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Spherical Harmonic Decomposition of a Sound
Field Using Microphones on a Circumferential

Contour Around a Non-Spherical Baffle
Jens Ahrens, Hannes Helmholz, David Lou Alon, Sebastià V. Amengual Garí

Abstract—Spherical harmonic (SH) representations of sound
fields are usually obtained from microphone arrays with rigid
spherical baffles whereby the microphones are distributed over
the entire surface of the baffle. We present a method that
overcomes the requirement for the baffle to be spherical. Fur-
thermore, the microphones can be placed along a circumferential
contour around the baffle. This greatly reduces the required
number of microphones for a given spatial resolution compared
to conventional spherical arrays. Our method is based on the
analytical solution for SH decomposition based on observations
along the equator of a rigid sphere that we presented recently. It
incorporates a calibration stage in which the microphone signals
due to a suitable set of calibration sound fields are projected onto
the SH decomposition of those same sound fields on the surface
of a notional rigid sphere by means of a linear filtering operation.
The filter coefficients are computed from the calibration data via
a least-squares fit. We present an evaluation of the method based
on the application of binaural rendering of the SH decomposition
of the signals from an 18-element array that uses a human head
as the baffle and that provides 8th ambisonic order. We analyse
the accuracy and robustness of our method based on simulated
data as well as based on measured data from a prototype.

Index Terms—Binaural rendering, spherical harmonics, micro-
phone array, augmented reality

I. INTRODUCTION

Content for virtual reality and augmented reality (AR)
applications is typically captured with dedicated camera and
microphone arrays. The consumer experiences the content
from a first-person perspective whereby the audio signals are
rendered binaurally. Spherical harmonics (SH) are a flexible
basis for storage and transmission of the audio content as they
allow for adapting the playback to rotations of the listener’s
head. The representation of spatial audio signals in terms of
SH coefficients is also referred to as ambisonics format [1].
AR headsets on which such content is consumed may be
equipped with outward facing cameras for enabling tracking
of the user’s head and body. These cameras may also be
employed to record a 360 video of the wearer’s environment so
that the playback device can also function as a capture device.
It has not been possible to integrate spatial audio capture
with high spatial resolution into this form factor because the
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microphone arrays that have been available for this typically
require being mounted onto a perfectly spherical scattering
body [1], which is also referred to as baffle. This requirement
is an obvious limitation.

In this article, we explore a method that follows a concept
similar to conventional spherical microphone arrays (SMAs)
in that a spatial transformation of the microphone signals is
computed in order to obtain an orthogonal decomposition of
the captured sound field and remove the effect of the baffle.
Similarly to SMAs, we seek for an SH decomposition. Our
method entails two major innovations compared to SMAs:
1) The shape of the baffle on which the microphones are
mounted may depart from spherical and 2), we compute the
spatial transform along a circumferential contour rather than
across the entire spherical surface as with SMAs. The method
enables new form factors for ambisonic microphone arrays
including 360 video cameras [2] as well as using human
heads as the baffle so that integration of such an array into
AR glasses becomes possible. We will assume a head-shaped
baffle in this article.

Head-mounted microphone arrays have been employed pri-
marily for applications like beamforming, direction of ar-
rival estimation, and noise suppression, particularly in the
application area of hearing aids [3], [4]. Prediction of the
binaural signals from microphones distributed over the head of
a person was investigated, for example, in [3], [5], [6] whereby
the wearer’s orientation was encoded in the binaural signals.
The methods from [7], [8] are able to produce head-tracked
binaural signals from microphones on non-spherical baffles.

Contrary to previously proposed head-mounted microphone
arrays, we aim at performing a decomposition of the sound
field into SHs for being able to remove the scattering off
the user’s head and to compensate for head rotations during
capture. This also allows for maintaining flexibility on the
playback side in terms of the reproduction hardware [1].

SH decomposition of a sound field based on microphones
densely distributed over the surface of a non-spherical scatterer
is presented in [9], [10]. The SH representation of the captured
sound field is obtained from the microphone signals by means
of a linear filtering operation that is determined by means
of a least-squares fit on calibration data. While distributing
microphones over the entire surface of objects like, say,
360 camera arrays is conceivable, such a setup is less attractive
for head-worn arrays as it would require a form factor that may
be considered inconvenient.

A method that has similar capabilities like the presented one
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in that it allows for ambisonic encoding of the signals from
non-spherically baffled microphone arrays is [11]. It performs
the encoding parametrically by separating diffuse components
from non-diffuse components in a frequency dependent man-
ner, which is contrary to the linear encoding performed in our
method. It is demonstrated in [11] that parametric encoding
produces higher perceptual quality for the particular head-
mounted array that was employed ibidem. This array used a
non-equatorial layout so that some of the potential of linear
encoding may have stayed untapped. Data on the robustness
of parametric encoding are not available at this point. We
demonstrate in Sec. V-B that our method is indeed robust
against, for example, displacement of the microphones.

