
c1 ≈lA c2, and defined as the kernel of the erasure function (Figure B.17), i.e.
εlA(c1) ≡ εlA(c2).

Lemma B.6.2 (Erased Simulation). Given a concurrent reduction step l, n ⊢
c1 ↪→ c′

1 then

• l, n ⊢ εlA(c1) ↪→ εlA(c′
1), if l ⊑ lA, or

• c1 ≈lA c′
1, if l ̸⊑ lA

Using Lemmas B.6.1 and B.6.2, we prove PSNI, where symbol ↪→∗ denotes
the transitive reflexive closure of ↪→ as usual.

Theorem B.6.1 (Progress-Sensitive Noninterference). Given two well-typed
concurrent configurations c1 and c2, such that c1 ≈lA c2, and a reduction step
l, n ⊢ c1 ↪→ c′

1, then there exists a configuration c′
2 such that c′

1 ≈lA c′
2 and

c2 ↪→∗ c′
2.

Proof. By cases on l ⊑ lA.

83

B. Securing Asynchronous Exceptions

εlA(⟨Σ, Θ⟩) = ⟨εlA(Σ), εlA(Θ)⟩

εlA(Σ)(l) =
{

εlA(S) if l ⊑ lA and S = Σ(l)
• otherwise

εlA(Θ)(l) =
{

εlA(Ts) if l ⊑ lA and Ts = Θ(l)
• otherwise

εlA((t, ξs, M)) = (εlA(t), ξs, M)

Figure B.17.: Erasure of configurations (excerpts)

If l ⊑ lA then in the configuration c2 there is an lA-equivalent thread identified
by (l, n). Before that thread runs, however, there can be a finite number of high
threads in c2 scheduled before (l, n). After the high threads run, i.e. c2 ↪→∗ c′′

2 ,
for some configuration c′′

2 , the low thread is scheduled again, i.e. l, n ⊢ c′′
2 ↪→ c′

2,
for some other configuration c′

2. From Lemma B.6.2 (erased simulation) applied
to the first set of steps, we obtain c2 ≈lA c′′

2 (all these steps involve threads
above the attacker’s level) and then c1 ≈lA c′′

2 follows by transitivity of the
lA-equivalence relation. Then, we apply Lemma B.6.2 again and conclude that
l, n ⊢ εlA(c′′

2) ↪→ εlA(c′
2), since l ⊑ lA as well as l, n ⊢ εlA(c1) ↪→ εlA(c′

1).
By definition of lA-equivalence, we derive εlA(c1) ≡ εlA(c′′

2) from c1 ≈lA c′′
2 and

from Lemma B.6.1 (deterministic reduction) we conclude that εlA(c′
1) ≡ εlA(c′

2),
i.e. c′

1 ≈lA c′
2.

If l ̸⊑ lA, then we apply Lemma B.6.2 and obtain c1 ≈lA c′
1, thus c′

1 ≈lA c′
2

for c′
2 = c2 by reflexivity and transitivity of lA-equivalence.

B.7. Related Work

Asynchronous Exceptions Mechanisms Asynchronous exceptions and signals
allow developers to implement key functionalities of real world systems (e.g.
speculative computation, timeouts, user interrupts, and enforcing resources
bounds) robustly [Mar+01; Mar17]. Surprisingly, support for asynchronous ex-
ceptions in concurrent programming languages differ considerably. For example,
Java has deprecated fully asynchronous methods to stop, suspend, and resume
threads because they can too easily break programs invariants without hope of
recovery [Ora20]. Similarly, the interaction between synchronous exceptions
and signals makes it hard to write robust signal handlers in Python [FM02].
Lacking robust asynchronous primitives, several programming languages and

84

B.7. Related Work

operating systems (e.g. Java, Modula3, and POSIX-compliant OS’s) rely on
semi-asynchronous communication as a workaround. With this approach, a
thread sends a signal to another by setting special flags that must be polled
periodically by the receiver. Even though programming in this model is less
convenient, we believe that the principles proposed in this paper could be
adapted for semi-asynchronous communication. The Standard ML of New Jer-
sey (SML/NJ) features asynchronous signaling mechanisms based on first-class
continuations [Rep90]. When a thread receives a signal, control is passed to
the corresponding handler together with the interrupted state of the thread
as a continuation. Then, the handler may decide to resume the execution of
the interrupted thread or pass control to another thread. Erlang implements
a special kind of asynchronous signaling. Threads can monitor each other
through bidirectional links, which propagate the exit code of a thread to the
other [Arm03]. Multicore OCaml support asynchronous exceptions through
algebraic effects and effects handlers [Dol+17]. Syme, Petricek, and Lomov
[SPL11] extend F# with an asynchronous modality that changes the seman-
tics of control-flow operators to use continuations, thus sparing programmers
from writing asynchronous code in continuation-passing style. Bierman, Russo,
Mainland, Meijer, and Torgersen [Bie+12] port this approach to C# and addi-
tionally formalize it with a direct operational semantics and prove type-safety.
Inoue, Aotani, and Igarashi [IAI18] provide interruptible executions in Scala
for context-aware (reactive) programming via an embedded domain specific
language based on workflows. Concurrent Haskell supports asynchronous
exceptions with scoped (un)masking combinators [Mar+01] and MACasync
relies on them to provide secure API to untrusted code.

Semantics of Asynchronous Exceptions Jones, Reid, Henderson, Hoare,
and Marlow [Jon+99] present a semantics framework for reasoning about the
correctness of compiler optimizations in the presence of (imprecise) exceptions
for Haskell. Their framework can capture asynchronous exceptions as well, but
it is based on denotational semantics and thus not suitable for reasoning about
covert channels. Marlow, Jones, Moran, and Reppy [Mar+01] were the first to
develop an operational semantics for asynchronous exceptions, which inspired
ours and which we have extended to model fine-grained exception handlers.
Their semantics is based on evaluation contexts [FH92], while ours is small-step
to leverage the existing formalization and mechanization of MAC [Vas+18;
VR16; VBR17]. Hutton and Wright [HW07] study an operational semantics for
interrupts in the context of a basic terminating language without concurrency
and I/O. Their goal is exploratory: they want to formally justify the source

85

B. Securing Asynchronous Exceptions

level semantics with respect to its compilation to a low-level language. Harrison,
Allwein, Gill, and Procter [Har+08] identify asynchronous exceptions as a
computational effect and formalize them in a modular monadic model.

Covert Channels and Countermeasures Several runtime system features
create subtle covert channels that weaken and sometimes completely break
the security guarantees of IFC languages. When memory is shared between
computations at different security levels, garbage collection cycles leak informa-
tion via timing, even across network connections [PA17]. To close this channel,
memory should be partitioned by security level and each memory partition
should be managed by an independent timing-sensitive garbage collector (see
the garbage collector implemented in Zee for an example [PA19]). Lazy eval-
uation introduces a software level cache in the runtime system which creates
an internal timing channel in concurrent Haskell IFC libraries [BR13]. To
close this channel, Vassena, Breitner, and Russo [VBR17] design a runtime
system primitive that restricts sharing between threads at different security
levels. The same primitive can close the lazy covert channel in MACasync.
General purpose runtime system automatically balance computing resources
(CPU time, memory and cores) between running threads to achieve fairness, but,
by doing so on multicore systems, they also internalize many external timing
covert channels [Vas+19]. LIOPAR is a runtime system design that recovers
security in multicore systems by making resource management hierarchical and
explicit at the programming language level. Even though in LIOPAR parent
threads send asynchronous signals to kill children and reclaim computing re-
sources, LIOPAR does not support fine-grained exception handlers and masking
primitives. Language-based predictive mitigation is a general technique to
bound the leakage of timing channels (e.g. arising due to hardware caches) in
programs [ZAM12]. Thibault and Askarov [TA17] optimize this technique for a
sequential programming language with asynchronous I/O, but their approach
does not consider concurrency and asynchronous exceptions. Interruptible
enclaves have been the target of several interrupt-based attacks [BPS17; He+18;
BPS18] and Busi, Noorman, Bulck, Galletta, Degano, Mühlberg, and Piessens
[Bus+20] propose full abstraction [Aba99] as the desirable security criterion for
extending processor with interruptible enclaves securely. Our security criterion
(PSNIe) is simpler to prove and aligns with the expected security guarantees of
MACasync. Intuitively, Busi, Noorman, Bulck, Galletta, Degano, Mühlberg,
and Piessens [Bus+20] prove a more complex criterion because it ensures that
the extended processor has no more vulnerabilities than the original, but that
does not imply that neither processor satisfies some specific security property.

86

B.8. Conclusions and Future Work

Secure Runtime Systems and Abstractions Systems that by design run
untrusted programs (e.g. mobile code and plugins) must place adequate security
mechanisms to impede buggy or malicious code from exhausting all available
computing resources. KaffeOS is an extension of the Java runtime system that
isolates processes and manage their computing resources (memory and CPU
time) to prevent abuse [BH05]. When a process exceeds its resource budget,
KaffeOS kills it and reclaims its resources without affecting the integrity of the
system. Cinder is an operating system for mobile devices that provides reserves
and taps abstractions for storing and distributing energy [Roy+11]. Using these
abstractions, applications can delegate and subdivide their energy quota while
maintaining energy isolation. Yang and Mazières [YM14] extend GHC runtime
systems with resource containers, an abstraction that enforce dynamic space
limits according to an allocator-pays semantics. None of these systems enforce
information flow policies except for Cinder, but we believe that secure API
for asynchronous exceptions like those of MACasync could represent a basic
building block to enforce them reliably.

Zee is an IFC language for implementing secure (timing-sensitive) runtime
systems [PA19]. The lack of asynchronous exceptions in Zee complicates the
implementation of certain runtime system components, but we believe that Zee
could support them by applying the insights from this work. An interesting
line of work aims at exposing safe high-level API to allow users to reprogram
features of the runtime systems, e.g. concurrency primitives [Li+07], multicore
schedulers [Siv+16], and kill-safe abstractions [FF04]. We believe that the
primitives designed to remove covert channels in GHC and other runtime
systems discussed above could be implemented following this approach.

B.8. Conclusions and Future Work

This work presents the first IFC language that support asynchronous excep-
tions securely. Embedded in Haskell, the IFC library MACasync provides
primitives for fine-grained masking and unmasking of asynchronous exceptions,
which enable useful programming patterns, that we showcased with two ex-
amples. We have formalized MACasync in 3,000 lines of Agda and proved
progress-sensitive noninterference.

As future work, we plan to use MACasync to reason about the delivery
of OS signals to threads. Specially, we will explore OS signals dedicated to
alert about exhaustion of resources that cannot be easily partitioned (e.g. the
battery in an IoT board). This scenario will demand the OS—which can be
thought as just another thread—to send signals from higher to lower levels in

87

B. Securing Asynchronous Exceptions

the security lattice, thus opening up an information leakage channel which, we
believe, needs to be mitigated.

Another direction for future work consists on using MACasync to build
realistic systems. For instance, we expect MACasync to be able to provide an
IFC-aware interface for GHC to control CPU usage by leveraging on previous
work [Li+07; Siv+16]. Moreover, building realistic systems often involves
mutually distrusts principals, where we expect privileges [Ste+11a; Way+15]
to restrict untrusted code from abusing our selective mask mechanism.

Acknowledgements
This work was funded by the Swedish Foundation for Strategic Research (SSF)
under the project WebSec (Ref. RIT17-0011) and Octopi (Ref. RIT17-0023) as
well as the Swedish research agency Vetenskapsrådet. This work was partially
supported by the German Federal Ministry of Education and Research (BMBF)
through funding for the CISPA-Stanford Center for Cybersecurity.

Bibliography
[Aba99] Martín Abadi. “Protection in Programming-Language Transla-

tions”. In: Secure Internet Programming, Security Issues for Mobile
and Distributed Objects. Ed. by Jan Vitek and Christian Damsgaard
Jensen. Vol. 1603. Lecture Notes in Computer Science. Springer,
1999, pp. 19–34. doi: 10.1007/3-540-48749-2_2. url: https:
//doi.org/10.1007/3-540-48749-2%5C_2 (cit. on p. 86).

[Abe+05] Andreas Abel, Guillaume Allais, Jesper Cockx, Nils Anders Daniels-
son, Philipp Hausmann, Fredrik Nordvall Forsberg, Ulf Norell,
Víctor López Juan, Andrés Sicard-Ramírez, and Andrea Vezzosi.
Agda 2. 2005–. url: https://wiki.portal.chalmers.se/agda/
pmwiki.php (cit. on p. 58).

[Arm03] Joe Armstrong. “Making reliable distributed systems in the presence
of hardware errors”. PhD thesis. The Royal Institute of Technology
Stockholm, Sweden, 2003 (cit. on p. 85).

[BH05] Godmar Back and Wilson C. Hsieh. “The KaffeOS Java runtime
system”. In: ACM Trans. Program. Lang. Syst. 27.4 (2005), pp. 583–
630. doi: 10.1145/1075382.1075383. url: https://doi.org/10.
1145/1075382.1075383 (cit. on p. 87).

88

https://doi.org/10.1007/3-540-48749-2_2
https://doi.org/10.1007/3-540-48749-2%5C_2
https://doi.org/10.1007/3-540-48749-2%5C_2
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/1075382.1075383
https://doi.org/10.1145/1075382.1075383
https://doi.org/10.1145/1075382.1075383

Bibliography

[Bie+12] Gavin M. Bierman, Claudio V. Russo, Geoffrey Mainland, Erik
Meijer, and Mads Torgersen. “Pause ’n’ Play: Formalizing Asyn-
chronous C#”. In: ECOOP 2012 - Object-Oriented Programming
- 26th European Conference, Beijing, China, June 11-16, 2012.
Proceedings. Ed. by James Noble. Vol. 7313. Lecture Notes in Com-
puter Science. Springer, 2012, pp. 233–257. doi: 10.1007/978-3-
642-31057-7_12. url: https://doi.org/10.1007/978-3-642-
31057-7%5C_12 (cit. on p. 85).

[BL96] David Elliott Bell and Leonard J. LaPadula. “Secure Computer
Systems: A Mathematical Model, Volume II”. In: J. Comput. Secur.
4.2/3 (1996), pp. 229–263 (cit. on p. 61).

[BPS17] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Control”.
In: Proceedings of the 2nd Workshop on System Software for Trusted
Execution, SysTEX@SOSP 2017, Shanghai, China, October 28,
2017. ACM, 2017, 4:1–4:6. doi: 10.1145/3152701.3152706. url:
https://doi.org/10.1145/3152701.3152706 (cit. on p. 86).

[BPS18] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU In-
terrupt Logic”. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018. Ed. by David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang. ACM,
2018, pp. 178–195. doi: 10.1145/3243734.3243822. url: https:
//doi.org/10.1145/3243734.3243822 (cit. on p. 86).

[BR13] Pablo Buiras and Alejandro Russo. “Lazy Programs Leak Secrets”.
In: Secure IT Systems - 18th Nordic Conference, NordSec 2013,
Ilulissat, Greenland, October 18-21, 2013, Proceedings. Ed. by
Hanne Riis Nielson and Dieter Gollmann. Vol. 8208. Lecture Notes
in Computer Science. Springer, 2013, pp. 116–122. doi: 10.1007/
978-3-642-41488-6_8. url: https://doi.org/10.1007/978-
3-642-41488-6%5C_8 (cit. on pp. 57, 62, 86).

[Bus+20] Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pier-
paolo Degano, Jan Tobias Mühlberg, and Frank Piessens. “Provably
Secure Isolation for Interruptible Enclaved Execution on Small Mi-
croprocessors”. In: 33rd IEEE Computer Security Foundations Sym-
posium, CSF 2020, Boston, MA, USA, June 22-26, 2020. IEEE,
2020, pp. 262–276. doi: 10.1109/CSF49147.2020.00026. url:

89

https://doi.org/10.1007/978-3-642-31057-7_12
https://doi.org/10.1007/978-3-642-31057-7_12
https://doi.org/10.1007/978-3-642-31057-7%5C_12
https://doi.org/10.1007/978-3-642-31057-7%5C_12
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1007/978-3-642-41488-6_8
https://doi.org/10.1007/978-3-642-41488-6_8
https://doi.org/10.1007/978-3-642-41488-6%5C_8
https://doi.org/10.1007/978-3-642-41488-6%5C_8
https://doi.org/10.1109/CSF49147.2020.00026

B. Securing Asynchronous Exceptions

https : / / doi . org / 10 . 1109 / CSF49147 . 2020 . 00026 (cit. on
p. 86).

[BVR15] Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. “HLIO:
mixing static and dynamic typing for information-flow control in
Haskell”. In: Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver,
BC, Canada, September 1-3, 2015. Ed. by Kathleen Fisher and
John H. Reppy. ACM, 2015, pp. 289–301. doi: 10.1145/2784731.
2784758. url: https://doi.org/10.1145/2784731.2784758
(cit. on p. 81).

[Den76] Dorothy E. Denning. “A Lattice Model of Secure Information Flow”.
In: Commun. ACM 19.5 (1976), pp. 236–243. doi: 10.1145/360051.
360056. url: https://doi.org/10.1145/360051.360056 (cit. on
p. 60).

[Dol+17] Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Mad-
havapeddy, K. C. Sivaramakrishnan, and Leo White. “Concurrent
System Programming with Effect Handlers”. In: Trends in Func-
tional Programming - 18th International Symposium, TFP 2017,
Canterbury, UK, June 19-21, 2017, Revised Selected Papers. Ed. by
Meng Wang and Scott Owens. Vol. 10788. Lecture Notes in Com-
puter Science. Springer, 2017, pp. 98–117. doi: 10.1007/978-3-
319-89719-6_6. url: https://doi.org/10.1007/978-3-319-
89719-6%5C_6 (cit. on p. 85).

[Fer+18] Andrew Ferraiuolo, Mark Zhao, Andrew C. Myers, and G. Ed-
ward Suh. “HyperFlow: A Processor Architecture for Nonmalleable,
Timing-Safe Information Flow Security”. In: Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018.
Ed. by David Lie, Mohammad Mannan, Michael Backes, and Xi-
aoFeng Wang. ACM, 2018, pp. 1583–1600. doi: 10.1145/3243734.
3243743. url: https://doi.org/10.1145/3243734.3243743
(cit. on p. 57).

