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ABSTRACT

Enzyme parameters are essential for quantitatively
understanding, modelling, and engineering cells.
However, experimental measurements cover only a
small fraction of known enzyme-compound pairs in
model organisms, much less in other organisms. Ar-
tificial intelligence (AI) techniques have accelerated
the pace of exploring enzyme properties by predict-
ing these in a high-throughput manner. Here, we
present GotEnzymes, an extensive database with en-
zyme parameter predictions by AI approaches, which
is publicly available at https://metabolicatlas.org/
gotenzymes for interactive web exploration and pro-
grammatic access. The first release of this data re-
source contains predicted turnover numbers of over
25.7 million enzyme-compound pairs across 8099
organisms. We believe that GotEnzymes, with the
readily-predicted enzyme parameters, would bring
a speed boost to biological research covering both
experimental and computational fields that involve
working with candidate enzymes.

INTRODUCTION

Enzymes are essential macromolecules that catalyse bio-
chemical reactions, and thus have been interesting targets
for scientific research in wide fields, e.g. biotechnology (1)
and biomedicine (2). Enzyme performance can be quanti-
tatively described by parameters such as enzyme turnover
number kcat and Michaelis constant KM, which can be mea-
sured experimentally by enzyme assays, albeit in a low-
throughput manner. While past decades have witnessed an
increasing number of measured parameters of enzymes for
various organisms (3), the coverage of the measurements is

still poor even for well-studied organisms (4,5). The cov-
erage can be improved by a large-scale acquisition of en-
zyme parameters that leverages high-throughput omics data
and metabolic modelling, which has been demonstrated for
several model organisms (6–9). However, such efforts rely
heavily on organism-specific data and thus face difficulty in
keeping pace with genome sequencing.

The estimation of enzyme-related parameters can be ac-
celerated by artificial intelligence (AI) techniques based on
sequence information, as exemplified by machine or deep
learning-based predictions of enzyme temperature optima
(10), enzyme commission (EC) number (11), turnover num-
ber (12,13) and Michaelis constant (5). Despite the suc-
cesses, these methods may require users to reproduce the
entire prediction pipeline in order to use the estimations it
produces. Since it would be much easier to retrieve an en-
zyme parameter from a database rather than running the
entire software stack, which incurs time and resource costs
and might require expertise, we have hereby opted to create
a public database containing readily-predicted enzyme pa-
rameters at a large scale, which would bring a speed boost
to biological research.

To this end, we present GotEnzymes, a comprehensive
database with enzyme parameter predictions freely available
at https://metabolicatlas.org/gotenzymes. The database is
presented in Metabolic Atlas, a platform that primarily in-
tegrates and presents open-source genome-scale metabolic
models (GEMs), which have been used in systems biol-
ogy for a wide range of applications (14). With GotEn-
zymes, modellers can begin to consider including predicted
enzymatic constraints into GEMs without having to han-
dle the case of missing values. Moreover, the GEMs pro-
vide a metabolic context in which one can place the reac-
tions described in GotEnzymes. Thus, the implementation
of GotEnzymes in the platform enriches the use of predicted
enzyme parameters with the bigger picture of metabolism.
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Figure 1. Overview of the predicted turnover numbers in GotEnzymes. (A)
The number of enzyme-compound pairs with predicted turnover numbers
across organisms. (B) Distribution of the predicted turnover numbers in
each domain. (C) Comparison of the predicted turnover numbers among
EC numbers.

DATABASE CONTENT

The first release of GotEnzymes contains predicted
turnover numbers of 25 795 560 enzyme-compound pairs,
each being annotated with the EC number, across 8 099 or-
ganisms including 747 eukaryotes, 6963 bacteria and 389
archaea. As can be intuitively expected, eukaryotes gen-
erally have more turnover numbers per organism (Figure
1A). The median turnover number for the entire dataset
is 5 s−1 (Figure 1B), and most values (75%) lie in the
range between 1 and 100 s−1, consistent with an experi-
mental data-based study (3). By grouping the organisms,
we found that the median turnover numbers for eukaryotes
(4.5 s−1), bacteria (5.2 s−1) and archaea (5 s−1) are close
although eukaryotes have the lowest median (Figure 1B).
By grouping the EC numbers, we found that while the dif-
ference is small, isomerases (EC 5.X.X.X) exhibit the high-
est median (7.3 s−1) while ligases (EC 6.X.X.X) the small-
est (4 s−1) (Figure 1C), which is consistent with previous
findings (3).

DATABASE CONSTRUCTION

Data collection

The input data used for the turnover number predictions
were extracted from the KEGG database (15), including
per organism protein sequences, compound structures, and
EC number-reaction associations that link enzymes and
compounds. Note that the compound structures used in
the predictions are represented as molecular graphs con-
verted from the simplified molecular-input line-entry sys-
tem (SMILES), and therefore the compounds without valid
defined SMILES information were excluded.

Data prediction

The pretrained deep learning-based model DLKcat (ver-
sion 1.0.0) (13) was used to predict enzyme turnover num-
bers based on the collected protein sequences and com-
pound SMILES information of enzyme-compound pairs.
Note that the pairs with currency metabolites, e.g. water
and proton, were excluded if they were not the only sub-
strates for the enzyme. The pretrained model was down-
loaded from the GitHub repository: https://github.com/
SysBioChalmers/DLKcat.