We presented an approach in [12], [13] that is an ex-
tension of the recently proposed equatorial microphone ar-
ray (EMA) [14], which comprises microphones along the
equator of a rigid spherical scatterer. To lift the requirement
of the baffle to be spherical, we introduced a calibration stage
into the EMA solution in which the microphone signals are
projected onto the SH decomposition of the same sound field
on the surface of a notional rigid sphere. The result is a method
that obtains an SH decomposition of the captured sound field
based on observations of the sound field on a circumferential
contour around a scattering object the geometry of which may
depart from spherical. Such a setup is convenient in many
application scenarios such as the 360 camera arrays mentioned
above, and it enables new applications such as integrating
the microphones into an AR headset, which, together with
an outward facing camera array, captures the audio-visual
experience of the wearer from a first-person perspective.

The main limitation of circumferential arrays is the fact that
they capture a horizontal projection of the impinging sound
field rather than the impinging sound field itself. This does
usually not constitute a limitation when binaural rendering of
the captured sound field is targeted because the binaural ele-
vation cues of interaural time difference (ITD) and interaural
level difference (ILD) are preserved [12].

In this article, we revisit our approach from [12], [13]
in Sec. II-IV. We present a thorough analysis of its prop-
erties including accuracy and robustness. The evaluation is
performed both based on acoustic data that were simulated
using the boundary element method (Sec. V) as well as based
on data that we measured on a prototype head-mounted array
(Sec. VI). We implemented the complete processing pipeline
for binaural rendering including a method for equalizing the
effects of the unavoidable SH order truncation (Appendix).

II. SPHERICAL MICROPHONE ARRAYS

SMAs are the standard setup for obtaining a SH decom-
position of the captured sound field. We therefore review the
underlying theory here. EMAs and the proposed head-mounted
arrays may be considered derivatives of the general SMA
concept.

SMAs typically employ pressure sensors distributed over
an acoustically rigid spherical baffle. A sound pressure field
S surf(β, α,R, ω) on the surface of such a scattering object

of radius R that is centered at the coordinate origin is given
by [15, Eq. (3.1.1)]

S surf(β, α,R, ω) =

∞∑
n=0

n∑
m=−n

S̊ surf
n,m(R,ω) Yn,m(β, α) , (1)

with
S̊ surf
n,m(R,ω) = S̆n,m(ω) bn(R,ω) , (2)

and [15, Eq. (4.2.13)]

bn(R,ω) = − i(
ωR

c

)2 1

h
′(2)
n

(
ωR

c

) . (3)

S̊ surf
n,m(R,ω) are the SH coefficients of the sound pressure

on the surface of the spherical scatterer. S̆n,m(ω) are the
SH coefficients – and thereby a complete representation –
of the incident sound field. ω=2πf is the radian frequency
in rad/s, f is the frequency in Hz, c is the speed of sound
in m/s, and i is the imaginary unit. h

′(2)
n (·) denotes the

derivative of the nth order spherical Hankel function of second
kind with respect to the argument. Yn,m(β, α) are the SH basis
functions, which are dependent on colatitude β and azimuth α
of a spherical coordinate system and are defined as [15,
Eq. (2.1.59)]

Yn,m(β, α) = (−1)m

√
2n+1

4π

(n−|m|)!
(n+|m|)!

P |m|
n (cosβ) eimα .

(4)
P

|m|
n (·) are the associated Legendre functions.
The computation of S̆n,m(ω) from the signals

S surf(β, α,R, ω) of pressure microphones on the baffle
can be performed via [16]

S̊ surf
n,m(R,ω) =

∮
O

S surf(β, α,R, ω) Yn,m(β, α)∗ dΩ (5)

and
S̆n,m(ω) = S̊ surf

n,m(R,ω) b−1
n (R,ω) , (6)

or equivalently,

S̆n,m(ω) = b−1
n (R,ω)

∮
O

S surf(β, α,R, ω) Yn,m(β, α)∗ dΩ .

(7)
The asterisk ∗ denotes complex conjugation, and b−1

n (R,ω)
is termed radial filters in the SMA literature. These filters
exhibit impractically high gains at low frequencies at high
orders (because bn(R,ω) tends to 0 there) so that they require
regularization. The effect of this is that those high SH orders n
cannot be extracted from the microphone signals at low fre-
quencies. It is well documented in the SMA literature [17] that
this circumstance does not constitute a noteworthy limitation in
practice as sound fields do typically not exhibit a considerable
amount of energy in the aforementioned range.

In practical implementations, the integrals in (5) and (7)
are approximated by summations over the microphone signals,
which bounds the maximum order n that can be extracted
to n≤N . One speaks of an N th order decomposition.