[FF04] Matthew Flatt and Robert Bruce Findler. “Kill-safe synchronization
abstractions”. In: Proceedings of the ACM SIGPLAN 2004 Confer-
ence on Programming Language Design and Implementation 2004,
Washington, DC, USA, June 9-11, 2004. Ed. by William W. Pugh
and Craig Chambers. ACM, 2004, pp. 47–58. doi: 10.1145/996841.

90

https://doi.org/10.1109/CSF49147.2020.00026
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1007/978-3-319-89719-6_6
https://doi.org/10.1007/978-3-319-89719-6_6
https://doi.org/10.1007/978-3-319-89719-6%5C_6
https://doi.org/10.1007/978-3-319-89719-6%5C_6
https://doi.org/10.1145/3243734.3243743
https://doi.org/10.1145/3243734.3243743
https://doi.org/10.1145/3243734.3243743
https://doi.org/10.1145/996841.996849
https://doi.org/10.1145/996841.996849
https://doi.org/10.1145/996841.996849

Bibliography

996849. url: https://doi.org/10.1145/996841.996849 (cit. on
pp. 57, 87).

[FH92] Matthias Felleisen and Robert Hieb. “The Revised Report on the
Syntactic Theories of Sequential Control and State”. In: Theor.
Comput. Sci. 103.2 (1992), pp. 235–271. doi: 10 . 1016 / 0304 -
3975(92) 90014 - 7. url: https : / / doi . org / 10 . 1016 / 0304 -
3975(92)90014-7 (cit. on p. 85).

[FM02] Stephen N. Freund and Mark P. Mitchell. Safe Asynchronous Ex-
ceptions For Python. Tech. rep. Williams College, 2002 (cit. on
pp. 58, 84).

[GM84] Richard P. Gabriel and John McCarthy. “Queue-based Multi-pro-
cessing Lisp”. In: Proceedings of the 1984 ACM Conference on LISP
and Functional Programming, LFP 1984, Austin, Texas, USA, Au-
gust 5-8, 1984. Ed. by Robert S. Boyer, Edward S. Schneider, and
Guy L. Steele Jr. ACM, 1984, pp. 25–44. doi: 10.1145/800055.
802019. url: https://doi.org/10.1145/800055.802019 (cit. on
p. 58).

[Har+08] William L. Harrison, Gerard Allwein, Andy Gill, and Adam M.
Procter. “Asynchronous Exceptions as an Effect”. In: Mathematics
of Program Construction, 9th International Conference, MPC 2008,
Marseille, France, July 15-18, 2008. Proceedings. Ed. by Philippe
Audebaud and Christine Paulin-Mohring. Vol. 5133. Lecture Notes
in Computer Science. Springer, 2008, pp. 153–176. doi: 10.1007/
978-3-540-70594-9_10. url: https://doi.org/10.1007/978-
3-540-70594-9%5C_10 (cit. on p. 86).

[He+18] Wenjian He, Wei Zhang, Sanjeev Das, and Yang Liu. “SGXlinger:
A New Side-Channel Attack Vector Based on Interrupt Latency
Against Enclave Execution”. In: 36th IEEE International Con-
ference on Computer Design, ICCD 2018, Orlando, FL, USA,
October 7-10, 2018. IEEE Computer Society, 2018, pp. 108–114.
doi: 10.1109/ICCD.2018.00025. url: https://doi.org/10.
1109/ICCD.2018.00025 (cit. on p. 86).

[Hed+14] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld.
“JSFlow: tracking information flow in JavaScript and its APIs”. In:
Symposium on Applied Computing, SAC 2014, Gyeongju, Republic
of Korea - March 24 - 28, 2014. Ed. by Yookun Cho, Sung Y. Shin,
Sang-Wook Kim, Chih-Cheng Hung, and Jiman Hong. ACM, 2014,

91

https://doi.org/10.1145/996841.996849
https://doi.org/10.1145/996841.996849
https://doi.org/10.1145/996841.996849
https://doi.org/10.1145/996841.996849
https://doi.org/10.1145/996841.996849
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1145/800055.802019
https://doi.org/10.1145/800055.802019
https://doi.org/10.1145/800055.802019
https://doi.org/10.1007/978-3-540-70594-9_10
https://doi.org/10.1007/978-3-540-70594-9_10
https://doi.org/10.1007/978-3-540-70594-9%5C_10
https://doi.org/10.1007/978-3-540-70594-9%5C_10
https://doi.org/10.1109/ICCD.2018.00025
https://doi.org/10.1109/ICCD.2018.00025
https://doi.org/10.1109/ICCD.2018.00025

B. Securing Asynchronous Exceptions

pp. 1663–1671. doi: 10.1145/2554850.2554909. url: https:
//doi.org/10.1145/2554850.2554909 (cit. on p. 57).

[Heu+15] Stefan Heule, Deian Stefan, Edward Z. Yang, John C. Mitchell,
and Alejandro Russo. “IFC Inside: Retrofitting Languages with
Dynamic Information Flow Control (Extended Version)”. In: CoRR
abs/1501.04132 (2015). arXiv: 1501.04132. url: http://arxiv.
org/abs/1501.04132 (cit. on p. 81).

[HS12] Daniel Hedin and Andrei Sabelfeld. “A Perspective on Information-
Flow Control”. In: Software Safety and Security - Tools for Analy-
sis and Verification. Ed. by Tobias Nipkow, Orna Grumberg, and
Benedikt Hauptmann. Vol. 33. NATO Science for Peace and Se-
curity Series - D: Information and Communication Security. IOS
Press, 2012, pp. 319–347. doi: 10.3233/978-1-61499-028-4-319.
url: https://doi.org/10.3233/978- 1- 61499- 028- 4- 319
(cit. on p. 58).

[HW07] Graham Hutton and Joel J. Wright. “What is the meaning of
these constant interruptions?” In: J. Funct. Program. 17.6 (2007),
pp. 777–792. doi: 10 . 1017 / S0956796807006363. url: https :
//doi.org/10.1017/S0956796807006363 (cit. on p. 85).

[IAI18] Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi. “Context-
Workflow: A Monadic DSL for Compensable and Interruptible
Executions”. In: 32nd European Conference on Object-Oriented
Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The
Netherlands. Ed. by Todd D. Millstein. Vol. 109. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 2:1–2:33. doi:
10.4230/LIPIcs.ECOOP.2018.2. url: https://doi.org/10.
4230/LIPIcs.ECOOP.2018.2 (cit. on p. 85).

[JGF96] Simon L. Peyton Jones, Andrew D. Gordon, and Sigbjørn Finne.
“Concurrent Haskell”. In: Conference Record of POPL’96: The 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Papers Presented at the Symposium, St. Petersburg
Beach, Florida, USA, January 21-24, 1996. Ed. by Hans-Juergen
Boehm and Guy L. Steele Jr. ACM Press, 1996, pp. 295–308. doi:
10.1145/237721.237794. url: https://doi.org/10.1145/
237721.237794 (cit. on p. 62).

[Jon+99] Simon L. Peyton Jones, Alastair Reid, Fergus Henderson, C. A. R.
Hoare, and Simon Marlow. “A Semantics for Imprecise Exceptions”.
In: Proceedings of the 1999 ACM SIGPLAN Conference on Program-

92

https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2554850.2554909
https://arxiv.org/abs/1501.04132
http://arxiv.org/abs/1501.04132
http://arxiv.org/abs/1501.04132
https://doi.org/10.3233/978-1-61499-028-4-319
https://doi.org/10.3233/978-1-61499-028-4-319
https://doi.org/10.1017/S0956796807006363
https://doi.org/10.1017/S0956796807006363
https://doi.org/10.1017/S0956796807006363
https://doi.org/10.4230/LIPIcs.ECOOP.2018.2
https://doi.org/10.4230/LIPIcs.ECOOP.2018.2
https://doi.org/10.4230/LIPIcs.ECOOP.2018.2
https://doi.org/10.1145/237721.237794
https://doi.org/10.1145/237721.237794
https://doi.org/10.1145/237721.237794

Bibliography

ming Language Design and Implementation (PLDI), Atlanta, Geor-
gia, USA, May 1-4, 1999. Ed. by Barbara G. Ryder and Benjamin
G. Zorn. ACM, 1999, pp. 25–36. doi: 10.1145/301618.301637.
url: https://doi.org/10.1145/301618.301637 (cit. on p. 85).

[Li+07] Peng Li, Simon Marlow, Simon L. Peyton Jones, and Andrew
P. Tolmach. “Lightweight concurrency primitives for GHC”. In:
Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell
2007, Freiburg, Germany, September 30, 2007. Ed. by Gabriele
Keller. ACM, 2007, pp. 107–118. doi: 10.1145/1291201.1291217.
url: https://doi.org/10.1145/1291201.1291217 (cit. on
pp. 57, 87, 88).

[LZ10] Peng Li and Steve Zdancewic. “Arrows for secure information
flow”. In: Theor. Comput. Sci. 411.19 (2010), pp. 1974–1994. doi:
10.1016/j.tcs.2010.01.025. url: https://doi.org/10.1016/
j.tcs.2010.01.025 (cit. on p. 80).

[Mar+01] Simon Marlow, Simon L. Peyton Jones, Andrew Moran, and John
H. Reppy. “Asynchronous Exceptions in Haskell”. In: Proceedings
of the 2001 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Snowbird, Utah, USA, June
20-22, 2001. Ed. by Michael Burke and Mary Lou Soffa. ACM,
2001, pp. 274–285. doi: 10.1145/378795.378858. url: https:
//doi.org/10.1145/378795.378858 (cit. on pp. 58, 64, 67, 73,
76, 78, 84, 85).

[Mar17] Simon Marlow. Asynchronous Exceptions in Practice. Jan. 2017.
url: https : / / simonmar . github . io / posts / 2017 - 01 - 24 -
asynchronous-exceptions.html (cit. on p. 84).

[Mye+06] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong,
and Nathaniel Nystrom. Jif: Java information flow. 2006. url:
https://www.cs.cornell.edu/jif (cit. on p. 57).

[Ora20] Oracle. Java Thread Primitive Deprecation. Oracle. 2020. url:
https://docs.oracle.com/javase/8/docs/technotes/guides/
concurrency/threadPrimitiveDeprecation.html (cit. on pp. 58,
84).

[PA17] Mathias V. Pedersen and Aslan Askarov. “From Trash to Treasure:
Timing-Sensitive Garbage Collection”. In: 2017 IEEE Symposium
on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,
2017. IEEE Computer Society, 2017, pp. 693–709. doi: 10.1109/

93

https://doi.org/10.1145/301618.301637
https://doi.org/10.1145/301618.301637
https://doi.org/10.1145/1291201.1291217
https://doi.org/10.1145/1291201.1291217
https://doi.org/10.1016/j.tcs.2010.01.025
https://doi.org/10.1016/j.tcs.2010.01.025
https://doi.org/10.1016/j.tcs.2010.01.025
https://doi.org/10.1145/378795.378858
https://doi.org/10.1145/378795.378858
https://doi.org/10.1145/378795.378858
https://simonmar.github.io/posts/2017-01-24-asynchronous-exceptions.html
https://simonmar.github.io/posts/2017-01-24-asynchronous-exceptions.html
https://www.cs.cornell.edu/jif
https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
https://doi.org/10.1109/SP.2017.64
https://doi.org/10.1109/SP.2017.64
https://doi.org/10.1109/SP.2017.64

B. Securing Asynchronous Exceptions

SP.2017.64. url: https://doi.org/10.1109/SP.2017.64
(cit. on pp. 57, 86).

[PA19] Mathias Vorreiter Pedersen and Aslan Askarov. “Static Enforce-
ment of Security in Runtime Systems”. In: 32nd IEEE Computer
Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA,
June 25-28, 2019. IEEE, 2019, pp. 335–350. doi: 10.1109/CSF.
2019.00030. url: https://doi.org/10.1109/CSF.2019.00030
(cit. on pp. 57, 86, 87).

[RCH08] Alejandro Russo, Koen Claessen, and John Hughes. “A library for
light-weight information-flow security in haskell”. In: Proceedings
of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008,
Victoria, BC, Canada, 25 September 2008. Ed. by Andy Gill. ACM,
2008, pp. 13–24. doi: 10.1145/1411286.1411289. url: https:
//doi.org/10.1145/1411286.1411289 (cit. on p. 57).

[Rep90] John H. Reppy. Asynchronous Signals is Standard ML. Tech. rep.
USA, 1990 (cit. on pp. 58, 85).

[Roy+11] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Alexander
Levis, David Mazières, and Nickolai Zeldovich. “Energy manage-
ment in mobile devices with the cinder operating system”. In: Eu-
ropean Conference on Computer Systems, Proceedings of the Sixth
European conference on Computer systems, EuroSys 2011, Salzburg,
Austria, April 10-13, 2011. Ed. by Christoph M. Kirsch and Gernot
Heiser. ACM, 2011, pp. 139–152. doi: 10.1145/1966445.1966459.
url: https://doi.org/10.1145/1966445.1966459 (cit. on
p. 87).

[RS06] Alejandro Russo and Andrei Sabelfeld. “Securing Interaction be-
tween Threads and the Scheduler”. In: 19th IEEE Computer Se-
curity Foundations Workshop, (CSFW-19 2006), 5-7 July 2006,
Venice, Italy. IEEE Computer Society, 2006, pp. 177–189. doi:
10.1109/CSFW.2006.29. url: https://doi.org/10.1109/CSFW.
2006.29 (cit. on pp. 57, 82).

[RS09] Alejandro Russo and Andrei Sabelfeld. “Securing Timeout Instruc-
tions in Web Applications”. In: Proceedings of the 22nd IEEE
Computer Security Foundations Symposium, CSF 2009, Port Jef-
ferson, New York, USA, July 8-10, 2009. IEEE Computer Soci-
ety, 2009, pp. 92–106. doi: 10.1109/CSF.2009.16. url: https:
//doi.org/10.1109/CSF.2009.16 (cit. on p. 57).

94

https://doi.org/10.1109/SP.2017.64
https://doi.org/10.1109/SP.2017.64
https://doi.org/10.1109/SP.2017.64
https://doi.org/10.1109/SP.2017.64
https://doi.org/10.1109/SP.2017.64
https://doi.org/10.1109/CSF.2019.00030
https://doi.org/10.1109/CSF.2019.00030
https://doi.org/10.1109/CSF.2019.00030
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/1966445.1966459
https://doi.org/10.1145/1966445.1966459
https://doi.org/10.1109/CSFW.2006.29
https://doi.org/10.1109/CSFW.2006.29
https://doi.org/10.1109/CSFW.2006.29
https://doi.org/10.1109/CSF.2009.16
https://doi.org/10.1109/CSF.2009.16
https://doi.org/10.1109/CSF.2009.16

Bibliography

[Rus15] Alejandro Russo. “Functional pearl: two can keep a secret, if one
of them uses Haskell”. In: Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015,
Vancouver, BC, Canada, September 1-3, 2015. Ed. by Kathleen
Fisher and John H. Reppy. ACM, 2015, pp. 280–288. doi: 10.1145/
2784731.2784756. url: https://doi.org/10.1145/2784731.
2784756 (cit. on pp. 58–60, 63).

[Siv+16] K. C. Sivaramakrishnan, Tim Harris, Simon Marlow, and Simon
Peyton Jones. “Composable scheduler activations for Haskell”. In: J.
Funct. Program. 26 (2016), e9. doi: 10.1017/S0956796816000071.
url: https://doi.org/10.1017/S0956796816000071 (cit. on
pp. 57, 87, 88).

[SM03] Andrei Sabelfeld and Andrew C. Myers. “Language-based informa-
tion-flow security”. In: IEEE J. Sel. Areas Commun. 21.1 (2003),
pp. 5–19. doi: 10.1109/JSAC.2002.806121. url: https://doi.
org/10.1109/JSAC.2002.806121 (cit. on p. 57).

[SPL11] Don Syme, Tomas Petricek, and Dmitry Lomov. “The F# Asyn-
chronous Programming Model”. In: Practical Aspects of Declarative
Languages - 13th International Symposium, PADL 2011, Austin,
TX, USA, January 24-25, 2011. Proceedings. Ed. by Ricardo Rocha
and John Launchbury. Vol. 6539. Lecture Notes in Computer Sci-
ence. Springer, 2011, pp. 175–189. doi: 10.1007/978- 3- 642-
18378- 2_15. url: https://doi.org/10.1007/978- 3-642-
18378-2%5C_15 (cit. on p. 85).

[Ste+11a] Deian Stefan, Alejandro Russo, David Mazières, and John C. Mit-
chell. “Disjunction Category Labels”. In: Information Security Tech-
nology for Applications - 16th Nordic Conference on Secure IT Sys-
tems, NordSec 2011, Tallinn, Estonia, October 26-28, 2011, Revised
Selected Papers. Ed. by Peeter Laud. Vol. 7161. Lecture Notes in
Computer Science. Springer, 2011, pp. 223–239. doi: 10.1007/978-
3-642-29615-4_16. url: https://doi.org/10.1007/978-3-
642-29615-4%5C_16 (cit. on p. 88).

[Ste+11b] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Maz-
ières. “Flexible dynamic information flow control in Haskell”. In:
Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, Has-
kell 2011, Tokyo, Japan, 22 September 2011. Ed. by Koen Claessen.
ACM, 2011, pp. 95–106. doi: 10.1145/2034675.2034688. url:

95

https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1017/S0956796816000071
https://doi.org/10.1017/S0956796816000071
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1007/978-3-642-18378-2_15
https://doi.org/10.1007/978-3-642-18378-2_15
https://doi.org/10.1007/978-3-642-18378-2%5C_15
https://doi.org/10.1007/978-3-642-18378-2%5C_15
https://doi.org/10.1007/978-3-642-29615-4_16
https://doi.org/10.1007/978-3-642-29615-4_16
https://doi.org/10.1007/978-3-642-29615-4%5C_16
https://doi.org/10.1007/978-3-642-29615-4%5C_16
https://doi.org/10.1145/2034675.2034688

B. Securing Asynchronous Exceptions

https://doi.org/10.1145/2034675.2034688 (cit. on pp. 58,
80).

