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Abstract: Velander’s formula and coincidence factors have traditionally been used to estimate peak load for new
connections in the distribution grid. By re-evaluating their underlying assumptions, this study proposes two improved
models for aggregated peak load estimation (PLE). For single-category load aggregation, the proposed coincidence
factor model, by incorporating an average correlation coefficient, improves the model fitting by 76–96% as compared
to the standard Rusck model. For multiple-category load aggregation, the proposed joint Gaussian regression model
reduces the PLE bias from 3–34% to 0.2–3% compared to the traditional approach.
1 Introduction

When planning for new connections of block loads such as
residential or commercial developments, there is no available
measurement data. Instead, the distribution system operators
(DSOs) need to estimate the peak load by relying on accessible
information such as the type and area of buildings, number of
apartments, fuse sizes etc. Conventional methods used by DSOs
for estimating peak load and sizing requirements are based on the
typical load curves [1], coincidence factor [2], and the Velander–
Strand–Axelsson’s method [3]. With the increasing electrification
process especially in the transport sector and other industries, it is
crucial for DSOs to re-evaluate the validity of their methods for
peak load estimation (PLE).

In Sweden, Velander’s formula-based method is used for PLE.
The main disadvantage of this method is that it assumes
independently identically distributed (i.i.d.) loads with Gaussian
distribution [3]. Such an assumption does not reflect the diverse
mixture of loads under a low-voltage substation. Recent research
effort on PLE for new connection abandons Velander’s method
completely and resorts to for example detailed load profiles as
with a bottom-up approach [4, 5]. Such a model can serve
multiple purposes, e.g. PLE and estimation of demand-side
management potential. It has the potential of capturing individual
load behaviour more accurately. However, they require detailed
consumer data for model building, e.g. the number of inhabitants,
end-user behaviour, weather-dependent energy consumption etc.
On the other hand, the main benefits of Velander’s formula are its
simplicity with only two model parameters for a specific consumer
category and the use of annual energy as its input.

This paper will present improved models for estimating
aggregated loads from single and multiple consumer categories.
The assumptions of Velander’s formula and Rusck’s coincidence
factor are first re-evaluated. In the proposed model, we remove the
independent Gaussian load assumption, assuming instead that the
loads are jointly Gaussian with correlation within and between
load categories. With the same methodology, it can also be
applied with a typical load curve approach.
2 Review: Velander’s formula for individual loads

Assume that we have N loads with a Gaussian distribution where Pi
is a random variable representing the hourly power of the ith load
with mean value P̄i and standard deviation si, Pi � N (P̄i, s

2
i ).
178 This is an open
The peak power P(X )
i of the Xth percentile is then

P(X )
i = P̄i + K (X )si. (1)

The coefficient K (X ) gives the degree of probability of the peak
power P(X ), where K (X ) = ��

2
√

erf−1(2X − 1) and erf−1 is the
inverse of the Gaussian error function. Define two new parameters
Ei = TP̄i and q2

i = s2
i /P̄i, where T is the number of hours, and

substitute them into (1). This gives

P(X )
i = EiT

−1 + K (X )qi

��������
EiT −1

√
. (2)

The parameter q2
i is the so-called variance-to-mean ratio (VMR).

With T= 8760 h, the parameter Ei can be estimated by the annual
energy from the load data. In practice, Velander’s formula for PLE
is expressed as

P(X )
i = aEi + b

���
Ei

√
. (3)

Comparing (2) and (3), a = T −1 and b = K (X )qT −1/2 if the load is
Gaussian distributed. According to (3), b is a constant parameter,
which implies a constant VMR for a given consumer category, i.e.
q2 = q2

1 = · · · = q2
N . Note that other definitions of a and b exist

where it is based on a stricter assumption of equally sized loads
rather than constant VMR [6]. However, in practice, the load is
not strictly Gaussian, and the parameters a and b can be taken
directly from literature or estimated by regression from
measurement data. With parameters from literature, there is a risk
that the parameters are not valid for the considered geographical
area, or the parameters can be outdated or not transparent [6, 7].
On the other hand, by fitting the parameters in (3) to the peak
rather than to the mean and variance of the data according to (1),
the PLE can be substantially improved for non-Gaussian loads as
the Gaussian parameters are shifted to fit to the peak.
3 Proposed approaches