If the SH coefficients H̊L,R
n,m(ω) of the user’s left and

right head-related transfer functions (HRTFs) are known, then
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binaural rendering of the (order-limited) captured sound field
can be performed using [18]

BL,R(ω) =

N∑
n=0

n∑
m=−n

1

4πi−n
S̆n,−m(ω,Ω) H̊L,R

n,m(ω) , (8)

i.e., the signal BL,R(ω) that arises at a given ear of the
listener if she/he is exposed to the captured sound field can be
computed. We refer the reader to [19] for a summary of the
peculiarities of (8).

III. EQUATORIAL MICROPHONE ARRAYS

The EMA was proposed in [14], which is a generalization
of the solution from [20]. An EMA is essentially an SMA as
described in Sec. II but with microphones placed solely along
the equator of the scatterer. The EMA solution performs a cir-
cular harmonic decomposition of the captured sound field from
which an SH representation is computed from which the effect
of the scattering object is removed. The minimum number of
microphones that are required for an N th order decomposition
is 2N+1 for EMAs, which is opposed to (N+1)2 for SMAs.
At an order of N =8, EMAs therefore require 17 microphones
whereas SMAs require 81 microphones or more depending on
their placement.

We omit details of the EMA solution as they are not of
primary relevance for the present work. What is relevant here
are the high-level conclusions that can be drawn from the EMA
solution [14]:

An EMA cannot deduce all information on the captured
sound field. The solution requires assumptions to be made
to circumvent ambiguities. It turned out to be sufficient to
design the array processing such that it computes the correct
SH coefficients for height-invariant impinging sound fields.
The consequence is that the array will always output a
horizontally propagating sound field. If the impinging sound
field is not height invariant, then the array outputs a horizontal
projection of it.

The sound fields from compact sound sources at close
distances to the array, which are not height-invariant, or the
sound fields from sources that are located outside of the
horizontal plane therefore produce undesired deviations of
the array output. When binaural rendering is performed, the
deviations in the binaural signals are in the order of a few dB
or smaller at some frequencies in the range below the spatial
aliasing frequency.

IV. ARRAYS WITH ARBITRARILY-SHAPED SCATTERERS

The SMA and EMA solutions are only applicable to arrays
that comprise a spherical scattering object. We propose a
solution in this section that applies the SMA and EMA
concepts to arrays that comprise arbitrarily-shaped compact
scatterers. We use the term spherical XMA (sXMA) for arrays
that employ microphones that are distributed over the entire
surface of the scatterer and the term equatorial XMA (eXMA)
for arrays whose microphones are located along an equator-
like contour.

The problem of recovering the incident sound field from
observations of the sound field on the surface of an arbitrary

+

ˆ̊
S surf
n,m(R,ω)

S surfX(x⃗1, ω)

χ
(1)
n,m(ω)

S surfX(x⃗2, ω)

χ
(2)
n,m(ω) . . .

. . . S surfX(x⃗Q, ω)

χ
(Q)
n,m(ω)

Fig. 1. Block diagram representation of (9)

scatterer can generally not be solved analytically. We therefore
seek for a numerical solution similarly to [9], [10], where a
numerical fit of filter coefficients onto a set of known micro-
phone signals and the corresponding known SH coefficients of
the incident field is performed. A similar approach was applied
to SMAs in [21], [22] and to planar concentric arrays in [23].

Unlike previous approaches, we do not aim at extracting
the SH coefficients S̆n,m(ω) of the impinging sound field
directly because these generally diverge at low frequencies
for sound fields from sources at finite distances so that the
numerical solution may be ill conditioned. We rather propose
to numerically extract S̊ surf

n,m(R,ω) given by (2) as it is nu-
merically well conditioned under all circumstances. In other
words, we propose to project the pressure signal S surfX(x⃗, ω)
at position x⃗ on the surface of the arbitrarily-shaped scatterer
onto the SH coefficients of the pressure distribution that the
same incident sound field would evoke on the surface of a
virtual rigid spherical scatterer of radius R. S̆n,m(ω) can then
be computed via (7) using the well-known gain-limited radial
filters.

It seems intuitive that it will be favorable if the arbitrarily-
shaped scatterer does not depart too much from spherical and
if the diameter of the notional rigid sphere is chosen similar
to the size of the XMA. Yet, we demonstrated in [2] that the
proposed method works well even if the baffle has corners.

The extraction of S̊ surf
n,m(R,ω) from the microphone sig-

nals S surfX(x⃗, ω) is a linear operation, which means that
S̊ surf
n,m(R,ω) can be represented by a linear combination of

S surfX(x⃗, ω) observed at different positions x⃗q as

S̊ surf
n,m(R,ω) ≈

Q∑
q=1

χ(q)
n,m(ω) S surfX(x⃗q, ω)︸ ︷︷ ︸

=
ˆ̊
S surf
n,m(R,ω)

, (9)

whereby S surfX(x⃗q, ω) is the sound pressure on the surface of
the arbitrarily-shaped scatterer at the position / microphone
with index q. χ(q)

n,m(ω) are the complex weights of the Q mi-
crophone signals. A block diagram representation of (9) is
depicted in Fig. 1.