[Ste+12] Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C.
Mitchell, and David Mazières. “Addressing covert termination and
timing channels in concurrent information flow systems”. In: ACM
SIGPLAN International Conference on Functional Programming,
ICFP’12, Copenhagen, Denmark, September 9-15, 2012. Ed. by
Peter Thiemann and Robby Bruce Findler. ACM, 2012, pp. 201–
214. doi: 10.1145/2364527.2364557. url: https://doi.org/10.
1145/2364527.2364557 (cit. on pp. 61, 62, 80).

[Ste+14] Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo,
David Herman, Brad Karp, and David Mazières. “Protecting Users
by Confining JavaScript with COWL”. In: 11th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI
’14, Broomfield, CO, USA, October 6-8, 2014. Ed. by Jason Flinn
and Hank Levy. USENIX Association, 2014, pp. 131–146. url:
https : / / www . usenix . org / conference / osdi14 / technical -
sessions/presentation/stefan (cit. on p. 57).

[SV98] Geoffrey Smith and Dennis M. Volpano. “Secure Information Flow
in a Multi-Threaded Imperative Language”. In: POPL ’98, Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, San Diego, CA, USA, January
19-21, 1998. Ed. by David B. MacQueen and Luca Cardelli. ACM,
1998, pp. 355–364. doi: 10.1145/268946.268975. url: https:
//doi.org/10.1145/268946.268975 (cit. on p. 61).

[TA17] Jérémy Thibault and Aslan Askarov. Language-based predictive
mitigation for systems with asynchronous I/O. Tech. rep. 2017
(cit. on p. 86).

[TVR20] Carlos Tomé Cortiñas, Marco Vassena, and Alejandro Russo. “Secur-
ing Asynchronous Exceptions”. In: 33rd IEEE Computer Security
Foundations Symposium, CSF 2020, Boston, MA, USA, June 22-
26, 2020. IEEE, 2020, pp. 214–229. doi: 10.1109/CSF49147.2020.
00023. url: https://doi.org/10.1109/CSF49147.2020.00023
(cit. on p. 55).

[Van+07] Steve Vandebogart, Petros Efstathopoulos, Eddie Kohler, Maxwell
N. Krohn, Cliff Frey, David Ziegler, M. Frans Kaashoek, Robert
Tappan Morris, and David Mazières. “Labels and event processes
in the Asbestos operating system”. In: ACM Trans. Comput. Syst.

96

https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/2364527.2364557
https://doi.org/10.1145/2364527.2364557
https://doi.org/10.1145/2364527.2364557
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/stefan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/stefan
https://doi.org/10.1145/268946.268975
https://doi.org/10.1145/268946.268975
https://doi.org/10.1145/268946.268975
https://doi.org/10.1109/CSF49147.2020.00023
https://doi.org/10.1109/CSF49147.2020.00023
https://doi.org/10.1109/CSF49147.2020.00023

Bibliography

25.4 (2007), p. 11. doi: 10.1145/1314299.1314302. url: https:
//doi.org/10.1145/1314299.1314302 (cit. on p. 57).

[Vas+16] Marco Vassena, Pablo Buiras, Lucas Waye, and Alejandro Russo.
“Flexible Manipulation of Labeled Values for Information-Flow
Control Libraries”. In: Computer Security - ESORICS 2016 - 21st
European Symposium on Research in Computer Security, Herak-
lion, Greece, September 26-30, 2016, Proceedings, Part I. Ed. by
Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas,
and Catherine A. Meadows. Vol. 9878. Lecture Notes in Computer
Science. Springer, 2016, pp. 538–557. doi: 10.1007/978-3-319-
45744- 4_27. url: https://doi.org/10.1007/978- 3-319-
45744-4%5C_27 (cit. on p. 59).

[Vas+18] Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye.
“MAC A verified static information-flow control library”. In: Jour-
nal of Logical and Algebraic Methods in Programming 95 (2018),
pp. 148–180. issn: 2352-2208. doi: https://doi.org/10.1016/
j.jlamp.2017.12.003. url: https://www.sciencedirect.com/
science/article/pii/S235222081730069X (cit. on pp. 58, 59,
62, 66–70, 80, 81, 85).

[Vas+19] Marco Vassena, Gary Soeller, Peter Amidon, Matthew Chan, John
Renner, and Deian Stefan. “Foundations for Parallel Information
Flow Control Runtime Systems”. In: Principles of Security and
Trust - 8th International Conference, POST 2019, Held as Part
of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings. Ed. by Flemming Nielson and David Sands. Vol. 11426.
Lecture Notes in Computer Science. Springer, 2019, pp. 1–28. doi:
10.1007/978-3-030-17138-4_1. url: https://doi.org/10.
1007/978-3-030-17138-4%5C_1 (cit. on pp. 57, 86).

[VBR17] Marco Vassena, Joachim Breitner, and Alejandro Russo. “Secur-
ing Concurrent Lazy Programs Against Information Leakage”. In:
30th IEEE Computer Security Foundations Symposium, CSF 2017,
Santa Barbara, CA, USA, August 21-25, 2017. IEEE Computer
Society, 2017, pp. 37–52. doi: 10.1109/CSF.2017.39. url: https:
//doi.org/10.1109/CSF.2017.39 (cit. on pp. 57, 85, 86).

[VR16] Marco Vassena and Alejandro Russo. “On Formalizing Information-
Flow Control Libraries”. In: Proceedings of the 2016 ACM Workshop
on Programming Languages and Analysis for Security, PLAS@CCS

97

https://doi.org/10.1145/1314299.1314302
https://doi.org/10.1145/1314299.1314302
https://doi.org/10.1145/1314299.1314302
https://doi.org/10.1007/978-3-319-45744-4_27
https://doi.org/10.1007/978-3-319-45744-4_27
https://doi.org/10.1007/978-3-319-45744-4%5C_27
https://doi.org/10.1007/978-3-319-45744-4%5C_27
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://www.sciencedirect.com/science/article/pii/S235222081730069X
https://www.sciencedirect.com/science/article/pii/S235222081730069X
https://doi.org/10.1007/978-3-030-17138-4_1
https://doi.org/10.1007/978-3-030-17138-4%5C_1
https://doi.org/10.1007/978-3-030-17138-4%5C_1
https://doi.org/10.1109/CSF.2017.39
https://doi.org/10.1109/CSF.2017.39
https://doi.org/10.1109/CSF.2017.39

B. Securing Asynchronous Exceptions

2016, Vienna, Austria, October 24, 2016. Ed. by Toby C. Murray
and Deian Stefan. ACM, 2016, pp. 15–28. doi: 10.1145/2993600.
2993608. url: https://doi.org/10.1145/2993600.2993608
(cit. on pp. 59, 62, 81, 82, 85).

[Way+15] Lucas Waye, Pablo Buiras, Dan King, Stephen Chong, and Ale-
jandro Russo. “It’s My Privilege: Controlling Downgrading in DC-
Labels”. In: Security and Trust Management - 11th International
Workshop, STM 2015, Vienna, Austria, September 21-22, 2015,
Proceedings. Ed. by Sara Foresti. Vol. 9331. Lecture Notes in Com-
puter Science. Springer, 2015, pp. 203–219. doi: 10.1007/978-3-
319-24858-5_13. url: https://doi.org/10.1007/978-3-319-
24858-5%5C_13 (cit. on p. 88).

[Yip+09] Alexander Yip, Neha Narula, Maxwell N. Krohn, and Robert Tap-
pan Morris. “Privacy-preserving browser-side scripting with BFlow”.
In: Proceedings of the 2009 EuroSys Conference, Nuremberg, Ger-
many, April 1-3, 2009. Ed. by Wolfgang Schröder-Preikschat, John
Wilkes, and Rebecca Isaacs. ACM, 2009, pp. 233–246. doi: 10.
1145 / 1519065 . 1519091. url: https : / / doi . org / 10 . 1145 /
1519065.1519091 (cit. on p. 57).

[YM14] Edward Z. Yang and David Mazières. “Dynamic space limits for Has-
kell”. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom
- June 09 - 11, 2014. Ed. by Michael F. P. O’Boyle and Keshav Pin-
gali. ACM, 2014, pp. 588–598. doi: 10.1145/2594291.2594341.
url: https://doi.org/10.1145/2594291.2594341 (cit. on
p. 87).

[ZAM12] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. “Language-
based control and mitigation of timing channels”. In: ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’12, Beijing, China - June 11 - 16, 2012. Ed. by
Jan Vitek, Haibo Lin, and Frank Tip. ACM, 2012, pp. 99–110. doi:
10.1145/2254064.2254078. url: https://doi.org/10.1145/
2254064.2254078 (cit. on p. 86).

[Zel+06] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and Da-
vid Mazières. “Making Information Flow Explicit in HiStar”. In:
7th Symposium on Operating Systems Design and Implementation
(OSDI ’06), November 6-8, Seattle, WA, USA. Ed. by Brian N. Ber-
shad and Jeffrey C. Mogul. USENIX Association, 2006, pp. 263–278.

98

https://doi.org/10.1145/2993600.2993608
https://doi.org/10.1145/2993600.2993608
https://doi.org/10.1145/2993600.2993608
https://doi.org/10.1007/978-3-319-24858-5_13
https://doi.org/10.1007/978-3-319-24858-5_13
https://doi.org/10.1007/978-3-319-24858-5%5C_13
https://doi.org/10.1007/978-3-319-24858-5%5C_13
https://doi.org/10.1145/1519065.1519091
https://doi.org/10.1145/1519065.1519091
https://doi.org/10.1145/1519065.1519091
https://doi.org/10.1145/1519065.1519091
https://doi.org/10.1145/2594291.2594341
https://doi.org/10.1145/2594291.2594341
https://doi.org/10.1145/2254064.2254078
https://doi.org/10.1145/2254064.2254078
https://doi.org/10.1145/2254064.2254078

Bibliography

url: http://www.usenix.org/events/osdi06/tech/zeldovich.
html (cit. on p. 57).

99

http://www.usenix.org/events/osdi06/tech/zeldovich.html
http://www.usenix.org/events/osdi06/tech/zeldovich.html

C
Pure Information-Flow Control with
Effects Made Simple

Carlos Tomé Cortiñas and Alejandro Russo

Manuscript

Abstract Information-flow control (IFC) is a promising technology to protect data
confidentiality. The foundational work on the dependency core calculus (DCC) positions
monads as a suitable abstraction for enforcing IFC. Pure functional languages with
effects, like Haskell, can provide IFC as a library (e.g. MAC and LIO), a minor task
compared to implementing compilers for IFC from scratch.
Previous works on IFC as a library introduce ad hoc primitives to type programs whose
effects do not depend on the sensitive data in context. In this work, we start afresh
and ask ourselves: what would we need to extend an effect-free language for IFC with
secure effects? The answer turns out to be elegant and simple. In a pure language
with effects there is a natural place where information flows from sensitive data to
effects need to be restricted, and when effects are tracked in a fine-grained fashion, for
instance, with a graded monad, then a single primitive is enough to allow secure flows!
To support our insight, we present and prove secure several IFC enforcement mechanisms
based on extensions of the sealing calculus (SC) with effects using a graded monad.
Effects that depend on sensitive data are secured through a novel primitive distr.
Our security guarantees are mechanized in the Agda proof assistant. Moreover, we
provide an implementation of these mechanisms as a new Haskell library for IFC.
Our implementation amounts to less than 10 lines of code for the effect-free part and
less than 30 lines for the part with effects. Lastly, we demonstrate that our library is
capable of encoding previous Haskell libraries for static IFC.

101

C.1. Introduction

C.1. Introduction

Information-flow control (IFC) [SM03; HS12] is a promising technology to
protect data confidentiality. Many IFC approaches are designed to prevent
sensitive data from influencing what attackers can observe from a program’s
public behaviour—a security property known as noninterference [GM82]. IFC
mechanisms specify the sensitivity of data via labels, and then enforce security
by controlling that the flows of information abide by the security policy. In
the simplest scenario, there are two labels (alternatively, security levels or
sensitivities) L, for public, and H, for secret, and the security policy specifies
that every flow is allowed except from H to L—i.e. flows from more to less
sensitivity are forbidden. In static approaches to IFC, the sensitivity of data is
known a priori, e.g. by specifying it using types, and the enforcement statically
decides, e.g. during type checking, whether the program will leak information
upon execution. To maintain confidentiality of data, IFC mechanisms need
to protect against two kinds of potentially malicious flows: 1) explicit flows,
when public data directly depends on secret data; and 2) implicit flows, when
the control flow and public outputs of the program are indirectly influenced by
secret data, e.g. due to branching on a H-labelled Boolean.

In recent years, the use of pure functional languages has been proliferating
for tackling different IFC challenges (e.g. Vassena, Russo, Garg, Rajani, and
Stefan [Vas+19], Parker, Vazou, and Hicks [PVH19], Polikarpova, Stefan,
Yang, Itzhaky, Hance, and Solar-Lezama [Pol+20], and Rajani and Garg
[RG20]). From a pragmatic perspective, pure functional languages can provide
IFC security via libraries [LZ06; RCH08; Ste+11], which is less demanding
than building compilers from scratch (e.g. Simonet [Sim03] and Myers, Zheng,
Zdancewic, Chong, and Nystrom [Mye+06]).

Pure languages are particularly well suited for controlling information flows
because of their abstraction facilities and strong encapsulation of effects. For
instance, the popular dependency core calculus (DCC) [Aba+99] utilizes the
abstract type TH A to label pieces of data of type A with sensitivity H and then
the type system ensures that data can only be eliminated into—or flow to—data
of equal or higher sensitivity. DCC’s security guarantees ensure that programs
without effects are secure. A different strand of work aims to provide security
in pure languages with effects by restricting the interplay between sensitive
data and public effects (e.g. LIO [Ste+11], MAC [Rus15] and HLIO [BVR15]).
In a pure language like Haskell, the only programs that can produce effects
and thereby interact with the external world have to be of type IO A, for some
type A. In this light, in order to protect against implicit flows through effects
it is enough to control which programs of IO type are safe to execute.

103

C. Pure Information-Flow Control with Effects Made Simple

Let us consider the Haskell library MAC as an example. MAC replaces
the IO monad with a custom monad MACl of computations that is indexed by
a type-level label l. The label l has two purposes: (i) akin to DCC, it is an
upper bound on the sensitivity of the information “going into” the monad, as
well as (ii) it is a lower bound on the observers’ effects—restricting information
“leaving” the monad. Concretely, a computation of type MACL Bool cannot
branch on secret values but can perform public and secret effects; in contrast, a
computation of type MACH Bool can branch on secret data but cannot perform
public effects.

However, not everything in the garden is rosy. The label l in the MAC
monad MACl does too many things at once. This leads to situations where
the programmer needs to go through some contortions or use “special purpose”
primitives like join1: MACl Unit⇒ MACl′ Unit (restricted to l′ ⊑ l) [Vas+16].
To illustrate this point, we extend the two-point security policy with two
incomparable labels A, for Alice, and B, for Bob, such that L ⊑ A ⊑ H and
L ⊑ B ⊑ H but neither A ⊑ B nor B ⊑ A (the relation ⊑ specifies the permitted
flows). With that in mind, let us consider the following program in MAC
which receives an A-sensitive Bool, i.e. alice_sec : MACA Bool,2 and prints a
string on the A-observable channel ChA:

prog1 : MACA Bool⇒MACA Unit
prog1 alice_sec = alice_sec >>= λb. if b then printChA

"Alice is here!"
else return unit

In the above program, the information flows according to the security policy
(from the A-sensitive value to Alice’s channel)—i.e. the program is secure.
Consider now a different program that combines prog1 with printing on the
channel ChB:

prog2 : MACABool⇒MAC ? Unit
prog2 alice_sec = prog1 alice_sec >>= λ x. printChB

"Hi Bob"

Clearly, prog2 is still secure since the decision to print to Bob’s channel and
what is printed does not depend on the contents of the A-sensitive value alice_sec.
What label then should replace ? in its type? First, the types of the
computations on both sides of the bind (>>=) have to match. By (i) and (ii)
the type of prog1 sec has to be MACA Unit, and by (ii) printChB

"Hi Bob" has to

1The type of join is more general but this simplified form suffices for our purposes.
2To the reader familiar with MAC: our point applies equally if one uses the Labeledl type to

protect sensitive Booleans.

104

C.1. Introduction

be of type MACB Unit. There is a type mismatch! Since the label L is a lower
bound of A and B, we can use MAC’s join to fix the program:

prog2 : MACA Bool⇒MACL Unit
prog2 alice_sec = join(prog1 alice_sec) >>= λ x. join(printChB

"Hi Bob")

Now, something unexpected happened. To assign a type to prog2 , which only
mentions labels A and B, we have to resort to another label L. What is worse, in
the type of prog2 only the label A appears and does so in an argument position
which means we know nothing about the program’s possible effects. The design
decision of indexing the monad MAC by a single label, while enabling a simple
implementation of IFC as a library (cf. [Rus15]), requires the application of
special purpose primitives (like join) to mitigate over-approximations of how
information flows in and out of computations.

In this work, we take a step back and ask ourselves: what would it take to
allow arbitrary effects in a pure language with an already existing mechanism
for effect-free IFC? The answer turns out to be elegant and simple. We observe
that enforcing IFC in a pure language with effects can be reduced to the single
point—which we will explain below—where effects and sensitive data interact.
Based on this observation, we present a novel IFC mechanism which is arguably
simpler than existing IFC libraries, allows to assign more natural types to
programs; and overcomes the programming contortions discussed above.