3.1 Single category load aggregation by the coincidence
factor model

For the aggregation of N loads of the same category, different
approaches can be utilised. In [1], Velander’s formula for
aggregated loads is presented. However, as this assumes i.i.d., it is
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not suitable for aggregation of correlated loads. Considering instead
a joint Gaussian distribution, PS � N (P̄, S), where
P̄ = [P̄1, P̄2, . . . , P̄N ] and S is the covariance matrix, the PLE is
given as

P(X )
S

=
∑N
i=1

P̄i + K (X )

������������∑N
i=1

∑N
j=1

si,j

√√√√ , (4)

where si,j is the covariance between the ith and the jth load. Using
(4) directly for the aggregated PLE of new loads, N 2 + N
parameter needs to be estimated. Furthermore, the data may not be
of the same size or quantity as for the new loads, hence
assumptions are required. To deal with these two issues, a
common practice in the industry for single category load
aggregation is to apply a coincidence factor [1]. The coincidence
factor is defined as the ratio between the peak of the aggregated
load and the sum of the individual peak loads

c(N ) = P(X )
S∑N

i=1 P
(X )
i

. (5)

This formulation does not require any assumptions. However, for
new loads (5) can be inflexible, e.g. when N is larger than the data
set used for parameter estimation. As described in the next section,
a one-parameter estimation of the coincidence factor is also
commonly used in practice, which can be used for N � 1.

3.1.1 Rusck’s model: Under the assumption of i.i.d., the peak
load in (4) is simplified as

P(X )
S

=
∑N
i=1

P̄i + K (X )

�������∑N
i=1

s2
i

√√√√ . (6)

Consequently, with (6) and (1), the coincidence factor in (5) can be
given as

c(N ) =
∑N

i=1 P̄i +
���������������������∑N

i=1 P(X )
i − P̄i

( )2√
∑N

i=1 P
(X )
i

. (7)

With the assumptions of all loads of the same category having
the same mean value P̄0 and peak power P(X )

0 , (7) can be
simplified as

c(N ) = c1 + 1���
N

√ 1− c1
( )

, (8)

where c1 = P̄0/P
(X )
0 = limN�1 c(N ). This estimate of the

coincidence factor is commonly seen in literature and was derived
by Rusck in 1956 [2]. Given (8), the peak power can then be
estimated according to (5).

3.1.2 Proposed method – accounting for correlation: The
loads have a relatively high correlation. To address this, we
propose to improve (8) by considering the correlation between
loads. Relaxing the assumptions of independent loads, the
aggregated peak load in (6) is expressed as

P(X )
S

=
∑N
i=1

P̄i + K (X )

��������������������∑N
i=1

∑N
j = 1

ri,jsisj

√√√√√ , (9)

where ri,jsisj = si,j and ri,i = 1. By substituting (9) and (1) into
(5) and by assuming the loads have the same average power P̄0
and same peak power P X( )

0 as in [2], with the additional
assumption of equal correlation between loads of the same
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consumer category, r = r1,2 = · · · = rN ,N−1, the coincidence
factor can be expressed as

c(N ) = P̄0

P(X )
0

+ 1− P̄0

P(X )
0

( ) ���������������
1+ r N − 1( )

N

√
. (10)

The aggregated peak can then be estimated with (5). An alternative
approach is to calculate the joint Gaussian directly, where the
loads do not have to be of equal size. PLE using the joint
Gaussian approach for single and multiple categories will be
presented in (14).

3.2 Multiple category load aggregation by joint
Gaussian regression

The following expressions are derived for the aggregation of N loads
from k [ {A, B, . . . , V} different categories.

3.2.1 Traditional approach: For the aggregation of loads of
different categories using Velander’s formula, it is suggested in [1]
to either assume no or full correlation between categories.
However, it still assumes i.i.d. for loads of the same category,
thereby it is not suitable for aggregation of correlated loads. An
alternative approach is, to sum up, the peaks from each category,
assuming a full correlation between the aggregated peak of each
category.