With conventional SMAs, the coefficients ˆ̊
S surf
n,m(R,ω) can

be computed in practice via quadrature of the integral in (5) as

ˆ̊
S surf
n,m(R,ω) =

Q∑
q=1

wq S surf(βq, αq, ω) Yn,m(βq, αq)
∗ , (10)
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whereby wq are the quadrature weights of the Q microphone
locations. Comparing (10) and (9) makes it obvious that, in
the case of the conventional SMA,

χ(q)
n,m(ω) = χ(q)

n,m = wq Yn,m(βq, αq)
∗ . (11)

For the XMA, we have to assume that the complex weights
χ
(q)
n,m(ω) are frequency dependent. We can obtain them for

sets of (n,m, q) from a least-squares fit according to (9).
This requires a set of microphone signals S surfX(x⃗, ω) and
the corresponding known coefficients S̊ surf

n,m(R,ω) for at least
Q+1 different sound fields to establish an over-determined
system of linear equations. These data can be obtained from
calibration measurements of defined sound fields that impinge
on the XMA. Once χ

(q)
n,m(ω) is known, we can straightfor-

wardly apply (9) to the microphone signals due to arbitrary
incident sound fields to obtain an approximation ˆ̊

S surf
n,m(R,ω)

of their according SH coefficients. We found that Tikhonov
regularization [24, Eq. (6.10)] in the least-squares fit can be
very effective in increasing the robustness but is not impera-
tive.

We propose to use plane waves that carry a unit-amplitude
time-domain impulse as sound fields for this calibration due to
the convenient implementation. S surfX(x⃗q, ω) is also referred
to as steering vector of the array in this case. When assuming
an XMA of the size of a human head, the impinging sound
field due to a loudspeaker in a free field can be approximated
by a plane wave if the distance between the loudspeaker and
the XMA is at least 1m [25], [26]. Note that this procedure
applies to sXMAs and eXMAs alike with the only difference
that eXMAs should be calibrated only with horizontally prop-
agating plane waves.

For a plane wave propagating into the direction (ϕ, θ)
defined by colatitude ϕ and azimuth θ [15, Eq. (2.3.6)]

S̊ surf,pw
n,m (R,ω) = 4πi−n Yn,m(ϕ, θ)∗ bn(R,ω) (12)

holds. When using (12) for calibration in (9), it is important
to be aware of the implicit time reference that (12) comprises.
Eq. (12) represents a spatio-temporal transfer function, which
is the frequency-domain representation of the spatio-temporal
impulse response s̊surf,pw

n,m (t). Eq. (12) implies that t=0 is the
moment when the notional planar wave front carrying a time-
domain impulse, which s̊surf,pw

n,m (t) is the response to, passes
the coordinate origin if no scattering object were present. The
right hand side of (9) should be using the same time reference.

V. SIMULATION RESULTS

We evaluate the proposed method in its eXMA variant as
this one is more interesting from an application point of view
and the properties of sXMAs can be directly deduced from
it. We assume an eXMA that is composed of microphones
that are mounted around the circumference of a torso-less
acoustically rigid human head as depicted in Fig. 2. We
used the mesh2hrtf implementation of the boundary element
method (BEM) from [27], [28] to simulate the microphone
signals due to sound originating from point sources at different
locations. We obtained the head mesh from the same resource
where its suitability for the BEM simulation was demonstrated.

Fig. 2. Geometry of the eXMA on the acoustically rigid head “MH”. The
ears are located on the y-axis. The black dots denote the locations of the
18 microphones, which are located at z=60mm. Left: Perspective view.
Right: Top-down view. The black solid line denotes the virtual rigid sphere
of radius R=78mm onto which the microphone signals are projected.

We made the following parameter choices:
• We employed 18 approximately evenly spaced micro-

phones and target a sound field decomposition of an SH
order of N =8. An EMA of comparable geometry would
require at least 2N+1=17 microphones for this. As it is
not straightforward to determine if the microphone grid
maintains orthogonality of the implicit inherent circular
harmonic decomposition, we chose to add one extra
microphone to the minimum required number of 17. The
spatial aliasing frequency fA can be estimated via the
relation N =ωA/cR [29], which yields fA ≈ 5.5 kHz for
the present case.

• We calibrated the eXMA via (9) using spherical waves
that originated from 360 equal-angularly spaced locations
in the horizontal plane at a distance of 3m. This is a
distance that is sufficient to assume that the impinging
wave fronts are planar at the XMA so that (12) can be
employed in the calibration. Recall that the minimum
required number of calibration sound fields is Q+1=19
in the present case. We chose a higher number as well as
to apply Tikhonov regularization with λ=1 to increase
the robustness.