To briefly present our idea, let us assume that effect-free IFC is achieved
using a DCC-style abstract type Tl A, and we have at our disposal a more
refined type constructor Eff of effectful programs akin to IO but annotated
with concrete information about observable effects. For example, Eff could be
annotated with the set of channels where the program might print, the set
of exceptions the program might raise, or the set of memory references the
program might modify. Moreover, we assume that the security policy specifies
the sensitivity of each effect.

Consider, for instance, a scenario with two output channels, namely ChL
and ChH, that are assigned sensitivities L and H, respectively. In this scenario,
a program prog3 : TA (Eff{ChB} Unit) is a computation that might print to B’s
channel ChB depending on A-sensitive data. This is where sensitive data and
effects interact! Assuming alice_sec : TA Bool is in scope, prog3 , for instance,

105

C. Pure Information-Flow Control with Effects Made Simple

could have the following implementation:3

prog3 : TA (Eff{ChB} Unit)
prog3 = bind b = alice_sec

in returnA(if b then printChB
"So it was true, huh"

else return unit)

In order to run the effects of the inner computation of type Eff{B} Unit we
have to “extract” it first from the TA value—recall that the language is pure. In
general, extracting anything from TA is prohibited as it would render the IFC
enforcement unsound: in prog3 , the computation of type Eff{ChB} Unit would
become executable, and if the A-sensitive Boolean alice_sec is true, it will
print "So it was true, huh" on Bob’s channel ChB—a flow that violates the
security policy. On the contrary, let us consider a program of a different type,
prog4 : TA (Eff{ChH} Unit). A possible implementation of prog4 could be:

prog4 : TA (Eff{ChH} Unit)
prog4 = bind b = alice_sec

in returnA(if b then printChH
"It is true!"

else printChH
"It is false!")

In this program, the computation, i.e. if b then printChH
"It is true!" else

printChH
"It is false!", is safe to run since it prints A-sensitive data on the

channel ChH—a flow permitted by the security policy. In fact, the underlying
computation of any program of type TA (Eff{ChH} Unit) is definitely safe to run
since the only possible effects it might produce are printing to the channel
ChH, which we know from the type Eff{ChH} Unit, and the decision on what to
print depends on data of at most sensitivity A, which we know from the type
constructor TA. Securing effectful programs then amounts to allowing any
such program prog4 to extract the computation of type Eff{ChH} Unit from TA
and run its effects while forbidding prog3 from doing so. To achieve this, we
introduce a novel primitive distr which systematically permits computations to
be extracted, and hence, executed only when they are known to depend on data
less sensitive than the sensitivity of their observers. With distr we can turn
prog4 into an executable program: distr(prog4) : Eff{ChH} Unit. We have reduced
the enforcement of IFC in pure languages with effects to a single primitive;
this gives us modularity, clarity and simplicity in the language design and its
possible implementations.

3bind is DCC’s eliminator for the type Tl.

106

C.1. Introduction

To conclude, we provide an alternative implementation of prog2 with a more
natural type using the primitive distr:

prog′
2 : TA Bool⇒ Eff{ChA,ChB} Unit

prog′
2 alice_sec = distr (bind b = alice_sec

in return(if b then printChA
"Alice is here!"

else return unit))
>>= λ x. printChB

"Hi Bob"

Our Contributions In this work, we show that IFC in the context of pure
languages with effects can be achieved through the combination of the following
features: 1. an enforcement for effect-free IFC, 2. a type for tracking observable
effects in a fine-grained fashion, and 3. a primitive distr which selectively permits
to execute effectful computations which depend on sensitive data.

We present our idea through an IFC enforcement mechanism in the form of
a security-type system for programs written in the programming language λREC,
which is a call-by-name variant of the simply-typed λ-calculus (STLC) extended
with recursive functions and Booleans. The security-type system for λREC, which
we dub λSC, is an adaptation of the sealing calculus (SC) of Shikuma and Igarashi
[SI08], which is more expressive than DCC (cf. [TZ04; SI08]). We then extend
λREC in two different directions by adding printing and global store effects in
the form of explicit graded monadic effects [Kat14]. We name these extensions
λ

PRINT
REC and λ

STORE
REC , respectively. Although the orthogonal extensions of λSC for

printing and global store readily enforce IFC by not permitting any interaction
between labelled values and effects, we additionally extend λSC with our novel
primitive distr. This allows to type check more of those effectful programs that
are secure.

Along with our informal argumentation for why our idea yields secure IFC
enforcement mechanisms for the different effects, we have mechanized proofs
in the Agda proof assistant [Abe+05] about the security guarantees that
the programs (in the terminating fragment of the languages) satisfy, namely
termination-insensitive noninterference (TINI). Our proofs are based on the
technique of step-indexed logical relations [Ahm06].

Finally, we realize our idea in the form of a proof-of-concept Haskell library
which we call SCLib. The conciseness of our implementation illustrates the
elegance and simplicity of our insight: less than 10 lines of code for the effect-free
fragment and less than 30 for the part with effects. In order to implement the
effect-free IFC mechanism we also present a novel implementation of SC using
an encoding of contextual information as type-level capabilities. Our library is
at least as expressive as previous work on libraries for IFC in Haskell, which

107

C. Pure Information-Flow Control with Effects Made Simple

we evidence by showing implementations of SecLib [RCH08], DCC (in its
presentation by Algehed [Alg18]) and MAC in terms of SCLib’s interface.

In summary, the technical contributions of this paper are:

• A reformulation of SC as security-type system, λSC, for λREC (Section C.2)

• Two extensions of λREC and λSC for enforcing IFC in pure languages
with effects via graded monads. As examples, we consider printing
(Section C.3.1) and global store (Section C.3.2) effects

• We present distr, a single primitive that can control the interaction of
sensitive data and effects

• Security guarantees and proofs of TINI based on logical relations for all
the enforcements (Section C.4)

• A Haskell implementation using a novel encoding of contextual infor-
mation as capabilities together with evidence that SCLib can encode
existing monadic security libraries (Section C.5)

• Mechanized proofs of our security guarantees (Agda code submitted as
accompanying material)

C.2. Effect-Free Information-Flow Control

In this section, we briefly recall the sealing calculus (SC) [SI08], introduce
the programming language on which we wish to enforce IFC, and explain our
adaptation of SC as a security-type system.

The Sealing Calculus SC utilizes an abstract type Sl A for protecting sensitive
data.4 A value of type Sl A is “sealed” at sensitivity l in the sense that it is only
available to observers with sensitivity at least as high as l. Values of type Sl A
are introduced and eliminated using the primitives seall and unseall. SC enforces
IFC by restricting in which contexts a sealed value can be “unsealed”. For
example, the A-sensitive Boolean sec :: SA Bool can only be unsealed in contexts
of at least sensitivity A.

Let us illustrate SC with a program that receives two Booleans with sensitiv-
ities A and B, respectively, and computes their conjunction with sensitivity H

4In the original presentation, the authors use the notation [A]l instead.

108

C.2. Effect-Free Information-Flow Control

(and : Bool× Bool⇒ Bool implements conjunction):

and ′ : SA Bool⇒ SB Bool⇒ SH Bool
and ′ = λ sb1 sb2 . sealH (and (unsealA sb1) (unsealB sb2))

In the above program, the term sealH provides the context in which sb1 and sb2
can be unsealed: the term unsealA sb1 , for instance, is only well-typed because
its label A flows to H, which is the highest label.

The Language λREC is a call-by-name variant of the STLC with Unit and Bool
as the only primitive types and extended with recursive function definitions.
We work directly with intrinsically-typed terms, and thus we consider that
typing derivations Γ ⊢ t : a are terms. Terms of the form µ f. x. t define
recursive functions, where the bound variable f refers to the function being
defined. When the function is not recursive we use the usual λ-abstraction
λ x. t = µ f. x. t. The small-step semantics is specified by a relation t→ t′ on
closed terms, i.e. · ⊢ t : a, and we call values those terms t for which t ̸→.
For reference we include the complete definition in Appendix I. Since λREC is
well-understood we omit any further explanations.

The Security-Type System In Figure C.1 we introduce λSC, the security-type
system for programs written in λREC. The syntax is parameterized by a security
policy specified in the form of a lattice structure on the set of labels (L,⊑).
The types reflect those in λREC and include a new type constructor Sl for each
label l. Typing judgements are of the form π ; Γ ⊢SC t : A where: π is a finite
set of labels drawn from L, i.e. π ⊆ L; Γ is an λSC typing context; and A is an
λSC type. The component π is analogous to protection contexts from related
work by Tse and Zdancewic [TZ04].

The set of labels π in the typing judgement represents the sensitivities of
all the data on which the program may depend. In order to clarify the role
of π, let us consider a program with a typing derivation indexed by the set
of labels π1 := {H}, π1 ; · ⊢SC p : A. This program may depend on data
labelled at types SL A and SH A by unsealing. If, instead, p is indexed by the
set π2 := {L}, i.e. π2 ; · ⊢SC p : A, then the only terms that the program can
depend on by unsealing are of type SL A. This mechanism ensures that the flows
of information are secure. It is useful to think that the labels that belong to π
act as a kind of type-level key whose “possession” permits access to information
at most as sensitive as the label itself.

The typing rules of the λREC fragment of λSC, i.e. Rules Fun, App and If, are
rather standard: they simply propagate the set of labels π to their premises.

109

C. Pure Information-Flow Control with Effects Made Simple

Sets of labels π⊆ L
Types A, B ::= Unit | Bool | A⇒B | Sl A

Typing contexts Γ ::= · | Γ, x : A

π ; Γ ⊢SC t : A

Var
(x : A) ∈ Γ

π ; Γ ⊢SC x : A

Fun
π ; Γ, f : A⇒B, x : A ⊢SC t : B

π ; Γ ⊢SC µ f. x. t : A⇒B

App
π ; Γ ⊢SC t : A⇒B π ; Γ ⊢SC u : A

π ; Γ ⊢SC app t u : B

Unit

π ; Γ ⊢SC unit : Unit

True

π ; Γ ⊢SC true : Bool

False

π ; Γ ⊢SC false : Bool

If
π ; Γ ⊢SC t : Bool π ; Γ ⊢SC u1 : A π ; Γ ⊢SC u2 : A

π ; Γ ⊢SC ifte t u1 u2 : A

Seal
π ∪ {l} ; Γ ⊢SC t : A

π ; Γ ⊢SC seall t : Sl A

Unseal
π ; Γ ⊢SC t : Sl A ∃l′ ∈ π. l ⊑ l′

π ; Γ ⊢SC unseall t : A

Figure C.1.: Types and intrinsically-typed terms of λSC

Observe that one has to explicitly unseal sensitive Booleans, i.e. of type Sl Bool,
in order to branch on them using the Rule If. Rules Unseal and Seal are the
most interesting since they enforce that information flows to the appropriate
places. Rule Seal serves a double purpose: from premise to conclusion, it
introduces terms of type Sl A; and, from conclusion to premise, it extends the
set of labels with the label l, i.e. π ∪ {l}. The typing derivation above the
premise can then unseal any term of type Sl′ A such that its label l′ can flow
to l. Rule Unseal allows unsealing a term with type Sl A if the set π in its
conclusion contains at least a label l′ such that l ⊑ l′. Continuing with the
intuition of labels in π as keys, a key l′ ∈ π can be used to unseal terms of type
Sl A exactly when l ⊑ l′.

110

C.3. Effectful Information-Flow Control

In order to use λSC as a security-type system for λREC programs, we define
a family of erasure functions from λSC types, typing contexts, and terms π ;
Γ ⊢SC t : A to λREC types, typing contexts, and programs ε(Γ) ⊢ ε(t) : ε(A):

ε(Unit) = Unit ε(µ f. x. t) = µ f. x. ε(t)
ε(Bool) = Bool ε(app t u) = app ε(t) ε(u)
ε(A⇒B) = ε(A)⇒ ε(B) ε(seall t) = ε(t)
ε(Sl A) = ε(A) ε(unseall t) = ε(t)

ε(·) = ·
ε(Γ, x : A) = ε(Γ), x : ε(A)

To clarify this point further, the noninterference property enforced by a
λSC term {L} ; sec : SH Bool ⊢SC t : Bool on its underlying λREC program
sec : Bool ⊢ ε(t) : Bool is that for all · ⊢ s1, s2 : Bool whenever both ε(t)[s1/sec]
and ε(t)[s2/sec] terminate then they do so with the same Boolean. In this
way, λSC types and typing contexts play the role of security specifications,
and λSC terms of evidence that the underlying programs are secure, i.e. they
satisfy the security specification. In contrast with SC, λSC terms do not come
equipped with an operational semantics, only their underlying λREC programs
do. However, when convenient we identify λSC terms with their erased λREC

programs. To conclude, we observe that the security-type system is closed
under the operational semantics of λREC:

Lemma C.2.1. Given a term π ; · ⊢SC t : A such that ε(t) → p then there
exists a term π ; · ⊢SC t′ : A such that ε(t′) = p.

C.3. Effectful Information-Flow Control

In this section, we present the main contribution of this paper: the observation
that a single primitive distr is enough to enforce IFC in pure languages with
effects. We study two extensions of the programming language and the security-
type system from Section C.2 with printing and global store.

In these extensions, we treat effects explicitly in the style of Haskell’s IO
monad [JW93], Moggi’s monadic metalanguage [Mog91], or Katsumata’s explicit
subeffecting calculus (EFe) [Kat14, Section 5]: the only programs that can
perform effects are of type EffC a for some effect annotation C and type a, and
sequencing of effects is made explicit through the primitive bind. Specifically, we
consider printing and global store effects, Sections C.3.1 and C.3.2, respectively,
as suitable representatives of the two kinds of effects that need to be secured:

111

C. Pure Information-Flow Control with Effects Made Simple

Printing Effects. Printing on a channel can be observed externally to the
program by the channel’s observers. Observers can infer information
about the program’s input from what is being printed to the channel. To
secure printing effects one must ensure that the decision to print and what
is being printed only depends on data less sensitive than the channel’s
observers.

Global Store Effects. Reading from the store cannot be observed directly.
However, reading effects need to be secured because what is read may
influence the program’s subsequent behaviour. To secure reading effects
one must ensure that what has been read is tracked as sensitive data.

In contrast to Haskell and the metalanguage, we use a graded monad [Kat14]
whose effect annotation C tracks precisely to which channels a computation
might print and which store locations a computation might access.

C.3.1. Printing Effects
In Figure C.2 we present the extension of λREC which allows programs to
perform printing effects. We dub this language λ

PRINT
REC . We assume that the set

of printing channels Ch is fixed a priori, i.e. the channels are statically known.
The set of types is extended with a new type for computations EffC a that is
indexed by a set of channels C ⊆ Ch. A program of type EffC a when executed
might only print to the channels that appear in C and return a result of type a.

Statics The typing rules of the standard monadic operations, return and bind,
are as expected: in Rule Return, the computation does not perform any effects
thus the type is indexed by the empty set of channels; and, in Rule Bind,
the type is indexed by the union of the channels on which the computations
Γ ⊢ t : EffC1 a and Γ ⊢ u : a⇒ EffC2 b might print, that is, C1 ∪ C2. We
include subeffecting—casting from a smaller to a larger set of channels—as
the term subeff in the language, see Rule Subeff. Printing is performed via a
family of primitive operations, printch , one for each available channel ch ∈ Ch
(Rule Print). We assume, for simplicity, that only Boolean values can be
printed. Further, observe that the resulting monadic type is indexed by the
singleton set that only contains the channel on which the printing is performed,
i.e. Eff{ch} Unit.

Dynamics The operational semantics of λPRINT
REC is defined as the combination

of the small-step operational semantics of λREC—see Appendix I for more
details—and the small-step operational semantics of computations defined in

112

C.3. Effectful Information-Flow Control

Sets of channels C, C1, C2⊆ Ch
Outputs o, o1, o2 ∈ List (Ch× 2)

Types a, b ::= . . . | EffC a
Typing contexts Γ ::= . . .

Γ ⊢ t : a

Return
Γ ⊢ t : a

Γ ⊢ return t : Eff∅ a

Bind
Γ ⊢ t : EffC1a Γ ⊢ u : a⇒ EffC2b

Γ ⊢ bind t u : EffC1∪C2b

Subeff
Γ ⊢ t : EffC1a C1 ⊆ C2

Γ ⊢ subeff t : EffC2 a

Print
Γ ⊢ t : Bool

Γ ⊢ printch t : Eff{ch} Unit

t⇝ u, o with · ⊢ t : EffC a and · ⊢ u : EffC a

Bind
t⇝ t′, o

bind t u⇝ bind t′ u, o

Bind-Subeff
value t

bind (subeff t) u⇝ subeff (bind t u), ϵ

Bind-Ret

bind (return t) u⇝ app u t, ϵ

Subeff
t⇝ t′, o

subeff t⇝ subeff t′, o

Print
t→ t′

printch t⇝ printch t′, ϵ

Print-Val
value b

printch b⇝ return unit, [(ch, b)]

EffectFree
t→ t′

t⇝ t′, ϵ

Figure C.2.: Types, well-typed terms and small-step semantics of λPRINT
REC (omit-

ting the unchanged rules of Appendix I)

113

C. Pure Information-Flow Control with Effects Made Simple

Figure C.2. The semantics of effect-free terms, inherited from λREC, t → u,
treats monadic terms, such as return t, as values even when their subterms are
not values, e.g. return (app (µ f. x. x) true) ̸→. The semantics of computations
(alternatively, monadic semantics) is of the form t⇝ u, o and is interpreted as
follows: program · ⊢ t : EffC a evaluates in one step to program · ⊢ u : EffC a
and produces output o. The output is a list of pairs of channels and Boolean
values o ∈ List (Ch× 2), and it represents the outputs of the program during
execution.