P X( )
S

=
∑V
k=1

P X( )
k , (11)

where P X( )
k is the aggregated peak of the kth category estimated by an

arbitrary method, e.g. Velander’s formula with coincidence factor.

3.2.2 Proposed method – accounting for correlation: To
take the correlation between loads from single and multiple
consumer categories into account, we propose to improve
Velander’s formula for aggregated loads. For the aggregation of N
loads from k different categories, the covariance matrix of the joint
Gaussian in (4) can be expressed as blocks of covariance of loads
from the same category and between loads of two different
categories. The PLE of aggregation of loads from different
categories can then be expressed with

P(X )
S

=
∑V
k=A

∑Nk

i=1

P̄ki

( )
+ K (X )

��
Y

√
(12)

where

Y =
∑V
k=A

∑Nk

i=1

∑Nk

j = 1

rki,kjskiskj

⎛
⎜⎝

⎞
⎟⎠

+
∑V
k=A

∑V
m = A
m = k

∑Nk

i=1

∑Nm

j=1

rki,mjskismj

( )
(13)

and rki,ki = 1. Assume that the correlation between loads of the same
category is equal, rki,kj = rk for all i = j, and that the correlation
between loads from two different categories is equal rki,mj = rk,m
for all i and j. Furthermore, assume constant VMR and given the
Velander coefficients and definition of annual energy in (3) and
(12) can be estimated as

P(X )
S

=
∑V
k=A

∑Nk

i=1

akwkiE

( )
+

����
Eg

√
, (14)
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Table 1 Parameters to estimate where M denoted the number of
categories and N the range of aggregated loads {2,3,…}

Model c0 c1 c2 V JG

no. of parameters NM 1M 2M 2M 3M + M2 −M

2

( )∗

*Number of pairwise categories.
where the annual energy, E = ∑V
k=A

∑Nk
i=1 Eki, the weight factor

wki = Eki/E,

g =
∑V
k=A

b2
k

∑Nk

i=1

wki +
∑Nk

i=1

∑Nk

j = 1

j = i

rk
�������
wkiwkj

√
⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

+
∑V
k=A

∑V
m = A

m = k

bkbmrk,m
∑Nk

i=1

∑Nm

j=1

��������
wkiwmj

√( )
.

(15)
Fig. 1 Coincidence factor with a standard deviation of c0

Fig. 2 Mean percentage error of peak load estimation with 99.87th
percentile of the load combination as reference
4 Measured data and parameter estimation

Three different heating systems/categories of 1–2 family houses
were considered for this analysis, (i) direct electricity, (ii) ground
source heat pump and (iii) district heating. Smart meter data were
collected from Göteborg Energi, the DSO in Gothenburg, Sweden.
The heating system and building category were collected from
buildings energy declaration through Boverket [8]. In total, 100
customers of each category were chosen for 3 years of hourly
data. After removing faulty smart meters, 89, 87 and 41 m
remained for each category, respectively.

For the PLE of individual loads according to (3), a and b need to
be estimated for each consumer category. For the aggregation of
consumers using coincidence factor, either c(N ) as in (5), c1 as in
(8) or P̄0/P

X( )
0 and r as in (10) needs to be estimated. For the

aggregation using joint Gaussian method directly using (14), rk
and rk,m need to be estimated in addition to ak and bk . The
following will present two parameter estimation approaches:

† Non-parametric – the peak load P X( )
S

is estimated by applying the
percentile function to the data, and c(N ) according to its definition in
(5) directly.
† Regression – the model parameters in (3), (8), (10) and (14) are
estimated by least square estimate with estimated mean and/or
peak power for an individual or aggregated loads as an input.

5 Experimental results

This paper presents results on the model comparison and parameter
estimation using all data for parameter estimation. For
single-category load aggregation, the V – Velander’s formula for
individual loads (3) is used in combination with the coincidence
factor, which can be estimated using three different approaches: c0
– non-parametric coincidence factor (5), c1 – coincidence factor
assuming i.i.d. (8), c2 – proposed coincidence factors considering
correlation (10). These will be referred to as the V and c0, V and
c1, and V and c2 models, respectively, later. The fourth model is
the joint Gaussian approach, referred to as the JG model,
according to (14) with only one load category. For the aggregation
of loads from multiple categories, the two evaluated models
include T – the V and c0 model together with the sum of the peak
load from each category as in (11), JG – joint Gaussian model
considering correlation as in (14). Table 1 summarises the number
of parameters to estimate for each model.