• We added Gaussian noise with an RMS amplitude of
−80 dB below the maximum amplitude of the impulse
responses to both calibration and test data to emulate
measurement errors and sensor self-noise.

A. Accuracy

1) Calibration: We analyze the accuracy of the calibration
by analyzing the error between the left-hand side S̊ surf

n,m(R,ω)

and the right-hand side ˆ̊
S surf
n,m(R,ω) of (9). We define the

normalized calibration error E(ω) as

E(ω) = 20 log10
1

L

∣∣∣∣∣∣
L∑

l=1

ˆ̊
S surf,l
n,m (R,ω)− S̊ surf,l

n,m (R,ω)

S̊ surf,l
n,m (R,ω)

∣∣∣∣∣∣ . (13)

l is the index of a total of L sounds fields for which calibration
data are available. We only evaluate E(ω) for horizontally
propagating plane waves.
E(ω) is depicted in Fig. 3 (top) for R=78mm, which is

the largest radius of a sphere that is centered at the coordinate
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Fig. 3. Top: Normalized calibration error (13) as a function of frequency
and for different |m| for R=78mm. The error is independent of n for
a given |m|. Bottom: Normalized error of the reconstruction of the sound
pressure on the surface of the notional sphere due to the captured sound field
for different radii R of the sphere. The error was averaged over 1891 positions
distributed over the target sphere and over 100 incidence azimuths of hori-
zontally propagating plane waves. The reference sound pressure distribution
is computed from (1) with 35th order.

Fig. 4. 20 log10

∣∣∣χ(q)
n,m(ω)

∣∣∣ for microphone q located at (x, y)= (0.1, 0) m

origin that assures that the sphere fits entirely into the head
(cf. Fig. 2 (right)). As expected, the error is large at frequencies
above fA. Fig. 3 (top) depicts also a large error for high |m|
at low frequencies, which will be discussed below.

Fig. 4 depicts 20 log10

∣∣∣χ(q)
n,m(ω)

∣∣∣ for the present scenario.
It indicates that this large error at low frequencies is due
to the circumstance that the higher orders are not extracted
from the microphone signals at low frequencies. Note that
20 log10

∣∣∣χ(q)
n,m(ω)

∣∣∣ is very low there in Fig. 4. Recall from (11)

that χ(q)
n,m(ω) = χ

(q)
n,m is frequency independent for a conven-

tional SMA.
The unavailability of high-order modes (n,m) at low fre-

HRTFs

eXMA

Fig. 5. Top: Magnitude of the left-ear HRTFs of the dummy head for different
azimuth angles of horizontal sound incidence. Bottom: Magnitude of the left-
ear BTFs of the eXMA for spherical waves originating from point sources
located in the horizontal plane at the corresponding azimuth angles at a
distance of 1m.

quencies is usually not a limitation in practice as these modes
tend to exhibit very little energy. This aspect is confirmed
by Fig. 3 (bottom) where the normalized error of the re-
construction of the captured sound pressure on the surface
of the notional rigid sphere is depicted. We performed the
reconstruction for a set of different projection radii R to also
cover the effect thereof. The reconstruction error is very low
below fA.

The coefficients ˆ̊
S surf,l
n,m (R,ω) tend to exhibit more energy at

high n (and thereby at high |m|) for sound fields that originate
from sources that are close to the array. We will confirm in
Sec. VI that the array output is accurate even in such situations.

Lastly, it is remarkable how clearly it is identifiable in
Fig. 4 what frequency range a given SH order n contributes
to primarily.

Fig. 3 (bottom) demonstrates that projection onto spheres
of smaller radius R is more accurate than on larger R. This
effect is small in magnitude and may be attributed to the
fact that the (inaccurately deduced) higher orders n contribute
less to the sound pressure if it is reconstructed on a smaller
sphere. This apparent advantage of smaller projection spheres
is rendered void by the inevitable gain limitation of the radial
filters b−1

n (R,ω) from (2) as this gain limitation causes higher
inaccuracies with smaller spheres so that R may actually
be chosen freely. It is rather an abstract parameter of the
performed transformation and does not exhibit a physical
meaning. We use R=78mm in the remainder of this section.

2) Binaural output: In the following, we analyse the per-
formance of the proposed eXMA based on its binaural transfer
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functions (BTFs). The BTFs are given by the binaural output
of the array processing pipeline in the case that the array
captures a given sound pressure field like a plane wave that
carries a time-domain Dirac impulse. In the remainder, we use
the HRTFs of a Neumann KU100 dummy head from [17] for
the binaural rendering of the signals from the eXMA via (8).