We now briefly explain the semantics. Rule Bind reduces the left subterm of
bind and executes its effects o. Once the left subterm is a value, i.e. return t,
Bind-Ret applies the rest of the computation u to the underlying value of
type a, i.e. t. Applying the continuation u does not produce effects—recall
that we are in a pure language—thus the step contains the empty output on
the right, i.e. ϵ. Rule Print reduces the argument t of printch t until it is a
value of type Bool, either true or false, and then Rule Print-Val prints the
corresponding Boolean on the output channel ch. The output [(ch, v)] is the
singleton list with only one pair. Observe that these rules make printch t strict
in its argument. Rule EffectFree serves to lift effect-free reductions to the
level of computations. Since by definition effect-free reductions do not produce
effects, the right hand side of the effect contains the empty output ϵ. To
complete the picture, we denote by t ⇝∗ u, o the reflexive-transitive closure
of the monadic reduction relation. To combine effects, we use the monoid
structure on List (Ch× 2).

Two Reduction Relations While it might seem unnecessary to define the
semantics using the combination of a small-step relation of effect-free programs
and a small-step relation of computations, it is a natural form of expressing the
operational semantics of pure languages with effects [WT03]. The effect-free
relation evaluates programs that cannot perform effects, whilst the relation for
computations evaluates programs which can, and computes those effects.

To better clarify this point, let us consider the execution on the following
program, which we show in prettified syntax5:

prog5 : Eff{ch1 ,ch2 } Unit
prog5 = if true then

printch1 false else return unit
>>= λ x. printch2 true

The program evaluates as follows: 1. the effect-free semantics reduces the
5When possible we use Haskell-like syntax and leave the term subeff implicit.

114

C.3. Effectful Information-Flow Control

term on the left of the bind, i.e. if true then printch1 false else return unit, to
the value printch1 false (Rule If-True through Bind) and this causes no ef-
fect; 2. the monadic semantics performs the effect, i.e. printing true on ch1 ,
(Rule Print-Val); 3. the rest of the computation λ x. printch2 true is applied to
the resulting value, unit (Rule Bind-Ret); 4. the effect-free semantics reduces
the application (Rule Beta through EffectFree) and finally; 5. the monadic
semantics performs the effects of printch2 true.

To conclude the presentation of λ
PRINT
REC , we enunciate the following lemma

which states that the index C in the type of computations EffC a is a sound
approximation of the set of channels where a program · ⊢ t : EffC a may
print, i.e. t does not produce output in any channel not in C. In the security
literature (e.g. [VIS96]) it is usually called confinement. Let us denote by
o|ch the projection from o to the list consisting of all those pairs whose first
component is the channel ch.

Lemma C.3.1 (Confinement for λ
PRINT
REC). For any λ

PRINT
REC program of type

· ⊢ p : EffC a, λ
PRINT
REC value · ⊢ v : EffC a, and output o, if p ⇝∗ v, o then

∀ch ∈ Ch. ch ̸∈ C ⇒ o|ch = [].

Security-Type System After having defined the programming language, we
are in position to turn our attention to the extension of λSC that enforces IFC
on λ

PRINT
REC . We assume that the security policy specifies the sensitivity of each

printing channel, i.e. the greatest lower bound of the sensitivities of all its
observers, in the form of a function label ∈ Ch→ L. In Figure C.3 we present
the extension of λSC that accommodates printing effects. We name it λ

PRINT
SC

hereafter. The types are the same as those in λSC with the addition of a new
type constructor EffC of computations. The typing rules for the λ

PRINT
REC fragment

of λPRINT
SC , i.e. Rules Return, Bind, Subeff and Print, simply propagate the set

of labels π to their premises. Observe, again, that one has to explicitly unseal
sensitive Booleans, i.e. of type Sl Bool, to apply the Rule Print. Before detailing
Rule Distr, we extend the family of erasure functions ε from λ

PRINT
SC -terms to

λ
PRINT
REC programs in the obvious way: i.e. the type former EffC erases to “itself”

and, analogously to seall and unseall, distr is a no-op.

ε(. . .) = . . . ε(. . .) = . . .
ε(EffC A) = EffC ε(A) ε(distr t) = ε(t)

Rule Distr introduces one of the novelties of our work; an enforcement
mechanism that selectively permits to execute the effects of computations that
depend on sensitive data. In λ

PRINT
SC , a term of type Sl (EffC A) describes a

115

C. Pure Information-Flow Control with Effects Made Simple

Sets of channels C, C1, C2⊆ Ch
Sensitivity of channels label∈ Ch→ L

Sets of labels π⊆ L
Types A, B ::= . . . | EffC A

Typing contexts Γ ::= . . .

π ; Γ ⊢SC t : A

Return
π ; Γ ⊢SC t : A

π ; Γ ⊢SC return t : Eff∅ A

Bind
π ; Γ ⊢SC t : EffC1 A π ; Γ ⊢SC u : A⇒ EffC2 B

π ; Γ ⊢SC bind t u : EffC1∪C2 B

Subeff
π ; Γ ⊢SC t : EffC1 A C1 ⊆ C2

π ; Γ ⊢SC subeff t : EffC2 A

Print
π ; Γ ⊢SC t : Bool

π ; Γ ⊢SC printch t : Eff{ch} Unit

Distr
π ; Γ ⊢SC t : Sl (EffC A)

π ; Γ ⊢SC distr t : EffC (Sl A)
(∀ch ∈ C. l ⊑ label(ch))

Figure C.3.: Types and intrinsically-typed terms of λ
PRINT
SC (omitting the un-

changed rules of Figure C.1)

116

C.3. Effectful Information-Flow Control

computation that might only print on the channels in C and what is printed
and the decision to print potentially depends on data of sensitivity l. Then, it is
natural to ask, when it is secure to execute the effects of the inner computation
of type EffC A? Clearly, whenever the sensitivities of the computation’s effects,
i.e. the channels in the set C, are as high as the sensitivity of the data used to
decide to perform the effects, i.e. sensitivity l. The side-condition of the rule
exactly captures this condition: ∀ch ∈ C. l ⊑ label(ch).

To illustrate Distr in action, let us consider the following term in λ
PRINT
SC that

prints Alice’s sensitive input to the H-sensitive channel:

prog6 : SA Bool⇒ Eff{ChH} Unit
prog6 = λ sb. distr (sealA (printChH

(unsealA sb))) >>= λ x. return unit

The primitive distr permits to execute the effects of the computation inside
the term sealA (printChH

(unsealA sb)). The term distr protects the return type
of the computation at the same sensitivity as the premise’s type Sl A. This
requirement is necessary to enforce IFC because the trivial computation that
performs no effects and just returns has access to sensitive data, as exemplified
by the following program:

prog7 : SA Bool⇒ SB Bool⇒ Eff{ChH} (SH Bool)
prog7 =

λ sb1 sb2 . distr (sealH (printChH
(unsealA sb1)) >>= λ x. return (unsealB sb2))

C.3.2. Global Store Effects

We turn our attention to global store effects which combines printing effects
from the previous section with reading from locations in the store. Following
the same steps, in Figure C.4 we present the extension of λREC (Appendix I) in
which programs have access to a global store and can read from and write to
it. We name this language λ

STORE
REC . Our development rests on two assumptions:

(1) the set of locations in the store Loc is fixed during execution, and (2) only
terms of ground type, i.e. Bool and Unit, can be stored. This helps simplify
the presentation of the language and the security-type system, and, as we will
show in the next section, the construction of the logical relation from which
noninterference follows. At the end of this section, however, we briefly discuss
how to lift these assumptions.

λ
STORE
REC extends λREC with a type of computations EffS a, which is indexed

by a set of store locations S ⊆ Loc, and a type of references Refs r, which is
indexed by store locations s ∈ S. A program of type EffS a when executed
might only write to the references mentioned in the set S and finally return

117

C. Pure Information-Flow Control with Effects Made Simple

a result of type a. A term of type Refs r is a reference in the store s that
contains terms of ground type r. References permit both “printing” effects
via writing—like channels in λ

PRINT
REC —but also reading effects. Note that the

annotation S in the type of computations EffS does not mention the locations
on the store from which the program might read. This asymmetry stems from
how the execution of programs performing these effects interact with their
environment: writing alters the store whilst reading does not.

Statics Typing judgements are of the form Σ, Γ ⊢ t : a where the store
typing Σ determines the shape of the store, i.e. what types it contains and
in what locations. The rest of components are like those in λREC. The typing
rules of the monadic operations return, bind and subeff follow the same pattern
as in λ

PRINT
REC (Figure C.2), thus we do not discuss them any further. The

term refs (Rule Ref) is the runtime representation of references. Reading
and writing is achieved via primitives read and write (Rules Read and Write
respectively). Observe that in Read, the type of the computation Eff∅ r in the
conclusion of the rule is indexed by the empty set of locations, while in Write
is indexed by the singleton set {s}.

Dynamics The operational semantics of the language is defined as in λ
PRINT
REC ; a

combination of the small-step semantics for λREC that treats effectful primitives
as values, and a small-step semantics for computations. Given a store typing Σ,
a store θ is a function from locations to typed terms according to Σ. Since
the language considers a fixed-size store, we use the notation θ instead of θ(Σ).
The semantics of computations is of the form θ1, t⇝ θ2, u, and is interpreted
as: program Σ, · ⊢ t : EffS a paired with store θ1 evaluates in one step to
program Σ, · ⊢ u : EffS a and store θ2.

We now explain the semantics. Rule Read reduces the argument of read
and it does not modify the store. When the argument is a store location, i.e.
refs, Read-Ref retrieves the term t from the store, i.e. θ(s) = t. The rules for
writing Rules Write and Write-Ref first reduce the left subterm of write u t
to a store location and then write the right subterm t on the store. Different
from λ

PRINT
REC , we permit to write any term on the store, not only values.

To briefly illustrate λ
STORE
REC , consider the following program:

prog8 : Bool⇒ Eff{s′} Unit
prog8 b = if b then (read s >>= λ x. write s′ x) else return unit

Based on the Boolean input, prog8 copies the contents of the store location s
to s′. Observe that the type only mentions the location s′ in its index.

118

C.3. Effectful Information-Flow Control

Store locations s∈ Loc
Sets of s. locations S, S1, S2⊆ Loc

Ground types r ::= Bool | Unit
Types a, b ::= r | a⇒ b | EffS a | Refs r

Typing contexts Γ ::= . . .
Store typings Σ∈ Loc→ Ground types

Σ, Γ ⊢ t : a

Ref
Σ(s) = r

Σ, Γ ⊢ refs : Refs r

Read
Σ, Γ ⊢ t : Refs r

Σ, Γ ⊢ read t : Eff∅ r

Write
Σ, Γ ⊢ t : Refs r Σ, Γ ⊢ u : r

Σ, Γ ⊢ write t u : Eff{s} Unit

Stores θ, θ1, θ2 ∈ (Σ : Store typing)→ (s : Loc)→ Σ , · ⊢ t : Σ(s)

θ1(Σ), t⇝ θ2(Σ), u with Σ, · ⊢ t : EffS a and Σ, · ⊢ u : EffS a

Read
t→ u

θ, read t⇝ θ, read u

Read-Ref
θ(s) = t

θ, read refs ⇝ θ, return t

Write
t→ t′

θ, write t u⇝ θ, write t′ u

Write-Ref
θ2 = θ1[s 7→ t]

θ1, write refs t⇝ θ2, return unit

Figure C.4.: Types, well-typed terms and small-step semantics of λSTORE
REC (omit-

ting the unchanged rules of Appendix I and Figure C.2)

119

C. Pure Information-Flow Control with Effects Made Simple

We conclude the explanation of λSTORE
REC with a confinement lemma similar to

that of λPRINT
REC (Lemma C.3.1):

Lemma C.3.2 (Confinement for λ
STORE
REC). For any λ

STORE
REC program Σ, · ⊢ f :

EffS a, λ
STORE
REC value Σ, · ⊢ v : EffS a, and stores θ2, θ2 : Σ, if θ1, f ⇝∗ θ2, v then

∀s ∈ Loc. s ̸∈ S ⇒ θ1(s) = θ2(s).

Security-Type System Now we explain the IFC enforcement mechanism
λ

STORE
SC (Figure C.5). As in λ

PRINT
SC (Figure C.3) we assume that the security policy

specifies for each store location its sensitivity as a function label ∈ Loc → L.
The typing rules for the monadic primitives are analogous to λ

PRINT
SC thus we

have omitted them. The rule for references is straightforward (Rule Ref). More
interesting is the typing rule for reading from the store (Rule Read). In the
conclusion of the rule, the return type of the computation is the λSC type for
sensitive data Sl R. The sensitivity of the location is l, i.e. label(s) = l in the
side-condition of the rule, thus to protect the flow of information is necessary
to wrap also the return type.

The type of read diverges from usual presentations of IFC libraries (e.g.
MAC [Rus15] and HLIO [BVR15] with the exception of SLIO [RG20]) in
that the result of reading from the store is wrapped in the type constructor Sl.
These libraries incorporate the data into their monad of computations, which
keeps track of the sensitivities of the observed values.

We conclude the section with a concrete example of λ
STORE
SC that shows

that prog8 is secure with respect to the following specification: label(s) = A,
label(s′) = H and the sensitivity of the Boolean argument is H, i.e. sb : SH Bool:

prog′
8 : SH Bool⇒ Eff{s′} (SH Unit)

prog′
8 sb = distr(sealH(if unsealA sb

then (read s >>= λ x. write s′ (unsealH x))
else return unit))

The above program exemplifies how λ
STORE
SC enforces that flows from the store

to the program and back to the store are secure. Note that ε(prog′
8) = prog8 .

Lifting the Assumptions on the Store

To conclude this section, we briefly discuss how to lift the initial assumptions,
i.e. (1) and (2), on the store. Since λ

STORE
REC and λ

STORE
SC already support the

definition of recursive functions, removing the constraint of ground types on
the store, i.e. making it higher-order, is straightforward and does not change
the expressivity of the language. To permit dynamically allocated locations,

120

C.3. Effectful Information-Flow Control

Store locations s∈ Loc
Sets of s. locations S, S1, S2⊆ Loc

Sensitivity of loc. label∈ Loc→ L
Sets of labels π⊆ L
Ground types R ::= Bool | Unit

Types A, B ::= R | A⇒B | EffS A | Refs R
Typing contexts Γ ::= . . .

Store typings Σ∈ Loc→ Ground type

π ; Σ, Γ ⊢SC t : A

Ref
Σ(s) = R

π ; Σ, Γ ⊢SC refs : Refs R

Read
π ; Σ, Γ ⊢SC t : Refs R

π ; Σ, Γ ⊢SC read t : Eff∅ (Sl R)
(label(s) = l)

Write
π ; Σ, Γ ⊢SC t : Refs R π ; Σ, Γ ⊢SC u : R

π ; Σ, Γ ⊢SC write t u : Eff{s} Unit

Distr
π ; Σ, Γ ⊢SC t : Sl (EffS A)

π ; Σ, Γ ⊢SC distr t : EffS (Sl A)
(∀s ∈ S. l ⊑ label(s))

Figure C.5.: Types and intrinsically-typed terms of λ
STORE
SC (omitting the un-

changed rules of Figure C.1)

121

C. Pure Information-Flow Control with Effects Made Simple

the type of computations EffS a changes so that the annotation S records
memory regions, i.e. an abstraction over sets of locations, where the program
might write—see e.g. Lucassen and Gifford [LG88] or Tofte and Talpin [TT97].
New references are allocated in a memory region statically assigned by the
programmer, and the type of the reference tracks such region. Then, the
security-type system is similar to λ

STORE
SC , but it assigns security labels to

regions instead of concrete locations.

C.3.3. Other Effects, Combination of Effects
To conclude we note that the previous sections show how to treat, from an IFC
perspective, reading and writing effects in a general sense. With such a devel-
opment, our approach could be used to not only encode secure reading/writing
of references but also effects involving files and network communications. How-
ever, our framework can be adapted to deal with other kinds of effects, e.g.
exceptions, or combinations thereof by selecting what effects the graded monad
has to track, e.g. what exceptions are thrown, and when it it secure to extract
a computation from a sealed value.

C.4. Security Guarantees
In this section, we prove that the IFC mechanisms λSC, λ

PRINT
SC and λ

STORE
SC

can be used to enforce noninterference for the programming languages λREC,
λ

PRINT
REC and λ

STORE
REC presented in Sections C.2, C.3.1 and C.3.2, respectively. Our

noninterference proofs employ the technique of step-indexed logical relations
(LRs) [Ahm06]. For each language, we construct a step-indexed LR parame-
terized by the sensitivity of the attacker Atk and the security types of λSC. In
the effect-free setting, the LR interprets each λSC type A as a binary relation
over λREC programs of the erased type ε(A). The relation captures the idea of
indistinguishable programs: if the type is public enough, e.g. SL Bool and L flows
to Atk, then two programs are related when they evaluate to the same value.
Noninterference follows as a corollary of the so called fundamental theorem of
the LR.

Step-indexing is a technical device that helps in proving that programs defined
as recursive functions belong to the relation by looking at their finite unrollings.
To ease the explanation, we use grey to display the step-indexing machinery,
and sometimes we completely ignore it.

Following previous work [RG20; Gre+21], we show that the security-type
systems enforce variants of termination-insensitive noninterference (TINI). At
the end of this section, we briefly discuss alternative security conditions. TINI

122

C.4. Security Guarantees

states that when two runs of a program with different secret inputs terminate,
then its public outputs agree, and thus the attacker cannot use nontermination
as a channel to infer the contents of sensitive data. In the effect-free setting, the
inputs to a program are its arguments, and the output is its return value. In
the effectful setting, what we need to consider as inputs and outputs changes: in
λ

STORE
REC , for instance, the store must be considered an additional input to the

program.

Definition C.4.1 (TINI for λREC). A program sec : Bool ⊢ p : Bool satis-
fies TINI if for any two terms · ⊢ s1, s2 : Bool, and any two values · ⊢ v1, v2 : Bool,
if p[s1/sec]→∗ v1 and p[s2/sec]→∗ v2 then v1 = v2.

In the definition v1 = v2 denotes that v1 and v2 are syntactically equal values.
Note that programs that diverge for any input vacuously satisfy TINI: the
assumption that the substituted programs terminate will never hold.

λSC enforces TINI:

Theorem C.4.1. Given any λSC term {Atk} ; sec : SH Bool ⊢SC t : SAtk Bool
where H ̸⊑ Atk, the erased program sec : Bool ⊢ ε(t) : Bool satisfies TINI.