GotEnzymes benefits from a setup that enables it to
become better with time. With a reproducible prediction
pipeline and code versioning on GitHub at the repository
https://github.com/feiranl/GotEnzymes, the data can be re-
generated at future time points to extend predictions for
other enzymes and other parameters. As can be expected
from AI approaches, more and better training data can lead
to improved predictions. Therefore, GotEnzymes is foreseen
to receive updates in line with the improvements in train-
ing data. Moreover, with improved computational AI ap-
proaches developed in the future, the prediction modules
used by GotEnzymes to predict different parameter types
can be updated independently, leading to updated releases
of the database.

Data implementation

For its development, GotEnzymes leverages the technical
infrastructure that was built for the existing parts of the
Metabolic Atlas platform. In addition to increasing the de-
velopment speed, the existing platform also provides users
with a richer picture of metabolism. A specific example is
the use of the Cross-references section and the adjacent iden-
tifier pages, which are shared between the GEMs integrated
into the platform and GotEnzymes (Figure 2).

Some technical changes were required, however. To opti-
mally handle the large tabular dataset contained in GotEn-
zymes, a new Postgres database was included in the soft-
ware stack, next to the existing graph database Neo4j. The
application programming interface (API) to this database is
handled by the existing middleware, again providing devel-
opment speed, and increasing maintainability.

Another aspect of the implementation is the FAIRifica-
tion of GotEnzymes. The Metabolic Atlas platform has pre-
viously introduced identifiers for reactions and metabolites
for the integrated GEMs. These have now been linked with
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Figure 2. A screenshot from GotEnzymes detailing a compound. (A) At the top of the page, a short table presents element-specific information; in the
case of compounds, name, formula and SMILES. (B) A Cross-references section presents a mapping of the element to other databases. (C) When clicking a
cross-reference, all GEMs integrated into Metabolic Atlas are checked for that cross-referenced identifier. (D) The prediction table is interactive, enabling
the user to sort and apply filtering, including minimum and maximum values for the predicted turnover numbers. In the screenshot, values are filtered for
the hsa organism and a minimum turnover of 1 s−1, sorting turnover numbers decreasingly.

the service Identifiers.org (16), thus facilitating their reuse
by other platforms. A similar approach for FAIRifying the
predictions in GotEnzymes is foreseen.

DATABASE USAGE

GotEnzymes offers interactive exploration and manual
data export as tab-separated values (TSV). Moreover, to
facilitate interactions with workflows and other program-
matic tools, free access is also provided via the API.

Regarding interactive exploration of the website, GotEn-
zymes offers a fuzzy text search of EC classes, compound
names, reaction names, and organism names, in addition to
KEGG identifiers of the previously mentioned categories.
Gene identifiers are, however, only used for exact search, in
order to provide an optimum user experience with minimal
impact on resources for the close to ∼5.8 million different
genes in GotEnzymes.

The user can then explore the full details of the search
suggestions, which contains a short table describing the
selected element (Figure 2A), followed by another table
for cross-references (Figure 2B). The mapping to cross-
references that are provided by GotEnzymes is also linking

to the cross-references in GEMs integrated in Metabolic At-
las (Figure 2C). Finally, a larger table detailing the predic-
tions applicable to the selected item is taking up the bigger
part of the view (Figure 2D). This table allows for further in-
teraction such as sorting and filtering via text input on most
columns and minimum-maximum filters for the predicted
turnover numbers. Most of the identifiers listed in this table
are presented as links to other pages, showing how the data
is interconnected. For manual data export, the prediction
table presents a button to create a TSV file of the informa-
tion currently displayed in the table (Figure 2D).

Programmatic access to the predicted enzyme param-
eters in GotEnzymes is available via API at https://
metabolicatlas.org/api.

DISCUSSION AND FUTURE DIRECTIONS

The BRENDA enzyme database, as the most comprehen-
sive and widely used enzyme information resource, has col-
lected enzyme parameters for decades (17). The number
of turnover numbers in BRENDA (83 662, as reported
in January 2022), which are experimentally determined, is
much less than the computationally predicted numbers in
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GotEnzymes. With the large size of the data, we envision
that GotEnzymes would bring a speed boost to biologi-
cal research covering both experimental and computational
fields. On one hand, GotEnzymes is ready to give the best
enzymes based on the predicted parameters, which would
guide enzyme selection and design, and thus reduce the
time in experimental cycles such as the design-build-test-
learn cycle of synthetic biology and metabolic engineer-
ing (18). On the other hand, GotEnzymes, via its API, fa-
cilitates cross-organism computational analyses, e.g. evolu-
tionary analysis (3), and metabolic modelling dependent on
large-scale enzyme parameters, e.g. kinetic models (19) and
proteome-constrained models (20).

In the future, we will expand GotEnzymes by integrat-
ing more types of enzyme parameters using available AI-
based predictions such as enzyme temperature optima (10)
and Michaelis constant (5), thus fulfilling more aspects of
users’ requirements. In addition, we will implement annota-
tions from other databases such as MetaCyc (21) and deep
learning-based annotation tools (11,22) to enlarge the cov-
erage of the enzyme-compound pairs, which were generated
based only on KEGG database in the initial release. Last
but not least, we intend to overlay the enzyme parameters
to pathway maps on the Metabolic Atlas platform as new
layers, which we foresee to enable interactive comparison
and facilitate advanced model development.

DATA AVAILABILITY

GotEnzymes is continuously maintained at https:
//metabolicatlas.org/gotenzymes.
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