Fig. 5 juxtaposes the left-ear HRTFs of the dummy head
for sound incidence directions straight ahead, 45° to the left,
and 90° to the left with the according BTFs of the eXMA for
point sources located at the corresponding azimuth angles at
a distance of 1m. A perfect eXMA would produce BTFs that
would be essentially identical to the dummy head HRTFs.

It is worth noting that the HRTFs that we employed in the
rendering were measured from a distance of 3m whereas the
sources that we used for testing of the eXMA were located at
a distance of 1m. This means that even an ideal eXMA would
theoretically produce BTFs that deviate from the reference
HRTFs. It is evident from the data from [25], [26] that these
deviations are negligible for the source distances that we
employ. We made this choice in order to employ data in
the evaluation that are not identical to the data used for the
calibration.

It can be deduced from Fig. 5 that the BTFs of the eXMA
are similar to the corresponding HRTFs up to a frequency of
approx. 6 kHz whereby deviations in the order of 1 dB to 2 dB
arise.

Significant attenuation of the eXMA BTFs compared to the
HRTFs occurs above 6 kHz. This is due to the truncation of
the SH series in (8), and is well-known from the literature on
SMAs. A range of methods have been proposed to equalize
this for SMAs most which have been shown to be effec-
tive [30]. Such methods are not necessarily applicable with
XMAs as the properties of the scattering body as well as the
consequences of the microphone placement can vary greatly.
We present results in Sec. VI that employ an equalization
method that we proposed in [31] that is flexible enough to
be applicable with all microphone array types that have been
discussed in this article – SMAs, EMAs, sXMAs, and eXMAs.

The BTFs of the eXMA change with source elevation, and
they also deviate from the according HRTFs as evident from
Fig. 6. This is expected and is qualitatively and quantitatively
similar to the deviations that an EMA produces in the same
situation [14]. It is worth noting that the deviations of the BTFs
change continuously with the elevation of sound incidence,
which tends to be less disturbing from a perceptual point of
view than erratic changes.

While the eXMA is not capable of producing monaural
elevation cues, ITD and mostly also ILD are preserved even
for non-horizontal sound incidence as evident from Fig. 7. This
is a direct consequence of the fact that the eXMA outputs a
horizontal projection of the captured sound field. In the context
of head-tracked pseudobinaural rendering where the signals
from microphones on the surface of a rigid sphere of head size
are directly played to the listener without further processing, it
was demonstrated that correct interaural auditory localization
cues can lead to correct perception of elevation even in the
complete absence of monaural cues [32].

Close sound sources often constitute a critical situation for

HRTFs

eXMA

Fig. 6. Same as Fig. 5 for sound incidence from straight ahead from different
source elevations. Top: Dummy head HRTFs. Bottom: eXMA BTFs.

Fig. 7. ITD and ILD as a function of elevation for a source at azimuth 45°.
Top: ITD defined as the lag at which the maximum interaural correlation
occurs. Bottom: ILD computed in the frequency band 1 kHz to 8 kHz.

microphone array processing methods as such sound fields
have more energy in higher modes (n,m) particularly at low
frequencies compared to far sources. Many times, intolerable
amplification of the low-frequency output occurs if the short
source distance violates assumptions of the processing method.
We observed this in [20] where we proposed an earlier EMA
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Fig. 8. Left-ear BTFs of the eXMA for a point source in the horizontal plane
at different distances. Data are normalized with the source distance from the
array center. Reference HRTF data are not available.

solution in which the scattering due to the array baffle was
approximated rather than modeled accurately. The inaccuracies
of this approximation produced a massive low-frequency boost
for sources closer than, say, 1m.

The sound fields due to close sound sources do indeed
violate the assumption of height invariance that underlies
EMAs and eXMAs. We demonstrated in [14] that the EMA is
robust towards this violation due to close sources, and Fig. 8
demonstrates that also our eXMA solution is robust towards
this. A minor change of the spectral balance is apparent partic-
ularly for the closest source distance of rs =0.3m compared
to the farther distances. This is expected and is a general
phenomenon with the scattering off rigid bodies [25]. SMAs
and EMAs produce BTFs with very similar dependencies [14].

B. Robustness

1) Microphone placement: To evaluate the robustness of the
proposed solution regarding the placement of the microphones,
we calibrated the array as described above and then evaluated
the BTFs of the array after applying a random displacement of
the microphones tangentially to the head surface taken from
normal distributions with zero mean and standard deviations
σ of 1mm, 3mm, 10mm, and 30mm. Cf. Fig. 9 (top) for an
illustration of the geometry. All microphone transfer functions
where again computed with mesh2hrtf.