In practice, we are concerned that information does not flow from H-protected
data to the attacker with sensitivity Atk. Thus, to show that a program
sec : Bool ⊢ p : Bool does not leak information from H to Atk, it is enough to
find an λSC term {Atk} ; sec : SH Bool ⊢SC t : SAtk Bool such that p = ε(t).

Logical Relation In order to prove that λSC enforces TINI (Theorem C.4.1),
we construct an step-indexed LR parameterized by the attacker’s sensitivity
Atk and the λSC types—see Figure C.6. The proof, as we will show, then falls
out as a consequence of the fundamental theorem of the LR.

At each λSC type the LR defines what the attacker can observe about pairs of
λREC programs of erased type—alternatively, the same program with different
secrets. We split the definition depending on whether programs are evaluated,
i.e. they are already values, RAtk

V J−K and RAtk
C J−K, respectively. We briefly

explain these definitions. At λSC type Bool, for instance, see RAtk
C JBoolK and

RAtk
V JBoolK, the LR states that if the programs terminate then the attacker can

observe if they return equal values. At higher types, i.e. A⇒B, two functions
are related if whenever they reduce to a value, see RAtk

C JA⇒BK, they map
related inputs RAtk

C JAK(u1, u2) to related outputs RAtk
C JAK(app t1 u1, app t2 u2),

see RAtk
V JA⇒BK. Lastly, at type Sl A, see RAtk

V JSl AK, the LR compares the
sensitivity of the attacker with the label l, and in case it is less sensitive, i.e.
l ⊑ Atk, the programs have to be related at λSC type A. If the label l is more

123

C. Pure Information-Flow Control with Effects Made Simple

RAtk
V J−K ∈ (A : λSC type)→ N→ (t1 : · ⊢ ε(A))→ (t2 : · ⊢ ε(A))→ Set
RAtk

V JUnitKn(t1, t2) :⇔ t1 = t2

RAtk
V JBoolKn(t1, t2) :⇔ t1 = t2

RAtk
V JA⇒BKn(t1, t2) :⇔ ∀(m : N). m ⩽ n.

∀(u1, u2 : · ⊢ ε(A)). RAtk
C JAKm(u1, u2)⇒ RAtk

C JBKm(app t1 u1, app t2 u2)
RAtk

V JSl AKn(t1, t2) :⇔ l ⊑ Atk⇒ RAtk
V JAKn(t1, t2)

RAtk
C JAKn(t1, t2) :⇔ ∀(m1, m2 : N). m1 + m2 < n.

∀(u1, u2 : · ⊢ ε(A)). t1 →∗
m1 u1 ∧ t2 →∗

m2 u2 ⇒ RAtk
V JAKn−(m1+m2)(u1, u2)

RAtk
S J·Kn(ϵ, ϵ) :⇔ ⊤
RAtk

S JΓ, x : AKn((γ1, t1), (γ2, t2)) :⇔ RAtk
C JAKn(t1, t2) ∧RAtk

S JΓKn(γ1, γ2)

RAtk
T J(Γ, A)Kn(t1, t2) :⇔
∀(γ1, γ2 : · ⊢ ε(Γ)).RAtk

S JΓKn(γ1, γ2)⇒ RAtk
C JAKn(t1[γ1], t2[γ2])

Figure C.6.: Logical relation for λREC-λSC

sensitive than the attacker’s label, i.e. l ̸⊑ Atk then the programs do not need
to be related.

Definitions RAtk
V J−K and RAtk

C J−K work on closed terms, however, in order
to prove the fundamental theorem we have to lift them to closed substitutions
and open terms. A substitution assigns to each type a in a typing context Γ a
closed term of that type, i.e. · ⊢ t : a. We denote substitutions by γ and use
γ : · ⊢ Γ to mean that γ is in the set of substitutions over Γ. We define the
LR for substitutions, RAtk

S J−K, by induction on λSC typing contexts. At the
empty context · the empty substitutions (ϵ, ϵ) are trivially related—denoted
by ⊤. Two nonempty substitutions (γ1, t1) and (γ2, t2) are related whenever
they are pointwise related, i.e. RAtk

C JAK(t1, t2) and RAtk
S JΓK(γ1, γ2). The LR

for open terms, written RAtk
T J(Γ, A)K, is indexed by a pair consisting of an λSC

typing context Γ and an λSC type A. It states that two λREC terms are related
if for any two related closing substitutions the substituted terms are related at
type A.

The fundamental theorem of the LR states that the underlying program of

124

C.4. Security Guarantees

an λSC term is related to itself. Formally:

Theorem C.4.2 (Fundamental Theorem of the LR for λREC-λSC). For any
attacker with sensitivity Atk, and λSC term {Atk} ; Γ ⊢SC t : A, it is the case
that for all n : N, RAtk

T J(Γ, A)Kn(ε(t), ε(t)).

Proof. By induction on the the typing derivation and the step-index n.

TINI (Theorem C.4.1) follows as a corollary of the fundamental theorem:

Proof. Assume two Boolean secrets · ⊢ s1, s2 : Bool. Since H ̸⊑ Atk, the
secrets are related, i.e. RAtk

C JSH BoolK(s1, s2), and thus the two substitutions
γ1 = {sec 7→ s1} and γ2 = {sec 7→ s2} are related. By the fundamental
theorem, the term ε(t) is related to itself, i.e. RAtk

C JSAtk BoolK(ε(t)[γ1], ε(t)[γ2]).
Unfolding the definitions of we obtain that ∀(v1, v2 : · ⊢ Bool). ε(t)[γ1] →∗

v1 ∧ ε(t)[γ2]→∗ v2 ⇒ v1 = v2.

C.4.1. Noninterference for Printing Effects
In order to formalize noninterference for λ

PRINT
REC we look at effectful programs

that might print. For that, we first define indistinguishability of outputs with
respect to a subset of channels:

Definition C.4.2 (Output indistinguishability). Let C ⊆ Ch. Two outputs o1
and o2 are C-indistinguishable, denoted by o1 =C o2, if the two outputs agree
in C, i.e. o1|C = o2|C .

We define TINI for λ
PRINT
REC for programs from Bool to EffC Unit, i.e. programs

that depending on a Boolean produce output in an arbitrary set of channels C:

Definition C.4.3 (TINI for λ
PRINT
REC). A program sec : Bool ⊢ p : EffC Unit

satisfies TINI with respect to C ′ ⊆ C, if for any two terms · ⊢ s1, s2 : Bool, any
two values · ⊢ v1, v2 : EffC Unit, and any two outputs o1 and o2, if p[s1/sec]⇝∗

v1, o1 and p[s2/sec]⇝∗ v2, o2 then o1 =C′ o2.

TINI is parameterized by a subset of the channels where the outputs have
to agree. We will instantiate C ′ with the set of channels observable by the
attacker.

λ
PRINT
SC can be used to enforce TINI on λ

PRINT
REC programs:

Theorem C.4.3. Given any λ
PRINT
SC term {Atk} ; sec : SH Bool ⊢SC t : EffC Unit

where H ̸⊑ Atk the erased program sec : Bool ⊢ ε(t) : EffC Unit satisfies TINI
with respect to CAtk where CAtk := {ch | ch ∈ C, label(ch) ⊑ Atk}.

125

C. Pure Information-Flow Control with Effects Made Simple

RAtk
V J. . .Kn(t1, t2) :⇔ . . .

RAtk
V JEffC AKn(t1, t2) :⇔
∀(m1, m2 : N). m1 + m2 < n.∀(u1, u2 : · ⊢ ε(A)), o1, o2.

t1 ⇝
∗
m1 return(u1), o1 ∧ t2 ⇝

∗
m2 return(u2), o2

⇒ RAtk
C JAKn−(m1+m2)(u1, u2) ∧ o1 =CAtk o2

Figure C.7.: Logical relation for λ
PRINT
REC -λPRINT

SC (omitting the unchanged clauses
of Figure C.6)

Logical Relation The LR for λ
PRINT
REC (Figure C.7) is very similar to that of

λREC (Figure C.6) so we skip over the commonalities and directly discuss its
definition at the type of computations. The LR relates two computations
RAtk

V JEffC AK(t1, t2) if whenever they terminate, i.e. t1 ⇝∗ return u1, o1 and
t2 ⇝∗ return u2, o2, the resulting terms are related, i.e. RAtk

C JτK(u1, u2), and the
outputs are indistinguishable by the attacker, i.e. o1 =CAtk o2. The fundamental
theorem of the LR states that erased terms are related to themselves:

Theorem C.4.4 (Fundamental Theorem of the LR for λ
PRINT
REC -λPRINT

SC). For any
attacker with sensitivity Atk, and λ

PRINT
SC term {Atk} ; Γ ⊢SC t : A, it is the case

that RAtk
T J(Γ, A)K(ε(t), ε(t)).

Proof. By induction on the typing derivation with use of the Lemma C.3.1.

The proof that λ
PRINT
SC enforces TINI (Theorem C.4.3) requires the following

Lemma.

Lemma C.4.1. If p⇝∗ v, o, then there exists a →-value p′ such that p→∗ p′

and p′ ⇝∗ v, o.

TINI follows as a corollary of the fundamental theorem.

Proof. Let us assume two secret Booleans · ⊢ s1, s2 : Bool. Since H ̸⊑ Atk,
the secrets are related, i.e. RAtk

C JSH BoolK(s1, s2), and thus the substitutions
γ1 = {sec 7→ s1} and γ2 = {sec 7→ s2} are related. By the fundamental theorem,
the term ε(t) is related to itself RAtk

C JEffC UnitK(ε(t)[γ1], ε(t)[γ2]).
By assumption ε(t)[s1/sec] ⇝∗ v1, o1 and ε(t)[s2/sec] ⇝∗ v′

2, o2, and by
Lemma C.4.1, there are two intermediate programs t′

1 and t′
2 such that:

ε(t)[s1/sec] →∗ t′
1 and t′

1 ⇝
∗ v1, o1; and ε(t)[s2/sec] →∗ t′

2 and t′
2 ⇝

∗ v2, o2.

126

C.4. Security Guarantees

We apply RAtk
C JEffC UnitK(ε(t)[s1/sec], ε(t)[s2/sec]) to the two effect-free reduc-

tions which gives us that RAtk
V JEffC UnitK(t′

1, t′
2). We apply this to the monadic

reductions and obtain that o1 =CAtk o2.

C.4.2. Noninterference for Global Store Effects
We formalize noninterference for λ

STORE
REC by looking at effectful programs which

receive a store as input and produce a store as output. The contents of the store
are possibly unevaluated λ

STORE
REC programs of ground type (see Figure C.4). In

order to compare stores, we define an indistinguishability relation for programs
of ground type:

RGJ−K : (r : λSTORE
REC ground type)→ N→ (t1 : · ⊢ r)→ (t2 : · ⊢ r)→ Set

RGJrKn(t1, t2) :⇔
∀(m1, m2 : N). m1 + m2 < n.∀(v1, v2 : · ⊢ r).

t1 →∗
m1 v1 ∧ t2 →∗

m2 v2 ⇒ v1 = v2

In some sense it resembles the LR at Unit and Bool types in Figure C.6.
Stores are parameterized by store typings that determine the type of the

contents at each location. Since stores neither grow nor shrink, assumption
(1) (Section C.3.2), we define an indistinguishability relation for stores of the
same store typing. Indistinguishability is parameterized by a subset of the
locations.
Definition C.4.4 (Store indistinguishability). Let S ⊆ Loc. Two stores θ1 and
θ2 of store typing Σ(s) are S-indistinguishable, denoted by θ1 =n

S θ2, if they are
indistinguishable at each location in S, i.e. ∀s ∈ S. RGJΣ(s)K

n
(θ1(s), θ2(s)).

TINI for λ
STORE
REC programs is:

Definition C.4.5 (TINI for λ
STORE
REC -λSTORE

SC). A program Σ, · ⊢ p : EffS Unit
satisfies TINI with respect to S′ ⊆ Loc, if for any two stores θ1, θ2 : Σ, any
two values · ⊢ v1, v2 : EffS Unit, and any two stores θ′

1, θ′
2 : Σ, if θ1 =S θ2 and

θ1, p⇝∗ θ′
1, v1 and θ2, p⇝∗ θ′

2, v2 then θ′
1 =S θ′

2.
Again, λSTORE

SC enforces TINI on λ
STORE
REC programs:

Theorem C.4.5. Given any λ
STORE
SC term {Atk} ; Σ, · ⊢SC t : EffS Unit the

erased program Σ, · ⊢ ε(t) : EffS Unit satisfies TINI with respect to SAtk where
SAtk := {s | s ∈ Loc, label(s) ⊑ Atk}.

The LR that we construct to prove TINI (Figure C.8) is largely similar to
that of λPRINT

REC (Figures C.7 and C.6), with the difference that effectful programs
take as argument and produce as result indistinguishable pairs of stores. TINI
follows as a consequence of the fundamental theorem of the LR.

127

C. Pure Information-Flow Control with Effects Made Simple

RAtk
V J. . .Kn(t1, t2) :⇔ . . .

RAtk
V JEffC AKn(t1, t2) :⇔
∀(m1, m2 : N). m1 + m2 < n.∀(u1, u2 : · ⊢ ε(A))(θ1, θ2, θ′

1, θ′
2 : Σ).

θ1 =SAtk θ2 ∧ θ1, t1 ⇝
∗
m1 θ′

1, return u1 ∧ θ2, t2 ⇝
∗
m2 θ′

2, return u2

⇒ RAtk
C JAKn−(m1+m2)(u1, u2) ∧ θ′

1 =SAtk θ′
2

Figure C.8.: Logical relation for λ
STORE
REC -λSTORE

SC (omitting the unchanged clauses
of Figure C.6)

C.4.3. Other Security Properties
To conclude this section, we note that the security-type systems for λ

PRINT
REC

and λ
STORE
REC , in fact, enforce a stronger notion of security than TINI, namely

progress-insensitive noninterference (PINI). Progress-insensitive noninterference
(PINI) states that an attacker cannot infer the contents of sensitive data even if
they have access to prefixes of the public outputs that nonterminating programs
produce. In order to prove this stronger notion, the LRs require nontrivial
generalizations that can deal with partial reduction sequences. We declare this
line of research as future work.

C.5. Implementation
In this section, we present an implementation of λSC and λ

PRINT
SC (Sections C.2

and C.3.1) as a Haskell library, which we call SCLib. We omit λ
STORE
SC (Sec-

tion C.3.2) for lack of space. However, its implementation is similar to that
of λ

PRINT
SC . Furthermore, we demonstrate that existing Haskell libraries for

static IFC can be reimplemented in terms of the interface that SCLib exposes.
The main characteristic of λSC is that typing judgements π ; Γ ⊢SC t : A are

indexed by a set of labels π. Onwards, we refer to the left part of the judgement,
i.e. π ; Γ, as the context of the term t. The set of labels plays an important
role in enforcing IFC. However, individual labels are not first-class citizens:
there is no type of labels and, hence, labels can neither be introduced nor
eliminated. Further, some typing rules in λSC modify the set of labels in their
context: e.g. the rule for unseall (cf. Figure C.1) augments the set in its premise
with l. When shallowly embedding in Haskell any calculus that manipulates
the context in this fashion, there is a natural problem to overcome: Haskell
does not allow library implementors to have access to a program’s context. For

128

C.5. Implementation

1 module SCLib
2 (Key (), Label (..), FlowsTo (..), S (S), seal, unseal, ...)
3 where
4 -- Enumeration of security labels for the two-point lattice
5 data Label = H | L
6 -- "Flows to" relation as a typeclass
7 class FlowsTo (l :: Label) (l' :: Label)
8 -- Instances
9 instance FlowsTo l l

10 instance FlowsTo L H
11 -- Type-level keys
12 data Key (l :: Label) = Key
13 -- Security type
14 data S l a = S (Key l -> a)
15 -- Sealing
16 seal :: (Key l -> a) -> S l a
17 seal = Seal
18 -- Unsealing
19 unseal :: FlowsTo l' l => Key l -> S l' a -> a
20 unseal k@Key (S f) = f Key

Figure C.9.: Implementation of λSC (e.g. for the two-point security lattice)

instance, to embed a linear type system, Bernardy, Boespflug, Newton, Jones,
and Spiwack [Ber+17] need to change the compiler.

To overcome these difficulties, our implementation resorts to a combination
of Haskell’s module system to hide the implementation details’ from users,
and the use of Haskell’s function space, i.e. abstraction and application, to
manage the runtime representation of labels. We hope to convince the reader
that our simple implementation matches the studied enforcement mechanisms,
and that it can shed light on previous work on static IFC in Haskell.

C.5.1. Implementation of λSC

When we introduced λSC, we mentioned the intuition that labels in π are
some sort of type-level keys whose possession permits access to sealed data.
Our implementation takes this intuition literally: there is a type for keys
whose elements are attached with type-level labels, and the primitive to unseal,
i.e. unseal, is parameterized by a key. The elements of this type are like
capabilities [DH83] which need to be explicitly exercised.

Figure C.9 shows the complete implementation of λSC in Haskell. Without

129

C. Pure Information-Flow Control with Effects Made Simple

loss of generality, we assume the two-point security lattice. As previous work (e.g.
MAC [Rus15], HLIO [BVR15], and DCC [AR17]) we represent labels as types
of kind Label (line 5, and the use of the GHC extension DataKinds) and
encode the “flows to” relation via a typeclass (lines 7–10). For simplicity
we show the encoding of the two-point security lattice, however, this can be
generalized (cf. [BVR15]). In line 12 we introduce a new datatype Key which is
parameterized by a type l of kind Label. Then, line 14 introduces the type S,
which is a wrapper over the function space between the types Key l and a, i.e.
Key l -> a.