The annual energy was estimated as the sample mean times
T= 8760 h. The reference peak is calculated directly from the data
as the 99.87th percentile of individual/aggregated loads, which
corresponds to K (X ) = 3 for a Gaussian distribution. For the
parameter estimation of V, all loads are used whereas for c0, c1,
c2, JG, and the model comparison, 1000 combinations of
N [ {1, 2, . . . , Nk} randomly selected loads of each category are
used. Note that for N loads from a subset of Ntot loads, there are
Ntot!/(N !(Ntot − N )!) unique combinations.
180 This is an open
5.1 Single-category peak load estimation

To compare different models to estimate coincidence factors, c0 can
be seen as the reference for coincidence factor estimation, as shown
in Fig. 1. When assuming i.i.d. (c1), the coincidence factor is not able
to replicate the trend of c0. By adding the correlation, the coincidence
factor can give a much better fit to c0. The average mean percentage
error (MAPE) of the coincidence factor estimation can on average be
reduced by 76–96% for the different categories.

Fig. 2 presents the mean percentage error of the four different PLE
models. As for the coincidence factor estimation in Fig. 2, the V and
c1 model is not able to give an unbiased estimation of the peak load.
The other three methods show an unbiased result when a higher
number of loads are aggregated. However, there is a bias when
only a few loads are aggregated, especially when the load number
is less than 5. For fewer loads, the V and c0 and the V and c2
models outperform the JG model. This is because the probability
distribution of the aggregated loads is changing when only a few
loads are aggregated, and the JG model assumes a specific
Gaussian distribution and thus cannot capture it. It is observed that
the distribution function of the aggregated loads becomes more
uniform with an increasing number of aggregated loads. Therefore,
when optimised for one category, there can be a bias when only a
few loads are aggregated. The V and c2 model has one additional
parameter as compared to the JG, which can reduce this bias
further. The V and c0 model shows the best fit but the number of
parameters estimated increases proportional to the number of loads
aggregated.
5.2 Multiple-category PLE

For multiple-category PLE, aggregating loads from the three
categories with a 1:1:1 ratio is presented. The T model does not
require further parameter estimation. For the JG model with
CIRED, Open Access Proc. J., 2020, Vol. 2020, Iss. 1, pp. 178–181
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Fig. 3 Aggregation of three categories with a 1:1:1 ratio with 99.87th
percentile of the load combination as reference

a PLE for N= {3, 60, 120},
b Mean percentage error of PLE
parameters obtained from Section 5.1, rk,m is estimated with (14) by
aggregating all loads in categories k and m.

Fig. 3 shows the results of aggregating loads from the three
categories, where Fig. 3a shows the PLE for N = {3, 60, 120} and
Fig. 3b shows the percentage error. As the T model sums the peak
of each category, it overestimates the aggregated peak from the
three load categories by 3–34% due to the positive correlation
between categories. In contrast, the bias of the PLE using the JG
model is substantially reduced to 0.2–3%. However, note that
the variance of the error in Fig. 3b is more or less unaffected
by the different PLE methods. It is observed from the analysis that
the assumption of constant VMR has the biggest impact on the
variance of the error.
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6 Conclusions and further work

By incorporating the correlation coefficient into Rusck’s coincidence
factor, the coincidence factor estimation shows a great potential of
reducing the estimation error. However, the coincidence factors are
only applicable to loads of the same category. The greatest benefit
is seen when aggregating customers of different categories with
the use of the joint Gaussian model considering the correlation
between all loads. With only the annual energy and consumer
category as input, the joint Gaussian model can give a less biased
estimation when multiple loads are aggregated, especially for
N . 5. However, as only 1–2 family households with different
heating systems were considered, further analyses of a larger set of
loads and with more diverse categories are needed to verify this
approach. As most load patterns are not Gaussian distributed in
real scenarios, interesting future work would be to extend to other
methods, such as load curve with a joint Gaussian approach,
Gaussian mixture models and machine learning.
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