For convenience, we depict only the results for σ=10mm
in Fig. 9 (bottom). This figure depicts the difference between
the BTFs when the array is evaluated with the displaced
microphones and the BTFs when the array is evaluated with
the microphones at the same positions like during calibration.
We found that the deviations of the BTFs are smaller for
smaller displacements and larger for larger displacements than
the depicted one so that we omit presenting more detailed
data here. It is evident from Fig. 9 (bottom) that despite the
considerable displacement of the microphones, the BTFs are
only moderately affected below fA. Large deviations arise
above fA whereby this is not very critical because we found
that the microphone displacement causes primarily a change
in the fine structure of the spatial aliasing. This shows as large
errors but seems perceptually hardly relevant as we found

Fig. 9. Top: Head MH from Fig. 2 with the microphone positions during
calibration (black dots) and the microphone positions during evaluation
(red dots) for σ=10mm. Bottom: Difference between the left-ear BTFs
of the eXMA when evaluated using the red-marked microphone positions
and the left-ear BTFs of the eXMA when evaluated using the black-marked
microphone positions.

during informal listening. The observations are very similar
also for non-horizontal sound incidence.

2) Calibration: We simulated four different heads and
tested in how far a deviation of the geometry of the baffle
at evaluation affects the BTFs.

Head CT (from [33]) depicted in Fig. 10 is approx. 15%
smaller than head MH used above. The microphone positions
were chosen such that the microphones occur at the same
azimuth angles for both heads. We also produced scaled
versions of each of the heads. In the remainder, CT(s) – the
small version of CT – refers to head CT in its original size,
CT(l) – the large version of CT – refers to head CT scaled
to the original size of MH, MH(s) refers to head MH scaled
to the original size of head CT, and MH(l) refers to head MH
in its original size. Cf. Fig. 11 (top). The intention was to
investigate the influence of the head shape and the head size
separately.

We selected each of the four heads for calibration and
performed the evaluation on the remaining heads. We found no
systematic tendencies that would allow for differentiating the
influence of the head size vs. the head shape. Both head size
differences and head shape differences produce deviations
of the BTFs of similar magnitude. Fig. 11 (bottom) depicts
representative results. We omit presenting further results here
as they are very similar of all combinations of heads that we
tested.

The data in Fig. 11 (bottom) are similar to the data from
Fig. 9 (bottom): Below fA the deviations are moderate, and
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Fig. 10. Geometry of head CT, which is approx. 15 % smaller than head MH
from Fig. 2. We use R = 70mm for CT.

Fig. 11. Top: Top-down view on the microphone contours of all four heads
that are employed in the robustness analysis. Bottom: Difference between
the left-ear BTFs when head MH(l) is used for calibration and CT(s) for
evaluation and when head MH(l) is used for both calibration and evaluation.

the fine structure of the spatial aliasing changes. This suggests
that it may be tolerable to calibrate the array on a different
head that on which is being used.

VI. MEASUREMENT RESULTS

We built a prototype based on a wooden artificial head with
geometrical dimensions that were comparable to head MH
from Fig. 2. Photographs of the prototype are depicted
in Fig. 12. We deployed 18 small pressure microphones along
a horizontal contour with approximately constant spacing
between them. The prototype was calibrated in the anechoic
chamber at the Division of Applied Acoustics at Chalmers
University of Technology using a loudspeaker in the horizontal
plane at a distance of 3.0m at 360 azimuths. The loudspeaker
was still, and the prototype was rotated by means of a
turntable.

Measured BTFs are presented in Fig. 13. We deployed the
complete end-to-end processing pipeline as it is described

Fig. 12. Perspective view (left) and top-down view (right) of the prototype.
The head dimensions are 14.5 cm (width) and 21.5 cm (length).

Fig. 13. Measured BTFs of the eXMA from Fig. 12. The BTFs are equalized
according to (15) and (16). Top: Horizontal sound incidence from different
azimuths (equivalent to Fig. 5). Middle: Frontal sound incidence from different
elevations (equivalent to Fig. 6). Bottom: Frontal sound incidence from
different distances (data are normalized with the source distance, equivalent
to Fig. 8).

in Sec. II-IV including equalization of the BTFs according
to [31]. The equalization method is outlined in the Appendix.

The measurement data in Fig. 13 exhibit very similar
properties like the corresponding simulated data from Fig. 5,
6, and 8. Moreover, the measurement data for horizontal sound
incidence in Fig. 13 (top) deviate from the reference HRTFs
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Fig. 14. Same as Fig. 13 (top) but for a total of 9 microphones (top) and 6
microphones (bottom). The corresponding SH orders are 4 (fA ≈ 2.7 kHz)
and 2 (fA ≈ 1.4 kHz) respectively.

depicted in Fig. 5 (top) – the HRTFs that are used for the
rendering – by less than 2 dB below fA and somewhat more
above fA whereby the global spectral balance is maintained
well. The measurement data for elevation and distance in
Fig. 13 (middle) and (bottom) also exhibit the same tendencies
like the simulated data but with slightly larger deviations. We
attribute these deviations to the measurement setup, which was
not free of reflecting surfaces like the turntable on which
the prototype was positioned, a multichannel pre-amplifier
that was positioned close to it, as well as rigging frames
for mounting the loudspeaker. Some of the wigglyness of
the yellow curve in Fig. 13 (bottom) may be attributed to
reflections bouncing between the loudspeaker and the head.
The loudspeaker baffle was positioned only approx. 15 cm
from the head’s face.