We now implement the primitives seal and unseal—Rules Seal and Unseal
from Figure C.1. Rule Seal introduces a sealed value of type S l a from a value
of type a that is typed in a context that has been extended by label l. Our
implementation (lines 16 and 17), however, uses the function space Key l -> a
to mimic the context extension by label l. Intuitively, the value of type Key l
represents a proof that the label l is present in the context, and hence it can
be used to construct the value of type a through unseal, which we explain
next. Rule Unseal permits to eliminate sealed values of type S l a provided
that the context contains a label l' secret enough, i.e. l FlowsTo l'. The
combinator unseal (lines 19–20) allows unsealing terms of type S l a precisely
in case we have a value of type Key l' and the label in its type, i.e. l', flows to
l—see the constraint FlowsTo l' l. In order to enforce IFC, it is important
that the constructors of Key are kept abstract from the user—observe Key ()
in the export list of the module (line 2). Otherwise, anyone could extract
the underlying term of type a from an l-sensitive value secret :: S l a by
applying unseal Key. Similar to Russo, Claessen, and Hughes [RCH08], the
combinator unseal is strict in its argument (k@Key) in order to forbid forged keys
like undefined :: Key l. We remark that the noninterference property—recall
TINI from Definition C.4.1—rules out programs that force undefined and halt
with error.

The implementation discussed so far consists of the trusted computing base
(TCB) of SCLib. From now on, users of the library can derive functionalities
from the library’s interface. For example, programmers can implement the
Functor, Applicative and Monad instances for the type S l a. For instance,

instance Functor (S l) where
fmap f x = seal (\k -> f (unseal k x))

instance Applicative (S l) where
pure x = seal (\k -> x)
f <*> a = seal (\k -> (unseal k f) (unseal k a))

130

C.5. Implementation

instance Monad (S l) where
return = pure
m >>= f = seal (\k -> unseal k (f (unseal k m)))

Note that the programmer does not need access to the TCB in order to imple-
ment these instances—as opposed to MAC (cf. [Vas+16]). This phenomenon,
we believe, is a sign of the simplicity and generality of our implementation.

C.5.2. Implementation of λPRINT
SC

Figure C.10 shows the implementation of λ
PRINT
SC which builds on the imple-

mentation of λSC (Figure C.9). The datatype Eff wraps IO computations and
is indexed by a type-level set [OP14] ls of channels where the computation
can write to. For simplicity, we will omit the map label (Figure C.3) from
channels to labels and identify channels with labels so that the index ls has
kind [Label]. This makes the implementation simpler.

In lines 15–18 we implement the return and bind of the graded monad.
returnEff does not produce effects, thus, its type is indexed by the empty set
[] (cf. Figure C.3). bindEff type is indexed by the union of the sets of labels
of the computations (cf. Figure C.3). The implementation of subeffecting is
the identity function (lines 20–21). Printing effects can be performed by the
combinator printEff (lines 26–30). The argument of type SLabel l is a term
level representation of a the type-level label of printing channel.

Lines 34–36 show the implementation of the novel primitive distr. The type-
class constraint FlowsToSet l ls (see the definitions in lines 32) ensures that
l ⊑ l' for every label l' in ls. Its implementation is standard. The implementa-
tion uses the value Key, which pertains to the TCB, to unseal the Eff action, i.e.
unseal Key m; and then it runs its effects, i.e. res <- runEff (unseal Key m);
finally it seals the result at the same label, i.e. return (seal (\k -> res)).

C.5.3. Implementing Existing Libraries for IFC

We conclude this section by showing that we can reimplement some of the exist-
ing libraries in Haskell for IFC. We show implementations of SecLib [RCH08],
simplified dependency core calculus (SDCC) [Alg18] (an alternative presentation
of DCC) and a variation of MAC [Rus15]6 using SCLib interface. In some
sense the implementations help to explain the mentioned libraries. Further,
this shows that the programmer can choose to write programs against SCLib’s

6In our variation the type Labeled is a monad. This is “unsafe” in MAC (cf. [Vas+18,
Section 9.1]).

131

C. Pure Information-Flow Control with Effects Made Simple

1 module SCLib
2 (..., Eff (), FlowsToSet (), pureEff, appEff, returnEff
3 , bindEff, distr, subeff, printEff)
4 where

5 newtype Eff (ls :: [Label]) a = Eff { runEff :: IO a }
6 -- Functor
7 instance Functor (Eff ls) where
8 fmap f (Eff io) = Eff (fmap f io)
9 -- Applicative

10 pureEff :: a -> Eff [] a
11 pureEff = returnEff

12 appEff :: Eff ls1 (a -> b) -> Eff ls2 a -> Eff (Union ls1 ls2) b
13 appEff (Eff ioff) (Eff ioa) = Eff (ioff <*> ioa)
14 -- Graded monad
15 returnEff :: a -> Eff [] a
16 returnEff a = Eff (return a)

17 bindEff :: Eff ls1 a -> (a -> Eff ls2 b) -> Eff (Union ls1 ls2) b
18 bindEff (Eff m) f = Eff (m >>= runEff . f)
19 -- Subeffecting
20 subeff :: Subset ls1 ls2 => Eff ls1 a -> Eff ls2 a
21 subeff (Eff m) = Eff m
22 -- Print
23 data SLabel :: Label -> * where
24 SH :: SLabel H
25 SL :: SLabel L

26 printEff :: (Show a) => SLabel l -> a -> Eff [l] ()
27 printEff l x = Eff (print (header l) >> print x)
28 where header :: SLabel l -> String
29 header SH = "Channel H:"
30 header SL = "Channel L:"
31 -- Distr
32 type family FlowsToSet (l :: Label) (ls :: [Label]) :: Constraint
33 ...

34 distr :: FlowsToSet l ls => S l (Eff ls a) -> Eff ls (S l a)
35 distr m = Eff (do res <- (runEff (unseal Key m))
36 return (seal (\k -> res)))

Figure C.10.: Implementation of λPRINT
SC (omitting the unchanged code of Fig-

ure C.9)

132

C.5. Implementation

“low-level” interface; or a more “high-level” interface, e.g. MAC; or a combi-
nation of both. We declare future work to compare the performance among
implementations.

For each library we briefly explain its interface and show its implementation
in terms of SCLib.

SecLib and SDCC SecLib is one of the pioneers of static IFC libraries in
the context of Haskell. Its main feature is a family of security monads Sec
indexed by labels from the security lattice, each equipped with >>= (bind) and
return. SecLib’s special ingredient is a combinator up that allows coercions
from lower to higher labels in the security monad.

SDCC is an alternative presentation of DCC which favours a simple set
of combinators instead of DCC’s nonstandard bind and protected at relation.
Similar to DCC, SDCC sports a family of monads indexed by security labels.
These support fmap, return and >>= (bind). Further, SDCC implements two
combinators up and com, that allow to relabel in the style of SecLib and
commute terms of monadic type with different labels. SDCC’s interface is
strictly a superset of that of SecLib, thus we directly show the implementation
of the former.

type T l a = S l a

instance Functor (T l) where
...

instance Monad (T l) where
...

up :: FlowsTo l l' => T l a -> T l' a
up lv = seal (\k -> unseal k lv)

com :: T l (T l' a) -> T l' (T l a)
com lv = seal (\k' -> seal (\k -> unseal k' (unseal k lv)))

MAC MAC which we discussed in the introduction, is one of the state-of-
the-art libraries for effectful IFC in Haskell. At its core, MAC defines two
types: Labeled l a for pure sensitive values, and MAC l a for secure compu-
tations. MAC l a is a monad for each label l where the label: 1. protects the
data in context; and 2. restricts the permitted effects. (cf. [Vas+18]) MAC’s
functionality stems from the interaction between Labeled and MAC through the
primitives label and unlabel. In order to label a value one needs to do so
within the MAC l monad: the Labeled l a type does not export a combinator

133

C. Pure Information-Flow Control with Effects Made Simple

a -> Labeled l a. Our implementation, however, permits to do so. Below we
show MAC’s implementation in terms of SCLib.

type Labeled l a = S l a

type MAC l a = forall ls. FlowsToSet l ls => Eff ls (S l a)

label :: FlowsTo l l' => a -> MAC l (Labeled l' a)
label a = returnEff (seal (\k -> a))

unlabel :: FlowsTo l l' => Labeled l a -> MAC l' a
unlabel lv = returnEff lv

join :: FlowsTo l l' => MAC l' a -> MAC l (Labeled l' a)
join m = bindEff m (\x -> seal (\k -> x))

C.6. Related Work
IFC for Effect-Free and Effectful Languages Algehed and Russo [AR17] add
effects to their embedding of DCC in Haskell but argue that their approach
only works for those effects that can be implemented within Haskell. Hirsch
and Cecchetti [HC21] develop a formal framework based on productors and
type-and-effect systems to characterize secure programs in impure languages
with IFC. They give semantics to traditional security-type systems based on
controlling implicit flows using program counter (PC) labels. In contrast, our
approach considers from starters a pure language, where the type of effectful
computation is separated from that of effect-free programs. Crary, Kliger, and
Pfenning [CKP05] present a graded monad for IFC that tracks both writes
and reads on the store, while ours tracks only writes. It will be interesting to
understand if this two approaches are equivalent. Devriese and Piessens [DP11]
add IFC mechanisms on top of existing monads for effects but don’t consider
the effect-free–effectful interaction.

Modalities for IFC The languages and IFC enforcement mechanisms that we
present are based on the sealing calculus (SC) of Shikuma and Igarashi [SI08].
Differently from them, we think of SC terms as evidence that STLC programs
satisfy noninterference. The work by Miyamoto and Igarashi [MI04] gives an
informal connection between a classical type system for IFC and a certain modal
logic. Their type system is very different from our enforcement mechanism in
that a typing judgement has two separate variable contexts. Recently, the work
by Abel and Bernardy [AB20] presents a unified treatment of modalities in

134

C.6. Related Work

typed λ-calculi. The authors present a effect-free lambda calculus parameterized
by family of modalities with certain mathematical structure, and show that
many programming language analyses, including IFC, are instantiations of
their framework. In contrast to our work, it is not very clear how one would
implement theirs system in Haskell, since it would require a fine-grained
control over the variables in the context. Kavvos [Kav19] studies modalities
for IFC in the classified sets model, which they use to prove noninterference
properties for a range of calculi that includes SC.

Coeffectful Type Systems for IFC A recent line of work suggests using coeffect
type systems to enforce IFC. Petricek, Orchard, and Mycroft [POM14] develop
a calculus to capture different granularity demands on contexts, i.e. flat whole-
context coeffects (like implicit parameters [Lew+00]) or structural per-variable
ones (like usage or data access patterns). The work by Gaboardi, Katsumata,
Orchard, Breuvart, and Uustalu [Gab+16] expands on that and uses graded
monads and comonads to combine effects and coeffects. The authors describe
distributivity laws that are similar to our primitive distr addresses. The article
suggests IFC as an application where the coeffect system captures the IFC
constraints and the effect system gives semantics to effects. The distributive
laws explains how both are combined. However, their work does not state
neither proves a security property for their calculus. Different from it, our
work does not use comonads as the underlying structure for IFC, and further
considers printing and global store effects. Granule is a recent programming
language [OLI19] based on graded modal types that impose usage constraints
on the variables.

Logical Relations for Noninterference Both Heintze and Riecke [HR98] and
Zdancewic [Zda02] use logical relation arguments to prove noninterference
for a simply-typed security lambda calculus. Tse and Zdancewic [TZ04] use
logical relations to prove soundness of a translation from DCC [Aba+99] to
system F and obtain noninterference from parametricity. Unfortunately, their
translation is unsound (cf. [SI08]). Bowman and Ahmed [BA15] fix this by
using “open” logical relations show their translation from DCC to system Fω is
sound. Different from the cited work so far, Rajani and Garg [RG20] use logical
relations to prove noninterference for a language with references. Gregersen,
Bay, Timany, and Birkedal [Gre+21] extend the use of logical relation to prove
noninterference for languages with impredicative polymorphism. Different from
Rajani and Garg [RG20] and Gregersen, Bay, Timany, and Birkedal [Gre+21],
we consider first-order references for simplicity. Otherwise, we should have had

135

C. Pure Information-Flow Control with Effects Made Simple

to utilize a step-indexed Kripke-style logical-relations model, which would have
introduced technical complications that are orthogonal to the main contribution
of our work.

C.7. Conclusions
In this paper, we have demonstrated that to enforce IFC in pure languages
with a single primitive distr suffices to securely control what information flows
from sensitive data to effects. To support our claim, we have presented IFC
enforcement mechanisms for several kinds of effects and proved that they
satisfy noninterference. Our development rests on the insight that effect-free
IFC for pure languages can already express that a computation will not leak
sensitive data through its effects when executed. Then, a single primitive, distr,
to execute these is enough to extend IFC to effects and retain the security
guarantees. We hope that this work brings a new perspective to IFC research
for pure languages with effects.

Bibliography
[AB20] Andreas Abel and Jean-Philippe Bernardy. “A unified view of

modalities in type systems”. In: Proc. ACM Program. Lang. 4.ICFP
(2020), 90:1–90:28. doi: 10.1145/3408972. url: https://doi.
org/10.1145/3408972 (cit. on p. 134).

[Aba+99] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke.
“A Core Calculus of Dependency”. In: POPL ’99, Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Antonio, TX, USA, January 20-
22, 1999. Ed. by Andrew W. Appel and Alex Aiken. ACM, 1999,
pp. 147–160. doi: 10.1145/292540.292555. url: https://doi.
org/10.1145/292540.292555 (cit. on pp. 103, 135).

[Abe+05] Andreas Abel, Guillaume Allais, Jesper Cockx, Nils Anders Daniels-
son, Philipp Hausmann, Fredrik Nordvall Forsberg, Ulf Norell,
Víctor López Juan, Andrés Sicard-Ramírez, and Andrea Vezzosi.
Agda 2. 2005–. url: https://wiki.portal.chalmers.se/agda/
pmwiki.php (cit. on p. 107).

136

https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php

Bibliography

[Ahm06] Amal J. Ahmed. “Step-Indexed Syntactic Logical Relations for
Recursive and Quantified Types”. In: Programming Languages and
Systems, 15th European Symposium on Programming, ESOP 2006,
Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28,
2006, Proceedings. Ed. by Peter Sestoft. Vol. 3924. Lecture Notes
in Computer Science. Springer, 2006, pp. 69–83. doi: 10.1007/
11693024_6. url: https://doi.org/10.1007/11693024%5C_6
(cit. on pp. 107, 122).

[Alg18] Maximilian Algehed. “A Perspective on the Dependency Core
Calculus”. In: Proceedings of the 13th Workshop on Programming
Languages and Analysis for Security, PLAS@CCS 2018, Toronto,
ON, Canada, October 15-19, 2018. Ed. by Mário S. Alvim and
Stéphanie Delaune. ACM, 2018, pp. 24–28. doi: 10.1145/3264820.
3264823. url: https://doi.org/10.1145/3264820.3264823
(cit. on pp. 108, 131).

[AR17] Maximilian Algehed and Alejandro Russo. “Encoding DCC in
Haskell”. In: Proceedings of the 2017 Workshop on Programming
Languages and Analysis for Security, PLAS@CCS 2017, Dallas,
TX, USA, October 30, 2017. ACM, 2017, pp. 77–89. doi: 10.1145/
3139337.3139338. url: https://doi.org/10.1145/3139337.
3139338 (cit. on pp. 130, 134).

[BA15] William J. Bowman and Amal Ahmed. “Noninterference for free”.
In: Proceedings of the 20th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1-3, 2015. Ed. by Kathleen Fisher and John H.
Reppy. ACM, 2015, pp. 101–113. doi: 10.1145/2784731.2784733.
url: https://doi.org/10.1145/2784731.2784733 (cit. on
p. 135).

[Ber+17] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton,
Simon Peyton Jones, and Arnaud Spiwack. “Linear Haskell: practi-
cal linearity in a higher-order polymorphic language”. In: CoRR
abs/1710.09756 (2017). arXiv: 1710.09756. url: http://arxiv.
org/abs/1710.09756 (cit. on p. 129).

[BVR15] Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. “HLIO:
mixing static and dynamic typing for information-flow control in
Haskell”. In: Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver,

137

https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/11693024%5C_6
https://doi.org/10.1145/3264820.3264823
https://doi.org/10.1145/3264820.3264823
https://doi.org/10.1145/3264820.3264823
https://doi.org/10.1145/3139337.3139338
https://doi.org/10.1145/3139337.3139338
https://doi.org/10.1145/3139337.3139338
https://doi.org/10.1145/3139337.3139338
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/2784731.2784733
https://arxiv.org/abs/1710.09756
http://arxiv.org/abs/1710.09756
http://arxiv.org/abs/1710.09756

C. Pure Information-Flow Control with Effects Made Simple

BC, Canada, September 1-3, 2015. Ed. by Kathleen Fisher and
John H. Reppy. ACM, 2015, pp. 289–301. doi: 10.1145/2784731.
2784758. url: https://doi.org/10.1145/2784731.2784758
(cit. on pp. 103, 120, 130).

[CKP05] Karl Crary, Aleksey Kliger, and Frank Pfenning. “A monadic anal-
ysis of information flow security with mutable state”. In: J. Funct.
Program. 15.2 (2005), pp. 249–291. doi: 10.1017/S0956796804005441.
url: https://doi.org/10.1017/S0956796804005441 (cit. on
p. 134).

[DH83] Jack B. Dennis and Earl C. Van Horn. “Programming Semantics for
Multiprogrammed Computations (Reprint)”. In: Commun. ACM
26.1 (1983), p. 29. doi: 10.1145/357980.357993. url: https:
//doi.org/10.1145/357980.357993 (cit. on p. 129).

[DP11] Dominique Devriese and Frank Piessens. “Information flow enforce-
ment in monadic libraries”. In: Proceedings of TLDI 2011: 2011
ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, Austin, TX, USA, January 25, 2011.
Ed. by Stephanie Weirich and Derek Dreyer. ACM, 2011, pp. 59–72.
doi: 10.1145/1929553.1929564. url: https://doi.org/10.
1145/1929553.1929564 (cit. on p. 134).

[Gab+16] Marco Gaboardi, Shin-ya Katsumata, Dominic A. Orchard, Flavien
Breuvart, and Tarmo Uustalu. “Combining effects and coeffects via
grading”. In: Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016. Ed. by Jacques Garrigue, Gabriele Keller,
and Eijiro Sumii. ACM, 2016, pp. 476–489. doi: 10.1145/2951913.
2951939. url: https://doi.org/10.1145/2951913.2951939
(cit. on p. 135).

[GM82] Joseph A. Goguen and José Meseguer. “Security Policies and Secu-
rity Models”. In: 1982 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, April 26-28, 1982. IEEE Computer Society,
1982, pp. 11–20. doi: 10.1109/SP.1982.10014. url: https:
//doi.org/10.1109/SP.1982.10014 (cit. on p. 103).

[Gre+21] Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars
Birkedal. “Mechanized logical relations for termination-insensitive
noninterference”. In: Proc. ACM Program. Lang. 5.POPL (2021),
pp. 1–29. doi: 10.1145/3434291. url: https://doi.org/10.
1145/3434291 (cit. on pp. 122, 135).

138

https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1017/S0956796804005441
https://doi.org/10.1017/S0956796804005441
https://doi.org/10.1145/357980.357993
https://doi.org/10.1145/357980.357993
https://doi.org/10.1145/357980.357993
https://doi.org/10.1145/1929553.1929564
https://doi.org/10.1145/1929553.1929564
https://doi.org/10.1145/1929553.1929564
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3434291
https://doi.org/10.1145/3434291
https://doi.org/10.1145/3434291

Bibliography

[HC21] Andrew K. Hirsch and Ethan Cecchetti. “Giving semantics to
program-counter labels via secure effects”. In: Proc. ACM Program.
Lang. 5.POPL (2021), pp. 1–29. doi: 10.1145/ 3434316. url:
https://doi.org/10.1145/3434316 (cit. on p. 134).

[HR98] Nevin Heintze and Jon G. Riecke. “The SLam Calculus: Program-
ming with Secrecy and Integrity”. In: POPL ’98, Proceedings of
the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Diego, CA, USA, January 19-21,
1998. Ed. by David B. MacQueen and Luca Cardelli. ACM, 1998,
pp. 365–377. doi: 10.1145/268946.268976. url: https://doi.
org/10.1145/268946.268976 (cit. on p. 135).

[HS12] Daniel Hedin and Andrei Sabelfeld. “A Perspective on Information-
Flow Control”. In: Software Safety and Security - Tools for Analy-
sis and Verification. Ed. by Tobias Nipkow, Orna Grumberg, and
Benedikt Hauptmann. Vol. 33. NATO Science for Peace and Se-
curity Series - D: Information and Communication Security. IOS
Press, 2012, pp. 319–347. doi: 10.3233/978-1-61499-028-4-319.
url: https://doi.org/10.3233/978- 1- 61499- 028- 4- 319
(cit. on p. 103).

[JW93] Simon L. Peyton Jones and Philip Wadler. “Imperative Functional
Programming”. In: Conference Record of the Twentieth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Charleston, South Carolina, USA, January 1993.
Ed. by Mary S. Van Deusen and Bernard Lang. ACM Press, 1993,
pp. 71–84. doi: 10.1145/158511.158524. url: https://doi.
org/10.1145/158511.158524 (cit. on p. 111).

[Kat14] Shin-ya Katsumata. “Parametric effect monads and semantics of ef-
fect systems”. In: The 41st Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014. Ed. by Suresh Jagannathan
and Peter Sewell. ACM, 2014, pp. 633–646. doi: 10.1145/2535838.
2535846. url: https://doi.org/10.1145/2535838.2535846 (cit.
on pp. 107, 111, 112).

[Kav19] G. A. Kavvos. “Modalities, cohesion, and information flow”. In:
Proc. ACM Program. Lang. 3.POPL (2019), 20:1–20:29. doi: 10.
1145/3290333. url: https://doi.org/10.1145/3290333 (cit. on
p. 135).

139

https://doi.org/10.1145/3434316
https://doi.org/10.1145/3434316
https://doi.org/10.1145/268946.268976
https://doi.org/10.1145/268946.268976
https://doi.org/10.1145/268946.268976
https://doi.org/10.3233/978-1-61499-028-4-319
https://doi.org/10.3233/978-1-61499-028-4-319
https://doi.org/10.1145/158511.158524
https://doi.org/10.1145/158511.158524
https://doi.org/10.1145/158511.158524
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333

C. Pure Information-Flow Control with Effects Made Simple

[Lew+00] Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark Shields.
“Implicit Parameters: Dynamic Scoping with Static Types”. In:
POPL 2000, Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Boston, Mas-
sachusetts, USA, January 19-21, 2000. Ed. by Mark N. Wegman
and Thomas W. Reps. ACM, 2000, pp. 108–118. doi: 10.1145/
325694 . 325708. url: https : / / doi . org / 10 . 1145 / 325694 .
325708 (cit. on p. 135).

[LG88] John M. Lucassen and David K. Gifford. “Polymorphic Effect
Systems”. In: Conference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages, San Diego,
California, USA, January 10-13, 1988. Ed. by Jeanne Ferrante and
Peter Mager. ACM Press, 1988, pp. 47–57. doi: 10.1145/73560.
73564. url: https://doi.org/10.1145/73560.73564 (cit. on
p. 122).

[LZ06] Peng Li and Steve Zdancewic. “Encoding Information Flow in
Haskell”. In: 19th IEEE Computer Security Foundations Workshop,
(CSFW-19 2006), 5-7 July 2006, Venice, Italy. IEEE Computer
Society, 2006, p. 16. doi: 10.1109/CSFW.2006.13. url: https:
//doi.org/10.1109/CSFW.2006.13 (cit. on p. 103).

[MI04] Kenji Miyamoto and Atsushi Igarashi. “A modal foundation for
secure information flow”. In: In Proceedings of IEEE Foundations
of Computer Security (FCS). 2004, pp. 187–203 (cit. on p. 134).

[Mog91] Eugenio Moggi. “Notions of Computation and Monads”. In: Inf.
Comput. 93.1 (1991), pp. 55–92. doi: 10.1016/0890-5401(91)
90052- 4. url: https://doi.org/10.1016/0890- 5401(91)
90052-4 (cit. on p. 111).

[Mye+06] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong,
and Nathaniel Nystrom. Jif: Java information flow. 2006. url:
https://www.cs.cornell.edu/jif (cit. on p. 103).

[OLI19] Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III.
“Quantitative program reasoning with graded modal types”. In:
Proc. ACM Program. Lang. 3.ICFP (2019), 110:1–110:30. doi:
10.1145/3341714. url: https://doi.org/10.1145/3341714
(cit. on p. 135).

140

https://doi.org/10.1145/325694.325708
https://doi.org/10.1145/325694.325708
https://doi.org/10.1145/325694.325708
https://doi.org/10.1145/325694.325708
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/73560.73564
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://www.cs.cornell.edu/jif
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714

Bibliography

[OP14] Dominic A. Orchard and Tomas Petricek. “Embedding effect sys-
tems in Haskell”. In: Proceedings of the 2014 ACM SIGPLAN
symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014.
Ed. by Wouter Swierstra. ACM, 2014, pp. 13–24. doi: 10.1145/
2633357.2633368. url: https://doi.org/10.1145/2633357.
2633368 (cit. on p. 131).

[Pol+20] Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky,
Travis Hance, and Armando Solar-Lezama. “Liquid information
flow control”. In: Proc. ACM Program. Lang. 4.ICFP (2020), 105:1–
105:30. doi: 10.1145/3408987. url: https://doi.org/10.1145/
3408987 (cit. on p. 103).

[POM14] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. “Coeffects:
a calculus of context-dependent computation”. In: Proceedings of
the 19th ACM SIGPLAN international conference on Functional
programming, Gothenburg, Sweden, September 1-3, 2014. Ed. by
Johan Jeuring and Manuel M. T. Chakravarty. ACM, 2014, pp. 123–
135. doi: 10.1145/2628136.2628160. url: https://doi.org/10.
1145/2628136.2628160 (cit. on p. 135).

[PVH19] James Parker, Niki Vazou, and Michael Hicks. “LWeb: information
flow security for multi-tier web applications”. In: Proc. ACM Pro-
gram. Lang. 3.POPL (2019), 75:1–75:30. doi: 10.1145/3290388.
url: https://doi.org/10.1145/3290388 (cit. on p. 103).

[RCH08] Alejandro Russo, Koen Claessen, and John Hughes. “A library for
light-weight information-flow security in haskell”. In: Proceedings
of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008,
Victoria, BC, Canada, 25 September 2008. Ed. by Andy Gill. ACM,
2008, pp. 13–24. doi: 10.1145/1411286.1411289. url: https:
//doi.org/10.1145/1411286.1411289 (cit. on pp. 103, 108, 130,
131).

[RG20] Vineet Rajani and Deepak Garg. “On the expressiveness and se-
mantics of information flow types”. In: J. Comput. Secur. 28.1
(2020), pp. 129–156. doi: 10 . 3233 / JCS - 191382. url: https :
//doi.org/10.3233/JCS-191382 (cit. on pp. 103, 120, 122, 135).

[Rus15] Alejandro Russo. “Functional pearl: two can keep a secret, if one
of them uses Haskell”. In: Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015,
Vancouver, BC, Canada, September 1-3, 2015. Ed. by Kathleen
Fisher and John H. Reppy. ACM, 2015, pp. 280–288. doi: 10.1145/

141

https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1145/3408987
https://doi.org/10.1145/3408987
https://doi.org/10.1145/3408987
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1145/3290388
https://doi.org/10.1145/3290388
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.3233/JCS-191382
https://doi.org/10.3233/JCS-191382
https://doi.org/10.3233/JCS-191382
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756

C. Pure Information-Flow Control with Effects Made Simple

2784731.2784756. url: https://doi.org/10.1145/2784731.
2784756 (cit. on pp. 103, 105, 120, 130, 131).

[SI08] Naokata Shikuma and Atsushi Igarashi. “Proving Noninterference
by a Fully Complete Translation to the Simply Typed Lambda-
Calculus”. In: Log. Methods Comput. Sci. 4.3 (2008). doi: 10.2168/
LMCS-4(3:10)2008. url: https://doi.org/10.2168/LMCS-4(3:
10)2008 (cit. on pp. 107, 108, 134, 135).

[Sim03] Vincent Simonet. Flow Caml. 2003. url: http://cristal.inria.
fr/~simonet/soft/flowcaml/ (cit. on p. 103).

[SM03] Andrei Sabelfeld and Andrew C. Myers. “Language-based informa-
tion-flow security”. In: IEEE J. Sel. Areas Commun. 21.1 (2003),
pp. 5–19. doi: 10.1109/JSAC.2002.806121. url: https://doi.
org/10.1109/JSAC.2002.806121 (cit. on p. 103).

[Ste+11] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Maz-
ières. “Flexible dynamic information flow control in Haskell”. In:
Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, Has-
kell 2011, Tokyo, Japan, 22 September 2011. Ed. by Koen Claessen.
ACM, 2011, pp. 95–106. doi: 10.1145/2034675.2034688. url:
https://doi.org/10.1145/2034675.2034688 (cit. on p. 103).

[TT97] Mads Tofte and Jean-Pierre Talpin. “Region-based Memory Man-
agement”. In: Inf. Comput. 132.2 (1997), pp. 109–176. doi: 10.
1006/inco.1996.2613. url: https://doi.org/10.1006/inco.
1996.2613 (cit. on p. 122).

[TZ04] Stephen Tse and Steve Zdancewic. “Translating dependency into
parametricity”. In: Proceedings of the Ninth ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2004, Snow
Bird, UT, USA, September 19-21, 2004. Ed. by Chris Okasaki and
Kathleen Fisher. ACM, 2004, pp. 115–125. doi: 10.1145/1016850.
1016868. url: https://doi.org/10.1145/1016850.1016868
(cit. on pp. 107, 109, 135).

[Vas+16] Marco Vassena, Pablo Buiras, Lucas Waye, and Alejandro Russo.
“Flexible Manipulation of Labeled Values for Information-Flow
Control Libraries”. In: Computer Security - ESORICS 2016 - 21st
European Symposium on Research in Computer Security, Herak-
lion, Greece, September 26-30, 2016, Proceedings, Part I. Ed. by
Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas,
and Catherine A. Meadows. Vol. 9878. Lecture Notes in Computer
Science. Springer, 2016, pp. 538–557. doi: 10.1007/978-3-319-

142

https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008
http://cristal.inria.fr/~simonet/soft/flowcaml/
http://cristal.inria.fr/~simonet/soft/flowcaml/
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1145/1016850.1016868
https://doi.org/10.1145/1016850.1016868
https://doi.org/10.1145/1016850.1016868
https://doi.org/10.1007/978-3-319-45744-4_27
https://doi.org/10.1007/978-3-319-45744-4_27
https://doi.org/10.1007/978-3-319-45744-4_27

Appendices

45744- 4_27. url: https://doi.org/10.1007/978- 3-319-
45744-4%5C_27 (cit. on pp. 104, 131).

[Vas+18] Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye.
“MAC A verified static information-flow control library”. In: Jour-
nal of Logical and Algebraic Methods in Programming 95 (2018),
pp. 148–180. issn: 2352-2208. doi: https://doi.org/10.1016/
j.jlamp.2017.12.003. url: https://www.sciencedirect.com/
science/article/pii/S235222081730069X (cit. on pp. 131, 133).

[Vas+19] Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and
Deian Stefan. “From fine- to coarse-grained dynamic information
flow control and back”. In: Proc. ACM Program. Lang. 3.POPL
(2019), 76:1–76:31. doi: 10.1145/3290389. url: https://doi.
org/10.1145/3290389 (cit. on p. 103).

[VIS96] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. “A
Sound Type System for Secure Flow Analysis”. In: J. Comput.
Secur. 4.2/3 (1996), pp. 167–188. doi: 10.3233/JCS-1996-42-304.
url: https://doi.org/10.3233/JCS- 1996- 42- 304 (cit. on
p. 115).

[WT03] Philip Wadler and Peter Thiemann. “The marriage of effects and
monads”. In: ACM Trans. Comput. Log. 4.1 (2003), pp. 1–32. doi:
10.1145/601775.601776. url: https://doi.org/10.1145/
601775.601776 (cit. on p. 114).

[Zda02] Stephan Arthur Zdancewic. Programming languages for information
security. Cornell University, 2002 (cit. on p. 135).

Appendices

I. The Language λREC

Types a, b ::= Unit | Bool | a⇒ b
Typing contexts Γ ::= · | Γ, x : a

143

https://doi.org/10.1007/978-3-319-45744-4_27
https://doi.org/10.1007/978-3-319-45744-4_27
https://doi.org/10.1007/978-3-319-45744-4_27
https://doi.org/10.1007/978-3-319-45744-4_27
https://doi.org/10.1007/978-3-319-45744-4%5C_27
https://doi.org/10.1007/978-3-319-45744-4%5C_27
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://www.sciencedirect.com/science/article/pii/S235222081730069X
https://www.sciencedirect.com/science/article/pii/S235222081730069X
https://doi.org/10.1145/3290389
https://doi.org/10.1145/3290389
https://doi.org/10.1145/3290389
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1145/601775.601776
https://doi.org/10.1145/601775.601776
https://doi.org/10.1145/601775.601776

C. Pure Information-Flow Control with Effects Made Simple

Γ ⊢ t : a

Var
(x : a) ∈ Γ
Γ ⊢ x : a

Fun
Γ, f : a⇒ b, x : a ⊢ t : b

Γ ⊢ µ f. x. t : a⇒ b

App
Γ ⊢ t : a⇒ b Γ ⊢ u : a

Γ ⊢ app t u : b

Unit

Γ ⊢ unit : Unit

True

Γ ⊢ true : Bool

False

Γ ⊢ false : Bool

If
Γ ⊢ t : Bool Γ ⊢ u1 : a Γ ⊢ u2 : a

Γ ⊢ ifte t u1 u2 : a

t→ u with · ⊢ t : a and · ⊢ u : a

App
t→ t′

app t u→ app t′ u

Beta

app (µ f. x. t) u→ t[f/µ f. x. t, u/x]

If
t→ t′

ifte t u1 u2 → ifte t′ u1 u2

If-True

ifte true u1 u2 → u1

If-False

ifte false u1 u2 → u2

144

	Abstract
	Acknowledgements
	Overview
	Introduction
	Information-Flow Control
	Security Policies
	Security Properties
	Enforcement Mechanisms

	Contributions
	Bibliography

	Papers
	Simple Noninterference by Normalization
	Introduction
	The 5�sec Calculus
	Normal Forms of 5�sec
	Normal Forms and Noninterference
	From 5�sec to Normal Forms
	NbE for Simple Types
	NbE for the Security Monad
	Preservation of Semantics

	Noninterference for 5�sec
	Special Case of Noninterference
	General Noninterference Theorem
	Follow-up Example

	Conclusions and Future Work
	Bibliography
	Appendices
	NbE for Sums

	Securing Asynchronous Exceptions
	Introduction
	The MAC IFC Library
	MACAsync by Example
	Formal Semantics
	Core of MACAsync
	Synchronization Variables
	Concurrency

	Asynchronous Exceptions
	Masking Exceptions
	Concurrency and Synchronization Variables
	Design Choices and Security
	Relation to MAC

	Security Guarantees
	Term Erasure
	Erasure Function
	Progress-Sensitive Noninterference

	Related Work
	Conclusions and Future Work
	Bibliography

	Pure Information-Flow Control with Effects Made Simple
	Introduction
	Effect-Free Information-Flow Control
	Effectful Information-Flow Control
	Printing Effects
	Global Store Effects
	Other Effects, Combination of Effects

	Security Guarantees
	Noninterference for Printing Effects
	Noninterference for Global Store Effects
	Other Security Properties

	Implementation
	Implementation of SC
	Implementation of SCPrint
	Implementing Existing Libraries for IFC

	Related Work
	Conclusions
	Bibliography
	Appendices
	The Language STLCRec