It is difficult to state at this point how many microphones
are sufficient with the present setup to achieve a perceptually
viable binaural output. The physical accuracy is closely linked
to the spatial aliasing frequency fA through the number of
microphones. It was demonstrated to various locations in the
literature including [34], [30] that physical accuracy is not
imperative above approx. 2 kHz. Careful equalization of the
binaural signals above 2 kHz using, for example, magnitude
least-squares in its original formulation [35] or in our formu-
lation presented in the Appendix can compensate perceptually
for a lack of physical accuracy. Fig. 14 indicates this for our
prototype. It depicts data equivalent to Fig. 13 (top) whereby
we used only every other or every third of the microphones
to obtain a total of 9 and 6 microphones, respectively. The
deviations of the magnitude BTFs are small to moderate.

A demonstration of binaural rendering of signals captured

with the prototype from Fig. 12 with different microphone
counts is available at1.

VII. CONCLUSIONS

We presented a proof-of-concept for a head-mounted cir-
cumferential microphone array that performs a spherical har-
monic decomposition of the captured sound field. The evalua-
tion of binaurally rendered signals from the array showed that
the accuracy is only slightly lower than that of a comparable
equatorial microphone array with a spherical scatterer. We
confirmed via analysis of accuracy and robustness based on
simulations as well as via measurements on a 18-element
prototype array mounted around a human head that the method
is deployable in practice.

Besides the head-mounted form factor, the presented method
is applicable in all scenarios where a spherical array baffle is
inconvenient and where the microphones cannot be distributed
over the entire surface of the baffle but need to be confined to
a circumferential contour.

APPENDIX

To equalize the spectral balance of the array’s BTFs, we in-
troduce the modal equalization filter Ĕn,m(ω) into (8) as [31]

BL,R
(Eq)(ω) =

N∑
n=0

n∑
m=−n

1

4πi−n
Ĕn,m(ω)

ˆ̆
Sn,−m(ω,Ω) H̊L,R

n,m(ω) .

(14)
We design Ĕn,m(ω) such that it minimizes the error between
the chosen HRTFs HL,R(ω,Ω) and the BTFs BL,R

(Eq)(ω) of the
array pipeline given by (14) for a plane wave from incidence
direction Ω in a least-squares sense, whereby in the general
case, we minimize across all incidence directions Ω∈S2 with
S2 denoting the unit sphere and ∥ · ∥ denoting the l2 norm:

ĔLS
n,m(ω) = arg min

Ĕn,m(ω)

∮
Ω∈S2

∥∥∥HL,R(ω,Ω)

−
N∑

n=0

n∑
m=−n

Ĕn,m(ω)

4πi−n

ˆ̆
Spw
n,−m(ω,Ω) H̊L,R

n,m(ω,Ω)
∥∥∥2dΩ .

(15)

In the case of a circumferential microphone contour like in
the present case, the integral in (15) reduces to an integral
along the azimuth in the horizontal plane. ˆ̆

Spw
n,m(ω,Ω) are the

SH coefficients of a plane wave with incidence direction Ω
that are computed from the corresponding array signals. The
integral over Ω has to be discretized in practice, which does not
pose any restrictions so long as the discretization is sufficiently
dense.

The problem in (15) can only be solved with high accuracy
at low to moderate frequencies. Given that maintaining the
spectral magnitudes of the BTFs is perceptually much more
important than maintaining the phase at high frequencies, it
was proposed in [34], [35] to minimize the magnitude error

1https://youtu.be/OPWCXFbOFxU
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in an LS sense above a cutoff frequency fc ≤ fA. Adopted to
our proposed formulation, this reads

ĔMagLS
n,m (ω) = arg min

Ĕn,m(ω)

∮
Ω∈S2

∥∥∥ ∣∣HL,R(ω,Ω)
∣∣

−

∣∣∣∣∣
N∑

n=0

n∑
m=−n

Ĕn,m(ω)

4πi−n

ˆ̆
Spw
n,−m(ω,Ω) H̊L,R

n,m(ω,Ω)

∣∣∣∣∣ ∥∥∥2dΩ ,

(16)

which tends to be solved with much lower error even if spatial
aliasing and order truncation are apparent. | · | denotes the
absolute value. A cutoff frequency of fc =2kHz has been
shown to be a useful choice [34], [35].

A detailed presentation of the equalization method is avail-
able in [31].
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